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Abstract: Induction machines (IMs) are a critical component of many industrial processes, and
their failure can cause large economic losses. Condition-based maintenance systems (CBMs) that
are capable of detecting their failures at an incipient stage can reduce these risks by continuously
monitoring the IMs’ condition. The development and reliable operations of CBMs systems require
rapid modeling of the faulty IM. Due to the fault-induced IM asymmetries, these models are much
more complex than those used for a healthy IM. In particular, a mixed eccentricity fault (static and
dynamic), which can degenerate into rubbing and destruction of the rotor, produces a non-uniform
IM air gap that is different for each rotor position, which makes its very difficult to calculate the
IM’s inductance matrix. In this work, a new analytical model of an eccentric IM is presented. It is
based on the winding tensor approach, which allows a clear separation between the air gap and
winding-related faults. Contrary to previous approaches, where complex expressions have been
developed for obtaining mutual inductances between conductors and windings of an eccentric IM,
a conformal transformation is proposed in this work, which allows using the simple inductance
expressions of a healthy IM. This novel conformal winding tensor approach (CWFA) is theoretically
explained and validated with the diagnosis of two commercial IMs with a mixed eccentricity fault.

Keywords: winding tensor; induction machines; fault diagnosis; mixed eccentricity

1. Introduction

IMs maintenance is necessary for most industrial process to run smoothly, avoiding
unexpected breakdowns of production lines [1,2]. Corrective maintenance can be very
costly for companies and is increasingly being replaced by condition-based maintenance
systems [3–5], which can detect IM faults at an early stage, thus limiting equipment
downtime and costs caused by production interruption. Among the different diagnostic
techniques proposed in the technical literature to assess the IM condition, motor current
signature analysis (MCSA) [6–8] has gained an increasing interest, because it is non-invasive
and can be implemented with low cost hardware sensors, such as a current clamp, and fast
software signal processing tools, such as the fast Fourier transform (FFT).

One of the most common IM failures is rotor eccentricity [9,10]. In this case, the center
of rotation of the rotor may not coincide with the axis of symmetry of the stator (static
eccentricity), with the axis of symmetry of the rotor (dynamic eccentricity), or with neither
of them (mixed eccentricity) [11]. This failure can be produced by the manufacturing
process (every IM has an inherent degree of eccentricity) or by working conditions, such
as driving an unbalanced load. This produces an unbalanced magnetic pull [12] that can
damage bearings and generate abnormal vibrations [13,14] or even cause rotor rubbing,
with a total destruction of the machine [15,16]. Therefore, it is very important to detect this
fault at an incipient stage so that proper maintenance actions can be scheduled. However,
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the low amplitude of the fault harmonics generated by an eccentricity fault represents a
challenging task for MCSA and requires advanced and fast models of the eccentric IM [17]
to develop new signal processing tools or to train artificial intelligent (AI) [18] systems to
recognize this type of fault. In this regard, different models of the eccentric IM have been
proposed in the technical literature [17,19]:

• Numerical models, mostly based on the finite elements method (FEM). They can
accurately reproduce the behaviour of the eccentric IM [20], but they require detailed
information about construction aspects of the IM and are computationally intensive.
This problem can be alleviated using order-reduction models [21], solving the machine
at some positions and performing a field reconstruction based on them or with hybrid
FEM-analytical models [22–24].

• Analytical models, based on a network of magnetically coupled circuits [25]. Their
accuracy may not be as high as FEM models, but they are much faster to build and
solve, need only the most basic motor parameters [26], and can correctly reproduce
the position and amplitude of the fault-related harmonic components [27].

The main difficulty for developing analytical models of the eccentric IM is the need
of an accurate inductance matrix that takes into account the non-uniform air gap length,
as a function of the rotor position. This matrix can be built by direct measurement, as
in [28,29], or calculated analytically. The winding function approach (WFA) calculates the
mutual inductances between different types of phase coils [9,30–32] and has been used
for IM models in [33–35]. However, it requires a numerical solution of definite integrals,
which is a product of turn-modified winding and inverse air gap functions, for each rotor
position. This is a cumbersome procedure [10], and a simplified model has been proposed
in [10], replacing the actual bars of the cage rotor by an equivalent three-phase winding.
A different proposal is the winding tensor approach (WTA), which replaces the coil by
the conductor as the most basic unit and reduces the calculation process to routine tensor
operations [36–38]. However, even the expression of the partial inductances between single
conductors in eccentric IMs is a highly complex one [39].

To overcome these difficulties, a novel method to calculate the inductance matrix of
an eccentric IM is proposed in this paper by using WTA. Instead of directly deriving the
partial inductance of a conductor in an IM with a non-uniform air gap, as in [39], this new
proposal applies a conformal transformation [35,40] to obtain an equivalent, non-eccentric
IM with a uniform air gap, which has much simpler inductance expressions. The problem
is that this transformation also changes the angular positions of rotor conductors [41–43].
However, the flexibility of WTA makes it possible to deal with this non-uniform winding
using routine tensor operations [30,44], which provide the final inductance matrix of the
eccentric IM in a fast and very simple manner.

The structure of this work is as follows. In Section 2, the simple analytical model of the
IM is presented, and in Section 3, the parameters of this model are presented for the case of
a healthy machine. In Section 4, the novel approach for calculating the inductance matrix
of an eccentric IM is theoretically presented. in Section 5, it is validated by comparing its
results with the inductance matrix obtained with an FEM model, and in Section 6, it is
applied to evaluate the degree a mixed eccentricity fault in two commercial IMs. Finally,
Section 7 presents the conclusions of this work.

2. Simple Analytical Model of the IM

The reference frame used to establish the analytical model of IM is a simple one, in
which the reference axes of all stator windings are rigidly connected to the stator iron
and conductors and those of the rotor windings are rigidly connected to rotor iron and
conductors (the holonomic, Riemannian reference frame described in [45]). This reference
frame is depicted in Figure 1 for a generic IM with ns stator windings and nr rotor windings,
with a total number of windings n = ns + nr.
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Figure 1. Reference frame of the IM with the axes of all stator windings (s1, s2, . . . , sns ) rigidly
connected to the stator iron and conductors and those of the rotor windings (r1, r2, . . . , rnr ) rigidly
connected to the rotor iron and conductors.

In this reference frame, the transient voltage equation along each axis has the simple
form [30,46] for each of the machine windings

e = Ri +
dϕ

dt
(1)

where e is the voltage applied to the winding, R is its resistance, and ϕ is the flux linkage
of the winding. The n algebraic equations obtained by applying (1) to the n IM windings
can be replaced by a single equation having the same form of (1) if each letter is replaced
by the corresponding n matrix (first generalization postulate in [30]) as follows:

e = Ri +
dϕ

dt
(2)

where

• e = [es1 , es2 , . . . , esns , er1 , er2 , . . . , ernr ]
t is the voltage vector, which represents the termi-

nal voltages applied to the n windings;
• ϕ = [ϕs1, ϕs2, . . . , ϕsns

, ϕr1, ϕr2, . . . , ϕrnr
]t is the flux linkage vector, which represents

the flux linkages of the n windings;
• i = [is1 , is2 , . . . , isns , ir1 , ir2 , . . . , irnr ]

t is the current vector, which represents the n wind-
ing currents;

• R is the resistance tensor. It is a square matrix, with n2 components, for which its
elements are winding resistances.

Moreover, t stands for the transpose operator. In addition, the relationship between
the flux-linkage and the current vectors can be expressed as follows:

ϕ = Li (3)
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where L is the inductance matrix, a square one, for which its n2 components are the
self-inductances and mutual inductances of the windings.

The torque equation in the reference frame of Figure 1 is given by the following [45]:

T = J
dθ̇

dt
− 1

2
it dL

dθ
i (4)

where T is the instantaneous applied shaft torque T, θ and θ̇ are the rotor instantaneous
angle and speed, respectively, and J is the moment of inertia of the rotor.

It is worth mentioning that in (2) and (4), only the currents, voltages and torque at the
IM terminals appear. That is, IM is considered as an analog of a closed box from which
wires and shaft protrude [45]. This avoids the necessity of assuming that the current density
and other waves are sinusoidally distributed in space, as in [46,47], which is advantageous
because the eccentricity fault and the winding configuration generate harmonic spatial
fields that distort their pure sinusoidal shape.

Figure 2 shows a Simulink model that implements both (2) and (4), using the model
parameters R and L (and its angular derivative). The inductance matrix and its angular
derivative depend on the rotor position and must be updated at each step of the simulation.

1

1
s

1
s

1
s

MI
k1

f1

Matrix
Multiply

21 2 33 J

Matrix
Multiply

MI
k1

f1

Figure 2. Dynamical model that implements (2) and (4) in Simulink. This model has three input
ports: (1) the voltage vector e, (2) the applied shaft torque T, and (3) the moment of inertia of the
rotor J. It has also three output ports: (1) the current vector i, (2) the rotor speed θ̇, and (3) the rotor
angular position θ.

3. Determination of the Parameters of the IM Model

As stated in [48], the knowledge of the two sets of numbers R and L in (2)–(4) is
sufficient to find the transient and steady-state performances of IM, assuming no magnetic
saturation and no iron losses. These parameters can be found in the technical data provided
by the manufacturer of the IM or calculated using its construction data (assuming healthy
conditions), as in the case of the machine used for the experimental tests in this work. If
these specifications are not available, they can be estimated using offline [49–51] or online
parameter estimation techniques [52]. A comprehensive review of these techniques can
be found in [53]. Recently, artificial intelligence (AI) methods have been proposed for
parameter estimation in [54], as well as differential evolution algorithms [55]. Additionally,
IM parameters change with temperature, frequency, or saturation, which has not been
considered in the model used in with work.

The values of R and L that appear in (2) and (4) depend not only on the configuration
of the IM windings but also on their connections. In this work (see Figure 3), the three stator
phases have a delta connection. They are assumed to be identical, and each has a resistance
Rs and a leakage inductance Lσs. The rotor cage has nb bars. Each rotor loop consists of
two consecutive bars, each with a resistance Rb and a leakage inductance Lσb. The bars
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are connected via end ring segments, each with resistance Re and leakage inductance Lσe.
As in this work, the windings of the IM are considered to be in a healthy condition (only
the eccentricity fault is addressed), and the resistances and leakage inductances of all the
elements of the same type (stator phases, rotor bars, and rotor end ring segments) are
considered to have the same values.

Lσs

Rs

Lσs

Rs

is2

is3

Lσs

Rs

is1
es1

es2

∼

∼

RbLσb

LσbLσb

LσbLσb

Lσb

Lσb

Lσb Lσb

Rb

Rb

Rb

Rb

Rb Rb

Re

Lσe

Re

Lσe

Re

Lσe

Re

Lσe

Re
Lσe Re

Lσe

Re

Lσe

Re

Lσe

Re

LσeRe
Lσe

Re

Lσe

Re

Lσe

Re
Lσe Re

Lσe

Re

Lσe

ir2ir3

ir1

irnb

ir4

ir5

ire

Re
Lσe

Figure 3. IM network. The three stator phases (left) have a delta connection, and each one has
resistance Rs and leakage inductance Lσs. The rotor cage (right) has nb bars. Each rotor loop consists
in two consecutive bars, each one with resistance Rb and leakage inductance Lσb. The bars are
connected trough end ring segments, each one with resistance Re and leakage inductance Lσe. The
self and mutual inductances of the windings are not represented in this circuit.

The assembly of R and L for the IM circuit represented in Figure 3 will not be per-
formed directly, which needs a careful and cumbersome analysis of the circuit, especially
for the calculation of the mutual inductance matrix. Instead, a much simpler approach is
used in this paper by following Kron’s method [48]—that is, starting from a IM with the
simplest connections, the primitive IM network, and using routine transformation rules
for obtaining their final, complex values. As pointed out in [48], once matrices R and L
are obtained for this simplest machine, the final values can be derived by an appropriate
transformation that leaves the spatial position of all resistors and inductors undisturbed
and changes only their interconnection, using basic tensor algebra.

The simplest IM configuration that can be achieved without changing the spatial
position of all resistors and inductors is obtained by removing all interconnections between
the windings and short circuiting each [30], as shown schematically in Figure 4. In this
“primitive” IM system [30], each stator phase, each of the nb cage bars, and each of the 2 · nb
end ring segments are considered as disconnected circuits, coupled only through mutual
inductances, except for the end-ring segments, which do not have main flux linkages and
only leakage flux ones. The resistance and inductance matrices of the IM in this primitive
system (Rp and Lp) are the simplest ones.
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esns

RsLσs Lσb

es1

RsLσs Rr Lσb Rr Lσe Re Lσe Re

Ls1sns
Lsnsb1

Lb1bnb

Ls1b1 Lsnsbnb

Ls1bnb

s1 sns b1 bnb
f1 gnb

Figure 4. Primitive IM network, found by removing all interconnections between the windings and
short circuiting each. The arrows show the mutual impedances between stator windings and cage
bars. The end ring segments do not couple with the other windings through mutual impedances.

3.1. Resistance Matrix of the Primitive IM Network

The primitive IM network resistance matrix Rp is diagonal, with the values corre-
sponding to each stator phase, cage bar, and end ring segment along its diagonal. Since the
IM windings are assumed to be in healthy conditions, the stator phases are considered to
have the same resistance, Rs, the bar resistance Rb is the same for all the bars, and the end
ring segment resistance Re is the same for all end ring segments.

Rp =

s1 s2 sns b1 . . . bnb e1 . . . enb enb+1 . . . e2nb

s1 Rs

s2 Rs

s3 Rs

b1 Rb
...

. . .

bnb Rb

e1 Re
...

. . .

enb Re

enb+1 Re
...

. . .

e2nb Re

(5)

3.2. Inductance Matrix of the Primitive Network

The inductance matrix of the primitive IM network Lp can be expressed as the sum
of the inductance matrices corresponding to the main flux linkages, the main inductance
matrix Lpµ, and the leakage inductance matrix Lpσ , as follows.

Lp = Lpµ + Lpσ (6)

The leakage inductance matrix Lpσ elements are the inductances corresponding to end
turns, end rings, and slots leakage, and they must be pre-calculated. This can be performed
by using explicit expressions, such as those provided by [56–58], or obtained from the
technical data provided by the manufacturer of the IM, as in this work. Only the analytical
computation of Lpµ in (6) will be carried out in this work.
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The leakage inductance matrix, Lpσ in (6), is a diagonal matrix, with the values
corresponding to each stator phase, cage bar, and end ring segment along its diagonal,
as follows.

Lpσ =

s1 s1 sns b1 . . . bnb e1 . . . enb enb+1 . . . e2nb

s1 Lσs

s2 Lσs

s3 Lσs

b1 Lσb
...

. . .

bnb Lσb

e1 Lσe
...

. . .

enb Lσe

enb+1 Lσe
...

. . .

e2nb Lσe

(7)

The main inductance matrix of the primitive IM network, Lpµ (6), has the follow-
ing components.

Lpµ =

s1 s2 s3 b1 . . . bnb e1 . . . e2nb

s1 Ls1s1 Ls1s2 Ls1ss3
Ls1b1 . . . Ls1bnb

s2 Ls2s1 Ls2s2 Ls2ss3
Ls1b1 . . . Ls1bnb

s3 Ls3s1 Ls3s2 Ls3s3 Ls3b1 · · · Lsns bnb

b1 Lb1s1 . . . Lb1sns
Lb1b1 · · · Lb1bnb

...
... . . . . . . . . .

. . . . . .

bnb Lbnb s1 . . . Lbnb s3 Lbnb b1 · · · Lbnb bnb

e1
...

e2nb

(8)

As displayed in (8), the mutual inductances between the end ring segments and the
rest of the windings due to the main flux linkages are zero, because their only flux linkages
are the leakage ones. As for the rest of the components of matrix Lpµ, they depend on the
actual stator and rotor winding configurations and on the angular position of the rotor.
Among the many available methods in the technical literature for obtaining their values
(FEM, WFA, etc.), the winding tensor approach has been selected in this work. It will be
applied in the following section for the computation of matrix Lpµ, both for the healthy
and for the eccentric IM.

3.3. From the Primitive IM Network to the Actual One Using the Connection Matrix

Once the Rp and Lp matrices of the primitive IM network (Figure 4) have been
obtained, the R and L matrices of the actual IM network (Figure 3) can be obtained by
simply specifying the interconnections of the elements of Figure 4, as depicted in Figure 5.
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The currents flowing in each primitive network element, the branch currents i′ in
Figure 5, can be obtained from the loop currents, i in Figure 3, with the help of Kirchhoff’s
laws, using transformation matrix Cp as follows.

i′ = Cpi (9)

Therefore, the R and L matrices of the actual IM can be obtained from the Rp (5) and
Lp (6) matrices of the primitive IM as follows [47].

R = Ct
pRpCp (10)

L = Ct
pLpCp (11)

The transformation matrix Cp only reflects the interconnections between the primitive
elements and contains only zeros, ones, and minus ones. It is given, by direct comparison
between Figures 3 and 5, as follows.

Cp =

s1 s2 s3 rb1 rb2 . . . rbnb−1 rbnb
re

s1 1 −1
s2 1 −1
s3 −1
b1 1 −1
b2 −1 1

...
. . . . . .

bnb−1 −1 1
bnb −1 1
e1 1 −1
e2 1 −1

...
. . .

enb−1 1 −1
enb 1 −1

enb+1 −1
enb+2 −1

...
. . .

e2nb−1 −1
e2nb −1

(12)

It is worth mentioning that the set of loop currents used in Figure 3 is not unique. For
example, in [36,38], another set of rotor loops currents has been used, with nb − 1 rotor
loops containing a rotor bar and two loops for the currents in the rotor end-rings segments.
As [47] states, they are simply different expressions of the current tensor, providing the
same values for the actual bar and end-ring segment currents. Another advantage of using
(10) and (11) is that transformation matrix Cp can be used to represent not only the IM
network under healthy conditions but also under faulty conditions, such as multiple bar
and end-ring breakages, as in [38]. This extends the application of the model shown in
Figure 2 to the field of multiple fault analysis.
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Figure 5. Interconnections of the elements the primitive IM network.

4. Computation of the Main Inductance Matrix of the Healthy and the Eccentric IM
Using the Conformal Winding Tensor Approach

In this section, the main inductance matrix Lpµ (8) of the primitive IM network is
calculated using the winding tensor approach. If iron saturation and losses are neglected,
as in the present work, mutual inductances depend only on the geometry of the system [59].
Other assumptions are that the iron permeability is infinite and that only the radial com-
ponent of the main flux that crosses the smooth air gap is considered in this work. The
calculation of the mutual inductances considering also the tangential component of the
flux can be found in [37,60]. A higher precision can be achieved using numerical methods,
such as those based in FEM [22,23], but at the cost of an increased computational com-
plexity. However, the simple, analytical approach followed in this work has proven to be
able to correctly reproduce the fault harmonics of the mixed eccentricity fault, with a low
computational load.

The methodology proposed in this work follows the same approach as in the previous
section, using a single conductor as the most primitive component of any winding:

1. A primitive spatial network, similarly to Figure 4, is constructed by removing all
interconnections between winding conductors and short circuiting each one without
changing their spatial positions. For this simple network, the matrix with the partial
inductances between conductors is obtained, which makes it easier to take into account
the effect of IM eccentricity.

2. A transformation matrix, similarly to (12), is constructed. It represents the intercon-
nections of the conductors of each winding for each angular position of the rotor, i.e.,
the winding tensor.

3. The main inductance matrix of the primitive IM network (8) is obtained from the
partial inductance matrix of the conductors using a routine tensor transformation
with the winding tensor, similarly to (11).

In order to represent any winding spatial distribution using the interconnection of
elemental conductors, the circular air gap is equally divided into N segments, and each of
them is filled with an elementary conductor located in the air gap zone. In [37], two layers
of conductors have been considered instead: one placed on the inner stator surface and
the other one placed on the outer rotor surface, which allows considering the effects of the
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tangential flux in the air gap. However, considering that the air gap length is small and
that the focus of the paper is to introduce the use of the conformal transformation applied
to the winding tensor, the simplest approach that considers only one layer of conductors
has been followed. The maximum number of spatial harmonics of the winding that can be
represented using these elementary conductors is N/2. Therefore, a high value of N has
been chosen, N = 3600, as in [36].

The N × N matrix that contains the partial inductances between the conductors of
Figure 6, Lcµ, is given by the following:

Lcµ =

c1 c2 . . . cN

c1 Lc1c1 Lc1c2 . . . Lc1cN

c2 Lc2c1 Lc2c2 . . . Lc2cN

...
...

...
. . . . . .

cN LcN c1 LcN c2 . . . LcN cN

(13)

for which component (m, n), Lcmcn , is the mutual partial inductance [37] between the
conductors placed at positions (m− 1) · 2π

N and (n− 1) · 2π
N , with m, n = 1, 2, . . . , N.

In the case of an IM with uniform air gap, as shown in Figure 6, and considering
that the air gap is small compared to its radius, the components Lcmcn of (13) depend
solely on the angular separation between conductors m and n, and they are given by the
following [61]:

Lcµ(m, n) = Lcmcn =
µ0`rπ

g
·
(1

2
− |m− n|

N

)2
(14)

where µ0 = 4π10−7 H/m, ` is the effective length of the stator bore, r is the radius at the
centre of the air gap, and g is the length of the air gap.

2π
N

c1

c2

c3

c4

cN
cN−1

Figure 6. Elementary conductors placed in the air gap that constitute the primitive spatial network of
the IM. These N conductors are considered to be disconnected, and their currents are considered to
be independent variables.
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The relationship between the currents in the winding conductors ic (Figure 6) and the
currents in the primitive IM network i′ (Figure 5) can be formulated using a (N× (ns + 3nb))
connection matrix and the winding tensor Cc [36,38] as follows:

ic = Cc · i′ (15)

where the following is the case.

Cc =

s1 s2 s3 b1 . . . bnb e1 . . . e2nb

c1 z1s1 z1s2 z1sns
z1b1 . . . z1bnb

0 . . . 0

c2 z2s1 z2s2 z2sns
z2b1 . . . z2bnb

0 . . . 0
...

... . . .
...

... . . .
...

... . . .
...

cN zNs1 zNs2 zNsns
zNb1 . . . zNbnb

0 . . . 0

(16)

The connection matrix Cc indicates the connections between the conductors of each
winding. Its (i, j) element contains the number of conductors zij of winding j contained in
the angular interval of length 2π/N (Figure 6), centered at (i− 1) · 2π

N , with the correspond-
ing sign depending on the direction of the current. Since the rotor end rings do not have
any conductors in the air gap, the corresponding columns in Cc are zero. These columns
have been maintained in (16) for the sake of completeness.

The main inductance matrix of the windings of Figure 5, Lpµ (8) is obtained from
the partial inductance matrix of the conductors Lcµ (13) using the connection matrix (16)
as follows.

Lpµ = Cc
t · Lcµ · Cc (17)

The winding connection matrix Cc (16) must be obtained for the N possible angular
positions of the rotor (θk = (k − 1) · 2π

N , with k = 1, . . . , N). However, the columns of
Cc corresponding to the ns stator windings do not depend on the rotor position, and the
columns of Cc corresponding to the rotor windings for a given rotor position θk are the
same as the columns defined with the rotor at the origin (θ0 = 0), but circularly shifted
k positions.

In (16), no restrictions are imposed on the connections of the conductors of each
winding, which can be arbitrarily complex, as in the case of asymmetrical windings (turn-
to-turn short circuits, etc.). However, in the case of a machine with a healthy winding
configuration, the conductor distributions in all stator and rotor windings are the same,
respectively. Therefore, the column of Cc corresponding to the kth stator winding (sk) is
equal to the column of the first stator winding (s1) but circularly shifted k · N/ns positions.
The same applies to the rotor windings, but in this case, the circular shift is k · N/nb
positions. In this particular case and based on the circulant properties of matrix Lcµ, the
calculation of (16) can be performed very quickly with the convolution theorem, using the
fast Fourier transform (FFT), as presented in [61].

4.1. Partial Inductance Matrix of the Conductors in an Eccentric IM

In cases rotor eccentricity, the rotor center Or does not coincide with stator centre Os
(Figure 7), which results in a non-uniform air gap length that invalidates (14).

From Figure 7, the position of the rotor centre can be represented using its radial
coordinate, δr · g0, and its angular coordinate Θr follows:

−−→
OsOr = g0 · δr · ejΘr 0 ≤ δr < 1, 0 ≤ Θr < 2π (18)
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where g0 is the air gap length of the IM without any eccentricity, and δr is the degree of
eccentricity (0 ≤ δr < 1). The type of eccentricity, as well as the degree of eccentricity δr,
depends on the position of the axis of rotation of the rotor (Oθ) as follows:

• A pure static eccentricity (SE) is characterized (Figure 8) by a displacement of the axis
of rotation of the rotor (Oθ) with respect to the geometric center of the stator (Os). The
axis of rotation of rotor Oθ coincides with the geometric center of the rotor. It can be
caused by misalignments of the mounted bearings or of the bearing plates. The rotor
is not centered with the stator bore, but it rotates around its own geometric centre:
that is, Θr = constant in Figure 7. The air gap length is non uniform, but its shape does
not change when the rotor turns (Figure 8).

ϕ

Θr
g 0
· δ r

Or

Os

g(ϕ)

Figure 7. Air gap length g(ϕ) of an eccentric machine as a function of the angular coordinate ϕ,
which depends on the position of the rotor centre Or with respect to the stator centre Os.

Or ≡ OθOs A B

ϕ

OrOs

A

θr(t)

B

g0 · δr g0 · δr

Figure 8. Pure static eccentricity. Relative position of a rotor conductor, A, and a stator conductor, B,
when the rotor turns an angle θr(t) (right) from the initial line (left), in the case of SE. The minimum
air gap length is always located at the position of the stator conductor B.

• A pure dynamic eccentricity (DE) is characterized (Figure 9) by a displacement of the
geometric centre of the rotor (Or) from its axis of rotation (Oθ), which coincides with
the axis of the stator bore (Os). It can be caused by a manufacturing defect, a bent
shaft, bearings defects, etc. Under DE, the center of the rotor rotates along a circular
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path in Figure 7, with the same speed as the rotor. In this case, the position of the
minimum air gap rotates with the rotor (Figure 9)

Or A B

ϕ

Or

Os

A

θr(t)

B

g0 · δr

g0 · δrOs ≡ Oθ

Figure 9. Pure dynamic eccentricity. Relative position of a rotor conductor, A, and a stator conductor,
B, when the rotor turns an angle θr(t) (right) from the initial line (left), in the case of DE. The
minimum air-gap length is always located at the position of the rotor conductor A.

• A mixed eccentricity fault (ME) consists of the simultaneous presence of SE and DE
(Figure 10). In this case, the axis of rotation (Oθ in Figure 10) is displaced both from
the geometric center of the stator (Os), as in the case of pure static eccentricity, and
from the centre of the rotor (Or), as in the case of pure dynamic eccentricity.

g0 · δs

g 0
· δ dg0 ·

δr

Os

Or

Oθ

θr

Θr

−−−→
OsOr = g0 · δr · ejΘr

Figure 10. Position of the rotor centre (Or), the stator centre (Os), and the axis of rotation (Oθ) in
case of an IM witth ME eccentricity (δr), as a geometric combination of static (δs) and dynamic (δd)
eccentricity. θr represents the angle of rotation of the rotor.

From Figure 10, the coordinates (g0 · δr and Θr) of the rotor center depend on the
angular position of the rotor θr and the degree of static δs and dynamic δd eccentricity of
the machine (see Figure 10) as follows.

Θr(θr) = tan−1 ( δd sin(θr)

δs + δd cos(θr)

)
, δr(θr) =

√
δs

2 + δd
2 + 2δsδd cos(θr) (19)

Each component (m and n) of the induction matrix Lcmmn in an eccentric IM depends
not only on the angular separation between conductors m and n but also on their absolute
position and on the position of the center of the rotor, for which its coordinates (g0 · δr, Θr)
are, in turn, functions of the angular position of the rotor (19). The corrected value of the



Sensors 2022, 22, 3150 14 of 31

partial inductance between conductors that replaces (14) in an eccentric IM has been given
in [36,39]. In the general case of a machine with ME, the inverse of the air gap length is a
function of the coordinates of the rotor centre (18) given by the following [23]:

g(ϕ, Θr, δr)
−1 = g−1

0 ·
(

A0 +
nt

∑
m=1

Am · cos
(
m(ϕ−Θr)

))
(20)

where the following is the case:

A0 =
1√

1− δr
2

Am = 2

(
1−

√
1− δr

2√
1− δr

2

)m

m = 1 . . . nt (21)

and the number nt of terms can be chosen to achieve the desired precision (one term
in [62–65] and two terms in [32]). Using (20), the expression that replaces (14) for a given
rotor position θk = (k− 1) · 2π

N , with k = 1, 2, . . . , N, is given by the following [37]:

Lcµ(m, n)
∣∣∣
k
=

µ0lr
g0
·Λ(m

2π

N
, n

2π

N
, Θr(k

2π

N
), δr(k

2π

N
)) (22)

where the following is the case:

Λ(α, ϕ, Θr, δr) =
A0
4π (ϕ− α)2 +

nt
∑

m=1

Am
2π

(
(ϕ−α) sin

(
m(ϕ−Θr)

)
m +

cos
(

m(ϕ−Θr)
)

m2

)
−(

1
2 − K(α, Θr, δr)

)
·
(

A0(ϕ− α) +
nt
∑

m=1
Am

sin
(

m(ϕ−Θr)
)

m

) (23)

and the following is obtained.

K(α, Θr, δr) =
nt

∑
m=1

Am

2πA0

sin(m(Θr − α))

m
(24)

4.2. Simplified Formulation of the Partial Inductance between Conductors in Case of Rotor
Eccentricity with the Conformal Winding Tensor Approach

Although (22) provides a closed analytical expression of the partial inductance between
conductors in an eccentric IM, it is much more complex than (13), which makes it difficult
to implement, especially in small devices for on-line fault diagnosis. In contrast, with the
method proposed in this work, the simplicity of (13) is retained, even in case of a high
degree of rotor eccentricity.

The main idea behind the approach proposed in this work is to transform the non-
uniform air gap into a uniform one using a conformal transformation, the Moebius transfor-
mation, so that the simple expression given by (14) can be used in this transformed domain.
As the conformal transformation preserves the electromagnetic energy of the windings,
the mutual inductances between any two windings are preserved. Therefore, the values of
the winding inductances obtained in this simple domain are the same than in the original
eccentric domain.

In [42,43], it has been shown that the Moebius transformation can be applied to convert
this eccentric IM into a non-eccentric machine with uniform air gap length. It is given by
the following:

w(z) =
âz + b̂
ĉz + 1

(25)

where z is the coordinate of a point in the air-gap of the eccentric machine, and w is the
coordinate of the same point in the air-gap of the non-eccentric machine generated by the
conformal transformation (25). The factors â, b̂, and ĉ depend only on the geometrical
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characteristics of IM and on the degree of eccentricity, and their expressions are given in
this section.

The result of applying transformation (25) to the eccentric machine is a non-eccentric
machine, with concentric rotor and stator surfaces, as seen in see Figure 11. However, in
the transformed machine, the length of the rotor radius changes and the positions of the
conductors are at different angular positions than the original ones.

The radius of the outer surface of the rotor ρ of the transformed IM is given by the
following (see Figure 11)

ρ =
R2

s + R2
r − (g0δr)2 −

√(
R2

s + R2
r − (g0δr)2

)2 − 4R2
s R2

r

2Rr
(26)

where Rs is the radius of the inner stator surface, and Rr is the radius of the outer rotor
surface. Therefore, the air gap of the transformed IM has a uniform length of the following:

g′ = Rs − ρ (27)

and a mean radius equal to the following.

r′ =
Rs + ρ

2
(28)

φ′

Os = O′
r

ρ

Rs

ws

wr

φ

Θr
g 0
· δ r

Or

Os

Rr

Rs

zs

zr

w = âz+b̂
ĉz+1

Figure 11. The Moebius transformation of an eccentric IM with non-uniform air gap (left) gives a
non-eccentric IM with a uniform air gap (right), but with modified conductor angular positions and
with a different rotor radius.

The coefficients of (25) that perform the transformation from the eccentric machine
into the non-eccentric machine of Figure 11 are the following ones.

â = eΘr (29)

b̂ =
R2

s (ρ− Rr + g0δr)

R2
s − Rrρ + ρg0δr

(30)

ĉ =
ρ− Rr + g0δr

R2
s − Rrρ + ρg0δr

eΘr (31)
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However, the transformed machine has concentric rotor and stator surfaces, but the
conductors are at different angular positions than in the original, eccentric IM. In this
manner, the reference frame of Figure 6, which consists of N equally spaced elementary
conductors placed in the air gap, is transformed into a set of N elementary conductors with
non-uniform conductors spacing, as shown in Figure 12.

2π
N

w(z) = âz+b̂
ĉz+1

Figure 12. Moebius transformation of the elementary conductors placed in the air gap that constitute
the primitive spatial network of the IM, given in Figure 6. The original set of N equally spaced
elementary conductors placed in the non-uniform air gap of the eccentric IM (left), becomes a set
of N elementary conductors with non-uniform spacing in the smooth air gap of the transformed
IM (right).

For a given rotor position θk = (k− 1) · 2π
N (with k = 1, 2, . . . , N), the expression of

the mutual inductance between two elementary conductors m, n (with m, n = 1, 2, . . . , N),
placed in the air gap of the eccentric IM at positions zm = r · exp(j(m − 1)2π/N) and
zn = r · exp(j(n− 1)2π/N), can be now easily obtained in the transformed IM, using (25),
(27), and (28), as follows:

Lcµ(m, n)
∣∣∣
k
=

µ0`r′π
g′

·

1
2
−

∣∣∣angle
(
w(rej(m−1) 2π

N )
)
− angle

(
w(rej(n−1) 2π

N )
)∣∣∣

2π


2

(32)

where r = (Rs + Rr)/2. The expression (32) replaces (14) for the case of an eccentric IM and
is much simpler to apply than (22). It is worth mentioning that although the rotor position
θk does not appear explicitly in (32), it does affect the calculation of parameters ρ (26), â
(29), b̂ (30), and ĉ (31).

5. Numerical Validation

In this section, the proposed method is applied to an industrial IM, for which its data
are given in Appendix A. Figure 13 shows the components of the winding tensor Cc (16),
which contains the distribution of the conductors of the stator windings and the rotor bars,
for each rotor position. They corresponds to the first and the fourth columns, respectively,
of matrix Cc (16). Figure 14 shows the mutual inductance between an elementary conductor
placed at the origin and an elementary conductor placed at a given angular coordinate ϕ for
the same IM, without eccentricity. This corresponds to the first column of matrix Lcµ (13).
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The stator winding has three phases, and the rotor winding of this motor is made
up of 28 rotor loops, giving a total of 31 IM phases. This motor has been modeled using
a 2D finite elements approach, with the open source software FEMM, and 1000 equally
spaced rotor angular positions have been used for the simulations. The skew of rotor
bars has been taken into account using a multi-slice approach. Three different degrees of
static eccentricity, δs = [0.2, 0.4, 0.6], and dynamic eccentricity, δd = [0.2, 0.4, 0.6], as well
as their possible combinations (mixed eccentricity) have been analyzed. In addition, the
case of healthy machine (δs = 0, δd = 0) has been considered for comparison purposes. This
produces a total number of 10 degrees of eccentricity: (δs = 0, δd = 0), (δs = 0, δd = 0.2), (δs = 0,
δd = 0.4), (δs = 0, δd = 0.6), (δs = 0.2, δd = 0), (δs = 0.2, δd = 0.2), (δs = 0.2, δd = 0.4), (δs = 0.4,
δd = 0), (δs = 0.4, δd = 0.2), and (δs = 0.6, δd = 0).

/2 3 /2 2

−2

−1

0

1

2

/2 3 /2 2

0

0.01

0.02

0.03

Figure 13. Number and direction of the conductors per air gap interval of a stator winding (top) and
a rotor bar (bottom).

/2 3 /2 2

0

0.5

1

10
−5

Figure 14. Mutual inductance between an elementary conductor placed at the origin and an ele-
mentary conductor placed at a given angular coordinate ϕ for the IM given in Appendix A, without
eccentricity. This corresponds to the first column of matrix Lcµ (13).

The mutual and self inductances between all stator and rotor phases have been ob-
tained with the following method: for each of the 10 combinations of static and dynamic
rotor eccentricity and for each rotor angular position (1000), each one of the IM phases is
fed with a 1 A constant current, and the flux linkages of all IM phases are evaluated, which
gives all mutual inductances and the self-inductance of the fed phase for that rotor position
and type and degree of eccentricity. Figure 15 shows the FEM simulation for the first stator
phase, and Figure 16 shows the FEM simulation for the first rotor phase, both for a mixed
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eccentricity with a static eccentricity degree of 40% (δs = 0.4) and a dynamic eccentricity
degree of 20% (δd = 0.2).

5.636× 10−1 :> 5.993× 10−1

5.339× 10−1 : 5.636× 10−1

5.043× 10−1 : 5.339× 10−1

4.746× 10−1 : 5.043× 10−1

4.450× 10−1 : 4.746× 10−1

4.153× 10−1 : 4.450× 10−1

3.856× 10−1 : 4.153× 10−1

3.560× 10−1 : 3.856× 10−1

3.263× 10−1 : 3.560× 10−1

2.996× 10−1 : 3.263× 10−1

2.670× 10−1 : 2.996× 10−1

2.373× 10−1 : 2.670× 10−1

2.076× 10−1 : 2.373× 10−1

1.780× 10−1 : 2.076× 10−1

1.483× 10−1 : 1.780× 10−1

1.187× 10−1 : 1.483× 10−1

8.899× 10−2 : 1.187× 10−1

5.933× 10−2 : 8.899× 10−2

2.966× 10−2 : 5.933× 10−2

< 1.670× 10−7 : 2.966× 10−2

Density Plot: |B|, Tesla

Figure 15. FEM simulation of the IM of Appendix A for a mixed eccentricity with a static eccentricity
degree of 40% (δs = 0.4) and a dynamic eccentricity degree of 20% (δd = 0.2), with only the first stator
phase fed with a 1 A constant current.

9.711× 10−3 :> 1.022× 10−2

9.200× 10−3 : 9.711× 10−3

8.689× 10−3 : 9.200× 10−3

8.178× 10−3 : 8.689× 10−3

7.667× 10−3 : 8.178× 10−3

7.156× 10−3 : 7.667× 10−3

6.644× 10−3 : 7.156× 10−3

6.133× 10−3 : 6.644× 10−3

5.622× 10−3 : 6.133× 10−3

5.111× 10−3 : 5.622× 10−3

4.600× 10−3 : 5.111× 10−3

4.089× 10−3 : 4.600× 10−3

3.578× 10−3 : 4.089× 10−3

3.067× 10−3 : 3.578× 10−3

2.556× 10−3 : 3.067× 10−3

2.044× 10−3 : 2.556× 10−3

1.533× 10−3 : 2.044× 10−3

1.022× 10−3 : 1.533× 10−3

5.111× 10−4 : 1.022× 10−3

< 9.605× 10−10 : 5.111× 10−4

Density Plot: |B|, Tesla

Figure 16. FEM simulation of the IM of Appendix A for a mixed eccentricity with a static eccentricity
degree of 40% (δs = 0.4) and a dynamic eccentricity degree of 20% (δd = 0.2), with only the first rotor
phase fed with a 1 A constant current.
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This process must be repeated for the 31 IM phases, which gives a total number of
31× 104 FEM simulations. Each simulation takes an average wall time of 30 s on the
computer platform of Appendix B, which represents a total wall time of 2583 h to complete
the construction of the IM inductance matrix for the 10 eccentricity degrees considered in
this work.

On the contrary, the construction of the IM inductance matrix for the 10 eccentricity
degrees using the method proposed in this work, the conformal winding tensor approach,
requires only 700 s of wall time to complete on the same computing platform, which is only
0.45% of the time that FEA needs. This speed can be a decisive edge when analyzing, for
example, the case of axial eccentricity, which results in a continuous variation of the degree
of eccentricity along the shaft and requires much more than the 10 cases analyzed in this
work to be accurately reproduced by the IM model.

It is worth mentioning that the inductance matrix of this eccentric IM has also been
obtained using the method described in [39], and it is compared with the results presented
in this work. The inductance matrix obtained with both methods is the same, up to machine
precision, because they are based on the same analytical equations. Nevertheless, the
expressions of the partial inductance of a single conductor in an eccentric IM (19)–(24) are
much more complex than the simple one used in this work (32), and the time needed to
solve them (3300 s) is also much longer. Finally, the method presented in [39] does not make
use of the winding tensor, which makes it difficult to apply it to the analysis of multiple
and simultaneous IM faults.

The results obtained with the proposed method of the conformal winding tensor ap-
proach are compared graphically with those obtained with the FEA in the first two columns
of Figure 17 (mixed eccentricity), in Figure 18 (pure static eccentricity), and Figure 19
(pure dynamic eccentricity). In addition, a third column has been added in each figure
to display the differences between these two approaches. Figure 20 show superimposed
results obtained with FEA and CWTA approaches, with a remarkable coincidence.

To evaluate the accuracy of the results obtained with CFWA, the root mean square error
(RMSE) index has been chosen in this work, following the proposals presented in [66–68].

The root mean square errors corresponding to the differences between CFWA and
FEA, shown in the third column of Figures 17–19, have been evaluated as follows:

RMSE =
N

∑
i=1

√√√√(
LCWFA(i)− LFEA(i)

)2

N
(33)

where LCWFA(i) is the inductance computed with the proposed method for a given rotor
position i, LFEA(i) is the inductance calculated with FEA for the same rotor position i, and
N is the total number of rotor positions considered in FEA simulation (N = 1000). The
calculated RMSE errors are displayed in Table 1 for the 10 degrees of eccentricity considered
in this work (columns 1 and 2), for the mutual inductance between the first stator and
rotor phases (Ls1r1 , column 3), and for the self inductances of the first rotor phase (Lr1r1 ,
column 4) and of the first stator phase (Ls1s1 , column 5).

A direct observation of Figures 17–20 and the results given in Table 1 show that the
errors in the inductance matrix are very small and are due to the effects of change of the
reluctance produced by the relative position between stator and rotor slots. This effect
has not been taken into account in the conformal winding tensor approach presented
in this work, although it could be included in the model using an additional conformal
transformation, as in [69]. This is a point that will be addressed in future works.
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Figure 17. Mutual inductance between the first stator and the first rotor phase (Ls1r1 , top row)
and self-inductances of the first rotor phase (Lr1r1 , middle row) and of the first stator phase (Ls1s1 ,
bottom row), for the IM of Appendix A, with three different degrees of static (δs) and dynamic (δd)
eccentricity: ( δs = 0.2, δd = 0.2), (δs = 0.2, δd = 0.4), and (δs = 0.4, δd = 0.2). The case of healthy machine
(δs = 0.0, δd = 0.0) has also been included for comparative purposes. The first column presents the
results obtained with the conformal winding tensor approach, the second column contains the results
obtained with FEA, and the third column contains the errors between both approaches.
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Figure 18. Mutual inductance between the first stator and the first rotor phase (Ls1r1 , top row) and
self-inductances of the first rotor phase (Lr1r1 , middle row) and of the first stator phase (Lr1r1 , bottom
row) for the IM of Appendix A, with three different degrees of static (δs) eccentricity: δs = 0.2, δs = 0.4,
and δs = 0.6. The case of healthy machine δs = 0.0 has also been included for comparative purposes.
The first column presents the results obtained with the conformal winding tensor approach, the
second column presents the results obtained with FEA, and the third column presents the errors
between both approaches.
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Figure 19. Mutual inductance between the first stator and the first rotor phase (Ls1r1 , top row) and
self-inductances of the first rotor phase (Lr1r1 , middle row) and of the first stator phase (Ls1s1 , bottom
row) for the IM of Appendix A with three different degrees of dynamic (δd) eccentricity: δd = 0.2,
δd = 0.4, and δd = 0.6. The case of healthy machine δd = 0.0 has also been included for comparative
purposes. The first column presents the results obtained with the conformal winding tensor approach,
the second column presents the results obtained with FEA, and the third column presents the errors
between both approaches.
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Figure 20. Mutual inductance between the first stator and the first rotor phase (Ls1r1 , top row) and
self-inductances of the first rotor phase (Lr1r1 , middle row) and of the first stator phase (Ls1s1 , bottom
row), for the IM of Appendix A with three different types of eccentricity: mixed eccentricity (δs = 0.4,
δd = 0.2) in the first column, pure static eccentricity (δs = 0.6) in the second column, and pure dynamic
eccentricity (δd = 0.6) in the third column. The results obtained with the conformal winding approach
and with FEA have been plotted together for comparison purposes.
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Table 1. RMSE of the proposed conformal winding tensor compared with FEA.

Degree of Eccentricity

Static δs Dynamic δd Error Ls1r1 Error Lr1r1 Error Ls1s1

0.0 0.0 1.10× 10−6 2.84× 10−9 3.69× 10−5

0.0 0.2 1.39× 10−6 3.45× 10−9 3.86× 10−5

0.0 0.4 1.84× 10−6 5.20× 10−9 6.80× 10−5

0.0 0.6 2.65× 10−6 2.60× 10−9 2.46× 10−4

0.2 0.0 1.13× 10−6 4.54× 10−9 3.85× 10−5

0.2 0.2 1.48× 10−6 5.20× 10−9 4.24× 10−5

0.2 0.4 2.06× 10−6 6.83× 10−9 1.20× 10−4

0.4 0.0 1.29× 10−6 7.94× 10−9 4.38× 10−5

0.4 0.2 1.85× 10−6 9.27× 10−9 8.27× 10−5

0.6 0.0 1.82× 10−6 1.48× 10−8 5.29× 10−5

6. Experimental Validation

To validate the proposed approach, two motors of the same type than the simulated
one (see Appendix A) have been experimentally tested, using the test bench displayed in
Figure 21. To avoid the influence of the coupling on the eccentricity measurement, both
motors have been tested uncoupled and powered directly from the mains, as shown in
Figure 21, left. The current has been recorded using a Chauvin Arnoux MN60 current probe
(see Appendix B) and a Yokogawa DL750 ScopeCorder (shown Figure 21, right), at a rate
of 10 kHz for an acquisition time of 100 s, to achieve a 0.01 Hz resolution in the current
spectrum. The registered data have been stored and processed with the computer platform
given in Appendix C. The measured speed of the the motors has been 1499.5 rpm.

The diagnosis of the mixed eccentricity fault is made by analyzing the spectrum of
the motor current. This type of fault generates two sideband fault harmonics around the
fundamental component at frequencies given by the following:

fecc = f1 ± fr (34)

where f1 is the network frequency (50 Hz), and fr is the mechanical rotation frequency of the
rotor. For a measured speed of 1499.5 rpm and a measured frequency of the fundamental
component of 50.01 Hz, (34) gives the following.

fecc = f1 ± fr = 50.01± 1499.5
60

= 50.01± 24.99 = [25.02 Hz, 75 Hz] (35)

The spectra of the currents of both motors are shown in Figure 22. These spectra show
the fault harmonics of an incipient-mixed eccentricity fault, at the exact frequencies given
by (35), with a low level (around−50 dB) that can be produced by inherent and unavoidable
manufacturing defects. The experimental validation is performed by simulating the motor
under diverse degrees of static and dynamic eccentricity using the proposed method,
obtaining the fault harmonics from the spectrum of the simulated motor current and using
these results to estimate the degree of static and dynamic eccentricity of the motors.
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400 V  50 Hz
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Figure 21. Test rig used for the experimental validation of the proposed approach. Two motors
of the same type as the simulated one, labelled as (1) and (2) in the right, bottom part of the
Figure, have been experimentally tested. To avoid the influence of the coupling on the eccentricity
measurement, both motors have been tested uncoupled and powered directly form the mains, as
shown in the schema (left). The current has been recorded using a Chauvin Arnoux MN60 current
probe (see Appendix B) and a Yokogawa DL750 ScopeCorder (right, top), at a rate of 10 kHz during
an acquisition time of 100 s, to achieve a 0.01 Hz resolution in the current spectrum. The registered
data have been stored and processed with the computer platform given in Appendix C.

0 10 20 30 40 50 60 70 80 90 100

Frequency [Hz]

−100

−80

−60

−40

−20

0

[d
B

]

Motor 1

0 10 20 30 40 50 60 70 80 90 100

Frequency [Hz]

−100

−80

−60

−40

−20

0

[d
B

]

Motor 2

25.02 Hz

−50.11 dB

25.02 Hz

−51.17 dB

50.01 Hz

0 dB

50.01 Hz

0 dB

75 Hz

−54.49 dB

75 Hz

−48.94 dB

Figure 22. Spectra of the currents of the two tested motors, both of them of the type described in
Appendix A. These spectra show the fault harmonics of an incipient-mixed eccentricity fault (marked
in the figure), with a low level (around−50 dB), which may be produced by inherent and unavoidable
manufacturing defects.
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The problem of determining the degree of mixed eccentricity using stator current
analysis has been addressed in the technical literature with a time-stepping finite element
method in [70,71]. In [14], an experimental index has been defined based on the geometric
mean of the degree of static and dynamic eccentricity, and in [72], the amplitudes of
the fault harmonics under different degrees of mixed eccentricity and load are obtained,
assessing the decrease in these amplitudes with the load level. In [72], an offline method for
calculating the degree of eccentricity using a standstill testing was presented. In contrast,
the CWFA presented in this work allows the determination of the degree of eccentricity by
direct comparison with the results obtained from a large number of IM simulations, for a
wide range of both static and dynamic eccentricities.

The spectra of the simulated motor currents have been represented in Figure 23, for
different degrees of mixed eccentricity (static eccentricity δs; dynamic eccentricity δd). In
Figure 23, top, the spectrum of the motor in healthy conditions is displayed, without
showing fault harmonics. Below, from top to bottom, the spectra of the motor current
with increasing degrees of mixed eccentricity faults are displayed in Figure 23: (δs = 0.05,
δd = 0.05), (δs = 0.1, δd = 0.05), (δs = 0.05, δd = 0.1), and (δs = 0.1, δd = 0.1). The
amplitudes of the fault harmonics have been tabulated in Table 2, together with the fault
harmonics measured in the two tested motors.

Table 2. Amplitude of the fault harmonics corresponding to the experimental tests and the simulated
motor conditions.

Motor
Eccentricity Degree Amplitude of the Fault Harmonics

Static δs Dynamic δd f1 − fr = 25.2 Hz f1 + fr = 75 Hz

Motor 1 Unknown Unknown −50.11 dB −48.94 dB

Motor 2 Unknown Unknown −51.17 dB −54.49 dB

Simulated

0 0 <−100 dB <−100 dB

0.05 0.05 −62.31 dB −62.86 dB

0.1 0.05 −56.32 dB −56.68 dB

0.05 0.1 −56.32 dB −56.68 dB

0.1 0.1 −50.29 dB −50.55 dB

The last spectrum displayed in Figure 23, bottom, tabulated in the last row of Table 2,
shows the simulated fault harmonics with an amplitude close to those measured in
Figure 22, which indicates an incipient mixed eccentricity fault that is compatible with a
degree of (δs = 0.1, δd = 0.1) in both motors tested.

It is worth mentioning that, as [73] states, the relative contributions of static and
dynamic eccentricity to the mixed eccentricity fault cannot be separated. Therefore, the
simulated machine with a mixed eccentricity of (δs = 0.1, δd = 0.05) and (δs = 0.05, δd = 0.1)
generates fault harmonics with the same amplitude, as seen in their corresponding spectra
(Figure 23 and their corresponding rows in Table 2).
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Figure 23. Spectra of the simulated currents of the motor described in Appendix A, for different
degrees of mixed eccentricity (static eccentricity δs, dynamic eccentricity δd). Top: healthy motor
(δs = 0, δd = 0). Below, from top to bottom, increasing mixed eccentricity faults (δs = 0.05, δd = 0.05),
(δs = 0.1, δd = 0.05), (δs = 0.05, δd = 0.1), and (δs = 0.1, δd = 0.1). This last spectrum displays the
fault harmonics closest to the measured ones in Figure 22, which is compatible with a degree of mixed
eccentricity fault with (δs = 0.1, δd = 0.1).

7. Conclusions

The conformal transformation combined with the winding tensor approach is able to
generate the inductance matrix of an induction machine with a mixed eccentricity fault,
with a similar accuracy to FEA, and a much lower computation cost. Furthermore, it
can be coded very simply, compared with other analytical approaches presented in the
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technical literature. This allows the efficient simulation of IM with a wide variety of static
and dynamic eccentricity degrees, which makes it possible to develop new and advanced
algorithms for fault detection, train expert systems with simulated data, or estimate the
degree of the eccentricity fault on a given motor, as in this work. The conformal winding
tensor approach could also be used to simulate the simultaneous presence of different
types of fault (mixed eccentricity, bar breakages, inter-turn short circuits, etc.) and also to
simulate the faulty machine under transient conditions. Both fields of application are a
work in progress at this moment.
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Appendix A. Commercial IM

Three-phase IM. Rated characteristics: P = 4 kW, f = 50 Hz, U = 230/400 V,
I = 8.9/15.4 A, n = 1435 r/min, and cos ϕ = 0.8.

Machine dimensions: Effective length of the magnetic core = 98 mm, radius at the
middle of the air gap = 57.3 mm, and air gap length = 0.4 mm.

Stator: Three-phase winding, 36 slots, 32 wires/slot, slot opening width = 3.15 mm,
phase resistance 1.69 Ω, phase leakage inductance = 6.1× 10−3 H, and Carter’s factor = 1.197.

Rotor: Squirrel-cage winding, 28 bars, slot opening width = 3 mm, skew = one slot
pitch, rotor bar resistance = 9× 10−5 Ω, rotor bar leakage inductance = 3.45× 10−7 H, end
ring leakage resistance = 5.53× 10−6 Ω, end ring inductance = 3.68× 10−8 H, and Carter’s
factor = 1.042.

Appendix B. Computer Features

CPU: Intel Core i7-2600K CPU @ 3.40 GHZ RAM memory: 16 GB, Matlab Version:
9.9.0.1592791 (R2020b).

Appendix C. Current Clamp

Chauvin Arnoux MN60, Nominal measuring scope: 100 mA .. 20 A; ratio input/output:
1 A/100 mV; intrinsic error: ≤2% + 50 mV; frequency use: 400 Hz to 10 kHz.
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