
Citation: Esteve Bosch, R.;

Rodríguez Ponce, J.; Simón Estévez,

A.; Benlloch Rodríguez, J.M.; Herrero

Bosch, V.; Toledo Alarcón, J.F. Data

Compression in the NEXT-100 Data

Acquisition System. Sensors 2022, 22,

5197. https://doi.org/10.3390/

s22145197

Academic Editors: Giuseppe Ferri,

Gianluca Barile and Alfiero Leoni

Received: 23 June 2022

Accepted: 8 July 2022

Published: 12 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Data Compression in the NEXT-100 Data Acquisition System
Raúl Esteve Bosch 1,* , Jorge Rodríguez Ponce 1, Ander Simón Estévez 2,3,4, José María Benlloch Rodríguez 4,
Vicente Herrero Bosch 1 and José Francisco Toledo Alarcón 1

1 Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC, Universitat Politècnica de
València, Camino de Vera s/n, 46022 Valencia, Spain; rponcejorge@gmail.com (J.R.P.);
viherbos@eln.upv.es (V.H.B.); jtoledo@eln.upv.es (J.F.T.A.)

2 Nuclear Engineering Unit, Faculty of Engineering Sciences, Ben-Gurion University of the Negev,
P.O. Box 653, Beer Sheva 8410501, Israel; ander@post.bgu.ac.il

3 Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA
4 Donostia International Physics Center (DIPC), Paseo Manuel Lardizabal 4,

20018 Donostia-San Sebastian, Spain; jmbenlloch@dipc.org
* Correspondence: rauesbos@eln.upv.es

Abstract: NEXT collaboration detectors are based on energy measured by an array of photomultipliers
(PMT) and topological event filtering based on an array of silicon photomultipliers (SiPMs). The
readout of the PMT sensors for low-frequency noise effects and detector safety issues requires a
grounded cathode connection that makes the readout AC-couple with variations in the signal baseline.
Strict detector requirements of energy resolution better than 1% FWHM require a precise baseline
reconstruction that is performed offline for data analysis and detector performance characterization.
Baseline variations make it inefficient to apply traditional lossy data compression techniques, such as
zero-suppression, that help to minimize data throughput and, therefore, the dead time of the system.
However, for the readout of the SiPM sensors with less demanding requirements in terms of accuracy,
a traditional zero-suppression is currently applied with a configuration that allows for a compression
ratio of around 71%. The third stage in the NEXT detectors program, the NEXT-100 detector, is a
100 kg detector that instruments approximately five times more PMT sensors and twice the number
of SiPM sensors than its predecessor, the NEXT-White detector, putting more pressure in the DAQ
throughput, expected to be over 900 MB/s with the current configuration, which will worsen the
dead time of the acquisition data system. This paper describes the data compression techniques
applied to the sensor data in the NEXT-100 detector, which reduces data throughput and minimizes
dead time while maintaining the event rate to the level of its predecessor, around 50 Hz.

Keywords: xenon TPC; data acquisition circuits; FPGA; data compression techniques

1. Introduction
1.1. Introduction to NEXT Detectors

The NEXT-100 detector [1,2] is the third phase of the NEXT detector series and is
expected to operate by the end of 2022 at the Laboratorio Subterraneo de Canfranc (LSC) in
Spain. The experimental goal of NEXT experiments is to search for neutrinoless double beta
decay in 136Xe using high-pressure xenon gas time projection chambers (HPGXeTPC) with
amplification of the ionization signal by electroluminescence (EL), which offers good energy
resolution and tracking-based event identification. Moreover, the NEXT collaboration is
currently defining a ton-scale version of NEXT-100 [3] that would be able to reach a
sensitivity to the half-life of the 136Xe neutrinoless double beta decay of 1027 yr, after a few
years of operation.

In the NEXT detectors built up to the present time, the interaction of charged particles
with xenon gas is immediately followed by the emission of scintillation light, the so-called
primary scintillation (S1) signal. The ionization electrons left behind by the interacting

Sensors 2022, 22, 5197. https://doi.org/10.3390/s22145197 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22145197
https://doi.org/10.3390/s22145197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1289-6938
https://orcid.org/0000-0003-0860-2789
https://orcid.org/0000-0002-9782-4510
https://doi.org/10.3390/s22145197
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22145197?type=check_update&version=1


Sensors 2022, 22, 5197 2 of 22

particle drift under the influence of an electric field toward another region of the detector,
the EL gap, with an electric field of higher strength. There, the electroluminescence light
(S2) signal is emitted isotropically, with intensity proportional to the number of ionization
electrons. Until now, S1 and S2 signals have been detected by two different types of
photosensors installed on opposite planes: the Energy Plane (EP), based on photomultipliers
(PMT) for precise energy measurement, and the Tracking Plane (TP), based on a dense
array of silicon photomultipliers (SiPM) for topological event filtering.

1.2. Motivation

Searches for neutrinoless double beta decay require excellent energy resolution to
eliminate background events that occur at energies similar to the Q-value of decay. The
energy response is characterized by means of calibration sources to yield energy peaks over
a range of energies from several tens of keV up to and including Qββ, that is 2.458 MeV.
Alpha, electron, gamma, xenon characteristic X-ray events, and muons must be studied
to understand the detector in a wide range of energies, as well as to measure its energy
resolution [4–7]. The calibration process will be one of the major challenges in NEXT-100
since it implies reading out sensor data at the maximum possible rate allowed by the
DAQ system.

The calibration process is well known thanks to the NEXT-White detector [8], a 5 kg
prototype of NEXT-100 at 10 bar that has been operated from the end of 2016 to June of 2021
at LSC. NEXT-White was instrumented with 12 PMTs (Hamamatsu R11410-10) in the EP
and 1792 SiPMs (SensL series-C) in an array at a pitch of 10 mm in the TP. NEXT-White was
continuously calibrated by pumping 83mKr into the system. The point-like nature of such
events, given their low energy (41.5 keV), makes them ideal for determining the electron
lifetime and energy response throughout the detector [6]. For NEXT-White, it was deemed
necessary to use at the very least 6.5·105 events to properly characterize the detector in a
24 h interval. The overall selection efficiency for such events was measured to be 65.5%,
which imposes an acquisition requirement of ~11.5 Hz (around 1 million events per day)
with a data buffer set to 1.6 ms.

Nevertheless, as can be seen in Figure 1, NEXT-100 is a 100 kg detector at 15 bar instru-
mented with 60 of the same PMT device used in NEXT-White and 3584 SiPM (Hamamatsu
S13372-01) in an array at a pitch of 15.55 mm. Moreover, NEXT-100 will have a ~1.2 m
drift region. For a 400 V/cm drift field, similar to that of NEXT-White, and an operational
pressure of 15 bar, the maximum drift time is expected to be approximately 1400 µs, consid-
ering a drift velocity of 0.835 mm/µs (obtained through Magboltz simulations). Therefore,
a maximum buffer size of 3.2 ms, around 2.3 times larger than the maximum drift, should
easily accommodate all types of events, including muons fully traversing the detector along
the longitudinal dimension.

Given the increase in the number of sensors, detector volume, and data buffer size,
it is obvious that reading out events in the NEXT-100 poses a stronger requirement to the
acquisition system. Simulation studies with different lifetimes and organic wavelength
shifter tetraphenyl butadiene (TPB) imperfections have been carried out within the NEXT
collaboration to assess the specifications of the new detector. The simulations have yielded
a requirement of at least 3·106 events per day in a realistic scenario (10 ms electron lifetime,
imperfections similar to the ones observed in NEXT-White) and up to 5·106 events in a
pessimistic scenario (lifetime would vary up to 1 ms) during a 24-h period and a minimum
buffer size of 1.8 ms, in low energy calibration mode. Although these numbers are expected
to be mitigated by improvements in the calibration procedure, they remain the target for
calibration procedures. This implies that the acquisition event rate will increase by a factor
between 4.6 and 7.6 (event rate in the range from 50 to 90 Hz) and with a larger data buffer.



Sensors 2022, 22, 5197 3 of 22Sensors 2022, 22, x FOR PEER REVIEW 3 of 22 
 

 

 
Figure 1. Schematic view of the NEXT-100 Detector. In the active volume of the TPC: drawing with 
the principle of operation of the detector. 

Given the increase in the number of sensors, detector volume, and data buffer size, it 
is obvious that reading out events in the NEXT−-100 poses a stronger requirement to the 
acquisition system. Simulation studies with different lifetimes and organic wavelength 
shifter tetraphenyl butadiene (TPB) imperfections have been carried out within the NEXT 
collaboration to assess the specifications of the new detector. The simulations have yielded 
a requirement of at least 3·106 events per day in a realistic scenario (10 ms electron lifetime, 
imperfections similar to the ones observed in NEXT-White) and up to 5·106 events in a 
pessimistic scenario (lifetime would vary up to 1 ms) during a 24-h period and a minimum 
buffer size of 1.8 ms, in low energy calibration mode. Although these numbers are ex-
pected to be mitigated by improvements in the calibration procedure, they remain the 
target for calibration procedures. This implies that the acquisition event rate will increase 
by a factor between 4.6 and 7.6 (event rate in the range from 50 to 90 Hz) and with a larger 
data buffer. 

The Data Acquisition System (DAQ) and the Event Detection System (EDS) [9] in 
NEXT-100 have been properly scaled to the new detector requirements in terms of the 
number of sensors and the data buffer. Nevertheless, the detector will pose a challenge to 
the DAQ due to the expected increase in the number of events and their size produced in 
the detector, as stated above. The DAQ is organized into modules where data must be 
read out from a buffer and sent to a server through two Gigabit Ethernet (GbE) links per 
module with limited bandwidth, which implies a clear bottleneck in every DAQ system. 
In NEXT-100, seven servers should handle the event data load estimated from 920 to 1520 
MB/s. These values are obtained extrapolating the throughput per sensor of NEXT-White 
to NEXT-100, assuming the TP data are already zero-suppressed with a compression ratio 
of about 70%, with the maximum buffer size of 3.2 ms (worst case) and a rate being from 
4.6 to 7.6 times higher. In this case, approximately 68% of the data corresponds to the EP 
data sensors and the rest to the TP data sensors. Nevertheless, tests show that each server 
is able to read out and store data on disk at a maximum rate of 125 MB/s that gives the 
system the possibility to reach a maximum throughput of 875 MB/s, that is below the 
needs of the calibration procedure. 

Figure 1. Schematic view of the NEXT-100 Detector. In the active volume of the TPC: drawing with
the principle of operation of the detector.

The Data Acquisition System (DAQ) and the Event Detection System (EDS) [9] in
NEXT-100 have been properly scaled to the new detector requirements in terms of the
number of sensors and the data buffer. Nevertheless, the detector will pose a challenge to
the DAQ due to the expected increase in the number of events and their size produced in
the detector, as stated above. The DAQ is organized into modules where data must be read
out from a buffer and sent to a server through two Gigabit Ethernet (GbE) links per module
with limited bandwidth, which implies a clear bottleneck in every DAQ system. In NEXT-
100, seven servers should handle the event data load estimated from 920 to 1520 MB/s.
These values are obtained extrapolating the throughput per sensor of NEXT-White to
NEXT-100, assuming the TP data are already zero-suppressed with a compression ratio of
about 70%, with the maximum buffer size of 3.2 ms (worst case) and a rate being from 4.6
to 7.6 times higher. In this case, approximately 68% of the data corresponds to the EP data
sensors and the rest to the TP data sensors. Nevertheless, tests show that each server is able
to read out and store data on disk at a maximum rate of 125 MB/s that gives the system
the possibility to reach a maximum throughput of 875 MB/s, that is below the needs of the
calibration procedure.

This problem can be directly solved by increasing the time needed for calibration,
which implies reducing the calibration rate or scaling up the DAQ, accommodating sensor
data in more servers. However, in addition to enriching the DAQ and the EDS with a set of
features thought to reduce the data throughput, it is clear that the DAQ could implement
additional features that help the system accomplish the calibration process in a reasonable
amount of time, such as improving the current data compression.

1.3. Considerations

In the case of the NEXT-100 DAQ, the main goal of the data compression algorithm
that could be applied is to reach a very high rate of compression to reduce data throughput
with minimal hardware resources.

To accomplish this goal, some considerations must be taken into account regarding
the compression module needed:



Sensors 2022, 22, 5197 4 of 22

1. Limited hardware resources. The available DAQ resources are limited since the
algorithm must be implemented using existing FPGA devices that are already used to
read out detector data. The compression module must be implemented with minimum
hardware resources. On the one hand, this implies keeping the algorithm as simple as
possible. On the other hand, it is desirable to have the algorithm uncorrelated from the
number of sensors to be processed, avoiding parallelizing the module or parts of it, if
possible. It is important to remark that the detector, at least in the TP, has a very large
number of sensors to read out per DAQ Module (up to 768 sensors). Related to this,
module placement in the data chain for both sensor planes could have a considerable
impact on the hardware resources needed, so this must also be carefully studied.

2. High compression ratio. Different algorithms accomplishing statement one must be
studied to select the best option with a minimum, but high, compression ratio. As
stated in Section 1.2, the event data load estimated due to the calibration process will
be in the range of 920 to 1520 MB/s, while the maximum system throughput will be
about 875 MB/s. A minimum reduction factor of 2 is needed, but a better compression
ratio will help to reduce dead time since its value is related to the data acquisition
system throughput.

2. NEXT-100 Data Acquisition and Event Detection Systems
2.1. Hardware Architecture

As mentioned above, the NEXT-100 DAQ and EDS are scaled versions of the previously
implemented NEXT-White detector. The hardware is based on the SRS-ATCA (Scalable
Readout System ported to the Advanced Telecommunications Computing Architecture
standard) jointly developed by the NEXT Collaboration, CERN-PH and IFIN-HH Bucarest
in the framework of the CERN RD51 collaboration [10,11]. The main module, the SRS
module, based on FPGA, provides a customizable interface with a set of generic plug-in
cards. As an online system, the DAQ will use DATE (ALICE Data Acquisition and Test
Environment) [12].

The SRS DAQ module provides real-time digital processing through two Xilinx Virtex-
6 FPGAs (XC6VLX240T-1ff1156). Each FPGA is connected to a DDR3 SO-DIMM memory
module, which is used as a double-data memory buffer. Two on-board custom mezzanine
connectors provide I/O flexibility for a wide range of front ends. Each group of FPGA,
memory and mezzanine connectors can be used as an independent processor unit. In NEXT
detectors, two different mezzanines are used: the EAD-M1 unit (ADC Card), with 24 ADC
channels (12 bit, at 40 MHz) is the interface with the PMT sensors front-end; and the DTC
(Data, Timing and Control) card, with 12 DTC links [13] on HDMI connectors, is used to
interface the Front-End Board (FEB) [14] at a maximum speed of 200 Mb/s. FEBs provide
the analogue front-end electronics for 64 SiPM sensors, analogue to digital conversion
at 1 MHz (12 bit), and digital processing through a Xilinx Virtex-6 FPGA (XC6VLX130T-
1ff784). DTC links are used for configuration, data transfer and trigger purposes. The SRS
DAQ module also includes a connection to a Rear Transition Module (RTM) for several
GbE connections and other I/O connectivity as two HDMI (High Definition Multimedia
Interface) for DTC connection and external input/output NIM (Nuclear Instrumentation
Module) connections for external trigger purposes. In NEXT-100, 4 GbE connections are
used, giving a maximum throughput per blade of 500 MB/s.

2.2. System Architecture

As shown in Figure 2, seven SRS DAQ modules (in the figure “ATCA blades”) are
needed to read out the data from the EP and TP planes, as well as to perform event detection
and system control. Each SRS DAQ module independent processor unit is devoted to read
out PMT sensors (up to 12 PMTs per module, up to 84 in total) or FEBs (up to 12 FEB boards
per module, 72 in total). The system has a total of 13 DAQ Modules (divided into 7 EP DAQ
Modules and 6 TP DAQ Modules), and for control and event detection duties, one extra
Control Module. The connection between modules and FEBs is given by the DTC links.



Sensors 2022, 22, 5197 5 of 22

Sensors 2022, 22, x FOR PEER REVIEW 5 of 22 
 

 

digital conversion at 1 MHz (12 bit), and digital processing through a Xilinx Virtex-6 
FPGA (XC6VLX130T-1ff784). DTC links are used for configuration, data transfer and trig-
ger purposes. The SRS DAQ module also includes a connection to a Rear Transition Mod-
ule (RTM) for several GbE connections and other I/O connectivity as two HDMI (High 
Definition Multimedia Interface) for DTC connection and external input/output NIM (Nu-
clear Instrumentation Module) connections for external trigger purposes. In NEXT−100, 4 
GbE connections are used, giving a maximum throughput per blade of 500 MB/s. 

2.2. System Architecture 
As shown in Figure 2, seven SRS DAQ modules (in the figure “ATCA blades”) are 

needed to read out the data from the EP and TP planes, as well as to perform event detec-
tion and system control. Each SRS DAQ module independent processor unit is devoted to 
read out PMT sensors (up to 12 PMTs per module, up to 84 in total) or FEBs (up to 12 FEB 
boards per module, 72 in total). The system has a total of 13 DAQ Modules (divided into 
7 EP DAQ Modules and 6 TP DAQ Modules), and for control and event detection duties, 
one extra Control Module. The connection between modules and FEBs is given by the 
DTC links. 

 
Figure 2. NEXT-100 Data Acquisition and Front-End (FE) hardware architecture. 

As seen in Figure 3, the readout works in push mode. DAQ Modules read out, time 
stamp and store data coming from the front end in a reconfigurable-length circular buffer, 
whose maximum size corresponds to approximately twice the maximum detector drift 
time (up to 3.2 ms). The circular buffer is indeed a double circular buffer implemented on 
the DDR3 memory. Data are sent from the DAQ Modules to the servers using two optical 
1 Gb/E links per module. Each server is able to read out and store data on a disk at a 
maximum speed of 125 MB/s. DAQ modules are connected to the servers in such a way 
that the data load is equalized between them. 

Figure 2. NEXT-100 Data Acquisition and Front-End (FE) hardware architecture.

As seen in Figure 3, the readout works in push mode. DAQ Modules read out, time
stamp and store data coming from the front end in a reconfigurable-length circular buffer,
whose maximum size corresponds to approximately twice the maximum detector drift
time (up to 3.2 ms). The circular buffer is indeed a double circular buffer implemented on
the DDR3 memory. Data are sent from the DAQ Modules to the servers using two optical
1 Gb/E links per module. Each server is able to read out and store data on a disk at a
maximum speed of 125 MB/s. DAQ modules are connected to the servers in such a way
that the data load is equalized between them.

In NEXT-100, the Event Detection System (EDS) is based on the early energy measured
in the PMT sensor. At this stage, event candidates are generated, which are sent to the
Control Module, where a processor generates an Event Accept signal that produces a data
upload from each DAQ Module buffer to the online system for later offline analysis.

The EDS is based on a two-processor architecture. Each pair of processors can be
configured with a set of parameters to search for a different type of event. The most obvious
application of these double-event detection features is to allow calibrations to be carried
out while taking physics data, ensuring high-quality and properly calibrated physics data.
Moreover, the use of a double circular buffer can be associated with the type of event,
allowing different modes of operation. For instance, one of those modes gives priority in
the use of the double buffer to a type of event, generally devoted to detecting physics data
since it guarantees the minimum dead time for this type of event.

A compression module (zero-suppression algorithm) has already been implemented in
FEBs. However, since each DAQ module is based on an FPGA device, additional compres-
sion techniques can be added before sending data to the servers to reduce data throughput.



Sensors 2022, 22, 5197 6 of 22Sensors 2022, 22, x FOR PEER REVIEW 6 of 22 
 

 

 
Figure 3. NEXT-100 data acquisition and event detection scheme. 

In NEXT-100, the Event Detection System (EDS) is based on the early energy meas-
ured in the PMT sensor. At this stage, event candidates are generated, which are sent to 
the Control Module, where a processor generates an Event Accept signal that produces a 
data upload from each DAQ Module buffer to the online system for later offline analysis. 

The EDS is based on a two-processor architecture. Each pair of processors can be 
configured with a set of parameters to search for a different type of event. The most obvi-
ous application of these double-event detection features is to allow calibrations to be car-
ried out while taking physics data, ensuring high-quality and properly calibrated physics 
data. Moreover, the use of a double circular buffer can be associated with the type of event, 
allowing different modes of operation. For instance, one of those modes gives priority in 
the use of the double buffer to a type of event, generally devoted to detecting physics data 
since it guarantees the minimum dead time for this type of event. 

A compression module (zero-suppression algorithm) has already been implemented 
in FEBs. However, since each DAQ module is based on an FPGA device, additional com-
pression techniques can be added before sending data to the servers to reduce data 
throughput. 

3. Data Compression in Physics Experiments 
Real-time data lossless compression algorithms implemented on hardware are shyly 

present, or at least well documented, in data acquisition systems for high-energy physics 
experiments conceived for pulse digitizers. One of the earliest references can be found in 
the implemented lossless compression for the electromagnetic calorimeter in the CMS ex-
periment [15]. The implemented module shows how Huffman encoding applied to a 
bounded set of codes, due to its simplicity, can be used to significantly reduce data 
throughput. A similar scheme has been implemented after zero suppression, with a very 
short range of Huffman code, in the MicroBooNE TPC [16]. 

Similar schemes, with more complex signal pre-processing, combined with zero sup-
pression, have been used in different detectors, such as PANDAX-III [17] or ALICE TPC 

6 × TP DAQ Module

Event
Candidates

Double Event Buffer
SiPM
Data FE

Interface 
Processor

External
Trigger

Event
Accept

13 × DTC links

GbE
Interface

From
PC

56 × FEB Card

1 × Control Module

To
LDC

CLK
Sync

Configuration

Multi-Hit
Memory

56
DTC
links

Config / Sync
Data

Double Event Buffer
PMT
Data

7 × EP DAQ Module

GbE
Interface

To
LDCData 

Format
FE

Interface

Event
Processor
RAW / BLR

Lossless
Compressor

GbE
Interface

To
PCData 

Format

2 links

2 links

Data 
Format

Double Event Buffer

GbE
Interface

Lossless
Compressor

Data 
Format

Coincidence
Event

Processor

Data 
Collector

Double
Event

Processor

ZS

Figure 3. NEXT-100 data acquisition and event detection scheme.

3. Data Compression in Physics Experiments

Real-time data lossless compression algorithms implemented on hardware are shyly
present, or at least well documented, in data acquisition systems for high-energy physics
experiments conceived for pulse digitizers. One of the earliest references can be found
in the implemented lossless compression for the electromagnetic calorimeter in the CMS
experiment [15]. The implemented module shows how Huffman encoding applied to
a bounded set of codes, due to its simplicity, can be used to significantly reduce data
throughput. A similar scheme has been implemented after zero suppression, with a very
short range of Huffman code, in the MicroBooNE TPC [16].

Similar schemes, with more complex signal pre-processing, combined with zero sup-
pression, have been used in different detectors, such as PANDAX-III [17] or ALICE TPC [18],
with very high compression ratios. In all cases, the limited available hardware resources
pose a design constraint.

A deep study of the signal characteristics and the suitability of different approaches to
the detector’s signal is of paramount importance to reach the maximum compression ratio
with minimal hardware resources. The compression modules described in this article are
based on the ones reported in the above references, although they reach similar results with
simpler implementations, avoiding signal pre-processing and the introduction of noise.

This paper presents a study of different techniques for lossless compression, as well as
alternatives in the codification process, with applications to digitized signal pulse wave-
forms. The application is then extended with excellent results to the digitized integrated
charge of SiPM sensors, combining zero suppression and a lossless compression algorithm.

Another interesting contribution is the study of the dynamic reconfiguration of Huff-
man codes. Although feasible, we reported a low impact on the compression ratio.



Sensors 2022, 22, 5197 7 of 22

4. Data Compression Techniques
4.1. Introduction

As stated in the introduction, data compression can be useful to reduce the limiting
throughput of the DAQ, at least if the compression, data transmission and decompression
procedures are faster.

As is well known, in a basic way, data compression can be divided into two main
classes: lossless compression and lossy compression. In the first case, it is possible to obtain,
from a compressed message, the complete original message, while with the second, it is
only possible to obtain a fraction of the original message. It is not acceptable in all cases to
lose data since it can damage the integrity of the message. Nevertheless, in some cases, it is
possible to reduce the amount of data to be sent by rejecting irrelevant information, and
this is justified by the fact that these techniques can provide higher compression ratios than
lossless methods.

In addition to this classification, it is possible to distinguish the adaptability of a
compression method. A non-adaptive mechanism is rigid and does not allow the modifica-
tion of any of its operating parameters, while an adaptive method performs a process of
examination and modification of the parameters according to the compressed data.

There are many data compression techniques of both types, but not all of them are
applicable to DAQ systems since most of them are based on FPGA or other types of
processors that are limited in speed and hardware resources.

The following sections describe the algorithms that have been analyzed in the context
of NEXT experiments.

4.2. Lossy Compression Techniques

In particle detectors, in addition to the event detection system (trigger), which filters
adequately the physic interesting events, helping to reduce the detector throughput by
selecting events of interest, the most common compression method implemented is zero
suppression (ZS). This type of compression allows data to be sent above a configurable
threshold over the baseline signal, including as optional a set of pre- and post-samples. In
this case, extra bits are needed since data must be time stamped and channels flagged, but
the data reduction reached compensates for it. Moreover, it does not need excessive digital
hardware resources and the data reduction ratio can vary depending on the configuration
parameters set.

Other lossy compression algorithms applied to other types of data, such as pictures,
video or music, are out of the scope of this study since they are too complex to be integrated
in the detector readout chain and, anyway, they do not guarantee the relevant physics
data content.

4.3. Lossless Compression Techniques

There are compressors that use the statistical characteristics of the source to obtain
optimal encoding. These compressors are called statistical compressors. They start with a
finite number of messages whose different possibilities are known, either experimentally
or fixed. Its goal is to encode the different messages from the source in such a way that the
resulting data have fewer bits than the original. A good example of this type is Huffman
coding [19]. This algorithm is based on a tree of codes of different sizes that are assigned
to the possible messages of the data as a function of the probability of appearance. This
implies that the most likely message has the shortest encoding.

There are algorithms, such as substitutional algorithms, that are based on a dictionary
with strings of different messages. Each string has an index, and if the message has already
been sent before, only the index preceding that string in the dictionary is sent.

Another example of lossless compression is Run Length Encoding (RLE) [20], where
sequences of the same data present in the series are encoded as a single value and a
counter indicates the repetitions of consecutive values. For physics data, it will provide



Sensors 2022, 22, 5197 8 of 22

efficient compression if the same sequence of values appears repeatedly and consecutively
in the signal.

Other lossless compression algorithms, such as Context Tree Weighting (CTW) [21]
and LZ77/LZ78 [22], are more complex to implement and are not efficient with physics
data, as they do not have the same characteristics as text data.

4.4. Signal Conditioning

Additionally, when the signal to be compressed presents smooth transitions, delta
encoding can be applied prior to compression. This technique modifies data as the dif-
ference between successive values, thereby reducing the variance of the values. The first
value corresponds to the original, while the subsequent values in the data stream present
an increase or decrease with respect to the previous one.

Another way to obtain similar results is to subtract the DC value (mean value of the
signal), also called the baseline, which is defined as the electrical signal from a sensor when
no measured variable is present. All the values sent are the difference with respect to
the signal baseline. In this case, to recover the signal, the extracted mean must be sent to
the stream.

Both cases are very useful in many data series, where there is a certain correlation
between the data, oscillating around an intermediate value. Encoding sets of values that
have a high mean value can lead to the excessive use of bits for storage. However, they may
present differences between their maximum and minimum values that are much lower
than the indicated continuous level.

In addition to the advantages stated above, in some cases, as happens in NEXT, where
the number of channels to process is high, these techniques help to equalize the signals of
different channels. This is helpful when some compression algorithms are applied, such as
those based on tables with codes to be replaced since it allows the use of a unique set of
codes instead of one per signal to be processed.

5. NEXT Experiment Data Compression Study
5.1. Lossy Data Compression Review

In NEXT experiments, as in many other experiments, the sensor data acquired in a
certain window can be divided into two parts: a pulse preceded and followed by a stable
signal and the baseline of the signal, as it has been already mentioned, in a certain window.
In the NEXT experiments, the absence of a pulse clearly dominates the signal, as seen in
Figure 4.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 4. NEXT−White PMT and SiPM events (1.6 ms buffer): (a) PMT sensor signal; (b) SiPM sensor 
signal. 

All NEXT detectors apply zero-suppression as a compression algorithm. ZS parame-
ters need to be chosen carefully to avoid biasing events, as the charge loss is minimal. 
With particular interest in the energy and temporal position of the pulses, this information 
is preserved by keeping the signal pulse and sufficient samples, before and after the pulse, 
to estimate the baseline of the signal. 

The algorithm applied has a set of configurable parameters: a threshold over the 
baseline to consider a pulse, the minimum number of consecutive time bins that have to 
be above the threshold to consider a pulse, and a set of pre- and post-samples to be sent 
together with the considered pulse. 

A study performed with experimental data shows that a high reduction factor can be 
reached with a very low charge loss, as can be seen in Figure 5. It must be noted that for 
NEXT-White off-line data processing, the SiPM signals are cut much stronger than the ZS 
threshold employed at the DAQ level. Specifically, for 83mKr events, a minimum of 5 pho-
toelectrons (corresponding to ~75 ADCs) is required per pulse and sensor. This was 
deemed to be more than enough to achieve good precision for point-like events. On the 
other hand, for high-energy events, the threshold is increased to 10 photoelectrons per 1 
µs time slice. This value was identified as the optimal threshold for track reconstruction 
[23]. Still, given the non-reversibility nature of lossy compression, a heavily conservative 
ZS configuration was chosen for standard data-taking. In fact, the region slightly above 
75% reduction was identified as ideal, as charge loss was negligible while maintaining a 
strong reduction factor. 

 
Figure 5. Zero Suppression in the NEXT−White TP: (a) Typical zero-suppressed signal from a SiPM 
sensor; (b) Charge loss vs. Reduction factor (Compression) in the zero-suppressed events of the 

Figure 4. NEXT-White PMT and SiPM events (1.6 ms buffer): (a) PMT sensor signal; (b) SiPM
sensor signal.

All NEXT detectors apply zero-suppression as a compression algorithm. ZS parame-
ters need to be chosen carefully to avoid biasing events, as the charge loss is minimal. With
particular interest in the energy and temporal position of the pulses, this information is



Sensors 2022, 22, 5197 9 of 22

preserved by keeping the signal pulse and sufficient samples, before and after the pulse, to
estimate the baseline of the signal.

The algorithm applied has a set of configurable parameters: a threshold over the
baseline to consider a pulse, the minimum number of consecutive time bins that have to
be above the threshold to consider a pulse, and a set of pre- and post-samples to be sent
together with the considered pulse.

A study performed with experimental data shows that a high reduction factor can
be reached with a very low charge loss, as can be seen in Figure 5. It must be noted that
for NEXT-White off-line data processing, the SiPM signals are cut much stronger than the
ZS threshold employed at the DAQ level. Specifically, for 83mKr events, a minimum of
5 photoelectrons (corresponding to ~75 ADCs) is required per pulse and sensor. This was
deemed to be more than enough to achieve good precision for point-like events. On the
other hand, for high-energy events, the threshold is increased to 10 photoelectrons per 1 µs
time slice. This value was identified as the optimal threshold for track reconstruction [23].
Still, given the non-reversibility nature of lossy compression, a heavily conservative ZS
configuration was chosen for standard data-taking. In fact, the region slightly above 75%
reduction was identified as ideal, as charge loss was negligible while maintaining a strong
reduction factor.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 4. NEXT−White PMT and SiPM events (1.6 ms buffer): (a) PMT sensor signal; (b) SiPM sensor 
signal. 

All NEXT detectors apply zero-suppression as a compression algorithm. ZS parame-
ters need to be chosen carefully to avoid biasing events, as the charge loss is minimal. 
With particular interest in the energy and temporal position of the pulses, this information 
is preserved by keeping the signal pulse and sufficient samples, before and after the pulse, 
to estimate the baseline of the signal. 

The algorithm applied has a set of configurable parameters: a threshold over the 
baseline to consider a pulse, the minimum number of consecutive time bins that have to 
be above the threshold to consider a pulse, and a set of pre- and post-samples to be sent 
together with the considered pulse. 

A study performed with experimental data shows that a high reduction factor can be 
reached with a very low charge loss, as can be seen in Figure 5. It must be noted that for 
NEXT-White off-line data processing, the SiPM signals are cut much stronger than the ZS 
threshold employed at the DAQ level. Specifically, for 83mKr events, a minimum of 5 pho-
toelectrons (corresponding to ~75 ADCs) is required per pulse and sensor. This was 
deemed to be more than enough to achieve good precision for point-like events. On the 
other hand, for high-energy events, the threshold is increased to 10 photoelectrons per 1 
µs time slice. This value was identified as the optimal threshold for track reconstruction 
[23]. Still, given the non-reversibility nature of lossy compression, a heavily conservative 
ZS configuration was chosen for standard data-taking. In fact, the region slightly above 
75% reduction was identified as ideal, as charge loss was negligible while maintaining a 
strong reduction factor. 

 
Figure 5. Zero Suppression in the NEXT−White TP: (a) Typical zero-suppressed signal from a SiPM 
sensor; (b) Charge loss vs. Reduction factor (Compression) in the zero-suppressed events of the 
Figure 5. Zero Suppression in the NEXT-White TP: (a) Typical zero-suppressed signal from a SiPM
sensor; (b) Charge loss vs. Reduction factor (Compression) in the zero-suppressed events of the
detector with different set of parameters (pre- and post-samples fixed to 50 µs in all cases). This study
has been done using the Dual Mode implemented in the DAQ (this mode allows the DAQ to send
both sets of data, ZS and the raw versions of the events).

In the case of EP, no lossy compression algorithms can be applied. On the one hand,
any charge loss produced by a ZS applied would have a negative impact on the detector
energy resolution requirement (less than 1% FWHM). On the other hand, due to the
capacitive coupling of the PMT signal [24], the baseline needs to be restored by a baseline
restoration (BLR) algorithm. The effect of these DC-rejecting capacitors on the obtained
analogue signals is similar to that of a high-pass filter with a very low cutoff frequency. Due
to the high energy resolution requirement of the detector, it has been decided to send data
in raw mode and compensate afterwards by software, allowing a precise reconstruction of
the original PMT output signal with a negligible error. This affects the size of the pulses, as
can be seen in Figure 6, which are longer than usual. In addition to the energy resolution
issue, this effect on the signal would have a negative impact on the compression ratio that
could be reached by a ZS algorithm.



Sensors 2022, 22, 5197 10 of 22

Sensors 2022, 22, x FOR PEER REVIEW 10 of 22 
 

 

detector with different set of parameters (pre- and post-samples fixed to 50 µs in all cases). This 
study has been done using the Dual Mode implemented in the DAQ (this mode allows the DAQ to 
send both sets of data, ZS and the raw versions of the events). 

In the case of EP, no lossy compression algorithms can be applied. On the one hand, 
any charge loss produced by a ZS applied would have a negative impact on the detector 
energy resolution requirement (less than 1% FWHM). On the other hand, due to the ca-
pacitive coupling of the PMT signal [24], the baseline needs to be restored by a baseline 
restoration (BLR) algorithm. The effect of these DC-rejecting capacitors on the obtained 
analogue signals is similar to that of a high-pass filter with a very low cutoff frequency. 
Due to the high energy resolution requirement of the detector, it has been decided to send 
data in raw mode and compensate afterwards by software, allowing a precise reconstruc-
tion of the original PMT output signal with a negligible error. This affects the size of the 
pulses, as can be seen in Figure 6, which are longer than usual. In addition to the energy 
resolution issue, this effect on the signal would have a negative impact on the compression 
ratio that could be reached by a ZS algorithm. 

 
Figure 6. RAW and Baseline Restored (BLR) PMT signals. 

5.2. Lossless Data Compression Study 
The histograms in Figure 7 clearly show that there are codes more probable than oth-

ers, being the signal suitable for statistical compressors, such as the Huffman algorithm 
or other dictionary-based techniques. As can be seen in the histograms, the maximum 
code frequency corresponds to the sensors DC value, which is set around 2300 and 50 for 
PMT and SiPM sensors, respectively. As is appreciable in Figure 7a, not all sensor signals 
are set on the same baseline. 

a b 

Figure 6. RAW and Baseline Restored (BLR) PMT signals.

5.2. Lossless Data Compression Study

The histograms in Figure 7 clearly show that there are codes more probable than
others, being the signal suitable for statistical compressors, such as the Huffman algorithm
or other dictionary-based techniques. As can be seen in the histograms, the maximum code
frequency corresponds to the sensors DC value, which is set around 2300 and 50 for PMT
and SiPM sensors, respectively. As is appreciable in Figure 7a, not all sensor signals are set
on the same baseline.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 22 
 

 

detector with different set of parameters (pre- and post-samples fixed to 50 µs in all cases). This 
study has been done using the Dual Mode implemented in the DAQ (this mode allows the DAQ to 
send both sets of data, ZS and the raw versions of the events). 

In the case of EP, no lossy compression algorithms can be applied. On the one hand, 
any charge loss produced by a ZS applied would have a negative impact on the detector 
energy resolution requirement (less than 1% FWHM). On the other hand, due to the ca-
pacitive coupling of the PMT signal [24], the baseline needs to be restored by a baseline 
restoration (BLR) algorithm. The effect of these DC-rejecting capacitors on the obtained 
analogue signals is similar to that of a high-pass filter with a very low cutoff frequency. 
Due to the high energy resolution requirement of the detector, it has been decided to send 
data in raw mode and compensate afterwards by software, allowing a precise reconstruc-
tion of the original PMT output signal with a negligible error. This affects the size of the 
pulses, as can be seen in Figure 6, which are longer than usual. In addition to the energy 
resolution issue, this effect on the signal would have a negative impact on the compression 
ratio that could be reached by a ZS algorithm. 

 
Figure 6. RAW and Baseline Restored (BLR) PMT signals. 

5.2. Lossless Data Compression Study 
The histograms in Figure 7 clearly show that there are codes more probable than oth-

ers, being the signal suitable for statistical compressors, such as the Huffman algorithm 
or other dictionary-based techniques. As can be seen in the histograms, the maximum 
code frequency corresponds to the sensors DC value, which is set around 2300 and 50 for 
PMT and SiPM sensors, respectively. As is appreciable in Figure 7a, not all sensor signals 
are set on the same baseline. 

a b 

Figure 7. Sensor Histograms: (a) EP Histogram from run 6203 (83mKr and 232Th sources, 12 PMTs,
346 events); (b) TP Histogram from run 8087 (1792 SiPMs, 307 events). In both cases, the sensor data
are digitized with a 12-bit ADC.

The different algorithms proposed in this article are based on the idea presented
in [15], in which only a set of possible codes is used by the compression algorithm. On the
one hand, this implies finding the best set of codes and its quantity, which simplifies the
compression module while keeping an optimum compression ratio. On the other hand, this
forces the compression module to set a way to differentiate encoded codes from the rest.

Under those assumptions, several algorithms have been studied using Python with
numpy and scipy libraries. In the simulations, a flag is used to differentiate encoded and
non-encoded data. The options studied are divided into two levels as a function of how
data are prepared prior to compression and, inside each first level, how data are encoded.
The first level is based on:

• Baseline subtraction. In this case, the DC value of the signal is subtracted prior
to compression.

• Delta encoding. In this case, delta encoding is applied prior to compression.



Sensors 2022, 22, 5197 11 of 22

The second level is based on:

• Ca2. Data in the compression range are encoded by its two’s complement values with
the minimum number of bits needed. This codification is direct and very simple.

• Sensor ref + Ca2. Prior to encoding the data, reference sensor data (sent without
compression) is subtracted from the rest of the sensor data. Then, case 1 is applied.

• RLE. The data are RLE encoded.
• Huffman. Data in the compression range are Huffman encoded. It requires the

calculation of the Huffman tree to set the codes and their sizes in bits.

5.3. Conclusions

Both types of signal conditioning, delta encoding and baseline subtraction-based, can
be used with PMT sensor data. This is illustrated in Figure 8, which shows the differences
in performance for various combinations of signal conditioning and data compression
algorithms. However, delta encoding offers better results in general when the same type of
compression encoding is applied.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 22 
 

 

Figure 7. Sensor Histograms: (a) EP Histogram from run 6203 (83mKr and 232Th sources, 12 PMTs, 346 
events); (b) TP Histogram from run 8087 (1792 SiPMs, 307 events). In both cases, the sensor data are 
digitized with a 12-bit ADC. 

The different algorithms proposed in this article are based on the idea presented in 
[15], in which only a set of possible codes is used by the compression algorithm. On the 
one hand, this implies finding the best set of codes and its quantity, which simplifies the 
compression module while keeping an optimum compression ratio. On the other hand, 
this forces the compression module to set a way to differentiate encoded codes from the 
rest. 

Under those assumptions, several algorithms have been studied using Python with 
numpy and scipy libraries. In the simulations, a flag is used to differentiate encoded and 
non-encoded data. The options studied are divided into two levels as a function of how 
data are prepared prior to compression and, inside each first level, how data are encoded. 
The first level is based on: 
• Baseline subtraction. In this case, the DC value of the signal is subtracted prior to 

compression. 
• Delta encoding. In this case, delta encoding is applied prior to compression. 

The second level is based on: 
• Ca2. Data in the compression range are encoded by its two’s complement values with 

the minimum number of bits needed. This codification is direct and very simple. 
• Sensor ref + Ca2. Prior to encoding the data, reference sensor data (sent without com-

pression) is subtracted from the rest of the sensor data. Then, case 1 is applied. 
• RLE. The data are RLE encoded. 
• Huffman. Data in the compression range are Huffman encoded. It requires the cal-

culation of the Huffman tree to set the codes and their sizes in bits. 

5.3. Conclusions 
Both types of signal conditioning, delta encoding and baseline subtraction-based, can 

be used with PMT sensor data. This is illustrated in Figure 8, which shows the differences 
in performance for various combinations of signal conditioning and data compression al-
gorithms. However, delta encoding offers better results in general when the same type of 
compression encoding is applied. 

 
Figure 8. EP sensor compression ratio versus different numbers of 12-bit data codes used for com-
pression over different data encoding applied. 

In both cases, coding the data with a lower number of bits—in this case Ca2 or RLE—
has a peak of around 4 to 8 codes (2 to 3 bits) and a maximum compression ratio of 60 to 
70%, decreasing considerably if more codes are used for compression. Those algorithms 

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32 64 128 256 512

Co
m

pr
es

sio
n 

Ra
tio

 (%
)

Number of Data Codes

PMT Sensors Encoding and Compression Algorithms Study
Compression Rate vs Set of Data Codes used for Compression

Baseline/Channel ref + Ca2
Baseline + Ca2
Delta + Ca2
Baseline + RLE
Delta + RLE
Baseline/Channel ref + Huffman
Baseline + Huffman
Delta + Huffman

Figure 8. EP sensor compression ratio versus different numbers of 12-bit data codes used for
compression over different data encoding applied.

In both cases, coding the data with a lower number of bits—in this case Ca2 or
RLE—has a peak of around 4 to 8 codes (2 to 3 bits) and a maximum compression ratio
of 60 to 70%, decreasing considerably if more codes are used for compression. Those
algorithms work fine with a short number of codes but have a clear limit in compression
ratio of around 70%.

In the case of Huffman encoding, unlike the previously mentioned algorithms, the
compression ratio increases as the number of codes applied increases and remains quite
stable over 8 codes. The reason is that each sample is compressed with a code and a number
of bits established by the Huffman tree, which is lower depending on the probability of
appearance and not with the same established number.

In the case of the TP, algorithms based on a signal reference produce very bad results.
The number of channels discourages the use of algorithms based on Baseline Subtraction
due to the high number of hardware resources needed due to the larger number of sensors
to process per DAQ Module. From the set of algorithms based on delta encoding, the best
results are obtained when Huffman codes are used, as seen in Figure 9. The behavior of
algorithms based on RLE compression or the use of other types of codifications, such as
Ca2, draws similar results to the EP case.



Sensors 2022, 22, 5197 12 of 22

Sensors 2022, 22, x FOR PEER REVIEW 12 of 22 
 

 

work fine with a short number of codes but have a clear limit in compression ratio of 
around 70%. 

In the case of Huffman encoding, unlike the previously mentioned algorithms, the 
compression ratio increases as the number of codes applied increases and remains quite 
stable over 8 codes. The reason is that each sample is compressed with a code and a num-
ber of bits established by the Huffman tree, which is lower depending on the probability 
of appearance and not with the same established number. 

In the case of the TP, algorithms based on a signal reference produce very bad results. 
The number of channels discourages the use of algorithms based on Baseline Subtraction 
due to the high number of hardware resources needed due to the larger number of sensors 
to process per DAQ Module. From the set of algorithms based on delta encoding, the best 
results are obtained when Huffman codes are used, as seen in Figure 9. The behavior of 
algorithms based on RLE compression or the use of other types of codifications, such as 
Ca2, draws similar results to the EP case. 

 
Figure 9. TP sensor compression ratio versus different numbers of 12-bit data codes used for com-
pression over different data encoding applied. 

Subtracting the DC value from the signal sensors implies more hardware since the 
DC value of each sensor signal must be calculated, needing an extra module per channel 
(a moving average filter, for instance), and the limited precision obtained can considerably 
affect the efficiency of the compression algorithm and have, in general, the worst results 
for the same compression algorithm. In the same way, having a sensor signal as a refer-
ence leads to worse results, and it is discarded. For a delta encoder, extra hardware is also 
needed, but a set of registers or a memory, some control logic and just one adder is suffi-
cient for any number of sensor data to be processed. Compressing the data stream using 
Ca2 codification responds to the necessity of having a very simple algorithm. Once the 
signal is conditioned, the values are already Ca2 encoded and only have to be shortened 
by a number of bits, but the maximum compression ratio, as it happens with RLE, is below 
the one obtained with Huffman encoding. Therefore, the simplest algorithm to imple-
ment, in addition to being the one that yields higher compression ratios, in both cases, 
with a minimum number of codes, corresponds to Huffman coding with a delta encoding, 
as in the previous stage. In this case, as seen in Figures 8 and 9, a set of codes of 16 to 32 
seems to be optimal since the compression ratio reached is very high without the need for 
high memory resources. 

6. NEXT Experiments Huffman Coding Implementation 
6.1. Control Codification 

0

10

20

30

40

50

60

70

80

2 4 8 16 32 64 128 256 512

Co
m

pr
es

sio
n 

Ra
tio

 (%
)

Number of Data Codes

SiPM Sensors Encoding and Compression Algorithms Study
Compression Rate vs Set of Data Codes used for Compression

Delta + Ca2

Delta + RLE

Delta + Huffman

Figure 9. TP sensor compression ratio versus different numbers of 12-bit data codes used for
compression over different data encoding applied.

Subtracting the DC value from the signal sensors implies more hardware since the DC
value of each sensor signal must be calculated, needing an extra module per channel (a
moving average filter, for instance), and the limited precision obtained can considerably
affect the efficiency of the compression algorithm and have, in general, the worst results for
the same compression algorithm. In the same way, having a sensor signal as a reference
leads to worse results, and it is discarded. For a delta encoder, extra hardware is also needed,
but a set of registers or a memory, some control logic and just one adder is sufficient for any
number of sensor data to be processed. Compressing the data stream using Ca2 codification
responds to the necessity of having a very simple algorithm. Once the signal is conditioned,
the values are already Ca2 encoded and only have to be shortened by a number of bits, but
the maximum compression ratio, as it happens with RLE, is below the one obtained with
Huffman encoding. Therefore, the simplest algorithm to implement, in addition to being
the one that yields higher compression ratios, in both cases, with a minimum number of
codes, corresponds to Huffman coding with a delta encoding, as in the previous stage. In
this case, as seen in Figures 8 and 9, a set of codes of 16 to 32 seems to be optimal since the
compression ratio reached is very high without the need for high memory resources.

6. NEXT Experiments Huffman Coding Implementation
6.1. Control Codification

As stated in Section 5.3, delta encoding prior to Huffman compression seems to be the
best option for NEXT-100 sensor signals. Moreover, since a set of Huffman codes is used
and not all the possible data values are encoded, some type of control coding is needed to
distinguish Huffman encoded data from those that are not. Two possible methods have
been studied:

• Method 1. An additional control code of one bit is used to distinguish between
encoded and non-encoded data.

• Method 2. Only non-encoded data are flagged. In this case, a non-used Huffman code
can be used prior to sending the non-encoded data.

For both types of sensors, the compression procedure can be described as shown in
Figure 10. In the figure, input data are supposed to already be delta encoded. In addition
to codes that are out of the selected code range, the first event data for each sensor are sent
without being encoded. A sensor mask defines the sensors whose data are present in the
frame (not shown in the figure). In raw mode, the sensor mask is sent only once. Data are
preceded by a timer (16-bit Fine Timer, FT) that defines its position in the DAQ circular
data buffer. Data are always sent starting with the sensor with a lower index. Sensors are
identified by their positions in the data frame. In the case of SiPM sensors, the FEB ID is



Sensors 2022, 22, 5197 13 of 22

also available in the data stream, so the sensors are fully identified by their position in the
data frame and the mentioned ID. In the case of Method 1, control codes are inserted before
the data. In the case of Method 2, control codes are inserted only in the case of non-encoded
data. The number of bits needed in the latter case depends on the number of Huffman
codes used since the control code should be the first Huffman code available and not used
in the set of selected codes.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 22 
 

 

As stated in Section 5.3, delta encoding prior to Huffman compression seems to be 
the best option for NEXT−100 sensor signals. Moreover, since a set of Huffman codes is 
used and not all the possible data values are encoded, some type of control coding is 
needed to distinguish Huffman encoded data from those that are not. Two possible meth-
ods have been studied: 
• Method 1. An additional control code of one bit is used to distinguish between en-

coded and non-encoded data. 
• Method 2. Only non-encoded data are flagged. In this case, a non-used Huffman code 

can be used prior to sending the non-encoded data. 
For both types of sensors, the compression procedure can be described as shown in 

Figure 10. In the figure, input data are supposed to already be delta encoded. In addition 
to codes that are out of the selected code range, the first event data for each sensor are sent 
without being encoded. A sensor mask defines the sensors whose data are present in the 
frame (not shown in the figure). In raw mode, the sensor mask is sent only once. Data are 
preceded by a timer (16-bit Fine Timer, FT) that defines its position in the DAQ circular 
data buffer. Data are always sent starting with the sensor with a lower index. Sensors are 
identified by their positions in the data frame. In the case of SiPM sensors, the FEB ID is 
also available in the data stream, so the sensors are fully identified by their position in the 
data frame and the mentioned ID. In the case of Method 1, control codes are inserted be-
fore the data. In the case of Method 2, control codes are inserted only in the case of non-
encoded data. The number of bits needed in the latter case depends on the number of 
Huffman codes used since the control code should be the first Huffman code available 
and not used in the set of selected codes. 

 
Figure 10. Control codification proposed methods. 

Figure 11 shows a comparison of both control encoding methods using up to 32 Huff-
man codes. As can be seen, when the probability of the appearance of the codes selected 
for Huffman coding increases, Method 2 tends to have less overhead than Method 1. 

Since the data format base word size is 16 bits, if the group control word plus data 
does not exceed this number of bits, the compression module is easier to implement. For 
this reason, a maximum of 4 bits control code has also been studied as a particular case of 
Method 2. 

S1 S2 S3 SNFT

S1 is out of
code range

Control
Codes

12 bit16 bit

0FT S1 1 S2H 1 S3H 1 SNH

CCFT S1 S2H S3H SNH

S2, S3 and SN are Huffman encoded
(Codes can have different size)

Method 1

Method 2

Figure 10. Control codification proposed methods.

Figure 11 shows a comparison of both control encoding methods using up to 32 Huff-
man codes. As can be seen, when the probability of the appearance of the codes selected
for Huffman coding increases, Method 2 tends to have less overhead than Method 1.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 11. Excess of bits due to control coding versus the number of Huffman codes used to com-
press the data stream: (a) EP sensor signal from run 7175 (83mKr source and low background, 12 
PMTs, 1 event); (b) TP sensor signal from run 8087 (83mKr source and low background, 1792 SiPM 
sensors and 1 event). 

Table 1 shows the compression ratios for the proposed control codification methods. 
Method 2 has a 5% to 6% better compression ratio for both types of sensor signals. How-
ever, the use of a 4-bit control code with Method 2 (Method 2b) yields similar results and 
simplifies the implemented circuit. However, one of the objectives of the compression 
module is to compress already zero suppressed data, and in this special case, the com-
pression ratio of the simulated methods is similar. 

Table 1. Compression ratio versus code control codification methods. Method 2b stays for Method 
2 with code control codification of 4 bits and Huffman codes shifted from this one. 32 Huffman 
codes. EP sensor signal from run 7175 (12 PMTs, 312 events). TP sensors from run 8167 and from 
run 8720 (1792 SiPM sensors, 109 and 611 events, respectively). 

 Compression Ratio (%) 
 EP DAQ Module TP DAQ Module 
 Raw Raw ZS 

Method 1 80.07 57.14 80.12 
Method 2 86.23 63.27 80.85 

Method 2b 85.26 63.27 80.85 

Considering the facts stated above, and in order to have a uniform control codifica-
tion method that simplifies the algorithm implementation and decoding process, Method 
2b has been chosen. 

6.2. Huffman Encoding Implementation 
As stated in Section 1.3, the compression module has been designed considering the 

use of minimum hardware resources. This module is divided into two blocks: Delta En-
coder and Huffman Coding Module. While the first needs to be sensor related, the second 
is applied to the data chain independently of the sensor being encoded. This can be done 
when all data sensors are serially read and the sensor number can be identified. As shown 
in Figure 3, this can be done, in the case of the EP DAQ Module, at the output of the 
module, prior to format and sending the data to the online system, and for the TP DAQ 
Module, at the input where data from different FEC cards are readout in round robin, and 
re-format prior to storing them in the event circular buffer. 

Figure 12 shows the data block of the Compression Module. As shown, to perform 
delta encoding for each sensor, one data sample must be stored. Control of the sensor 

Figure 11. Excess of bits due to control coding versus the number of Huffman codes used to compress
the data stream: (a) EP sensor signal from run 7175 (83mKr source and low background, 12 PMTs,
1 event); (b) TP sensor signal from run 8087 (83mKr source and low background, 1792 SiPM sensors
and 1 event).

Since the data format base word size is 16 bits, if the group control word plus data
does not exceed this number of bits, the compression module is easier to implement. For
this reason, a maximum of 4 bits control code has also been studied as a particular case of
Method 2.

Table 1 shows the compression ratios for the proposed control codification methods.
Method 2 has a 5% to 6% better compression ratio for both types of sensor signals. However,
the use of a 4-bit control code with Method 2 (Method 2b) yields similar results and simpli-
fies the implemented circuit. However, one of the objectives of the compression module is



Sensors 2022, 22, 5197 14 of 22

to compress already zero suppressed data, and in this special case, the compression ratio of
the simulated methods is similar.

Table 1. Compression ratio versus code control codification methods. Method 2b stays for Method 2
with code control codification of 4 bits and Huffman codes shifted from this one. 32 Huffman codes.
EP sensor signal from run 7175 (12 PMTs, 312 events). TP sensors from run 8167 and from run 8720
(1792 SiPM sensors, 109 and 611 events, respectively).

Compression Ratio (%)

EP DAQ Module TP DAQ Module

Raw Raw ZS
Method 1 80.07 57.14 80.12
Method 2 86.23 63.27 80.85

Method 2b 85.26 63.27 80.85

Considering the facts stated above, and in order to have a uniform control codification
method that simplifies the algorithm implementation and decoding process, Method 2b
has been chosen.

6.2. Huffman Encoding Implementation

As stated in Section 1.3, the compression module has been designed considering
the use of minimum hardware resources. This module is divided into two blocks: Delta
Encoder and Huffman Coding Module. While the first needs to be sensor related, the
second is applied to the data chain independently of the sensor being encoded. This can be
done when all data sensors are serially read and the sensor number can be identified. As
shown in Figure 3, this can be done, in the case of the EP DAQ Module, at the output of the
module, prior to format and sending the data to the online system, and for the TP DAQ
Module, at the input where data from different FEC cards are readout in round robin, and
re-format prior to storing them in the event circular buffer.

Figure 12 shows the data block of the Compression Module. As shown, to perform
delta encoding for each sensor, one data sample must be stored. Control of the sensor
processed is made by a control module (Format Control). The stored data samples are
subtracted from the new arrival samples. Delta-encoded data are compared with the range
of symbols that will be compressed. A control module (Data Encoder Control) takes care
of the codes to be Huffman encoded, the size of the data, the insertion of control codes,
and to restore the data format with other control codes, such as timing information, card
identification and sensor mask, and padding bits if needed. Huffman codes and their sizes
are stored in 2 register banks and can be configured through commands. Although some
latency is added to the compression process, the compression itself reduces the dead time
due to the reduction of data to be sent through the available links.

Table 2 shows the amount of hardware resources needed for the Compression Module.
As shown, the amount of resources is reduced. In the case of the TP, more resources are
needed. This is because, on the one hand, Delta Encoder Memory is implemented with
RAM resources instead of Slice Registers. In this case, storage is needed for up to 768 12-bit
sensor data words. On the other hand, managing the data stream with a higher number of
sensors from different modules and with different format types (raw or zero-suppressed
data format), as described in Section 6.3, makes the Delta Encoder more complex. In
the case of the EP since the module is placed at the output, one module per data link is
implemented, with two modules in total.



Sensors 2022, 22, 5197 15 of 22

Sensors 2022, 22, x FOR PEER REVIEW 15 of 22 
 

 

processed is made by a control module (Format Control). The stored data samples are 
subtracted from the new arrival samples. Delta-encoded data are compared with the 
range of symbols that will be compressed. A control module (Data Encoder Control) takes 
care of the codes to be Huffman encoded, the size of the data, the insertion of control 
codes, and to restore the data format with other control codes, such as timing information, 
card identification and sensor mask, and padding bits if needed. Huffman codes and their 
sizes are stored in 2 register banks and can be configured through commands. Although 
some latency is added to the compression process, the compression itself reduces the dead 
time due to the reduction of data to be sent through the available links. 

 
Figure 12. Compression Module Scheme. 

Table 2 shows the amount of hardware resources needed for the Compression Mod-
ule. As shown, the amount of resources is reduced. In the case of the TP, more resources 
are needed. This is because, on the one hand, Delta Encoder Memory is implemented with 
RAM resources instead of Slice Registers. In this case, storage is needed for up to 768 12-
bit sensor data words. On the other hand, managing the data stream with a higher number 
of sensors from different modules and with different format types (raw or zero-sup-
pressed data format), as described in Section 6.3, makes the Delta Encoder more complex. 
In the case of the EP since the module is placed at the output, one module per data link is 
implemented, with two modules in total. 

Table 2. Hardware resources needed for the Compression Module implemented in Xilinx Virtex-6 
FPGAs (XC6VLX240T-1ff1156) in the EP and TP DAQ Modules. 

 
EP DAQ Module TP DAQ Module 

Compression Module Total Compression Module Total 
Slice Registers 0.15% 12% 0.11% 10% 

Slice LUTs 0.57% 36% 0.44% 20% 
Occupied Slices 0.88% 46% 0.79% 45% 

RAM36E 0% 24% 0% 20% 
RAM18E 0% 5% 0.12% 5% 
DSP48E 0.26% 40% 0.13% 0.13% 

In the case of the TP sensors, data compression is distributed among modules. Zero-
suppression is performed in the FEBs and lossless compression is done upon the arrival 
data signals in the TP DAQ Modules. This allows us to redistribute the hardware re-
sources needed to implement both types of compression. 

As shown in Figures 8 and 9, it was decided to use a set of 16 and 32 Huffman codes 
for the EP and TP sensors, respectively. 

Sensor
Data

Delta Encoder
Module

Memory

Sensors
×

12 bits

Data 
Format

Format
Control

Comparator

Sensor ID

Data 
Encoder
Control

Huffman
Codes

16/32 codes

-

Huffman
Codes
Sizes

16/32 codes

Huffman Coding
Module

Compressed
Data

Sensor ID

Sensor
Data

Huffman
Codes

Compression
Selector

Encode
Mux

Figure 12. Compression Module Scheme.

Table 2. Hardware resources needed for the Compression Module implemented in Xilinx Virtex-6
FPGAs (XC6VLX240T-1ff1156) in the EP and TP DAQ Modules.

EP DAQ Module TP DAQ Module

Compression Module Total Compression Module Total

Slice Registers 0.15% 12% 0.11% 10%
Slice LUTs 0.57% 36% 0.44% 20%

Occupied Slices 0.88% 46% 0.79% 45%
RAM36E 0% 24% 0% 20%
RAM18E 0% 5% 0.12% 5%
DSP48E 0.26% 40% 0.13% 0.13%

In the case of the TP sensors, data compression is distributed among modules. Zero-
suppression is performed in the FEBs and lossless compression is done upon the arrival
data signals in the TP DAQ Modules. This allows us to redistribute the hardware resources
needed to implement both types of compression.

As shown in Figures 8 and 9, it was decided to use a set of 16 and 32 Huffman codes
for the EP and TP sensors, respectively.

6.3. Huffman Encoding with Zero-Suppressed Data

In the case of the TP, different scenarios can be applied. As mentioned in Section 5.1,
zero suppression has been applied in all NEXT detectors. Including an extra module of
lossless compression allows for a configurable compression scheme: zero-suppression,
Huffman encoding, or both.

In the case of zero-suppressed data, the data stream has some constraints that must be
considered. First, every timing-related data must be preceded by a set of control words
indicating time (FT) and data sensor present (MASK) since sensor data can be present or
not in the data stream for each time bin. Second, the data stream presents groups of data
that are not continuous in time defined by the configured pre- and post-samples, as shown
in Figure 5a, which can be an issue for the compression module.

To avoid data overhead and simplify the Delta Encoder Module, it was decided to
process the data stream in a continuous mode. As can be seen in Figure 13, each time a block
of zero-suppressed data is compressed, the starting data word of the block is considered as
if it were the next word of the previous one. In this way, the procedure is exactly the same
as that described in Section 6.1.



Sensors 2022, 22, 5197 16 of 22

Sensors 2022, 22, x FOR PEER REVIEW 16 of 22 
 

 

6.3. Huffman Encoding with Zero-Suppressed Data 
In the case of the TP, different scenarios can be applied. As mentioned in Section 5.1, 

zero suppression has been applied in all NEXT detectors. Including an extra module of 
lossless compression allows for a configurable compression scheme: zero-suppression, 
Huffman encoding, or both. 

In the case of zero-suppressed data, the data stream has some constraints that must 
be considered. First, every timing-related data must be preceded by a set of control words 
indicating time (FT) and data sensor present (MASK) since sensor data can be present or 
not in the data stream for each time bin. Second, the data stream presents groups of data 
that are not continuous in time defined by the configured pre- and post-samples, as shown 
in Figure 5a, which can be an issue for the compression module. 

To avoid data overhead and simplify the Delta Encoder Module, it was decided to 
process the data stream in a continuous mode. As can be seen in Figure 13, each time a 
block of zero-suppressed data is compressed, the starting data word of the block is con-
sidered as if it were the next word of the previous one. In this way, the procedure is exactly 
the same as that described in Section 6.1. 

 
Figure 13. Delta encoding for the TP sensors when applied to zero-suppressed data. Fine Timer (FT) 
and sensor Mask (MASK) are present for each event time bin if at least one sensor has data. It is 
assumed that in both data blocks, data from sensors 1, 5 and 62 are present. 

Figure 14 shows that for 32 Huffman codes, the compression ratio that can be reached 
by applying only a lossless compression method is around 60%. This is significantly lower 
than the achieved application of only zero-suppression with a conservative configuration 
that is around 71%. Merging both types of compression, the system has an extra reduction 
factor of around 8% and around 79% of compression in total. In this test, different Huff-
man encoding tree have been applied for Lossless compression and ZS + Lossless com-
pression. With the same Huffman trees applied to both cases (the one obtained for non-
ZS data), the compression ratio differs by 0.00015%. This means that even though the 
Huffman trees obtained slightly different, ZS does not have a significant impact on the 
code frequency. 

End of Data Block Time M

FTM

12 bit16 bit

MASKM

64 bit

Beginning of Data Block Time L

FTL

12 bit16 bit

MASKL

64 bit

FTL - FTM > 1 µs

FTM

12 bit16 bit

MASKM

64 bit

FTL

12 bit16 bit

MASKL

64 bit

ZS Data Stream

Delta Encoded Stream

Figure 13. Delta encoding for the TP sensors when applied to zero-suppressed data. Fine Timer (FT)
and sensor Mask (MASK) are present for each event time bin if at least one sensor has data. It is
assumed that in both data blocks, data from sensors 1, 5 and 62 are present.

Figure 14 shows that for 32 Huffman codes, the compression ratio that can be reached
by applying only a lossless compression method is around 60%. This is significantly lower
than the achieved application of only zero-suppression with a conservative configuration
that is around 71%. Merging both types of compression, the system has an extra reduction
factor of around 8% and around 79% of compression in total. In this test, different Huffman
encoding tree have been applied for Lossless compression and ZS + Lossless compression.
With the same Huffman trees applied to both cases (the one obtained for non-ZS data), the
compression ratio differs by 0.00015%. This means that even though the Huffman trees
obtained slightly different, ZS does not have a significant impact on the code frequency.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 14. TP sensor compression ratio comparison. ZS and ZS + lossless compression data from 
run 8720 (611 events) and only lossless compression data from run 8087 (109 events), both runs with 
83mKr source and low background, 1792 SiPM sensors. 

6.4. Dynamic Versus Static Reconfiguration 
Huffman codes require knowledge of the probabilities of the codes in a data stream 

prior to obtaining the corresponding Huffman tree with the codes and its sizes that will 
be used to encode the data stream. The codes can be obtained offline, studying events of 
different previously taken sources. This mechanism minimizes the use of hardware re-
sources since only the obtained codes and the number of bits of each code must be stored 
in a memory and can be easily configured through commands. 

A study of different types of physics events and the number of events to consider to 
get the Huffman tree has been conducted. As can be seen in Figure 15, apart from a few 
of the selected codes, the rest have a probability of appearing in the data stream below 
1%. Only 5 or 13 codes are over this threshold in the case of the EP or TP, respectively. 
This fact reinforces the idea of having a limited set of codes of 16 and 32 depending on the 
detector plane. 

Moreover, as shown in Figure 16a, the compression ratio variance when different 
numbers of events are used to set the Huffman tree is minimal. The same happens when 
different types of data sources are studied, as seen in Figure 16b. In this case, for 300 events 
and the special case of using only one sensor as a reference instead of the whole set of 
sensor data, the difference is below 0.02%. The number of events used, or the type of run, 
to set the Huffman tree results in a different set of codes. However, the number of bits of 
the associated Huffman codes remains very stable in all cases and the codes involved as 
well. In any case, if there is a change in some of the Huffman codes, it happens in those 
with less probability of appearance, which would imply a minimum change in the Huff-
man tree, as in the final probability ratio. 

 

Figure 14. TP sensor compression ratio comparison. ZS and ZS + lossless compression data from
run 8720 (611 events) and only lossless compression data from run 8087 (109 events), both runs with
83mKr source and low background, 1792 SiPM sensors.

6.4. Dynamic Versus Static Reconfiguration

Huffman codes require knowledge of the probabilities of the codes in a data stream
prior to obtaining the corresponding Huffman tree with the codes and its sizes that will
be used to encode the data stream. The codes can be obtained offline, studying events
of different previously taken sources. This mechanism minimizes the use of hardware
resources since only the obtained codes and the number of bits of each code must be stored
in a memory and can be easily configured through commands.

A study of different types of physics events and the number of events to consider to
get the Huffman tree has been conducted. As can be seen in Figure 15, apart from a few
of the selected codes, the rest have a probability of appearing in the data stream below
1%. Only 5 or 13 codes are over this threshold in the case of the EP or TP, respectively.



Sensors 2022, 22, 5197 17 of 22

This fact reinforces the idea of having a limited set of codes of 16 and 32 depending on the
detector plane.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 14. TP sensor compression ratio comparison. ZS and ZS + lossless compression data from 
run 8720 (611 events) and only lossless compression data from run 8087 (109 events), both runs with 
83mKr source and low background, 1792 SiPM sensors. 

6.4. Dynamic Versus Static Reconfiguration 
Huffman codes require knowledge of the probabilities of the codes in a data stream 

prior to obtaining the corresponding Huffman tree with the codes and its sizes that will 
be used to encode the data stream. The codes can be obtained offline, studying events of 
different previously taken sources. This mechanism minimizes the use of hardware re-
sources since only the obtained codes and the number of bits of each code must be stored 
in a memory and can be easily configured through commands. 

A study of different types of physics events and the number of events to consider to 
get the Huffman tree has been conducted. As can be seen in Figure 15, apart from a few 
of the selected codes, the rest have a probability of appearing in the data stream below 
1%. Only 5 or 13 codes are over this threshold in the case of the EP or TP, respectively. 
This fact reinforces the idea of having a limited set of codes of 16 and 32 depending on the 
detector plane. 

Moreover, as shown in Figure 16a, the compression ratio variance when different 
numbers of events are used to set the Huffman tree is minimal. The same happens when 
different types of data sources are studied, as seen in Figure 16b. In this case, for 300 events 
and the special case of using only one sensor as a reference instead of the whole set of 
sensor data, the difference is below 0.02%. The number of events used, or the type of run, 
to set the Huffman tree results in a different set of codes. However, the number of bits of 
the associated Huffman codes remains very stable in all cases and the codes involved as 
well. In any case, if there is a change in some of the Huffman codes, it happens in those 
with less probability of appearance, which would imply a minimum change in the Huff-
man tree, as in the final probability ratio. 

 
Figure 15. Left: probability of appearance in the data stream of a set of codes with a range of 32 12-bit
values from RUN 8087 (109 events), both with 83mKr source and low background. Right: a detail of
the codes with probability under 1%.

Moreover, as shown in Figure 16a, the compression ratio variance when different
numbers of events are used to set the Huffman tree is minimal. The same happens when
different types of data sources are studied, as seen in Figure 16b. In this case, for 300 events
and the special case of using only one sensor as a reference instead of the whole set of
sensor data, the difference is below 0.02%. The number of events used, or the type of run, to
set the Huffman tree results in a different set of codes. However, the number of bits of the
associated Huffman codes remains very stable in all cases and the codes involved as well.
In any case, if there is a change in some of the Huffman codes, it happens in those with less
probability of appearance, which would imply a minimum change in the Huffman tree, as
in the final probability ratio.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 22 
 

 

Figure 15. Left: probability of appearance in the data stream of a set of codes with a range of 32 12-
bit values from RUN 8087 (109 events), both with 83mKr source and low background. Right: a detail 
of the codes with probability under 1%. 

 
Figure 16. Variation in the compression ratio for run 6323 (3000 events) due to: (a) the number of 
events to set the Huffman tree and (b) the type of data source. Huffman codes obtained with 300 
events for run 6323 (83mKr source and low background) and run 6203 (83mKr source and 228Th). 

With a similar study, but for the case of the TP sensors, similar results are obtained. 
These studies justify the use of configurable but fixed Huffman codes instead of a 

more complex module that integrates a dynamic reconfiguration since the impact on the 
compression ratio is under 0.05%. 

However, since NEXT−100 data are not available, a module to dynamically obtain 
the codes has been implemented in the PMT module, on the one hand, to understand its 
implementation and, on the other hand, to understand the need for hardware resources. 
This module must work in parallel to calculate the Huffman tree in real time. As shown 
in Figure 17, the module is divided into 4 main blocks: 

 
Figure 17. Huffman Codes Dynamic Reconfiguration Module scheme. 

1. Statistics Module. 
This module calculates the histograms for a selected channel over a fixed range of 

possible values. Doing it for all the channels and the complete range of possible codes 
(4096) would consume a large amount of hardware resources. Histograms are calculated 
for a set of fixed values that cover twice the set of codes needed. 
2. Tree Module. 

Sensor
Data Statistics

Module

Dynamic Reconfiguration Module

Set
Codes

Tree
Module

Codification
Module

Dynamic
Reconfiguration

Control

Calculate
Histograms

Calculate
Tree

Codes

Sizes
Histograms Tree position

Data

Values

Step 1

Process N events

Step 2

Get the Huffman Tree

Step 3

Get and update
the codes

Figure 16. Variation in the compression ratio for run 6323 (3000 events) due to: (a) the number
of events to set the Huffman tree and (b) the type of data source. Huffman codes obtained with
300 events for run 6323 (83mKr source and low background) and run 6203 (83mKr source and 228Th).

With a similar study, but for the case of the TP sensors, similar results are obtained.
These studies justify the use of configurable but fixed Huffman codes instead of a

more complex module that integrates a dynamic reconfiguration since the impact on the
compression ratio is under 0.05%.

However, since NEXT-100 data are not available, a module to dynamically obtain
the codes has been implemented in the PMT module, on the one hand, to understand its
implementation and, on the other hand, to understand the need for hardware resources.
This module must work in parallel to calculate the Huffman tree in real time. As shown in
Figure 17, the module is divided into 4 main blocks:



Sensors 2022, 22, 5197 18 of 22

Sensors 2022, 22, x FOR PEER REVIEW 18 of 22 
 

 

Figure 15. Left: probability of appearance in the data stream of a set of codes with a range of 32 12-
bit values from RUN 8087 (109 events), both with 83mKr source and low background. Right: a detail 
of the codes with probability under 1%. 

 
Figure 16. Variation in the compression ratio for run 6323 (3000 events) due to: (a) the number of 
events to set the Huffman tree and (b) the type of data source. Huffman codes obtained with 300 
events for run 6323 (83mKr source and low background) and run 6203 (83mKr source and 228Th). 

With a similar study, but for the case of the TP sensors, similar results are obtained. 
These studies justify the use of configurable but fixed Huffman codes instead of a 

more complex module that integrates a dynamic reconfiguration since the impact on the 
compression ratio is under 0.05%. 

However, since NEXT−100 data are not available, a module to dynamically obtain 
the codes has been implemented in the PMT module, on the one hand, to understand its 
implementation and, on the other hand, to understand the need for hardware resources. 
This module must work in parallel to calculate the Huffman tree in real time. As shown 
in Figure 17, the module is divided into 4 main blocks: 

 
Figure 17. Huffman Codes Dynamic Reconfiguration Module scheme. 

1. Statistics Module. 
This module calculates the histograms for a selected channel over a fixed range of 

possible values. Doing it for all the channels and the complete range of possible codes 
(4096) would consume a large amount of hardware resources. Histograms are calculated 
for a set of fixed values that cover twice the set of codes needed. 
2. Tree Module. 

Sensor
Data Statistics

Module

Dynamic Reconfiguration Module

Set
Codes

Tree
Module

Codification
Module

Dynamic
Reconfiguration

Control

Calculate
Histograms

Calculate
Tree

Codes

Sizes
Histograms Tree position

Data

Values

Step 1

Process N events

Step 2

Get the Huffman Tree

Step 3

Get and update
the codes

Figure 17. Huffman Codes Dynamic Reconfiguration Module scheme.

1. Statistics Module.

This module calculates the histograms for a selected channel over a fixed range of
possible values. Doing it for all the channels and the complete range of possible codes
(4096) would consume a large amount of hardware resources. Histograms are calculated
for a set of fixed values that cover twice the set of codes needed.

2. Tree Module.

This module generates the Huffman tree. This module selects the most probable codes
and assigns the corresponding Huffman codes. This procedure is iterative.

3. Codification Module.

This module stores the new Huffman codes and sizes in their memories and sends the
codes to the software decoder placed on a server.

4. Dynamic Reconfiguration Control.

This module takes care of the number of events to be processed to set a new set of
codes (a reference number of around 300 events, as seen in Figure 16a, can be used). It
also controls the procedure. Histograms are continuously being calculated, but codes are
defined if code probabilities change or every certain amount of fixed time.

Table 3 shows that the amount of resources needed is affordable. However, resource
utilization in the DAQ Modules will be incremented substantially, especially in terms of
occupied slices, making the mapping and routing process more difficult. For this reason,
together with the fact that, in the case of having a set of fixed Huffman codes, the impact
on the compression ratio stays lower than 1%, has led to the decision not to include the
module in this phase of the detector. Since this module is implemented and available, it
will be considered in future versions of the acquisition system.

Table 3. Hardware resources needed for the Dynamic Reconfiguration Module implemented in a
Xilinx Virtex-6 FPGAs (XC6VLX240T-1ff1156) in comparison with the resources used in the EP and
TP DAQ modules.

Dynamic Reconfiguration Module DAQ Modules

Used Utilization Utilization
Slice Registers 3527 3.79% 12/10%

Slice LUTs 3609 7.75% 36/20%
Occupied Slices 1158 9.95% 46/45%

RAM18E 3 0.96% 5/5%



Sensors 2022, 22, 5197 19 of 22

6.5. Decoding Software

The compressed data for every event are sent by the FPGA to a computing farm where
the DATE-based online system is running. This information is stored in binary files with a
specific format defined by the NEXT collaboration. For each file, decoding software is run
to convert them to a higher-level format, HDF5 [25], which is used by the reconstruction
and analysis software developed by the collaboration.

To successfully implement a compression mechanism in the DAQ, the FGPA must be
able to compress the data and the decoding software to decompress it. This software has
been updated to read the Huffman-encoded information. To achieve this, the Huffman
tree for each type of sensor (SiPM and PMT) has been added to a MySQL database. This
information is indexed by the run number so it can be changed over time easily. The
decoding software reads the trees from the database once again.

The memory footprint of this update is negligible since it only requires two small
Huffman trees in memory and the latest read value for each sensor. The processing time
can be longer than in the uncompressed case since the algorithm is more complex, but it
should not represent a significant problem.

7. Results

The compression modules presented have been integrated into the data acquisition
chain and have verified their functionality with real data.

In the case of the EP sensors, the module was ready before the shutdown of NEXT-
White, and some runs were taken to study its performance. The detector is equipped
with 12 PMT sensors. Table 4 summarizes the results obtained. As can be observed, the
compression ratio is 82.3%, a similar value to that obtained in the simulation.

Table 4. Two run statistics in NEXT-NEW with general configuration: 12 PMT sensors, event rate
around 20 Hz, 10,000 events, 1.6 ms buffer, searching for 83mKr and low background events, at least 2
PMT hits in a Coincidence Window of 1.2 µs.

Compression Data Size (MBytes) Compression Ratio (%)

Run 7299 OFF 18,601.53 0
Run 7298 ON 3283.47 82.35

In the case of SiPM sensors, the implemented module has been validated in the NEXT-
DEMO++ detector. This detector is a smaller version of NEXT-100 (equipped with 256
SiPM) installed at IFIC (Instituto de Física Corpuscular, Valencia, Spain) and serves as a
test bench of diverse technical solutions and configurations for future NEXT detectors. As
stated in Section 1.2, the compression ratio of zero suppression in NEXT-NEW was around
70%. In NEXT-DEMO++, the SiPM sensor is the Hamamatsu S13372-1350TE (the same that
will be mounted in NEXT-100) instead of SensL (series-C). To obtain similar results with
both detectors, the threshold in the test has been adjusted to a different ADC count value
(7 instead of 10 in NEXT-NEW) because the Hamamatsu SiPM sensors are operated at a
lower gain (70%). Table 5 summarizes the results obtained.

Table 5. Three run statistics with general configuration: 256 SiPM sensors, event rate around 70 Hz,
10,000 events, 1.6 ms buffer, searching for 83mKr, at least 2 PMT hits in a Coincidence Window of
1.2 µs, ZS set with 7 ADC counts over the threshold, 50 pre- and post-samples.

ZS Compression Data Size
(MBytes)

Compression
Ratio (%)

Ratio
Events/Losts

Processing
Time (s)

Run 11233 OFF OFF 6109.31 0 1.80 270.96
Run 11234 ON OFF 2140.18 71.06 1.27 132.85
Run 11235 ON ON 1316.90 78.44 1.20 151.83
Run 11236 OFF ON 2346.04 61.60 1.34 347.09



Sensors 2022, 22, 5197 20 of 22

As it can be observed in Table 5, with the sensors that are going to be used in the
NEXT-100 detector, the compression ratio of the zero-suppression module is 71.90%, very
similar to the obtained during the NEXT-NEW operation. Adding to this configuration the
compression module, the compression ratio rises to 78.44%, and an extra 7.38% is achieved.
In addition, the compression ratio of the compression module is just 9.46% lower than that
of the zero-suppression module. In both cases, the result is very similar to what is shown in
Section 6.3, which has been obtained with NEXT-NEW data simulations. The compression
module has only one Huffman tree available, and it is applied when the compression
module is on. As shown in Section 6.3, the impact of using the same Huffman tree with ZS
and non-ZS data is negligible.

Table 5 also shows that the ratio between events detected and lost reduces from 26%
to 29% depending on the compression method applied, clearly helping to reduce the dead
time of the data acquisition system.

The CPU time required to decode the data is affected by compression. Table 5 shows
the decoding times for each run. The first run, without compression or zero suppression,
can be taken as a benchmark to which the other configurations can be compared. Using only
zero suppression since there is less data to be decoded, the time needed is reduced by more
than 50%. The case where compression is used without zero suppression is slower than the
raw case, which is to be expected given that the algorithm is more complex and requires
more memory access to read the Huffman tree. Finally, combining both zero suppression
and compression, the decoding time is slightly above that for only zero suppression, but
overall, still about half the time needed with raw data. In the case of the PMTs, a similar
effect is to be expected, but despite the ~30% increase in processing time, the current
computing equipment can handle the load.

8. Summary and Conclusions

This article has presented the compression algorithm implemented for the acquisition
system of the NEXT-100. Different solutions have been studied for the type of sensors used
in NEXT detectors, choosing the best solution in terms of compression efficiency, simplicity
of the algorithm and minimum amount of hardware resources. One of the key features of
the compression module presented, in addition to its high compression ratio, is that it is
adaptable to different types of sensors, as happens in NEXT detectors. This facilitates the
implementation and decoding process of the data.

An innovative compression method for SiPM sensors, merging lossy and lossless
compression algorithms, has also been presented, with relevant results. Merging both
types of compression methods allows the compression ratio to increase by around 7%
without compromising the signal information in the NEXT-DEMO++ tests. This compres-
sion allows, with less demanding zero-suppression configurations, to reach very high
compression ratios.

The adopted solution has shown very good results in terms of compression ratio,
around 80% for both planes. The high compression ratio will help to avoid excess data
throughput, minimizing the dead time of the NEXT-100 detector. Moreover, it will allow the
data acquisition system to remain under the maximum throughput initially proposed of the
system, avoiding scaling up the data acquisition system, which implies more complexity
and cost.

NEXT future detectors will be more demanding in terms of the number of sensors and
data buffering. This implies a higher throughput requirement for the acquisition system.
The modules presented, implemented in this case in hardware or in the processing cores of
future devices, will help to contain it.



Sensors 2022, 22, 5197 21 of 22

Author Contributions: Conceptualization, R.E.B., J.R.P., J.M.B.R., A.S.E. and V.H.B.; methodology,
R.E.B., J.R.P., J.M.B.R., A.S.E. and V.H.B.; software, R.E.B., J.M.B.R. and A.S.E.; validation, R.E.B., J.R.P.,
J.M.B.R., A.S.E. and V.H.B.; formal analysis, R.E.B., J.R.P., J.M.B.R. and A.S.E.; investigation, R.E.B.,
J.R.P., J.M.B.R., A.S.E. and J.F.T.A.; writing—original draft preparation, R.E.B.; writing—review and
editing, R.E.B., J.R.P., J.M.B.R., A.S.E., V.H.B. and J.F.T.A.; visualization, R.E.B., J.M.B.R., A.S.E. and
J.F.T.A.; supervision, R.E.B.; project administration, R.E.B. and V.H.B.; funding acquisition, R.E.B. and
V.H.B. All authors have read and agreed to the published version of the manuscript.

Funding: NEXT collaboration acknowledges support from the following agencies and institutions:
the European Research Council (ERC) under Grant Agreement No. 951281-BOLD; the European
Research Council (ERC) under Grant Agreement No. 101039048-GanESS; the European Union’s
Framework Program for Research and Innovation Horizon 2020 (2014–2020) under Grant Agree-
ment No. 957202-HIDDEN; the MCIN/AEI/10.13039/501100011033 of Spain and ERDF A way of
making Europe under grant RTI2018-095979, the Severo Ochoa Program grant CEX2018-000867-S
and the María de Maeztu Program grant MDM-2016-0692; the Generalitat Valenciana of Spain un-
der grants PROMETEO/2021/087 and CIDEGENT/2019/049; the Portuguese FCT under project
UID/FIS/04559/2020 to fund the activities of LIBPhys-UC; the Pazy Foundation (Israel) under grants
877040 and 877041; the US Department of Energy under contract number DE-AC02-06CH11357
(Argonne National Laboratory), DE-AC02-07CH11359 (Fermi National Accelerator Laboratory),
DE-FG02-13ER42020 (Texas A&M), DE-SC0019054 (Texas Arlington) and DE-SC0019223 (Texas Ar-
lington); the US National Science Foundation under award number NSF CHE 2004111; the Robert
A Welch Foundation under award number Y-2031-20200401. A.S.E acknowledges support from
the Kreitman School of Advanced Graduate Studies at Ben-Gurion University and from the Marie
Skłodowska-Curie grant agreement No. 101026628. Finally, we are grateful to the Laboratorio
Subterráneo de Canfranc for hosting and supporting the NEXT experiment.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data collected through research presented in the paper are available
on request from the corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Álvarez, V.; Borges, F.I.G.M.; Cárcel, S.; Carmona, J.M.; Castel, J.; Catalá, J.M.; Cebrián, S.; Cervera, A.; Chan, D.; Conde, C.; et al.

NEXT-100 Technical Design Report (TDR). Executive summary. JINST 2012, 7, T06001. [CrossRef]
2. Martín-Albo, J.; Muñoz Vidal, J.; Ferrario, P.; Nebot-Guinot, M.; Gómez-Cadenas, J.J.; Álvarez, V.; Azevedo, C.D.R.; Borges, G.;

Cárcel, S.; Carrión, J.V.; et al. Sensitivity of NEXT-100 to neutrinoless double beta decay. JHEP 2016, 159. [CrossRef]
3. Adams, C.; Álvarez, V.; Arazi, L.; Arnquist, I.J.; Azevedo, C.D.; Bailey, K.; Ballester, F.; Benlloch-Rodríguez, J.M.; Borges, F.I.;

Byrnes, N.; et al. Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches. JHEP 2021, 164.
[CrossRef]

4. Renner, J.; López, G.D.; Ferrario, P.; Morata, J.H.; Kekic, M.; Martínez-Lema, G.; Monrabal, F.; Gómez-Cadenas, J.J.; Adams, C.;
Álvare, V.; et al. Energy calibration of the NEXT-White detector with 1% resolution near Qββ of 136Xe. JHEP 2019, 230. [CrossRef]

5. Simón, A.; Felkai, R.; Martínez-Lema, G.; Monrabal, F.; González-Díaz, D.; Sorel, M.; Hernando, J.A.; Gómez-Cadenas, J.; Adams,
C.; Álvarez, V.; et al. Electron drift properties in high pressure gaseous xenon. JINST 2018, 13, P07013. [CrossRef]

6. Martínez-Lema, G.; Hernando, J.A.; Palmeiro, B.; Botas, A.; Ferrario, P.; Monrabal, F.; Laing, A.; Renner, J.; Simón, A.; Para, A.;
et al. Calibration of the NEXT-White detector using 83mKr decays. JINST 2018, 13, P10014. [CrossRef]

7. Novella, P.; Palmeiro, B.; Sorel, M.; Usón, A.; Ferrario, P.; Gómez-Cadenas, J.J.; Adams, C.; Álvarez, V.; Arazi, L.; Arnquist, I.J.;
et al. Radiogenic backgrounds in the NEXT double beta decay experiment. JHEP 2019, 51. [CrossRef]

8. Monrabal, F.; Gómez-Cadenas, J.J.; Toledo, J.; Laing, A.; Álvarez, V.; Benlloch-Rodríguez, J.; Cárcel, S.; Carrión, J.; Esteve, R.;
Felkai, R.; et al. The NEXT White (NEW) detector. JINST 2018, 13, P12010. [CrossRef]

9. Esteve Bosch, R.; Toledo Alarcón, J.F.; Herrero Bosch, V.; Simón Estévez, A.; Monrabal Capilla, F.; Álvarez Puerta, V.; Rodríguez
Samaniego, J.; Querol Segura, M.; Ballester Merelo, F. The Event Detection System in the NEXT-White detector. Sensors 2021, 21,
673. [CrossRef]

10. Martoiu, S.; Muller, H.; Costa, F.; Tarazona, A.; Toledo, J.; Zang, F. The SRS scalable readout system for micropattern gas detectors
and other applications. In Proceedings of the TWEPP Tropical Workshop on Electronics for Particle Physics, Oxford, UK, 17–21
September 2012.

11. Toledo, J.; Muller, H.; Esteve, R.; Monzó, J.M.; Tarazona, A.; Martoiu, S. The front-end concentrator card for the RD51 scalable
readout system. JINST 2011, 6, C11028. [CrossRef]

http://doi.org/10.1088/1748-0221/7/06/T06001
http://doi.org/10.1007/JHEP05(2016)159
http://doi.org/10.1007/JHEP08(2021)164
http://doi.org/10.1007/JHEP10(2019)230
http://doi.org/10.1088/1748-0221/13/07/P07013
http://doi.org/10.1088/1748-0221/13/10/P10014
http://doi.org/10.1007/JHEP10(2019)051
http://doi.org/10.1088/1748-0221/13/12/P12010
http://doi.org/10.3390/s21020673
http://doi.org/10.1088/1748-0221/6/11/C11028


Sensors 2022, 22, 5197 22 of 22

12. Carena, F.; Carena, W.; Chapeland, S.; Chubante Barroso, V.; Costa, F.; Denes, E.; Divia, R.; Fuchs, U.; Grigore, A.; Kiss, T.; et al.
The ALICE data acquisition system. Nucl. Instr. Methods in Phys. Res. Sec. A Accel. Spectrom. Detect. Assoc. Equip. 2014, 741,
130–162. [CrossRef]

13. Tarazona, A.; Gnanvo, K.; Martoiu, S.; Muller, H.; Toledo, J. A point-to-point link for data, trigger, clock and control over copper
or fibre. JINST 2014, 9, T06004. [CrossRef]

14. Rodriguez, J.; Toledo, J.; Esteve, R.; Lorca, D.; Monrabal, F.; Alarcón, J.F.T. The front-end electronics for the 1.8-kchannel SiPM
tracking plane in the NEW detector. JINST 2015, 10, C01025. [CrossRef]

15. Lee, T.; Park, J. Design and implementation for static Huffman encoding hardware with parallel shifting algorithm. IEEE Trans.
Nuclear Sci. 2004, 51, 5. [CrossRef]

16. Abratenko, P.; Alrashed, M.; An, R.; Anthony, J.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.;
et al. The continuous readout stream of the MicroBooNE liquid argon time projection chamber for detection of supernova burst
neutrinos. JINST 2021, 16, P02008. [CrossRef]

17. Shen, Z.; Wang, S.; Li, C.; Feng, C.; Liu, S. Study on the Real-Time Lossless Data Compression Method Used in the Readout
System for Micropattern Gas Detector. IEEE Trans. Nucl. Sci. 2019, 66, 8. [CrossRef]

18. Patauner, C.; Marchioro, A.; Bonacini, S.; Ur Rehman, A.; Pribyl, W. A Lossless Data Compression System for a Real-Time
Application in HEP Data Acquisition. IEEE Trans. Nuclear Sci. 2011, 58, 4. [CrossRef]

19. Huffman, D.A. A Method for the Construction of Minimum-Redundancy Codes. Proc. Inst. Radio Eng 1952, 40, 40–1098.
[CrossRef]

20. Robinson, A.H.; Cherry, C. Results of a prototype television bandwidth compression scheme. Proc. IEEE 1967, 55, 356–364.
[CrossRef]

21. Willems, F.M.J.; Shtarkov, Y.M.; Tjalkens, T.J. The context-tree weighting method: Basic properties. IEEE Trans. Inform. Theory
1995, 41, 653–664. [CrossRef]

22. Ziv, J.; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inform. Theory 1978, 24, 530–536.
[CrossRef]

23. Simón, A.; Ifergan, Y.; Redwine, A.B.; Weiss-Babai, R.; Arazi, L.; Adams, C.; Almazán, H.; Álvarez, V.; Aparicio, B.; Aranburu,
A.I.; et al. Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution. JHEP 2021, 146.
[CrossRef]

24. Álvarez, V.; Herrero-Bosch, V.; Esteve, R.; Laing, A.; Rodríguez, J.; Querol, M.; Monrabal, F.; Toledo, J.; Gómez-Cadenas, J. The
electronics of the energy plane of the NEXT-White detector. NIM A 2019, 917, 68–76. [CrossRef]

25. The HDF Group, Hierarchical Data Format, Version 5, 1997–2022. Available online: https://www.hdfgroup.org/solutions/hdf5/
(accessed on 11 June 2022).

http://doi.org/10.1016/j.nima.2013.12.015
http://doi.org/10.1088/1748-0221/9/06/T06004
http://doi.org/10.1088/1748-0221/10/01/C01025
http://doi.org/10.1109/TNS.2004.834715
http://doi.org/10.1088/1748-0221/16/02/P02008
http://doi.org/10.1109/TNS.2019.2925840
http://doi.org/10.1109/TNS.2011.2142193
http://doi.org/10.1109/JRPROC.1952.273898
http://doi.org/10.1109/PROC.1967.5493
http://doi.org/10.1109/18.382012
http://doi.org/10.1109/TIT.1978.1055934
http://doi.org/10.1007/JHEP07(2021)146
http://doi.org/10.1016/j.nima.2018.11.126
https://www.hdfgroup.org/solutions/hdf5/

	Introduction 
	Introduction to NEXT Detectors 
	Motivation 
	Considerations 

	NEXT-100 Data Acquisition and Event Detection Systems 
	Hardware Architecture 
	System Architecture 

	Data Compression in Physics Experiments 
	Data Compression Techniques 
	Introduction 
	Lossy Compression Techniques 
	Lossless Compression Techniques 
	Signal Conditioning 

	NEXT Experiment Data Compression Study 
	Lossy Data Compression Review 
	Lossless Data Compression Study 
	Conclusions 

	NEXT Experiments Huffman Coding Implementation 
	Control Codification 
	Huffman Encoding Implementation 
	Huffman Encoding with Zero-Suppressed Data 
	Dynamic Versus Static Reconfiguration 
	Decoding Software 

	Results 
	Summary and Conclusions 
	References

