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Abstract: The Internet of Things (IoT) is a growing computational paradigm where all kinds of
everyday objects are interconnected, forming a vast cyberphysical environment at the edge between
the virtual and the real world. Since the emergence of the IoT, Multi-Agent Systems (MAS) technology
has been successfully applied in this area, proving itself to be an appropriate paradigm for developing
distributed, intelligent systems containing sets of IoT devices. However, this technology still lacks
effective mechanisms to integrate the enormous diversity of existing IoT devices systematically. In
this context, this paper introduces the concept of the IoT artifact as a new interface abstraction for
the development of MAS based on IoT devices. The IoT artifact strictly conforms to the Agents and
Artifacts (A&A) meta-model, and it also adopts the programming model of the SPADE multi-agent
platform, providing both a consistent theoretical framework and a practical model for real-world
applications.

Keywords: multi-agent systems; IoT; agent platforms; artifacts

1. Introduction

The Internet of Things (IoT) is a computational paradigm where a massive number
(perhaps billions) of ordinary objects are endowed with interconnection capabilities, making
them able to communicate and cooperate with other (surrounding) devices, generally via
the Internet. The growing effect of this paradigm is the appearance of a vast, decentralized,
heterogeneous, and dynamic ecosystem where everyday objects (sensors, gadgets, tags,
wearables, etc.) become active participants in processes of all kinds, such as industrial,
logistic, domotics, social, health care, etc.

In this paradigm, the “things” that become interconnected, generally via the Internet,
are sometimes called “smart objects.” However, many objects used currently still lack
actual intelligence mainly due to their limited hardware and software resources. This lack
has hindered the development of intelligent end-to-end solutions in the IoT arena, which
can effectively integrate different AI techniques in a simple, transparent, and distributed
way. In this sense, since the emergence of the IoT in 1999 [1], Multi-Agent-Systems (MAS)-
based technology has fostered the connection of small, commonly used devices to open
distributed intelligent systems, enabling these devices to exchange and transmit knowledge
in real time [2]. Furthermore, there is remarkable parallelism between the Agent-Based
Computing (ABC) and Multi-Agent Systems (MAS) paradigms and the smart object and
IoT ecosystem concepts, respectively. Hence, many researchers have extensively used such
paradigms methodologically in the IoT domain, as well as to model, program, or simulate
IoT systems [3].

One class of MAS that fits the requirements of the IoT is open multi-agent systems,
which has received significant interest from the scientific community in recent years. Open
multi-agent systems are defined as open systems consisting of heterogeneous entities with
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a separation between form and function that explains their behavior [4], and they are partic-
ularly suitable for the implementation of virtual organizations. Recent research conducted
on the modeling and implementation of open MAS in complex scenarios includes the
works published in [5–7]. Numerous proposals have worked on improving the intelligence
of IoT systems (e.g., a MAS equipped with swarm intelligence [8]). However, in most cases,
current IoT networks are still incapable of generating cooperative strategies that make these
networks act as ubiquitous and intelligent systems [9].

In particular, one critical problem of the IoT is its intrinsic heterogeneity. According
to [10], the heterogeneity of devices and the high technological diversity in the IoT impose
an enormous modeling effort for large-scale systems, where thousands of different devices
may coexist. At this moment, multi-agent systems lack mechanisms to deal with this diver-
sity effectively. In this context, the work presented here aims to fill this gap by proposing
an integrated interface for developing virtual agent organizations using IoT devices.

The main contribution of this paper, which extends our conference paper [11], is the
introduction of the concept of the IoT artifact as an abstraction to facilitate the integration
of IoT devices in multi-agent systems. An IoT artifact is a modeling abstraction that
conceptually follows the artifact model proposed in [12]. This abstraction is conceived of as
a standard component of the multi-agent system in order to enable a seamless integration of
the system with the environment (the IoT network), regardless of the physical or functional
variability of the devices present in that environment. In addition, this work also presents a
programming interface of this abstraction by which it is possible to integrate IoT artifacts
in real applications. This interface follows the programming model of the SPADE platform,
which ensures a realistic development model and enhances the SPADE capabilities to
implement applications that can interact with typical IoT environments. To this end, this
work provides the IoT artifact’s interface in different languages, thanks to the SPADE
programming model, which allows its components to be developed in any language,
as long as they follow the XMPP standard. In particular, the interface is provided in Python
3 (which is the language for the current reference version of SPADE) and also in Python 2.7
and C, which are more suitable for embedded devices and IoT environments. In this sense,
the paper also includes a case study in the area of precision agriculture to illustrate the use
of the model.

The remainder of the paper is structured in the following sections: Section 2 explains
the artifact meta-model that has been used as a theoretical foundation of this work and sum-
marizes how this model has been used in MAS technologies until now. Section 3 presents
the SPADE platform. Section 4 introduces the concept of the IoT artifact, in terms of the
abstract and programming models of the SPADE platform. Then, Section 5 includes a case
study regarding a cyberphysical agriculture environment. Finally, Section 6 summarizes
the conclusions of the paper.

2. Related Work

Following the definition of Weyns et al. in [13], the Agents and Artifacts (A&A) meta-
model [12,14] introduces the environment as a first-class abstraction in the entire process of
developing multi-agent systems, all the way from the design phase to the implementation
of the existing system.

In particular, this meta-model is composed of the following four concepts or abstrac-
tions, which enable the development of a multi-agent system (such abstractions and their
relations are shown in Figure 1):

• Agents. They model the autonomous part of the system;
• Artifacts. They model the functional bricks composing the environment, i.e., the

providers of perceptions from the environment and the elements executing actions to
modify it;

• Workspaces. They can be related to topological places composed of a particular set of
artifacts. Therefore, a workspace is defined by a group of artifacts that the workspace
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contains. Agents may enter or exit a workspace, and once they enter a particular one,
they can interact with the artifacts in that workspace;

• Environment. This corresponds to the set of all the workspaces available to the
multi-agent system.

Figure 1. A&A meta-model.

In this abstract model, artifacts represent entities in the environment that agents can
use to perceive and interact with this environment. Artifacts are fundamentally different
from agents in the sense that they are much simpler entities, which lack the typical abilities
of agents (such as intelligence, proactivity, or social skills). The model defines artifacts as
internally consisting of four elements: observable properties, operations, signals, and link
interface, as shown in Figure 2.

Figure 2. Artifact abstract model, as defined in [12].

In an artifact, its observable properties represent the particular elements or aspects of
the environment that the artifact can perceive. In contrast, its operations represent the
actions that the artifact can perform over the environment (or to change its internal state).
The number and nature of each artifact’s observable properties and actions will depend on
how the artifact is defined to model the environment (in a typical cyberphysical system, they
would naturally correspond to sensors and actuators of real-world devices, respectively).
The artifact may also include signals, which are used to represent events that may be
generated asynchronously according to some conditions detected in the environment or
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produced in the internal state of the artifact. When such signals (events) occur, they are
automatically notified to agents. Finally, the link interface allows artifacts to be connected to
other artifacts. This feature makes it possible to build complex artifacts by combining or
composing simpler ones.

When the environment is modeled using this meta-model, the interaction between
agents and artifacts is first based on workspaces and then on particular artifacts in each
workspace. In particular, an agent decides first to access (or enter) a workspace, and then,
the artifacts contained in that workspace become accessible to the agent. Once in a particular
workspace, the set of actions available to the agent in (that part of) the environment will
correspond to the operations of the artifacts in the workspace, and the way of performing
such actions will be invoking the corresponding operations (Figure 3). On the other hand,
regarding the observation of the environment, the interaction model establishes that the
agent may focus on some of the artifacts in the workspace (see Figure 4, left). Then, all
changes in the observable properties in these artifacts will be received by the agent as
percepts, and all the signals produced in the artifacts will be notified to the agent as events
(see Figure 4 right).

Figure 3. Artifact–agent interaction model: act. As defined in [12].

Figure 4. Artifact–agent interaction model: observation (left—focus; right—percepts and events).
As defined in [12].

Considering the main relevant contributions in the literature, the work of
Weyns et al. [13,15,16] focused on giving the environment the importance it deserves
when designing and implementing a system. These ideas were further developed by
Ricci et al. in their A & A line of work. They defined a meta-model [12,14] that guides the
design of a system along with its environment.

Furthermore, they also proposed an implementation of the artifact concept and its
integration with an agent implementation. Common ARTifact infrastructure for AGents
Open environments http://cartago.sourceforge.net (CArtAgO) [17] is a framework in Java
that allows the implementation of artifacts as the units defining a multi-agent system

http://cartago.sourceforge.net
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environment and that is closely integrated with the Jason http://jason.sourceforge.net/
wp/ [18] agent language. This integration is such that the usage of both Jason and CArtAgO
together is known as JaCa, or even JaCaMo http://jacamo.sourceforge.net when they are
used along with MOISE http://moise.sourceforge.net [19] to include the organizational
aspects of the developed MAS. Along with this, JaCa and JaCaMo have been applied to
different areas, as for example the developing of a framework for smart mobile applica-
tions on top of the Android platform, called JaCa-Android http://jaca-android.sourceforge.
net [20,21]. Another area of application proposes JaCa-Web http://jaca-web.sourceforge.
net/?page_id=7 [22], another framework to implement client-side web applications.

In addition, an extension of CArtAgO called CArtAgO-WS https://sourceforge.net/
projects/cartagows/ [23] allows a MAS to interact with SOA-like web services environ-
ments, where artifacts provide the access point to web services, in order to create, configure,
and exploit them. JaCaMo has also been extended into JaCaMo-sim [24] with the idea of
making MAS applications (with Jason agents and CArtAgO artifacts) that can be run and
simulate their execution.

In another line of work, the A&A meta-model has also been extended to deal with
the definition of intelligent virtual environments [25] and augmented reality systems. This
extension is called MAM5 [26], and it has an implementation partially based on the JaCa
implementation, called JaCalIVE [27,28].

These contributions have mainly applied the A&A model to MAS applications where
the environment is considered a prominent actor in the design and implementation stages.
However, the model does not consider the particular characteristics of the IoT ecosystem,
such as the scarce resources of most embedded devices or the enormous diversity of
potential objects to interconnect with the system.

In addition, although there exist several actual applications that include artifact-based
environments, so far, all of them have been developed according to one possible imple-
mentation of the artifacts, based on the framework CArtAgO. This framework integrates
perfectly with Jason agents, as well as with other Java-based agents, but not with other
types of agents. This fact is a severe restriction when developing IoT systems, in which
most devices may have too few resources to run a Java-implemented artifact, and also
considering that the framework imposes the use of BDI agents, which may not be the best
option for some MAS.

In this sense, the work presented here opted for a more open and flexible approach
based on the SPADE platform, which allows for alternative implementations in different
languages and supports both BDI and non-BDI agents. The following section describes the
main characteristics of this platform.

3. The SPADE Platform

SPADE [29] is a multi-agent system platform whose primary purpose is to provide a
flexible, simple, and open agent execution framework. The cornerstone of this platform
is the employment of a communication mechanism based on the XMPP standard [30] for
instant messaging, which is the same one typically used in a chat program. Therefore,
humans can interact with software agents as they would with other humans by connecting
to XMPP servers and exchanging “chat messages”.

The two main characteristics of the SPADE platform are the extensive and strategic
usage of the XMPP standard and its proposed agent model, which are now presented in
the two following subsections.

3.1. XMPP

The XMPP protocol provides the necessary elements for real-time conversations.
In addition to exchanging messages, which can be used between agents, between humans,
and even between agents and humans, XMPP has a presence notification system, which
lets contacts know if their contact list or roster is online or unavailable. Since the IETF

http://jason.sourceforge.net/
wp/
http://jacamo.sourceforge.net
http://moise.sourceforge.net
http://jaca-android.sourceforge.
net
http://jaca-web.sourceforge.
net/?page_id=7
https://sourceforge.net/
projects/cartagows/
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formalized XMPP as the standard for instant messaging and presence notification, it is now
an open standard that offers several compelling features:

• Decentralized: XMPP is based on an architecture similar to email. In particular, it
features a client–server architecture in which the clients connect to a private server or
a public one. Servers exchange messages between them (as mail servers do) to deliver
each message to its recipient;

• Secure: XMPP has a robust security system including a secure transport layer and a
secure authentication system that allows for establishing ciphered communications
between entities. In addition, an XMPP server may be isolated from the Internet
if required;

• Extensible: XMPP is based on XML, allowing it to easily include new features in the
protocol to extend its capabilities. A set of extensions to the protocol (called XEPs) is
continuously improved, but it is also open to everyone to build their private extensions
to fit any particular need;

• Flexible: Besides instant messaging, there are numerous applications for which XMPP
can be used. Agent communication is just one application, but XMPP is also used for
many other purposes, such as network management, collaboration tools, gaming, file
sharing, content syndication, web services, or remote system monitoring;

• Proven: XMPP was initially proposed in 1998 by Jeremie Miller, and currently, it
is a very stable and well-tested standard, with hundreds of developers and tens of
thousands of XMPP servers deployed around the world. Some big companies use
XMPP (or a protocol modification) as the core of their services (e.g., WhatsApp, Google
Talk, Facebook Messenger);

• Open: The XMPP protocol is free, open, public, and easy to understand. There are no
limits for the implementations and the collaboration in the standard development.

This protocol is the core element of the SPADE platform because agents need an ade-
quate and efficient transport layer that can be extended to foster new types of interactions
(computer-to-human, computer-to-computer, human-to-human) and tackle new require-
ments or domains successfully. In this sense, it is worth mentioning that a working group
inside the XMPP Foundation is devoted to studying the application of XMPP to the IoT
domain. The support defined by the XMPP standard perfectly fits the main requirements of
the IoT, such as the need for communication protocols and standards, the usage of commu-
nication patterns (publish/subscribe, event subscription, delayed delivery, etc.), scalability,
security, and interoperability, among others. The model of the IoT artifact presented later
in this paper takes advantage of these features to provide appropriate support to artifacts
in this domain, including new functionalities such as presence notification.

3.2. The Agent Model

Agents in SPADE are autonomous entities with a transport layer based on the XMPP
protocol. By design, the activities that agents perform are encapsulated into components
called behaviors. Every agent may define one or more behaviors, and the platform executes
them independently. In addition, the agent has a connection mechanism called the message
dispatcher to deliver the agent’s incoming messages to each of its behaviors. This proposal
is similar to those available on other platforms, such as JADE.

The main characteristic of a behavior is its life cycle, which depends on how the
behavior runs. SPADE offers different behaviors, in particular: CyClicBehavior, which
runs forever in an infinite loop until the agent is stopped; OneShotBehavior, which runs
just one time and then is destroyed; PeriodicBehavior, which runs every pre-defined
period of time; TimeoutBehavior, which is a subtype of OneShotBehavior, which runs after
a timeout. Finally, a more complex type of behavior allows the agent developer to create
finite-state machines, which gives the developer a more powerful control over the design
of the agent. As shown in Figure 5, CyclicBehavior is the base of all the other behaviors.
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In addition, SPADE has recently incorporated BDI behaviors [31]. This new class
of behavior allows for the development of agents that operate on desires and intentions,
coded in the AgentSpeak language [18].

Figure 5. SPADE’s behavior hierarchy.

Apart from the agent model, SPADE offers agent developers many functionalities and
much flexibility to build their multi-agent system applications. The main ones are now
highlighted. First, designers can easily integrate complex perception behaviors (such as
artificial vision or natural language processing) by using the advantages offered by a lan-
guage such as Python. Second, SPADE has been developed by following an asynchronous
programming model to increase the developed applications’ performance and respon-
siveness. This programming model improves the scalability of MAS implementations by
optimizing the send and receive operations (as well as any other I/O operation), which is a
crucial aspect in IoT environments, where the system may need to interact with hundreds
or thousands of devices. Third, although there is a complete reference implementation
of SPADE in Python, the SPADE framework is, in fact, language-agnostic. As long as the
implementation follows the communication protocols defined by the platform (based on the
XMPP standard), agents may be implemented in any language. For example, implementing
SPADE agents (and artifacts, as shown below in Section 4.4) in the C language may be
appropriate in embedded systems with scarce hardware resources. Fourth, SPADE favors
the incorporation of new functionalities as plugins, which makes it easy for the commu-
nity to extend the support. Examples of recent plugins are the spade-bdi and spade-pubsub
plugins, which have incorporated the BDI behaviors and the publish–subscribe protocol,
respectively.

Regarding the design and implementation of multi-agent systems, SPADE provides
the developer with the agent concept to model the system’s intelligent behavior. However,
a much simpler and lighter abstraction was needed to adequately model the environment,
especially in cyberphysical and IoT scenarios. In such scenarios, the system typically
accesses the environment through a series of small devices with scarce computational
resources. To this end, the following section incorporates the concept of the IoT artifact
into SPADE to facilitate the development of SPADE-based MAS in the context of IoT
environments.
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4. The IoT Artifact

This section presents a specialization of the A&A meta-model described in the previous
section, which is called the IoT artifact. This specialization allows for the modeling of
IoT devices and their implementation in the SPADE platform. The IoT artifact model
attempts to maintain the expressiveness of the previously presented theoretical model
while also considering the specific aspects of IoT devices, as their limited computational
resources, and integrating all these characteristics into the programming model of the
SPADE platform.

In summary, the IoT artifact specialization model proposes a correspondence between
each of the elements in Figure 1 and an entity in the SPADE platform:

• IoT artifact. An IoT artifact is a new SPADE computational element that can communi-
cate with agents (through an XMPP server). IoT artifacts associate with a workspace
by registering to the corresponding XMPP server and present a well-known interface
by which SPADE agents may use them, as described below. This interface includes all
the characteristics of the theoretical model, except the so-called linked interface, which
SPADE does not support due to the distinct shortage of the computational resources
of IoT devices.
Compared to the theoretical model, an IoT artifact always includes a particular ob-
servable property called presence, which maintains the current state of the associated
IoT device. By using this property, agents interested in a given IoT device may know
its availability and any other application-specific status information that the artifact
can express;

• Workspace. The theoretical concept of workspace here corresponds to an XMPP server,
which is the component in the SPADE platform that supports the communication
among all the SPADE communicating parties (agents and artifacts). In this model, any
IoT artifact must register to an XMPP server before being accessible to agents. IoT
artifacts register (and therefore belong) to a single XMPP server;

• Environment. Following the workspace definition above, this concept would be equiv-
alent to the group of all the XMPP servers involved in a particular multi-agent system;

• Agent. This entity corresponds to a SPADE agent. SPADE agents can communicate
with other agents and artifacts, among other features.

Table 1 compares the basic features and properties that are essential for artifacts
independent of the implementation model, according to [32]. The table also includes some
relevant implementation considerations, in each case comparing its availability in the
CArtAgO platform and in the IoT artifact framework. The main novelty of the IoT artifact’s
proposal is the consideration of the typical characteristics of IoT devices, to which the
model has been targeted. In particular, the strict limitation of computational resources that
is common in such devices has been especially taken into account. As a result, a minimal
artifact model has been proposed, by which artifacts can be implemented in languages
such as Python or C, and be directly executed in small, embedded devices. On the contrary,
the CArtAgO approach requires a Java virtual machine to execute the artifact’s code.
However, it is important to point out that, despite being minimal, the IoT artifact model
incorporates all the features of the abstract model, except the linked interfaces, as they can
produce too much computational cost for small devices.
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Table 1. Comparison of features between CArtAgO and IoT artifacts.

Features CArtAgO IoT Artifacts

Identity Full name (including Workspace) JID (Jabber ID)

Usage interface and events Set of operations and observable events Op. interface: Jabber-RPC, default
observable property (presence)

Function description and
operating instructions Yes Not available in the current version

Observable state Yes Presence

Programming language Java Python 3, Python 2.7, C

Virtual machine needed Yes No

Linked interface Yes No

Regarding communication aspects, SPADE agents may communicate with any IoT
artifact registered to any workspace (XMPP servers) known to the agent. To do so, a SPADE
agent needs first to send a focus request to the XMPP server, expressing an interest in that
particular IoT artifact. Once under its focus, the agent will be able to interact with the IoT
artifact by using its interface.

The interface of an IoT artifact defines two types of interactions. The first type permits
accessing the artifact’s observable properties (perceptions), including the presence property
mentioned above. The second one allows for the artifact’s operation, which typically
will modify its internal state or make the artifact actuate over the environment or both.
The following subsections explain these interface features in further detail, which are
related to the functionalities of the XMPP protocol adopted by SPADE.

4.1. Perception of Observable Properties

IoT artifacts generally perceive their environment by using physical sensors attached
to the corresponding IoT device and change their internal variables accordingly. Such vari-
ables correspond to the observable properties in the meta-model above. As a result, every
time one of these observable properties changes its value, the IoT artifact should generate
the corresponding observable events to communicate the change to the interested agents.

As explained above, agents must focus on an artifact before interacting with it. In order
to focus and also to observe the artifact’s properties, SPADE proposes to use an extension of
the XMPP protocol called Publish–Subscribe (PubSub) https://xmpp.org/extensions/xep-
0060.html. This extension enables any individual connected to an XMPP server to subscribe
to the information that any other connected entity may want to share. Once subscribed,
the interested individual automatically receives updates any time the entity publishes
new information.

The mechanism works in two steps. First, an agent sends a message to the workspace
(the XMPP server) to subscribe to an IoT artifact. Then, whenever the artifact generates
a new observable property value or event, it publishes the event with the updated in-
formation, which all subscribed agents receive. This way, agents may keep track of the
information they are interested in by focusing on the corresponding IoT artifacts. Figure 6
illustrates these interactions by the dashed lines, where Agent 1 focuses (subscribes) on
Artifact 1, which perceives the environment temperature, and then, it automatically receives
the published events corresponding to temperature changes perceived by the artifact.

https://xmpp.org/extensions/xep-
0060.html
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Figure 6. Examples of interactions between IoT artifacts and agents in SPADE.

4.2. Presence Notification for Artifacts

Presence notification is a typical feature of SPADE agents that has also been incor-
porated into IoT artifacts since it is considered an advantageous property for artifacts in
IoT scenarios.

In essence, presence notification enables any entity connected to an XMPP server
to know the availability status of other connected entities (customarily called the former
entity’s contacts) and also to notify its own availability status to these contacts. This simple
yet powerful mechanism can be used for many different purposes (e.g., as a coordination
protocol in distributed systems), and it is helpful in many scenarios. The presence noti-
fication mechanism of XMPP offers the possibility of including custom messages related
to each entity’s availability (such as free, busy, or waiting), but it also sets the status as
unavailable if the entity’s connection suddenly drops out. Thus, IoT artifacts can notify
their availability (and any other status) to the interested agents in real time through this
handy feature, allowing them to know if the artifacts are ready to communicate or if they
are having some issue. This way, for example, an agent could decide whether or not to
request an operation on the artifact or ascertain why it is not receiving updates from the
artifact’s observable properties recently. In the latter case, the presence notification system
could inform the agent of the artifact’s situation: it has been disconnected; it is experiencing
some technical problems; it needs maintenance; it is simply busy performing other tasks.
A simple interaction of this type is shown by the solid lines in Figure 6, where Artifact 2,
representing a pressure sensor, becomes available, and this is automatically published to
any interested agents, as Agent 2 in the figure.

4.3. Operation of IoT Artifacts

SPADE employs another standard extension from the XMPP protocol to implement the
operation interface over IoT artifacts. This XMPP Extension Protocol (XEP) is called Jabber-
RPC https://xmpp.org/extensions/xep-0009.html, and it allows any entity connected to
an XMPP server to make available its operations to other entities by using a well-known
Remote Procedure Call (RPC) standard: XML-RPC. By incorporating this standard into
SPADE, agents can send a message with the required operation to an artifact and receive a
response, both in a structured form defined by the standard.

In Listing 1, a typical request message is shown. This example illustrates how to
request an artifact to open Valve Number 4 to 50%, which is also graphically represented as
dotted lines in Figure 6, where Agent 3 operates the valve actuator of Artifact 3.

https://xmpp.org/extensions/xep-0009.html
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Listing 1. An example of a request message to an artifact.

<iq type=’set’ id=’rpc1’
from=’agent@workspace.com/jrpc-client’
to=’artifact@workspace.com/jrpc-server’>
<query xmlns=’jabber:iq:rpc’>
<methodCall>
<methodName>operation.openValve</methodName>
<params>
<param><value><i4>4</i4></value></param>
<param><value><i4>50</i4></value></param>
</params>
</methodCall>
</query>
</iq>

4.4. Creating an IoT Artifact

A specific library has been developed to allow for the implementation of IoT artifacts in
SPADE in a simple way. Its installation is performed by including the spade_artifact package.
Once this package is installed, the developer can create instances of the artifact class, which
is an extension of an abstract class that provides the PubSub protocol as shown in Figure 7.
According to this figure, the main methods offered by the class are the following: the start
method, which is invoked to start the artifact execution; the setup method, which allows an
initialization adjusted to the domain; the run method, which is the method that includes
the code to be executed by the artifact. Other auxiliary methods are the send and receive
methods used for sending and receiving messages and the publish method for publishing
information according to the PubSub protocol.

Figure 7. Class diagram of an IoT artifact in SPADE.

According to this structure, Listing 2 shows a simple example of an artifact devoted to
the publication of the temperature of a particular sensor to all the interested (subscribed)
agents. The shown code is incomplete, as it focuses on the overwriting of two methods
only. In the setup method, the artifact, using the presence functionality, makes itself visible
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and then accepts by default all the agents that may request the subscription. Subsequently,
the run method enters in an infinite loop that first detects if there are any agents in its
contact list and then reads the current temperature value and publishes it. This simple
example illustrates how easy integrating artifacts in the multi-agent system is.

Listing 2. An example of an implementation of an artifact in SPADE.

class TemperatureSensorArtifact(spade_artifact.Artifact):

async def setup(self):

"""
Setup artifact before startup.
"""
self.presence.set_available()

async def run(self):

while True:

# Publish only if my friends are online
if len(self.presence.get_contacts()) >= 1:

temperature = read_temperature()

await self.publish(f"{temperature}")

logger.info(f"Publishing {temperature}")

await asyncio.sleep(1)

The spade_artifact package described above includes the Python implementation of the
IoT artifact now included in the reference version of the SPADE middleware. However,
a Python implementation may not be appropriate for many IoT devices. For example,
devices based on the ESP32 or the ESP8266 micro-controllers do not support this language
due to their limited architecture. Thanks to the language-agnostic trait of SPADE, it is
possible to implement the IoT artifact model in different programming languages.

The most obvious choice for IoT devices would be the C language since it is still the
most widely used language for programming embedded systems. For this reason, a C
implementation of the IoT artifact has also been developed. As an example, Listing 3 shows
a C implementation of an artifact that is equivalent to the one presented in Listing 2.

Listing 3. An example of an implementation of an artifact in C.

int temperature_data = 0;
char temperature_str[10];

void main(){
wifi_connection();
init_communication_with_xmpp_server();

presence_show(true);

while(1){
// Publish only if my friends are online
if(get_num_available_contacts() >= 1) {
temperature_data = read_temperature_data();
itoa(temperature_data, temperature_str, 10);
publish(temperature_str);
}
delay(1000);
}
}
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In this case, the definition of an artifact starts with the connection to the WiFi network
(method wifi_connection()), which requires the configuration of the WiFi SSID and WiFi
password. The second step is the connection to the XMPP server, which the artifact performs
by calling the init_communication_with_xmpp_server() method. The third step is to determine
if this artifact is visible to the agents, for which the presence_show(true) method is used.
Then, the artifact enters its main loop, where it uses the get_num_available_contacts() to
obtain the number of available contacts (agents) that have subscribed to its presence and
are currently online. If this value is at least one, the artifact reads the temperature value
and then publishes it to all the contacts subscribed to that observable property.

This example illustrates the versatility of SPADE in communicating with very-low-
powered systems, allowing direct communication between the agent and the IoT artifact
(running in the device), even if they are implemented in different languages.

5. Case Study

The following example illustrates the design of a multi-agent system that makes use
of artifacts in order to interact with a physical environment. Concretely, the example is
related to a precision agriculture problem where a group of agents aims to optimize the
use of a water resource (an irrigation ditch) for the irrigation process of various cultivated
fields (see Figure 8). In order to carry out this optimization process, the agents will be
connected to a set of artifacts, which will control a series of sensors and actuators. In this
way, the agents will be able to interact with the environment by interacting with the artifacts.
The sensors integrated in each artifact will allow the agent to obtain real-time information
such as the temperature and humidity of each field, as well as the volume of water currently
passing through the water resource. At the same time, the agents will be able to operate the
environment by opening or closing the respective water valves, which, in the former case,
will irrigate the corresponding fields.

In the example, four adjacent cultivation fields were considered, each of them featuring
potential differences in soil and crop types, which may require a different, particular degree
of soil humidity. Each field is monitored by an agent, represented in Figure 8 as Agent-x
where x simply refers to an identification number. Each agent will try to have its own
field within adequate levels of humidity depending on its particular type of soil and crop,
while also considering that the water resource is limited, and thus, coordination among
the agents is necessary in order to be able to make a sustainable use of the available water.
On the other hand, each agent needs to know the situation of the field under its control as
regularly as possible, for which the agent should often consult the perceptions of all the
available sensors. To this end, the artifact corresponding to each sensor will update the
required information by means of the subscription mechanism discussed in the previous
section. Each of these artifacts are identified as Art-S-x in Figure 8.

This case study also considered details about how to implement the system to be
deployed on site and, specifically, about the IoT artifacts that model the temperature/hu-
midity sensors. In particular, each agent will be embedded within a small mini-computer
appropriate for the deployment site, but also with enough computational resources so as to
support the execution of SPADE 3 agents. Furthermore, IoT artifacts will be built on devices
such as the Linkit Smart 7688 Duo. These devices can install and run a tailored version of
Yocto Linux and Python 2.7, which enables them to support the Python implementation
of the IoT artifact described in this paper. Moreover, the same artifacts could also be built
with any other embedded system capable of running a minimal installation of Linux and
Python. Please note that the system could also be fully implemented on smaller devices,
with low performance limitations, thanks to the C implementation of IoT artifacts described
in Section 4.4, and still be able to take advantage of all the features of SPADE.
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Figure 8. General view of the proposed case study.

In particular, each artifact that perceives the condition of a particular parcel of cul-
tivated field incorporates a DTH-11 temperature and humidity sensor. Figure 9 shows
the design of the physical device housing the IoT artifact. According to this, the artifact
offers both the humidity and temperature values as observable properties. The artifact also
offers operators that allow agents to configure the device such as, for example, changing
the value scales.

Figure 9. IoT Artifact for temperature and humidity sensing.

Each of the agents uses the temperature and humidity data sent by the artifacts
deployed in its own parcel. The obtained information is used by the agent in order to
predict the humidity and temperature over a period of time. These predictions made by
each agent will be used to determine at what times each of the agents will require access
to the irrigation system. The irrigation system is controlled by another set of artifacts that
control the opening and closing of electric water valves (such artifacts are identified as
Art-A-x in Figure 8). In order to ensure that all the agents have access to sufficient water
to irrigate their fields, they need to employ some coordination strategies or negotiation
protocols. Since the aim of this example was to illustrate the use of IoT artifacts in a
multi-agent system developed in SPADE, the analysis of the most appropriate negotiation
strategies or protocols is beyond the scope of this paper.
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6. Conclusions

In recent years, different technologies such as artificial intelligence, edge computing,
and cloud computing have been applied to the IoT ecosystem with great success. Partly
because of this, the presence of IoT systems has consistently grown in almost every scenario
(cities, industries, autonomous vehicles, homes, etc.), and IoT devices are easy to recognize
everywhere around us. In this context, multi-agent systems technology can provide a
solid foundation for intelligent, dynamic, and flexible infrastructures capable of supporting
the interconnection of myriads of specialized devices with various resource constraints
and performance requirements. The paradigm of multi-agent systems fits well with the
decentralization and distribution needs of the Internet of Things (IoT) and its infrastruc-
tures for ubiquitous, grid, and cloud computing. Multi-agent systems increase flexibility,
agility, and reliability in IoT environments by providing collective intelligence and enabling
enhanced integration and interoperability of the developed applications.

Accordingly, this paper proposed the concept of the IoT artifact as an abstraction
for integrating IoT devices in multi-agent systems in a flexible and straightforward way.
The proposed model was inspired by the theoretical A&A meta-model, and its definition is
based on the SPADE programming model. In this sense, the paper showed how the original
artifact model can be extended to be adapted to IoT environments. In addition, it also
describes how this extended model has been implemented on the SPADE platform in the
form of a software component available in several languages (so far in Python 3, Python 2.7,
and embedded C for the ESP32 micro-controller) that incorporates the classes and methods
necessary for the development of artifacts modeling a wide variety of IoT devices.

Finally, the paper also shows the use of the IoT artifact abstraction to model an
environment in a case study in the precision agriculture domain. In the case study, a multi-
agent system controls the irrigation of a set of cultivated fields by optimizing the use of a
shared, limited water source. The case study has focused on describing the particular IoT
artifacts required in this environment.
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