
����������
�������

Citation: Sastre, C.; Wubben, J.;

Calafate, C.T.; Cano, J.-C.; Manzoni, P.

Safe and Efficient Take-Off of VTOL

UAV Swarms. Electronics 2022, 11,

1128. https://doi.org/10.3390/

electronics11071128

Academic Editors: Rafael Casado and

Aurelio Bermúdez

Received: 25 February 2022

Accepted: 30 March 2022

Published: 2 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Safe and Efficient Take-Off of VTOL UAV Swarms
Carles Sastre †, Jamie Wubben *,† , Carlos T. Calafate † , Juan-Carlos Cano † and Pietro Manzoni †

Computer Engineering Department (DISCA), Universitat Politécnica de Valencia (UPV), 46022 Valencia, Spain;
carsaspe@alumni.upv.es (C.S.); calafate@disca.upv.es (C.T.C.); jucano@disca.upv.es (J.-C.C.);
pmanzoni@disca.upv.es (P.M.)
* Correspondence: jwubben@disca.upv.es
† These authors contributed equally to this work.

Abstract: Currently multicopters are facing a continuous growth in terms of recreational uses, and
multiple companies focused on these aircrafts to facilitate certain tasks that were nearly inaccessible
to humans, or otherwise involved a great cost. In this context, the drone swarm concept allows us to
broaden and incorporate new, more refined applications in which various aircraft coordinate with
each other to carry out large-scale tasks. When the number of UAVs involved becomes too high,
guaranteeing that the take-off procedure is efficient and yet secure becomes quite complex. Hence,
in this paper we propose and validate different algorithms to optimize the take-off time of drones
belonging to a swarm, with the objective that there are no collisions between them. In particular, we
propose algorithms for both trajectory analysis and batch generation for take-off. Based on a large
number of experiments using the ArduSim simulator we prove that the proposed algorithms provide
a robust solution within a reasonable time frame when testing with different aerial formations. In
addition, we will assess how different UAV position assignment strategies impact our algorithm
performance in terms of take-off time and number of batches required.

Keywords: multicopters; take-off; UAV swarm; ArduSim; collision avoidance

1. Introduction

Nowadays, the adoption of Unmanned Aerial Vehicles (UAVs), commonly known
as drones, is experiencing a significant growth [1], providing a plethora of benefits to
our society. One of the main reasons for their popularity is their low cost, which has
made it easier for the general population to acquire these electronic devices. Due to this
growth, many companies have decided to make an economic effort to carry out research
on UAVs in order to satisfy an unmet need, or to improve the performance of their main
applications. Currently, apart from being a form of entertainment for the public, the use of
these aircraft together, conforming a swarm, has made it possible to carry out more complex
tasks [2]. Among the most popular applications that we can highlight, we have: the control
of agricultural crops, the monitoring of traffic, and the search for missing persons in the
wilderness [3].

For the tasks mentioned above, it is essential that drones work together, forming a
swarm with sufficient autonomy to make decisions on their own, without the need for a
human to control them. This intelligence allows a mission to be carried out in the most
efficient way possible since, in the event that one of the drones breaks down, the swarm
would reorganize itself to carry out its mission with minor disturbance [4,5].

Currently, despite the multiple investigations regarding drone swarms, there are still
considerable problems in their monitoring that prevent their extended use. One of the main
existing problems is the take-off of these drones [6]. When trying to manage a swarm with
a large number of aircraft, it becomes very complex to control that there are no collisions
between them.

If we look into related literature, we find that few works in this area can actually be
found. In fact, there is still some uncertainty regarding what exact procedures to use. As far as

Electronics 2022, 11, 1128. https://doi.org/10.3390/electronics11071128 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11071128
https://doi.org/10.3390/electronics11071128
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8121-995X
https://orcid.org/0000-0001-5729-3041
https://orcid.org/0000-0002-0038-0539
https://orcid.org/0000-0003-3753-0403
https://doi.org/10.3390/electronics11071128
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11071128?type=check_update&version=1

Electronics 2022, 11, 1128 2 of 29

the take-off phase is concerned, there are basically two modes: sequential and simultaneous.
Although the first method is quite effective at avoiding collisions, it introduces a very high
total time; on the contrary, the second method is extremely fast, but quite prone to collisions.
Hence, efforts in this area face the challenge of obtaining a protocol that allows preventing
any mishap during take-off while achieving high time efficiency.

Fabra et al. [7] proposed a heuristic that offers an efficient solution for the position
assignment problem of a swarm. With this mechanism, each terrestrial location was
assigned an aerial position, which obtained a nearly optimal total displacement distance.
Although applying such a heuristic does not guarantee collision avoidance, such a solution
provides greater safety, and reduces take-off time compared to a random approach (without
any specific criteria).

In order to further optimize the assignment problem, Hernández et al. [8] proposed
a new take-off scheme based on the Kuhn-Munkres Algorithm (KMA) consisting of the
application of graph theory. After the implementation of his proposal, it was possible to
offer the optimal solution regarding the total displacement distance that the swarm has to
exert. Despite achieving better results than the previous algorithm, it is still not enough to
avoid conflicts in the flight paths during take-off.

In this paper, we present some novel algorithms for swarms composed of Vertical take
off and landing (VTOL) UAVs; these algorithms are capable of optimizing the time elapsed
in the take-off stage, while avoiding any collision. To this end, we will initially rely on the
KMA [9] to determine which UAV should go in each aerial location, as this algorithm is
able to obtain the optimal solution in terms of flight distance [8], which indirectly promotes
having fewer collision chances during take-off. Having the position assignments as input
data, we will be able to determine which multicopters collide with others and, to prevent
this, we will form a list of groups of drones (batches) in which it is guaranteed that all
the drones belonging to one of these groups can take off simultaneously, and without
experiencing any conflict.

To validate the proposed algorithms, we carry out an exhaustive analysis of the perfor-
mance achieved regarding the computation overhead and collision avoidance effectiveness
of these algorithms. Moreover, a comparison of the results obtained with different position
assignment algorithms will be made, thus allowing to determine which of them offers a
higher performance. Different simulations will be carried out using different criteria to
verify that the developed algorithm is, among other things, scalable with the number of
drones, and secure.

The rest of this paper is organized as follows: in Section 2 we provide an overview
of the different stages of the swarm take-off procedure. Section 3 presents the different
algorithms we propose for detecting possible conflicts in the UAV take-off trajectories.
Section 4 details how, based on the chosen algorithm, we can segregate UAVs into different
batches, where all those belonging to a same batch can take-off simultaneously. Then,
in Section 5 we start by presenting our simulation framework, detailing how tests are
designed, and which performance metrics are used. Afterwards, our experiments and
results are presented and discussed. Finally, Section 6 summarizes the main findings of this
paper, and refers to future works.

2. Take-Off Stages for a VTOL Swarm

In this section, we will detail the different stages through which we are partitioning the
take-off of a UAV swarm to guarantee a successful process. As stated earlier, our focus is
solely on UAVs of the VTOL type, as the proposed algorithms have as a basic requirement
that aircraft should be able to stay at fixed aerial positions while other aircraft wait for
their turn.

Basically, our proposal is to split the take-off into the following stages: (i) node
detection, where we detect the positions of all UAVs after them being randomly deployed
on the ground; (ii) position assignment, where we assign each UAV a specific position
in the air according to the chosen target formation; (iii) conflict detection, where we

Electronics 2022, 11, 1128 3 of 29

calculate the possible collisions based on the expected take-off trajectories; (iv) batch
generation, where we group UAVs into batches to create groups of conflict-free UAVs; and,
finally, (v) maneuver management, where the UAVs are moved towards the target position
following a three-segment approach. These stages are graphically presented in Figure 1.
We now proceed to elaborate further upon each of these stages.

Figure 1. Flowchart representing the various stages of the take-off.

(I) Node detection

In an initial stage, UAVs turn themselves on, attempt to obtain a GPS fix, and start
their communications system for exchanging data with other UAVs. This allows detecting
how many UAVs are available, what their ground locations are, and possibly selecting a
swarm leader to be in charge of centralizing decisions whenever a ground control station
is not available to perform such tasks. In our particular implementation (see [7] for more
details), we chose as leader the UAV with the most central position on the ground; such
aircraft will send a request message to retrieve the exact number of drones available. Each
drone that participates in the flight must respond, also indicating its location on the ground.

(II) Position assignment

When a swarm flight is to take place, the administrator must define what type of air
formation should be adopted by the different UAVs deployed. Based on that input, each
multicopter in the swarm should be assigned an aerial position that it will have to reach
after take-off. The usual criteria when performing this assignment is to minimize the flight
distances, to keep the take-off time overhead low, and also to minimize the chances of
collisions between UAVs. Yet, achieving this can be complex and time consuming.

In previous works, we have studied different alternatives for performing the position
assignment under the assumption that paths are following straight lines. In [7] a heuristic
is proposed that allows calculating a near-optimal position assignment for UAVs creating
swarms that introduces a very low computational overhead. Its benefits compared to a

Electronics 2022, 11, 1128 4 of 29

naive random assignment are made evident. That solution is improved in [8], where the
KMA is used to achieve the optimal solution regarding such assignment by guaranteeing
the minimal distance between terrestrial and aerial locations.

(III) Collision detection

Once UAV positions in the aerial formation are assigned, the following step is to check
if any of the flight paths that should be taken by the different UAVs have a conflict with
each other. If this occurs, a simultaneous take-off of both UAVs involved would possibly
result in a crash, and, hence, should be avoided.

In the current work, we address this specific problem by proposing different strategies
that are able to detect possible conflicts between UAV take-off trajectories in the most
efficient manner. Our goal is to detect all possible conflicts (minimizing failed detections),
while also reducing the time involved in such calculations. Such algorithms are elaborated
in Section 3.

(IV) Batch generation

Once all possible conflicts are detected (if any), the next step is to group the UAVs into
batches. Inside each batch, we place UAVs that do not collide with the other UAVs of that
batch. We aim for a high degree of simultaneity during the take-off, which corresponds
to a low number of batches (with many UAVs in each batch, if possible). In Section 4,
we present an algorithm that splits the UAVs in the minimal number of batches required.
Small waiting times are introduced between the take-off of one batch and the next one to
minimize delays while guaranteeing safety.

(V) Maneuver management

In order to safely move the UAVs from their start location towards their target location,
we decided to split their flight into three straight-line segments. These segments are shown
in Figure 2. Initially, the UAV will take-off vertically until reaching safety altitude SA1;
this will give it enough ground clearance. It then moves diagonally, following a straight
line, until it reaches its target position in terms of XY coordinates (SA2); finally, the UAV
moves upwards to safely fit in its final position, and avoid other UAVs that are static or
moving diagonally.

SA1

pg

SA2

pa

Figure 2. Example of path to be taken for a UAV.

It is worth pointing out that, for the two vertical sub-paths of the UAVs at the beginning
and end of the maneuver, we exclude the existence of collision risks because the distance
between UAVs, whether on the ground or in the air, will always be greater than the safety
distance. Therefore, we only have to detect collisions when aircraft are moving diagonally,
corresponding to the trajectory formed by the points pg and pa.

3. Proposed Conflict Detection Algorithms

In this section, we will describe in detail the two main proposed approaches to de-
tect conflicts in the flight paths to be followed by the different UAVs of a same swarm
during the take-off process. For the first algorithm, named collisionless swarm take-off

Electronics 2022, 11, 1128 5 of 29

heuristic (CSTH), we will present a baseline implementation, followed by two different
improvements. Then we present an alternative solution based on euclidean geometry
called Euclidean distance-based CSTH (ED_CSTH).

3.1. Collisionless Swarm Take-Off Heuristic (CSTH)

This baseline algorithm will allow us to define some basic concepts and, in turn, it will
serve as a reference for the creation of the proposed optimizations. Basically, the algorithm
consists of checking if, for a certain three-dimensional location of a drone, which may
belong to any location along its trajectory, there is a risk of a possible collision with the
rest of the members that make up the swarm. To accomplish this, we must obtain all the
intermediate points that each drone passes through on its way to the target aerial position
(pa). To obtain all these positions, we will determine the three-dimensional vector that
joins its terrestrial (pg), and its aerial location. In this way, this vector will be the one
indicating the actual direction that the drone is going to follow starting from pg. Once this
vector is obtained, we must normalize it and then use it to obtain each of the intermediate
locations that make up its trajectory. In particular, we add this normalized vector (or a
scaled version) to pg, to obtain the consecutive coordinates joining points pg and pa at the
desired granularity. To optimize this procedure, and avoid repeating unnecessarily, a list of
normalized vectors of all the existing drones in the swarm is initialized in the constructor
of the main class, with their respective identifier, which allows us to obtain it quickly.

Regarding the chosen level of granularity, notice that, if the normalized vector has a
length of 1 m, and the destination location for a UAV is about 20 m high, we will obtain,
at least, 20 intermediate positions (counting the initial and final ones), since every time
we move we do so in a value of 1 m of longitude distributed among its three coordinates.
In the event that we multiply the normalized vector by two, we would move twice as
fast, obtaining half the number of points than in the previous case. Hence, we will refer
to granularity as the value by which we multiply the normalized vector, and it will be of
utmost importance to optimize the computational costs. In turn, granularity is an extremely
delicate factor, since the higher its value, the greater the probability that conflicts remain
undetected due to the greater jumps between consecutive positions. Thus, we must study
what granularity level allows us to optimize the computation time while guaranteeing the
safety of the take-off phase. In Figure 3, we can see an example of intermediate locations in
the trajectory that a drone must follow to reach its aerial destination. As can be seen in the
image, the distance between two consecutive points will depend on the actual granularity
value adopted.

i

i+1

i+...

n-1

n

G

Figure 3. Example of a set of intermediate positions in the take-off flight path.

We now proceed to describe in more detail the proposed implementation for our
algorithm. Two inputs are required for its development: the first one is the output of the
position assignment algorithm. The second one is the list with the identifiers of the drones
used for assessing the existence of possible collisions. Notice that it is not necessary to
include all the identifiers of the drones participating in the flight, as explained later on.

Electronics 2022, 11, 1128 6 of 29

Focusing on the proposed algorithm, we will initially go through each of the identifiers
belonging to the list mentioned in the previous paragraph. Then, for each drone, we will
extract its three-dimensional pg and pa, along with its respective normalization vector.
From these data, we will compare the distance of each of the intermediate positions located
in the trajectory of the target drone with all the existing positions of the rest of the members
of the swarm. Figure 4 illustrates how the comparison between locations of pairs of drones
is made.

Figure 4. Comparison between intermediate positions in the flight trajectories of two drones.

In these comparisons, if the distance between two locations is smaller than the value of
the GPS error margin that we assign in the class constructor, a collision is detected. Notice
that, when a possible collision is detected, it is no longer necessary to compare further
positions, and the same procedure would be carried out with the next identifier on the
initial list. In Figure 5 we can see an example that shows the trajectory of two UAVs, and
where the collision danger zone is represented with two red lines.

Figure 5. Collision danger zone between two UAVs.

An important detail to emphasize upon is that, if no collision has been found for a
specific UAV, it will not be part of future collision checks, since previously it had already
been confirmed that there was no possible collision.

When there are no more identifiers in the list that we are going through, the algorithm
will return all the potential collisions that have been detected. Algorithm 1 details how all
the steps discussed above have been implemented.

Electronics 2022, 11, 1128 7 of 29

Algorithm 1 detectCollisionCSTH(uavs)

Require: uncheckedUAV.size = uavs.size ∧ placement ∧ sa f etyDist ∧ granularity
1: for uavId in uavs do
2: uncheckedUAV.remove(uavId)
3: position = placement.get(uavId)
4: air = placement.getAir(uavId)
5: while position.distance3D(air) > granularity do
6: position = displace(position)
7: for nextUAV in uncheckedUAV do
8: nextpos = placement.get(nextUAV)
9: nextair = placement.getAir(uavId)

10: while nextpos.distance3D(nextair) > granularity do
11: nextpos = displace(nextpos)
12: if position.distance3D(nextpos) <= safetyDist then
13: collisionList.add(uavId)
14: goToLine(1)
15: end if
16: end while
17: end for
18: end while
19: end for
20: return collisionList

3.1.1. Optimization #1: Restricted Search Range (RSR)

In this first optimization, we improve the calculation time by reducing the number
of points used for checking the security distance between two multicopters. To achieve it,
instead of comparing each intermediate position of the current drone against all possible
locations of the drones participating in the swarm, only a certain range of values will be
considered; in particular, we will take as a central point the height of the position of the
current aircraft, and so those positions whose heights are significantly different can be
discarded. This way we can significantly reduce the computational cost of the algorithm
without loss of accuracy. Notice that, to make this solution feasible, the user should input a
double value that allows deriving the true limits of the range to be used. As an example,
suppose a drone is at a location whose height is 10 m, and the value of the input parameter
to construct the interval is of 2 m. With these data, our range would correspond to all those
intermediate positions between 8 and 12 m. Once the limits of the interval are established,
we would discard from the comparison all positions that remain outside this range.

In Figure 6, we can visualize the operation of the CSTH+RSR algorithm. As can be
seen, an intermediate position of the first drone is compared with only four positions
for the second one, thus reducing the number of calculations to be performed. Like the
previous version, the input value that we associate to the conflict range will be crucial to
guarantee the detection of collisions since, if a low value is used, several possible conflicts
could remain undetected. For this reason, we must carry out an exhaustive study of the
different values that we can use to define our interval, and in this way ensure the reliability
of our algorithm.

Going deeper into how this optimization works, the list with the identifiers of all
the drones participating in the swarm mission is traversed in the same way as in the first
version. It is worth mentioning that, for each of the intermediate points along the path of
the drone under analysis, we obtain the value of its Z coordinate (equivalent to its height).
To this value, we will add and subtract the value of the range parameter that the user has
previously assigned to obtain the minimum and maximum values of our search interval.
Here, we have to take into account that the minimum and maximum values of the interval
must be equal to or less than the point pa, and greater than or equal to the height at which
its diagonal displacement begins. Once the height range is set, we compare locations with
a height within this range of values. Lastly, the system used to check for collisions will

Electronics 2022, 11, 1128 8 of 29

be the same as the one discussed in its initial version. Similarly to the previous version,
Algorithm 2 shows the changes made to implement this optimization.

Ra
ng

e

Figure 6. Overview of the CSTH+RSR approach.

Algorithm 2 detectCollisionCSTH+RSR(uavs)

Require: uncheckedUAV.size = uavs.size ∧ placement ∧ range > 0 ∧ sa f etyDist ∧
granularity ∧minHeight ∧maxHeight

1: for uavId in uavs do
2: uncheckedUAV.remove(uavId)
3: position = placement.get(uavId)
4: air = placement.getAir(uavId)
5: while position.distance3D(air) > granularity do
6: position = displace(position)
7: for nextUAV in uncheckedUAV do
8: nextpos = placement.get(nextUAV)
9: minz = min(minHeight,position.z - range)

10: maxz = max(maxHeight,position.z + range)
11: while nextpos.z <= maxz do
12: if nextpos.z <= minz then
13: nextpos = displace(nextpos)
14: continue
15: end if
16: if position.distance3D(nextpos) <= safetyDist then
17: collisionList.add(uavId)
18: goToLine(1)
19: end if
20: nextpos = displace(nextpos)
21: end while
22: end for
23: end while
24: end for
25: return collisionList

3.1.2. Optimization #2: Divergent Trajectory Detection (DTD)

This optimization seeks to reduce the computation cost of the initial version proposed
by discarding those drones whose trajectory is distancing itself with respect to the current
aircraft’s route, since the defined routes follow a straight line. This way, we can discard
those lines that diverge from the line corresponding to the trajectory of the current drone.
To implement this algorithm we will need to obtain, from the two aircraft whose paths

Electronics 2022, 11, 1128 9 of 29

are under comparison, their first two consecutive intermediate positions. We can then
find two different situations depending on the values of the resulting distances. Figure 7
shows the case where the second distance (d2) is less than the first one (d1), meaning
that both trajectories tend to converge at some point (despite there is usually a separation
between them in the 3D space). If this happens, we will proceed to the actual collision
checking phase.

d1

d2

Figure 7. Example of two aircraft with converging trajectories.

Conversely, Figure 8 shows the case where the trajectories of both drones move apart
as they move upwards towards their destination. In this situation, we can safely rule out
that there is any danger of collision between the two compared drones.

d1

d2

Figure 8. Example of two aircraft with diverging trajectories.

As in previous sections, Algorithms 3 and 4 present the pseudocode relative to the
improvements introduced in this section.

Algorithm 3 detectCollisionCSTH+DTD(uavs)

Require: uncheckedUAV.size = uavs.size ∧ placement ∧ sa f etyDist ∧ granularity
1: for uavId in uavs do
2: uncheckedUAV.remove(uavId)
3: position = placement.get(uavId)
4: nextposition = displace(position)
5: possibleCollision = checkConvergingLines()
6: while position.distance3D(air) > granularity do
7: position = displace(position, uavId)

Electronics 2022, 11, 1128 10 of 29

Algorithm 3 Cont.

8: for nextUAV in possibleCollision do
9: nextpos = placement.get(nextUAV)

10: while nextpos.distance3D(nextair) > granularity do
11: nextpos = displace(nextpos)
12: if position.distance3D(nextpos) <= safetyDist then
13: collisionList.add(uavId)
14: goToLine(1)
15: end if
16: end while
17: end for
18: end while
19: end for
20: return collisionList

Algorithm 4 checkConvergingLines(position, nextposition, uncheckedUAV)

1: for uavId in uncheckedUAV do
2: pos = placement.get(uavId)
3: nextpos = displace(pos)
4: locationAux = displace(nextpos)
5: locationAux2 = displace(nextposition)
6: d1 = position.distance3D(pos);
7: d2 = nextposition.distance3D(nextpos);
8: if d1 > d2 then
9: possibleCollision.add(uavId)

10: end if
11: end for
12: return possibleCollision

3.1.3. Final Combined Version: CSTH+RSR+DTD

The two optimizations explained in the previous sections are compatible with each
other. Although in the first one the goal is to reduce the number of comparisons between
two UAV trajectories, the second one has the purpose of quickly discarding aircraft that
will never collide (due to the diverging paths).

That said, in Algorithm 5 we can see the pseudocode of the combined version. We
first make a list with those UAVs whose trajectory is divergent with respect to the drone
that is being examined in the first loop. Next, we determine a range of values from the
height of the first intermediate position of the aircraft. Finally, we compare this position
with the rest of the locations of the other drones that are within the range of values created.
If a potential conflict is detected, the affected drones are stored in the collision list.

Algorithm 5 detectCollisionCSTH+RSR+DTD (uavs)

Require: uncheckedUAV.size = uavs.size ∧ placement ∧ range > 0 ∧ sa f etyDist ∧
granularity ∧minHeight ∧maxHeight

1: for uavId in uavs do
2: uncheckedUAV.remove(uavId)
3: position = placement.get(uavId)
4: nextposition = displace(position)
5: possibleCollision = checkConvergingLines()
6: while position.distance3D(air) > granularity do
7: position = displace(position)

Electronics 2022, 11, 1128 11 of 29

Algorithm 5 Cont.

8: for nextUAV in possibleCollision do
9: nextpos = placement.get(nextUAV)

10: minz = min(minHeight,position.z - range)
11: maxz = max(maxHeight,position.z + range)
12: while nextpos.z <= maxz do
13: if nextpos.z <= minz then
14: nextpos = displace(nextpos)
15: continue
16: end if
17: if position.distance3D(nextpos) <= safetyDist then
18: collisionList.add(uavId)
19: goToLine(1)
20: end if
21: nextpos = displace(nextpos)
22: end while
23: end for
24: end while
25: end for
26: return collisionList

3.2. Euclidean Distance-Based CSTH (ED_CSTH)

When testing the algorithm presented in the previous section, it became evident that
there was a clear trade-off between granularity and conflict detection effectiveness. In
general, a low granularity would be recommendable to make sure all conflicts are detected;
yet, by reducing the granularity, we are increasing the number of positions against which to
compare, and this causes a considerable increase in the computational cost of the algorithm.

Hence, the proposal presented in this section is based on directly determining the
Euclidean distance between the two UAV flight trajectories in the three-dimensional space.
Similarly to the previous algorithm, a basic requirement for this new algorithm is that the
trajectories of the drones during take-off follow straight lines. Thus, we can proceed to deter-
mine the distance between both lines in three-dimensional space using Euclidean methods.

The easiest case is checking whether the trajectories of two drones are parallel. Here,
we would only verify that the vectors of each of the drones point in the same direction, that
is, that their three coordinates are exactly the same. Although it is the least likely case, in
such a situation we would confirm that there is no danger of collision between said drones
as long as the distance between lines exceeds the safety threshold.

For the remaining cases, which are the most typical, we use the following formula to
calculate the minimum distance between two three-dimensional lines:

d(r, s) =
|[~vr, ~vs, ~PQ]|
~vr × ~vs

(1)

In this formula, the two lines in the 3D space are represented by letters r and s, while
P would refer to a point on the line r (pgr) and Q to another point on the line s (pgs). In the
numerator we must calculate the determinant composed of the two vectors of the two lines,
and the vector defined through points P and Q. Notice that in the denominator we will
determine the cross product of the vectors of both lines. Once both values are obtained, we
will divide them to obtain the minimum distance between both lines.

Once this distance is obtained, we must find out what are the coordinates of the points
of each of the lines that belong to the minimum distance found. We do this to check if both
points are within the height interval whose bounds are zero (ground level) and the height
at which the swarm must fly (assuming formations on a same plane). Our proposal is to
create a line that is perpendicular to the lines of each of the UAVs under comparison. This
way, the points found on each of the lines are the ones that actually achieve the minimum

Electronics 2022, 11, 1128 12 of 29

distance between them. Figure 9 shows the new line segment representing the minimum
distance between lines r and s.

Figure 9. Line segment corresponding to the minimal distance between two lines.

To obtain the required points, we need to perform a set of operations. First, we create
the equations of the lines formed by the trajectories of the two UAVs we are comparing.
After this, the distance between them will be determined as follows:{

Line 1 : r = pg1 + t1 · d1
Line 2 : s = pg2 + t2 · d2

(2)

The letters p refer to the points where the UAVs start the diagonal displacement, while
the letters d belong to their normalized vectors. In each of these equations, we find an
unknown, symbolized by the letter t. Second, we obtain the vector perpendicular to both
lines by taking the cross product of the vectors of the two lines:

n = d1 × d2 (3)

Then, we carry out the cross product between each of the vectors of the lines with
respect to the vector obtained in the previous step. In this way, we create a plane that is
perpendicular to both lines. {

n1 = d1 × n
n2 = d2 × n

(4)

Therefore, the intersecting point c1 of Line 1 with the above-mentioned plane, which
is also the point on Line 1 that is nearest to Line 2, is given by Equation (5). The point (c2)
on Line 2 nearest to Line 1 is calculated similarly. c1 = pg1 +

(pg2−pg1)·n2
d1·n2

× d1

c2 = pg2 +
(pg1−pg2)·n1

d2·n1
× d2

(5)

Now, we need to check if this minimum distance is within the range set by the
height. First of all, we will compare the resulting value with the safety distance that has
been established. If the minimum distance is greater than the safety margin, we confirm
that there is no conflict between these UAVs. In the opposite case, we can find three
different cases:

Electronics 2022, 11, 1128 13 of 29

1. If the coordinates of both points are within the height range of the aircraft, we confirm
that there is a collision;

2. If both points are outside this range, we will say that there is no collision because both
on pg and at the swarm height we make sure that there is a distance between UAVs
that is already greater than the safety distance;

3. If one of the two points is within the range, and the other is not (either below the pg,
or above the aircraft’s pa), the point outside the range will be replaced by the nearest
point within range. We then check the distance between both points, and if we obtain
a value slightly less than the GPS margin of error, we consider that there is a collision.

The detection algorithm previously detailed is presented in Algorithm 6.

Algorithm 6 detectCollisionED_CSTH(uavs)

Require: uncheckedUAV.size = uavs.size ∧ placement
1: for uavId in uavs do
2: uncheckedUAV.remove(uavId)
3: for nextUAV in uncheckedUAV do
4: position = placement.get(uavId)
5: pos = placement.get(nextUAV)
6: if checkParallelVector(position,pos) then
7: collisionFlag = false
8: end if
9: if checkPathUAV(position,pos) then

10: collisionFlag = checkIntersectionPoint(position,pos)
11: else
12: collisionFlag = checkDistMin(position,pos)
13: end if
14: if collisionFlag then
15: collisionList.add(uavId)
16: goToLine(1)
17: end if
18: end for
19: end for
20: return collisionList

4. Batch Generation Strategy

In the previous chapter, we have presented different algorithms that are able to detect
potential collisions between UAVs. These algorithms return a list of UAV with conflicting
take-off trajectories.

The goal of this chapter is, based on such conflict list, to propose an algorithm that
allows us to separate the UAVs into batches. In this way, aircraft belonging to a same batch
should be allowed to take off simultaneously, without any conflict between their trajectories.

First of all, it is very important to take into account that the batches of drones that are to
be launched first should correspond to the drones travelling greater distances. The solution
that has been used in the present work is to modify the collision detection algorithm so
that, instead of going through the list of UAV identifiers that we obtain as input data, it
previously orders that list according to travel distance per UAV. Hence, after assigning
UAVs to different batches, all we have to do is order them by their average distance.

Going deeper into the proposed algorithm, three input data are required for its correct
implementation. The first one is the list of collisions obtained in the collision detection
algorithm. The second one is the list of UAV identifiers. Additionally, the third one is the
list of previously formed multicopter batches (during its first call, it will be empty). This
last list plays a very important role since, being a recursive method, this variable will be in
charge of storing the result of the batches made in the first iterations of the method.

In Figure 10, we visualize the operating diagram of the mechanism for generating
batches. For each UAV belonging to the list of swarm identifiers, we check if it appears

Electronics 2022, 11, 1128 14 of 29

in the list of collisions that we obtain as a result after applying the collision detection
mechanism. If we observe that it belongs to the list, we will directly insert it into a new
group (G2) where those drones that do not comply with the safety distance will temporarily
be stored. Otherwise, if an UAV does not appear in said list of collisions, it will join group
G1. This way, we manage to divide all the existing identifiers in the swarm into two
subgroups, differentiated those aircraft that meet the flight safety distance requirements,
and those that do not.

Size(G2)
< 2

Yes

No

uav_list <= UAVs from G2 list

No

Start

Push G2 to stack

end

Push G2 to stack

Size(G2)
== 1

Push G1 to stack

Size(col_list)
== 0

Yes

i <
Size(uav_list)

Add to G2 list

Yes

No

UAV(i)
appears in
col_list?

Add to G1 list

Yes

i++

No

uav_list <= UAVs swarm

col_list <= Collisions
obtained from detection

algorithm

Yes

No

col_list <= Collision
list generated
from uav_list

i = 0

Figure 10. Flowchart representing the batch generation mechanism.

Then, we add the labels of the UAVs that are part of G1 as a new batch to the output
data, as they do not generate any conflict between them and, therefore, they will be able to
take off simultaneously without causing any risk. After that, the next step that we must
carry out will be to check the number of existing labels in G2. If its quantity is less than
two, we enter the base case of the recursive method. Here, we check whether G2 is empty
or not. In case it is not empty, we will add a new batch with its identifier, and the algorithm
will thus end. If G2 is empty, we will directly return the final result of the algorithm.

Afterwards, if the number of G2 identifiers is greater than or equal to two, we would
proceed to create a new list of drones with only the labels belonging to G2. From the

Electronics 2022, 11, 1128 15 of 29

identifiers in this list, we will search for existing collisions with each other. If this collision
list is empty, we will insert the tags of the G2 UAVs into a new batch, and return the result
of the algorithm. If it is not empty, we will restart the procedure from the beginning except
that, this time, both the list of UAVs and collisions will be different from the first iteration.
Furthermore, we will empty G1 and G2 so that they can be filled with the new identifiers.
This corresponds to the recursive case whereby we return to the starting point, but now
having a reduced dataset.

Figure 11 shows an example of the batch generation mechanism in a swarm composed
of four aircraft. Using our collision detection algorithm, we obtained the information that
there is a possible risk of collision between the first and the second UAV, as well as between
the third and the fourth UAVs. We start the batch process with UAV 1. Since there is a risk
of collision, UAV 1 is placed in batch B. We continue with UAV 2, this UAV has no risk of
collision (we already solved the collision with UAV 1). Therefore, it is placed in batch A.
Next is UAV 3; this UAV collides with UAV 4 and, therefore, it is placed in batch B. Finally,
UAV 4 has no risk of collision, hence it is placed in batch A. This ends the first iteration of
the batch process. We start the second iteration of the batch process, here we go over all
the UAVs in batch B and confirm that they do not collide. Since UAV 1 and UAV 3 do not
collide, we do not have to create additional batches, and we end the batch process.

B
1

A
2

B
3

A
4

Figure 11. Example of take-off batch grouping (A, B) using our algorithm.

5. Results

In this section, a wide set of simulations will be carried out to assess the performance
of the various collision detection algorithms proposed, and to verify that the take-off stage
is carried out safely. First, we will explain our simulation setup. Then, in the first set of
experiments, we will determine the ideal granularity for the CSTH-based algorithms. Then,
we will determine their computational overhead. The best performing CSTH variant is then
compared against the ED_CSTH algorithm. Finally, we will measure the overall take-off
time for the best possible case achieved.

5.1. Simulation Setup

To determine whether the goals of this work have been accomplished, it is necessary
to carry out multiple tests in a simulation environment with which to verify the absence of
collisions before carrying out experiments on real drones. This phase is one of the most
important ones in any project aimed at drone swarms, since hasty management could mean
the loss of a large amount of time and money in the event that these aircraft suffer some type
of accident. In this work, we have used ArduSim [10], as it is a real-time flight simulator
based on Software-in-the-Loop UAV emulation that allows us to simulate missions with a
considerable number of drones (more than 500), and it also offers us great precision in the
data collected. This simulator was developed in Java, and it is entirely open source [11].

For our tests, we are going to compare the different proposed schemes by varying two
variables: the number of UAVs conforming the swarm (for scalability analysis), and the
swarm topology. Notice that, when taking off, UAVs usually take a random position on the
ground, maintaining a small distance between them. Yet, when they are flying as a swarm,

Electronics 2022, 11, 1128 16 of 29

usually a mission-specific aerial formation is defined. In our simulation we will consider
three different aerial formations: linear, circular, and matrix. In the case of the linear one, it
is very useful in precision agriculture applications [12] (among others) because they allow
a larger area to be covered quickly, since the UAVs are placed forming an overhead line.
The circular formation is characterized by having an aircraft in the middle, normally with
the functionality of a coordinator, and the rest of the drones are placed around it forming
a circular formation. Finally, we test with the matrix formation that, depending on the
number of UAVs used in a given swarm, will try to organize them in a matrix of n x n
drones as much as possible; this is usually the most compact choice.

Table 1 shows the simulation parameters that we are going to use with their respective
values. The safety parameter will have a value of 8 m, and it represents the GPS error margin
of the UAVs. Then, the maximum height that it will be used in the air locations is 20 m,
except for experiments Sections 5.5 and 5.6, where that value is increased to 30 m instead.

Table 1. Simulation parameters.

Parameter Value

Safety distance 8 m
Maximum Height [20, 30] m
Distance between aircraft (ground) 10 m
Distance between aircraft (air) 20 m

Concerning our target performance metrics, we are going to assess the different
algorithms presented based on the amount of undetected collision risks, computational
time overhead when determining these potential risks, and the overall take-off time, which
also accounts for other algorithms, including the batch generation strategy and the take-
off strategy.

The machine used to collect the results presented in the next section has an Intel
processor model i5-2500K, with four cores that provide a basic frequency of 3.30 GHz. As
far as memory is concerned, its size is 4 GB (DDR3 type).

5.2. Experiment 1: Obtaining the Ideal Granularity

One of the main problems that we run into in the baseline CSTH algorithm, and its
respective optimizations, is that we need to ensure that the granularity that we employ
allows us to obtain all the areas of conflict when taking off a swarm of UAVs. As explained
in the previous chapters, granularity is going to play an essential role when it comes to
extracting all the intermediate positions of a drone between pg and pa. This means that the
choice of the granularity value is going to be a critical process, since, if we select a high
value, we could obtain three-dimensional locations whose distances are greater than the
value assigned to the proposed GPS margin of error and, therefore, certain collisions could
remain undetected.

Taking this problem into consideration, the main objective of this first set of simulations
is to determine the granularity value that guarantees obtaining all the possible conflicts
between the UAVs conforming the swarm. To do this, we vary the granularity value using a
fixed number of drones, and for each of the three available aerial formations (circular, linear,
matrix). The purpose of these tests is to examine and analyze the relationship between
the number of undetected collisions and the chosen granularity value. As a starting point
for the test, it has been decided to start with a granularity value equivalent to one meter,
and increase it by one meter until reaching the value of 10. For these simulations, we use
200 drones so that the number of possible conflicts to be detected is significant enough to
reach a conclusion. The safety distance that has been proposed in this experiment is of 8 m,
so that the safety of the movement maneuvers carried out by the drones can be guaranteed
despite GPS inaccuracies. It is also of great interest to mention that the minimum distance
between aircraft ground positions is 10 m. Moreover, we will also define a (minimal)

Electronics 2022, 11, 1128 17 of 29

distance between the aerial locations of the swarm of 20 m. Finally, the flight altitude that
we will use in these experiments is also of 20 m.

Figure 12 allows gaining insight on the trade-off between granularity and time over-
head involved. As shown, calculation times are reduced considerably as we increase
granularity values. It is important to note that, in this figure, the values shown are on a
logarithmic scale because of the differences in calculation time between the three available
formations; for 200 drones, such difference becomes really large and, using such a scale,
we managed to improve readability. Based on these results, it becomes clear that there are
great benefits in using high granularity values. However, as stated above, increasing the
granularity is in conflict with collision detection accuracy.

Figure 12. Calculation time according to their granularity.

To gain further insight into such a problem, Figure 13 shows the potential number
of collisions that remain undetected as we increase the granularity value. This value is
calculated as the difference between the number of collisions obtained from each of the
simulation executed with respect to the first test (with granularity equal to one), which is
our reference. As shown in the figure, for granularity values of 3 m and greater, we begin
to miss the detection of some trajectory conflicts. If we continue to increase this value, we
conclude that the missed conflicts reach high values, which prevent the take-off maneuver
of the UAV swarm from being reliable. Hence, a granularity equal to two becomes the best
choice, as it allows us to reduce the computational time overhead while still detecting all
existing conflicts.

5.3. Experiment 2: Comparison of Computation Time between CSTH Algorithms

The purpose of this experiment is to evaluate the performance of the collision detection
algorithms based on spatial discretization (CSTH family). To do this, we develop a set of
tests with different numbers of UAVs for the available aerial formations.

Before starting, we need to set a value as input for the CTSH+RSR algorithm to derive
the true limits of the range to use. As mentioned in the previous chapter, this optimization
consists of discarding the intermediate positions whose height is outside the established
interval.

The simulation parameters used in these tests are exactly the same as in the first
experiment. In addition, to obtain the intermediate positions, the value of the granularity
resulting from the previous experiment (2 m) has been used.

Figure 14 shows the results of the simulations we did to find a numerical value that
allows us to establish a reasonable interval. To do this, we use a fixed number of UAVs

Electronics 2022, 11, 1128 18 of 29

equivalent to 200, so that the number of potential conflicts is significant. One of the most
interesting details is that, for the circular formation, we detect all collisions regardless of the
interval range used. However, for the remaining formations, we find that a large number
of undetected collisions remain, especially in the matrix formation. In fact, for both the
linear and matrix formations, we see a clear trend where, as we increase the range of values,
more collisions are detected, until reaching a value where all collisions are detected. In our
case, this is achieved for a range value of 8 m (equivalent to 16 m of difference between
the lower and upper limits of the interval). Although for this particular experiment this
value is very high due to the fact that the maximum height for the drones is set to only
20 m, it already represents a significant improvement with respect to the performance of
the baseline CSTH algorithm.

Figure 13. Number of potential collisions that would remain undetected when increasing the granu-
larity value.

Figure 14. Undetected collisions according to interval size used.

We now proceed by carrying out a performance comparison in terms of calculation
time. Nothing has been previously commented on the CSTH+DTD optimization and the

Electronics 2022, 11, 1128 19 of 29

combined version (CSTH+DTD+RSR), because no additional parameters are required for
their execution.

To compare these algorithms, we have decided to carry out several simulations,
varying both the number of drones and the formation used. This way, we can more
clearly appreciate the difference between each of the versions. Additionally, notice that the
simulation parameters used have been the same as in the previous experiments.

Figure 15 highlights that there is a clear difference between the different CSTH versions
as we increase the number of drones. For up to 75 drones, there are almost no differences
between the calculation times, obtaining a value of approximately one second. Beyond this
number of aircraft, the differences begin to be significant. With a value of 200 drones, we
can see that the CSTH Baseline algorithm introduces a delay of 81 s to guarantee collision
detection, while in the CSTH version (RSR+DTD) the delay is merely 1.5 s. Regarding
the CSTH+RSR algorithm, and for the same amount of drones mentioned in the previous
test, we obtain a time of 19 s (4 times faster), while for CSTH+DTD we have a value of 4 s,
equivalent to approximately 20 times higher efficiency.

Figure 15. Calculation time for the circular formation when varying the number of UAVs in
the swarm.

The linear air formation is by far the one taking the most time to perform the algorithm
calculations. This is due to the greater distances between the ground and aerial locations
compared to other formations. That said, Figure 16 shows the computation time for the
different algorithms. Similarly to the previous case, from 75 drones onwards we observe
clear differences between versions. Using the maximum number of UAVs, we see that
the CSTH Baseline algorithm needs a total of 31 min to complete the collision detection
procedure. This time it is prohibitive since, to the calculation time, we must add the take-off
flight time of all the UAVs in the swarm. Once again, the combined version is the one with
the best performance, allowing all collision danger zones to be detected in under 3 min
(10 times more efficient). The CSTH+RSR optimization manages to detect all collisions in
about 6 min (equivalent to about 5 times faster), while the CSTH+DTD algorithm does it in
about 8 min (about 3/4 times more efficient).

Electronics 2022, 11, 1128 20 of 29

Figure 16. Calculation time for the linear formation when varying the number of UAVs in the swarm.

Lastly, and inversely to what happened in the linear formation, the time needed to
calculate conflicts for the matrix formation is very low, since their aerial locations are
usually closer to each other, meaning that take-off paths are more vertical. In Figure 17,
we visualize the differences in terms of calculation time for the proposed algorithms.
Again, the CSTH algorithm is the one requiring more time (1.32 s) to obtain a solution
with 200 aircraft, while the combined version again improves performance considerably,
needing only 0.038 s. Finally, note that the CSTH+RSR optimization requires a time of
0.326 s, while the CSTH+DTD version performs it in about 0.08 s.

Figure 17. Calculation time for the matrix formation when varying the number of UAVs in the swarm.

In summary, with the results obtained, we can affirm that the CSTH algorithm with
both DTD and RSR optimizations is the most efficient version. This is because it achieves a
considerably shorter calculation time than the other variants in all available air formations.
In addition, in each of the tests carried out with a different number of drones, it detects the

Electronics 2022, 11, 1128 21 of 29

same number of possible collisions as the initial version, thus, ensuring the reliability of
the algorithm.

5.4. Experiment 3: Comparison of Computation Time between CSTH and ED_CSTH Algorithms

In the two previous sections, we focused on finding the most efficient approach for
the CSTH algorithm, which is achieved by combining both RSR and DTD optimizations. In
this section, we proceed to compare such optimal solution against the alternative algorithm
we propose, which is based on directly determining the minimum distance between two
UAV trajectories using Euclidean geometry. Notice that these two algorithms are radically
different in their approach, where the first one relies on many but simple calculations, while
the second one requires few but more complex calculations.

Figure 18 shows the calculation times for both algorithms when increasing the number
of UAVs, and focusing on the circular formation. We observe that, with a quantity beyond
100 drones, the ED_CSTH algorithm increases its time with respect to the results obtained
with the CSTH+RSR+DTD. In fact, when reaching 200 UAVs, the ED_CSTH algorithm
takes 10 s to detect collisions while CSTH+RSR+DTD achieves it in 1.5 s. Hence, in this
situation, the latter offers a clear performance advantage, being almost seven times faster.

Figure 18. Calculation time in circular formation.

Figure 19 presents the calculation time obtained for the linear formation instead. In
said figure, we find the opposite situation compared to the circular formation. In fact,
while the ED_CSTH algorithm manages to maintain a nearly constant calculation time
regardless of the number of UAVs used, the CSTH+RSR+DTD algorithm suffers a significant
penalty for experiments with a greater number of drones, providing a calculation time of
almost 3 min.

Electronics 2022, 11, 1128 22 of 29

Figure 19. Calculation time in linear formation.

Finally, Figure 20 shows the calculation time for the matrix formation. In this case, the
CSTH+RSR+DTD algorithm manages to perform all operations in hundredths of a second
on any number of UAVs. On the other hand, the baseline CSTH algorithm less efficient, i.e.,
to obtain the results with 200 aircraft it takes almost 1.5 s.

Figure 20. Calculation time in matrix formation.

As can be seen, for the circular and matrix formation we obtain that the combined
version is faster and more efficient, while in linear formation the ED_CSTH algorithm
achieves a better performance. In short, the conclusion that we draw from these figures is
that, depending on the situation in which we find ourselves, it will be more useful for us to
use one version or another. However, for the following simulations, it has been decided
to use the ED_CSTH algorithm because its average time considering the three formations
is lower.

Electronics 2022, 11, 1128 23 of 29

5.5. Experiment 4: Comparison of the Take-Off Flight Time against the Sequential Procedure

Once we have chosen the detection algorithm to use, the next step is to obtain the
take-off flight time of our proposal (named semi-simultaneous), and compare it against
the sequential procedure. To determine the total time associated with the take-off in the
semi-simultaneous approach, we must add the time from the assignment algorithm, the
calculation time of the detection algorithm, and the take-off flying time of the UAVs swarm.

To carry out the respective tests, it is convenient to comment on the simulation param-
eters that have been decided to use. Firstly, it has been decided to carry out a total of seven
simulations using different numbers of aircraft for each of the available air formations.
Unlike previous experiments, the maximum number of drones used will be reduced from
200 to 150. Another change that has been made is related to the maximum height of aerial
positions. Instead of having a height of 20 m, it has been decided to increase that figure to
30. As for the rest of the simulation parameters, they remain the same as in the previous
experiments. Since on this occasion we have the ArduSim graphical interface to carry out
the calculations, in the event of a risk of collision between two aircraft, its existence would
be notified, and an emergency landing would be made. In the ArduSim log files, we can
easily identify the UAVs that have caused the collision with their respective 3D locations
and the distance between them.

Figure 21 shows the take-off flight times, expressed in minutes, of both procedures
for each of the air formations. To perfectly distinguish the results obtained, the continuous
lines will refer to the formations of the sequential algorithm, while the dashed lines will
be to the semi-simultaneous one. Going deeper into the figure, we see that, in each of
the simulations carried out with a different number of aircraft, the semi-simultaneous
algorithm notably improves the performance obtained compared to the sequential one.
Going into detail in each of the aerial formations, and for the specific case of launching
150 drones, we see that, in the matrix formation, we went from having a total time of 58 min
to only 3.6 min. This big change is due to the fact that, for this type of formation, very few
conflict zones are detected and, therefore, it is necessary to group the drones in a smaller
number of batches. Another aspect that explains such a short take-off flight time is that this
formation is the one that benefits the most from the use of the KMA assignment algorithm.
This means that the total movement made by the UAVs, placed randomly on the ground,
is considerably lower than that of the rest of the formations. In the case of the circular
formation, the necessary 2.5 h are contrasted with the almost 17 min with a semi-sequential
take-off. Here, we have a considerable number of potential collisions leading to the creation
of a large number of drone batches. Finally, the linear formation is the one that takes the
longest time, since the total distance that the swarm has to travel is more than a thousand
times greater than the overall matrix formation distance. That said, from a total time of
almost 4 h, it is possible to reduce it to 19 min. On this occasion, the vast majority of UAVs
belonging to the swarm are in potential conflict zones because their trajectories are very
similar; note that half of the drones will move to the left, while the other half will move to
the right to form a line in the air. For this reason, the number of drone batches will be high,
since in most situations in each batch there will be only two aircraft, whose directions are
opposite. An important detail to comment on is that, for both the circular and the linear
formation, having a high number of drone batches will multiply the effect of adding an
additional waiting time (3.5 s) introduced between the take-off of each one of them.

Electronics 2022, 11, 1128 24 of 29

Figure 21. Comparison of the take-off flight time against the semi-simultaneous and sequential pro-
cedure.

5.6. Experiment 5: Study of the Results Obtained with the Different Assignment Algorithms

After analyzing the improvement obtained by the semi-simultaneous procedure ver-
sus the sequential procedure, this last study focuses on assessing the behavior of our
proposal when using different positions allocation algorithms. In this experiment, an
exhaustive comparison will be made of both the take-off flight time and the number of
batches generated.

As already mentioned in the previous chapters, to define the position that each UAV
must occupy in the air, we have used the KMA assignment mechanism. This scheme
provides an optimal solution in terms of the total distance travelled by UAVs to reach their
aerial locations. In this way, by making use of said assignment, it would be ruled out that
several aircraft would have to fly to another end of the swarm, causing the number of
conflict zones to increase significantly. However, there is uncertainty whether an optimum
in terms of flight distances necessarily represents also an optimum in terms of the number
of batches generated, and, thereby, the overall take-off time.

Hence, for these experiments, we will perform the initial position assignment with
both KMA and our heuristic method proposed in [7]. As discussed earlier, this heuristic
provides a slightly suboptimal solution after being tested in regular air formations, but is
faster in executing computational calculations compared to KMA.

To obtain the data with this new allocation algorithm, we are going to use the same
simulation parameters used in the previous experiment in order to be able to reuse them.

In Figure 22, we visualize the take-off flight time of the two proposed assignment
algorithms in the circular formation. As we can see in the figure, the heuristic provides
higher times than its opponent, except for the simulation carried out with 125 UAVs. On
this occasion, as we can see in Figure 23, the heuristic that previously had a number of
batches higher than KMA, now needs about 15 fewer batches. However, despite this large
difference in terms of total number of batches, we only achieve an overall improvement
of 0.5 min. Finally, in the test run with 150 UAVs, we see that the heuristic still continues
to provide a smaller number of batches, but this time its take-off flight time is almost a
minute slower than the KMA. With this last simulation, we can confirm the importance
of minimizing the total displacement distance. In it, the heuristic with a smaller number
of batches obtains a greater time of flight, mainly due to the fact that they must travel
greater distances.

Electronics 2022, 11, 1128 25 of 29

Figure 22. Take-off flight time between heuristic and KMA in the circular formation.

Figure 23. Number of batches between heuristic and KMA in the circular formation.

Figure 24 shows the take-off flight time of the two proposed assignment algorithms in
the linear formation. Here, we observe that, except in the first experiments carried out up
to 50 UAVs, the heuristic provides a more efficient solution both in take-off flight time and
in the number of batches (see Figure 25). In this case, as the total distance that the swarm
has to travel to form a line in the air is very high, the difference between both algorithms is
not so significant. For this reason, we observe a different effect compared to the circular
formation, where with a smaller number of batches, a worse take-off time was obtained.
Therefore, for the test carried out with 150 aircraft, the heuristic achieves an improvement
of 1.5 min with respect to the KMA algorithm.

Electronics 2022, 11, 1128 26 of 29

Figure 24. Take-off flight time between heuristic and KMA in the linear formation.

Figure 25. Number of batches between heuristic and KMA in the linear formation.

Finally, Figure 26 presents the take-off flight time of the two proposed assignment
algorithms in the matrix formation. We find that KMA provides better performance in all
the experiments with different amounts of UAVs. The justification of the collected times is
mainly due to the fact that the number of batches obtained using the KMA is quite optimal
(see Figure 27). This is due to the fact that, despite having a considerable number of UAVs,
take-offs can be carried out in just two or three batches.

Electronics 2022, 11, 1128 27 of 29

Figure 26. Take-off flight time between heuristic and KMA in the matrix formation.

Figure 27. Number of batches between heuristic and KMA in the matrix formation.

In conclusion, after examining the behavior of the two assignment algorithms for the
three possible formations, we cannot clearly choose one option. This is because, while the
KMA algorithm obtains better take-off flight time for the matrix and circular formations,
it fails to obtain the best results for the linear one. However, it is important to emphasize
that, with both algorithms, similar times are obtained, except for the matrix where the
heuristic provides a low performance compared to KMA. Since most realistic scenarios
with many UAVs are expected to use compact flight formations such as the matrix, we
believe adopting our algorithms in combination with KMA for position assignment is a
robust approach.

Electronics 2022, 11, 1128 28 of 29

5.7. Summary of Findings

In this section, we have performed many experiments, and discussed our findings
from the experiments. Now, we summarize these findings in order to intuitively display
the comparative effects of the different algorithms.

In experiment 1, we searched for the ideal granularity value. This value applies to the
CSTH algorithms only. In our experiments, we found that a granularity value of two meters
is ideal in order to achieve the best results. A higher value will lead to missed conflicts, and
a lower value will increase the computational time unnecessarily.

In experiment 2, we compared the computational time between the various CSTH
algorithms. As expected, the version with both optimizations (RSR and DTD) if able
to finish the computations faster than the others. The speed-up depends highly on the
formation and the number of the UAVs, but it ranges from 4× to 20×.

In experiment 3, we compared the calculation time of the CSTH+RSR+DTD and ED_CSTH
algorithms. We found that, for the circular and matrix formations, CSTH+RST+DTD is the
fastest option. However, in the case of the linear formation, the ED+CSTH algorithm is
faster. Since, on average (considering all formations) the ED_CSTH algorithm is faster, we
suggest using that algorithm as default, and only switch to the other algorithm when the
formation is known (and not linear).

In experiment 4, we compared the take-off time for the entire take-off process. In this
case, we compared the traditional sequential method with our semi-sequential approach
(using the ED_CSTH algorithm). In all cases, a huge time improvement has been made.
In Figure 21, we show the exact time improvements, for each possibility. In the best
cases, when we use many UAVs (i.e., 150), a time gain between 8.8× and 16× is achieved
(depending on the formation).

In our last experiment (experiment 5), we compare the influence of the different
assignment algorithms (which were developed earlier in [7,8]). After our experiments, we
could not clearly choose one option, as both methods are performing quite well. In some
cases, the KMA performs better (matrix and circular formations), while in other cases the
heuristic performs better. Therefore, the final decision will depend on the number of UAVs,
and the formation used.

6. Conclusions

In this paper, we address the problem of achieving an efficient and yet secure take-off
of UAV swarms. To this end, two collision detection approaches have been proposed:
one based on spatial discretization of UAV trajectories (CSTH), and another one based on
Euclidean geometry (ED_CSTH).

Their goal was to optimize the computation time necessary to detect possible con-
flicts on the take-off trajectories so as to ensure a safe take-off procedure. In addition, a
mechanism for grouping drones into batches has also been implemented; it allows them
to be grouped in a way which ensures that, during their take-off, the safety distance is
guaranteed at all times.

A detailed analysis of the results using the ArduSim simulator shows that the proposed
schemes are able to substantially improve take-off time (>90%) compared to the more
standard sequential approach, providing the same reliability and safety as the latter.

Finally, the behavior of the proposed solutions, when combined with the KMA and
Heuristics algorithms for initial position assignment, has been examined. In this case, it
has not been possible to clearly choose a winning option because it depends on the specific
aerial formation used, although the KMA approach seems to be the most reasonable choice
considering realistic conditions.

As future work, we will study how to reduce the total number of resulting UAV
batches in some of the regular formations studied to further reduce the take-off time, while
still avoiding any risk of collision. To this end, we plan to also include the time factor in
our risk analysis.

Electronics 2022, 11, 1128 29 of 29

Author Contributions: Conceptualization, J.W. and C.T.C.; methodology, J.W. and C.T.C.; software,
C.S. and J.W.; validation, J.W., C.T.C., J.-C.C., and P.M.; formal analysis, C.S.; investigation, C.S. and
J.W.; resources, C.T.C., J.-C.C., and P.M.; data curation, C.S., J.W. and C.T.C.; writing—original draft
preparation, C.S.; writing—review and editing, J.W., C.T.C., J.-C.C., and P.M.; visualization, C.S. and
J.W.; supervision, C.T.C., J.-C.C., and P.M.; project administration, C.T.C., J.-C.C., and P.M.; funding
acquisition, C.T.C. and J.-C.C. All authors have read and agreed to the published version of the
manuscript.

Funding: This work is derived from R&D project RTI2018-096384-B-I00, funded by MCIN/AEI/
10.13039/501100011033 and “ERDF A way of making Europe”.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Tahir, A.; Böling, J.; Haghbayan, M.H.; Toivonen, H.T.; Plosila, J. Swarms of Unmanned Aerial Vehicles—A Survey. J. Ind. Inf.

Integr. 2019, 16, 100106. [CrossRef]
2. Bing, L.; Jie, L.; KeWei, H. Modeling and Flocking Consensus Analysis for Large-Scale UAV Swarms. Math. Probl. Eng. 2013,

2013, 368369. [CrossRef]
3. Intelligence, I. Drone Technology Uses and Applications for Commercial, Industrial and Military Drones in 2021 and the Future.

2021. Available online: https://www.businessinsider.com/drone-technology-uses-applications (accessed on 5 October 2021).
4. Wubben, J.; Catalán, I.; Lurbe, M.; Fabra, F.; Martinez, F.J.; Calafate, C.T.; Cano, J.C.; Manzoni, P. Providing resilience to UAV

swarms following planned missions. In Proceedings of the 2020 29th International Conference on Computer Communications
and Networks (ICCCN), Honolulu, HI, USA, 3–6 August 2020. [CrossRef]

5. Wubben, J.; Fabra, F.; Calafate, C.T.; Cano, J.C.; Manzoni, P. A novel resilient and reconfigurable swarm management scheme.
Comput. Netw. 2021, 194, 108119. [CrossRef]

6. Hoffmann, G.; Huang, H.; Waslander, S.; Tomlin, C. Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment.
In Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, SC, USA, 20–23 August
2007. [CrossRef]

7. Fabra, F.; Wubben, J.; Calafate, C.T.; Cano, J.C.; Manzoni, P. Efficient and coordinated vertical takeoff of UAV swarms. In
Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020;
pp. 1–5. [CrossRef]

8. Hernández, D.; Cecília, J.M.; Calafate, C.T.; Cano, J.C.; Manzoni, P. The Kuhn-Munkres algorithm for efficient vertical takeoff
of UAV swarms. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland,
25–28 April 2021; pp. 1–5.

9. Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [CrossRef]
10. Fabra, F.; Calafate, C.T.; Cano, J.C.; Manzoni, P. ArduSim: Accurate and real-time multicopter simulation. Simul. Model. Pract.

Theory 2018, 87, 170–190. [CrossRef]
11. GRCDev. ArduSim. Available online: https://github.com/GRCDEV/ArduSim (accessed on 11 October 2021).
12. Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture.

Comput. Netw. 2020, 172, 107148. [CrossRef]

http://doi.org/10.1016/j.jii.2019.100106
http://dx.doi.org/10.1155/2013/368369
https://www.businessinsider.com/drone-technology-uses-applications
http://dx.doi.org/10.1109/ICCCN49398.2020.9209634
http://dx.doi.org/10.1016/j.comnet.2021.108119
http://dx.doi.org/10.2514/6.2007-6461
http://dx.doi.org/10.1109/VTC2020-Spring48590.2020.9128488
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1016/j.simpat.2018.06.009
https://github.com/GRCDEV/ArduSim
http://dx.doi.org/10.1016/j.comnet.2020.107148

	Introduction
	Take-Off Stages for a VTOL Swarm
	Proposed Conflict Detection Algorithms
	Collisionless Swarm Take-Off Heuristic (CSTH)
	Optimization #1: Restricted Search Range (RSR)
	Optimization #2: Divergent Trajectory Detection (DTD)
	Final Combined Version: CSTH+RSR+DTD

	Euclidean Distance-Based CSTH (ED_CSTH)

	Batch Generation Strategy
	Results
	Simulation Setup
	Experiment 1: Obtaining the Ideal Granularity
	Experiment 2: Comparison of Computation Time between CSTH Algorithms
	Experiment 3: Comparison of Computation Time between CSTH and ED_CSTH Algorithms
	Experiment 4: Comparison of the Take-Off Flight Time against the Sequential Procedure
	Experiment 5: Study of the Results Obtained with the Different Assignment Algorithms
	Summary of Findings

	Conclusions
	References

