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Abstract: Mesenchymal stem cells (MSCs) osteogenic commitment before injection enhances bone
regeneration therapy results. Piezoelectric stimulation may be an effective cue to promote MSCs
pre-differentiation, and poly(vinylidene) fluoride (PVDF) cell culture supports, when combined with
CoFe2O4 (CFO), offer a wireless in vitro stimulation strategy. Under an external magnetic field, CFO
shift and magnetostriction deform the polymer matrix varying the polymer surface charge due to the
piezoelectric effect. To test the effect of piezoelectric stimulation on MSCs, our approach is based on a
gelatin hydrogel with embedded MSCs and PVDF-CFO electroactive microspheres. Microspheres
were produced by electrospray technique, favouring CFO incorporation, crystallisation in β-phase
(85%) and a crystallinity degree of around 55%. The absence of cytotoxicity of the 3D construct
was confirmed 24 h after cell encapsulation. Cells were viable, evenly distributed in the hydrogel
matrix and surrounded by microspheres, allowing local stimulation. Hydrogels were stimulated
using a magnetic bioreactor, and no significant changes were observed in MSCs proliferation in the
short or long term. Nevertheless, piezoelectric stimulation upregulated RUNX2 expression after
7 days, indicating the activation of the osteogenic differentiation pathway. These results open the
door for optimising a stimulation protocol allowing the application of the magnetically activated 3D
electroactive cell culture support for MSCs pre-differentiation before transplantation.

Keywords: mesenchymal stem cells; osteoblastogenesis; piezoelectricity; poly(vinylidene) fluo-
ride; hydrogel

1. Introduction

Mesenchymal stem cells (MSCs) promote the functional repair of bone injuries due to
their osteogenic differentiation potential [1]. Osteogenic commitment before transplanta-
tion shows better results in regeneration therapies by enhancing mineral deposition and
integration in the damaged site compared to undifferentiated MSCs injection [2–4]. The
standard pre-differentiation protocol employs osteoinductive cell culture media containing
dexamethasone, β-glycerophosphate and ascorbic acid in a tissue culture plate. Dexametha-
sone lacks specificity and produces mixed populations containing fat cells [5]. Moreover,
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MSCs dedifferentiate once the biochemical stimulus is removed unless deployed with an
extracellular matrix (ECM) resembling the environment [6]. As an alternative, physical
cues are suitable and specific candidates for MSCs differentiation control [7–11], solving
the off-target problem of dexamethasone supplementation [12].

MSCs’ piezoelectric stimulation has gained attention since the discovery of bone’s
inherent piezoelectricity [13]. MSCs differentiation in vivo occurs in an electrically active
environment due to collagen type I fibres conforming to 90% of bone’s organic ECM [14].

-NH- and -CO- groups in the protein amino acids generate a permanent polarisation
in the fibres. When mechanical stress is applied, the piezoelectric effect changes the surface
charge [15]. This bioelectricity is associated with bone’s ability to grow and remodel [16,17],
so it may induce MSCs differentiation towards the osteogenic lineage.

Poly(vinylidene) fluoride (PVDF) and its high piezoelectric coefficient, when crys-
tallised in β-phase, has been widely used in the tissue engineering field for piezoelectric
stimulation [15]. Different morphologies, including films, porous membranes, fibres, or
microspheres, have been developed [18], offering an electroactive milieu for MSCs’ growth
and differentiation [19–24]. PVDF coupled with magnetostrictive nanoparticles, such as
cobalt ferrite oxide (CoFe2O4; CFO), provides piezoelectric stimulation at the cell culture
level using a magnetic bioreactor [22,25,26]. Their combination generates a magnetoelectric
composite material. When exposed to an external magnetic field, the magnetostrictive
phase is deformed, deforming the polymeric matrix and resulting in a dielectric polarisation
variation ascribable to the piezoelectric properties of the polymer [27,28]. This approach
suits translational applications based on the wireless nature of the magnetic field, allowing
minimally invasive stimulation strategies in vitro. PVDF-CFO composites have been pro-
duced by different methods in different shapes, including films [29,30], membranes [31],
fibres [26], spheres [25,32] or scaffolds [22]. Nevertheless, the use of this strategy to stimu-
late MSCs for pre-differentiation approaches is scarcely reported, especially using 3D cell
culture supports.

We hypothesise that piezoelectric stimulation may induce specific MSCs osteogenic
commitment for pre-differentiation approaches by using an electroactive and biomimetic
cell culture platform. To prove our hypothesis, we have designed a 3D platform based on a
gelatin hydrogel containing PVDF-CFO electroactive microspheres together with MSCs,
stimulable using a magnetic bioreactor. To do so, PVDF microspheres with and without
CFO have been produced, characterised, and encapsulated in the hydrogel. Effects of
piezoelectric stimulation on MSCs proliferation and osteogenic differentiation have been
tested by metabolic activity, gene expression and alkaline phosphatase production. The
study of gene expression and an early osteogenic marker, such as alkaline phosphatase,
at 7 and 14 days allows a quick evaluation of cell commitment. They provide a starting
point to adjust several variables that may affect the stimulation outcome (cell culture media,
stimulation parameters and times).

As far as the authors know, this is the first time that this kind of platform has
been described to study the effect of piezoelectric stimulation on MSCs’ osteogenic pre-
differentiation in vitro before cell transplantation. We have generated an electroactive
and biomimetic environment that recapitulates several aspects of the bone niche. Gelatin
hydrogels are easily processable for cell recovery after stimulation, obtaining a population
of committed MSCs for regeneration therapies alone or in combination with a biodegrad-
able scaffold.

2. Results and Discussion
2.1. Microsphere Characterisation

PVDF and PVDF-CFO microspheres were produced by electrospray. Electrospray
is a one-step technique allowing to produce narrow size distributions of microspheres,
overcoming the limitations of emulsion-based approaches. As presented in Figure 1a, the
microspheres show a diameter distribution of 0.5 to 6 µm in the case of PVDF and 0.5 to
4 µm for PVDF-CFO, with mean diameters of 2.46 ± 1.08 and 1.64 ± 0.6 µm, respectively.
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Figure 1. Physical characterisation of PVDF and PVDF-CFO electrosprayed microspheres. (a) FESEM
images of PVDF and PVDF-CFO microspheres and their corresponding diameter frequency distribu-
tion. (b) Cross-section image of PVDF-CFO microspheres showing the presence of CFO nanoparticles
embedded in the polymer matrix. (c) Room temperature hysteresis loop of PVDF-CFO microspheres.
(d) FTIR-ATR spectra of PVDF and PVDF-CFO microspheres. (e) DSC heating thermograms of PVDF
and PVDF-CFO microspheres.

Adding CFO nanoparticles to the PVDF solution increased its electrical properties
and viscosity, hindering droplet formation [33]. A lower PVDF concentration was used,
originating differences in size distribution and mean diameters. PVDF concentrations from
4 to 10% (w/v) lead to microsphere production, with increasing diameters, whereas higher
concentrations favour fibre formation, as described by Correia et al. [34]. This concentration
range allows a semi-dilute moderate entanglement of the polymer chains, giving rise to
round dense microspheres, as presented in Figure 1a.
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CFO incorporation and the amount were assessed by a vibrational sample magne-
tometer (VSM). The typical hysteresis loop for PVDF-CFO nanocomposites is presented
in Figure 1c. The saturation magnetisation of the analysed sample was compared with
pure CFO powder by applying Equation (1) (see Materials and Methods section), revealing
a real CFO content of 7.8 ± 1.8% (w/w). The composite solution concentration was 20%
(w/w), which indicates a CFO loss of more than 50% during microsphere production. These
results agree with the ones obtained by Gonçalves et al. [25], where different concentrations
of CFO in the composite solution were compared to the final concentration present in the
electrosprayed spheres. It revealed that the content in the multiferroic spheres is always
lower than in the solution due to the higher density of the CFO that causes the settling of
the nanoparticles on the bottom of the syringe during the manufacturing process.

CFO incorporation was observed by cross-sectioning the microspheres. Figure 1b
shows a representative cross-section image of PVDF-CFO microspheres, where white
arrows point to CFO nanoparticles. CFO aggregates are in direct contact with the poly-
mer matrix. Under the applied magnetic field, CFO nanoparticles exert a combination of
mechanical and magnetostrictive actions on the piezoelectric phase favouring the magneto-
electric effect on the surrounding medium as already described by Gonçalves et al. for the
same type of microspheres [25].

PVDF can present five polymorphs (α, β, γ, δ and ε), but not all of them are elec-
troactive. α β, and γ are the most commonly obtained phases by standard manufacturing
techniques. Piezoelectric stimulation of different cell types requires the presence of an
electrically active phase, and β-phase crystallisation is usually preferred due to its high
piezoelectric coefficient. PVDF polymorphic polymers’ vibrational spectra via FTIR have
been validated for phase identification [35]. The method is based on identifying absorption
peaks that exclusively appear in one of the phases. In the case of the α-phase, the non-
electroactive one, its characteristic peaks are around 410, 489, 532, 614, 762, 795, 854, 975,
1149, 1209, 1383 and 1423 cm−1, being 762 cm−1 the one used to unequivocally identify
it [35,36]. In the case of the electrically active phases β and γ, their identification using
FTIR has been a matter of debate in recent years. Traditionally, the peak around 840 cm−1,
present in the samples (Figure 1d), has been considered a characteristic β-phase peak.
Nevertheless, both polymorphs share this band, but it appears as a strong one only for the
β-phase. For the γ-phase, it is shown as a shoulder of the 833 cm−1 peak [37,38]. The bands
at 1279 and 1234 cm−1 are exclusive of β and γ phases, respectively, and are consistently
used to identify them [35].

The representative FTIR-ATR spectra of both microspheres are displayed in Figure 1d,
showing α-phase characteristic bands at 489, 762 and 975 cm−1, highlighted in the graph.
The presence of the 1279 cm−1 band corroborates the existence of the β-phase in the
microspheres. The strong band at 840 cm−1 is used to quantify the percentage of the
crystalline phase in the samples applying Equation (2). Quantification revealed that the
percentages of β-phase in PVDF and PVDF-CFO microspheres were 84.8 ± 2.9% and
84.6 ± 3.3%. Electrospray favours β-phase crystallisation because it occurs at temperatures
lower than 70 ◦C [39,40]. The high voltage applied to the initial solution, the high stretching
ratio of the jet [41], and the incorporation of fillers in the PVDF matrix [29] also improve
the β-phase content. Nevertheless, their contribution is negligible compared to the effect of
the solvent evaporation temperature [18].

Finally, the thermal properties of the electrosprayed microspheres were investigated
using differential scanning calorimetry (DSC). Since PVDF is a semi-crystalline polymer, its
crystalline regions are immersed in an amorphous polymer matrix, and the degree of crys-
tallinity (Xc) can be calculated from the obtained melting enthalpies applying Equation (3).
Figure 1e shows the presence of endothermic peaks around 170 ◦C. Melting temperatures
(Tm) corresponding to PVDF, and PVDF-CFO microspheres were similar, being 167.9 and
168.8 ◦C, respectively. The main difference between both thermograms was the presence of
a double endothermic peak in the samples containing magnetostrictive nanoparticles. This
double peak can be attributed to crystalline imperfection since the presence of CFO can
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generate crystal defects in the sample. These data correlate with the Xc, being higher in
PVDF microspheres (58%) compared to PVDF-CFO (54%). Martins et al. [29] described that
composite materials tend to have a lower degree of crystallinity than pristine PVDF due to
the presence of CFO.

2.2. MSCs Viability and Distribution within the 3D Construct

PVDF or PVDF-CFO microspheres and MSCs were encapsulated in gelatin hydrogels
to generate an electroactive 3D cell culture platform. An illustration of the system is
presented in Scheme 1.
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Scheme 1. Illustration of the 3D cell culture platform based on a gelatin hydrogel and electroactive
microspheres of poly(vinylidene) fluoride containing cobalt ferrite oxide. Figure not in scale.

MSCs viability was evaluated after 24 h of encapsulation since CFO has proven cy-
totoxic for this cell type [42]. Figure 2a shows representative images of the hydrogels,
where MSCs nuclei were stained with Hoechst and dead cells nuclei with propidium
iodide. Gel-PVDF and Gel-PVDF-CFO hydrogels images show the presence of the mi-
crospheres, which appear as black dots in the case of the ones containing ferrite. After
quantification (Figure 2b), no significant differences were observed compared to the gelatin
hydrogels without microspheres, used as viability control [43]. These results revealed that
the magnetostrictive nanoparticles were enclosed inside the polymer matrix, reducing their
cytotoxicity, and not affecting MSCs viability. On the other hand, including electroactive
microspheres inside the gelatin hydrogel successfully resulted in a viable 3D cell culture
platform that could stimulate MSCs.
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Figure 2. Viability assessment of MSCs encapsulated in gelatin hydrogels (Gel), gelatin hydro-
gels containing PVDF (Gel-PVDF) or PVDF-CFO (Gel-PVDF-CFO) microspheres after 24 h in cul-
ture. (a) Representative fluorescence microscope images of cell nuclei (Hoechst-blue) and dead cell
nuclei (propidium iodide (PI)-red) merged with hydrogel bright field images. Scale bar 200 µm.
(b) Quantification of cell viability (n = 3). Statistical differences were determined by non-parametric
Kruskal-Wallis and Dunn’s multiple comparison test (ns indicates non-significant differences).

This is not the first time a hydrogel-based magnetoelectric microenvironment has been
described for cell stimulation. Hermenegildo et al. [44] used methacrylated Gellan Gum
to encapsulate PVDF-CFO microspheres. Nevertheless, cells were not embedded in the
hydrogels but were seeded on the surface, reducing the effect of the local piezoelectric
stimulation. Similarly, Carvalho et al. [45] used the same hydrogel but combined it with
poly-L-lactic acid (PLLA)-CFO microspheres. In these cases, cells were both seeded on the
surface and injected inside the hydrogels to generate a 3D environment. MSCs osteogenic
differentiation induced by piezoelectric stimulation was not tested in any of these works,
although similar platforms were described.

After assessing MSCs viability, a closer look into cell spreading and distribution within
the hydrogel was taken by cryo-sectioning the samples after 1 and 14 days of culture.
Figure 3 shows an even cell distribution along the gelatin matrix in all samples. In the case
of the hydrogels containing microspheres, these appear uniformly distributed, surrounding
the cells. Regarding cell spreading, after 24 h, cells show a rounded morphology with a
scarcely developed cytoskeleton.

After 14 days in culture, MSCs present a fibroblastic morphology with a spindled
shape, characteristic of this cell type in adherent substrates. Gelatin is a molecular derivative
of type I collagen; although less organised, it is biocompatible, cheaper and preserves
the linear tripeptide Arginine-Glycine-Aspartate (RGD) recognition sequence that binds
to several integrin proteins promoting cell attachment, migration, and survival [46], as
demonstrated by the images taken after 14 days. MSCs encapsulation in a gelatin hydrogel
provides the active biological cues lacking in PVDF chemical structure, avoiding PVDF
surface modification in a 3D environment and allowing ECM-cell and cell-cell interaction.

These results are supported by Figure S1 and 1, where a 3D reconstruction of a
non-cryo-sectioned Gel-PVDF hydrogel is shown (see video and Z projections in sup-
plementary materials). In their interior, MSCs are completely elongated and form a 3D
interconnected network.
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Figure 3. Representative fluorescence images of Gel, Gel-PVDF and Gel-PVDF-CFO cryo-sectioned
hydrogels merged with hydrogel brightfield images after 1 and 14 days of static culture. Actin
cytoskeleton appears in red and cell nuclei in blue. Scale bar 100 µm.

2.3. Effect of Piezoelectric Stimulation on MSCs Proliferation and Osteogenic Differentiation

MSCs proliferation was determined after 2, 7, 14 and 21 days in non-stimulated (NS)
and stimulated (S) conditions. Gelatin hydrogels without microspheres were used as
controls to evaluate the effect of the magnetic field generated by the bioreactor. For each
condition tested, Gel, Gel-PVDF and Gel-PVDF-CFO were compared with their stimulated
counterpart and the rest of the conditions at every time point. Gel-PVDF-CFO stimulated
condition is the only one able to provide piezoelectric stimulation due to the presence of
the magnetostrictive nanoparticles and the magnetic field.

As presented in Figure 4a, no significant differences in proliferation are observed after
2, 7 and 14 days. A significant change in proliferation can be noted after 21 days between
Gel NS, and Gel-PVDF-CFO S. The only significant difference in proliferation appears
between these two conditions, and there is no change compared with the non-stimulated
control PVDF-CFO NS. This fact may be motivated by the apparent reduction in absorbance
observed in Gel NS between 14 and 21 days. Cells may be scaping the hydrogels in this
type of sample, but further tests will be needed to extract conclusions from this fact.
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Figure 4. Effect of electromechanical stimulation on MSCs proliferation and differentiation in non-
stimulated (NS) and stimulated (S) conditions. (a) MTS assay at short and long term (2, 7, 14
and 21 days). Graphs show significant differences for each time point between different hydrogel
compositions (n = 3). Differences between time points for the same hydrogel composition were
also assayed, but no significant changes were found. (b) Relative gene expression of characteristic
osteogenic markers (Alkaline phosphatase (ALP), collagen type I (COL I), runt-related transcription
factor 2 (RUNX2) and osteocalcin (OCN)) after 7 and 14 days of culture (n = 4). Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used to normalise gene expression (c) ALP activity
determination after 7 and 14 days of culture (n = 3). Circles correspond to data collected for Gel-
PVDF-CFO NS, squares for Gel-PVDF S and triangles represent Gel-PVDF-CFO S samples, for both
(b) and (c) graphs. All statistical differences were determined by non-parametric Kruskal-Wallis and
Dunn’s multiple comparison test. * indicates p-value < 0.05.

Nevertheless, no changes in proliferation are observed when comparing Gel-PVDF-
CFO stimulated and non-stimulated at any of the studied time points. The magnetic
field generated by the bioreactor does not influence MSCs proliferation since there is no
difference between Gel NS and Gel S hydrogels. In the same way, the lack of significant
difference in Gel-PVDF-CFO NS and Gel-PVDF-CFO S demonstrates that piezoelectric
stimulation has no positive or negative influence on MSCs proliferation using this 3D cell
culture support with the applied stimulation parameters. These results differ from those
obtained by Fernandes et al. [22], where an increase in cell proliferation was observed after
4 days when comparing static and dynamic conditions. Although they used a 3D scaffold
and the stimulation parameters applied were the same, the study was performed using
MC3T3-E1 pre-osteoblast cells. This different cell type might respond in a different way
to piezoelectric stimulation. Carvalho et al. [45] also described an increase in proliferation
after 3 days when using a combination of a gelatin hydrogel with embedded PLLA-CFO
microspheres stimulated with similar parameters, compared with non-stimulated samples.
Even though the cell culture platform is similar to the one described here, they also used
the MC3T3-E1 cell line, which, as already mentioned, can respond differently to this kind
of stimulation.

Proliferation does not change over time in hydrogels with the same composition. This
phenomenon was also reported by Moulisová et al. [47], showing no MSCs proliferation in
gelatin hydrogels when using a basal medium after 14 days. In our case, the presence of
microspheres alone or its combination with a magnetic field in the 3D support does not
alter MSCs proliferation behaviour in the gelatin matrix.
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The effect of electromechanical stimulation on MSCs osteogenic differentiation was
tested after 7 and 14 days in culture by analysing gene expression of characteristic os-
teogenic markers and alkaline phosphatase (ALP) activity. For differentiation assays,
piezoelectric stimulation was combined with a commercial osteogenic medium.

Figure 4b shows the relative expression of ALP, collagen type I (COL I) and runt-related
transcription factor 2 (RUNX2) at 7 days of culture, and ALP, COL I and osteocalcin (OCN)
at 14 days. RUNX2 expression, an early osteogenic marker, increases in Gel-PVDF-CFO
stimulated samples compared to non-stimulated after 7 days. Nevertheless, no differences
are observed in mid-stage markers ALP and COL I. After 14 days, COL I expression is
enhanced in Gel-PVDF S, where no piezoelectric stimulation is experienced since it does
not contain magnetostrictive nanoparticles.

Gene expression agrees with ALP activity measured at protein level after 7 days
of culture, which shows no differences between conditions (Figure 4c). However, after
14 days, ALP activity increases in the non-stimulated condition compared to stimulated
Gel-PVDF and Gel-PVDF-CFO. It contradicts gene expression results at this time point.
ALP expression peak is usually reported after 10 days of culture. The gene expression
analysis at only two-time points may have missed it, resulting in differences only shown at
the protein level.

RUNX2 is a key transcriptional regulator of osteoblast differentiation and bone forma-
tion. Its activation by phosphorylation in MSCs leads to osteogenic commitment and the
subsequent expression of downstream genes involved in the differentiation process, such
as alkaline phosphatase, collagen type I, osteopontin and osteocalcin [48]. Piezoelectric
stimulation in the proposed 3D cell culture platform can activate the osteogenic differentia-
tion pathway with an increased expression of the master regulator RUNX2; nevertheless,
this effect is not sustained in time. The following expression of mid-stage markers, such as
ALP and COL I, is neither enhanced nor ALP activity.

Several factors may influence the effect of piezoelectric stimulation on MSCs differen-
tiation towards the osteogenic lineage [49]. The selection of cell culture media, stimulation
parameters and treatment times are non-trivial choices when designing stimulation ex-
periments. The lack of a standardised stimulation protocol for MSCs makes comparing
published results difficult.

Regarding stimulation parameters, the use of different bioreactors for activating
piezoelectric substrates comprises the use of different stimulation parameters in literature.
Treatment times are also a matter of debate when stimulating MSCs for differentiation. In
this work, a stimulation program divided into an active period of 16 h based on 5 min
of magnetic stimulation and 25 min of resting time, followed by a non-active period of
8 h, was selected to simulate daily human activity. Stimulation was applied for the total
duration of the culture. Again, despite the influence that treatment time may have in a
highly orchestrated and time-dependent process such as osteoblastogenesis, no studies
have been published on its optimisation when using piezoelectric cell culture supports.
Other types of electrical stimulation, the one using conductive cell culture supports and
an external power generator, have explored the effectiveness of diverse factors regarding
treatment time. First, stimulation time per day, thus, the number of hours that cells are
subjected to stimulation each culture day; second, the number of days those cells receive the
stimulation along the duration of the culture and last, the moment where the stimulation is
introduced (early, mid or late stages).

Wechsler et al. [50] demonstrated that for MSCs cultured in indium tin oxide-coated
glass, the optimal stimulation time per day was 6 h rather than shorter (1–3 h) and longer
(24 h). On another note, Zhu et al. [51] artificially divided the 21-day culture time into
7-day periods and applied ES for 1.5 h a day for the selected period. Day 1 to 7 stimulation
improved the expression of MSCs bone-related markers rather than an application from
day 8 to 14 and 15 to 21. This corroborates the results obtained by Hu et al. [52], where
stimulation was applied for 4 h on a selected day (days 0, 2, 4, 6, 8, 10 and 12), demonstrating
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that day 8 was the optimal one since MSCs showed a higher level of mineral deposition
after 14 days, supported by the upregulation of osteogenic genes.

These data reveal that stimulation application for osteogenic differentiation induction
is a time-dependent process, and if optimised, it should only be applied at specific time
points. In this case, application along the culture may have a detrimental effect on the
differentiation process, as shown by the results in gene expression and ALP activity after
14 days.

Finally, media selection in combination with electromechanical stimulation may influ-
ence the result. In this work, a commercial osteogenic medium was used. Nevertheless,
MSCs’ osteogenic fate determination has been widely reported as a result of using piezoelec-
tric biomaterials as cell culture supports in the presence of a growth medium [23,24,53–57].
The strong effect of biochemical inducers present in the osteogenic medium may have
covered the impact of piezoelectric stimulation. Even so, this physical cue, combined with
the osteogenic medium, can trigger RUNX2 expression to a greater extent than osteogenic-
induced non-stimulated samples.

These results leave room for improvement and open the door for future optimisation
of the stimulation protocol regarding treatment times and parameters. Studying different
cell culture media may also be beneficial for assuring a stable osteogenic phenotype before
MSCs administration. The next steps will also include cell recovery from the hydrogel after
stimulation and their injection alone or in combination with a biodegradable scaffold.

3. Conclusions

PVDF and PVDF-CFO microspheres were produced by electrospray, a reliable tech-
nique that allows PVDF crystallisation in β-phase, its most electroactive polymorph. The
microspheres incorporated CFO nanoparticles in their interior without compromising
their crystallinity degree, similar to the one obtained in non-containing magnetostrictive
nanoparticles. Microspheres, together with MSCs, were successfully encapsulated in a
tyraminated gelatin hydrogel, generating a 3D cell culture platform. This platform resulted
in non-cytotoxic for MSCs, meaning that the CFO was well enclosed in the microsphere
polymer matrix. MSCs and microspheres were evenly distributed in the gelatin matrix after
1 day of culture, allowing local stimulation. After 14 days, MSCs showed a well-developed
cytoskeleton with a fibroblastic-like shape, forming an interconnected 3D network cul-
tured in an expansion medium without stimulation. Magnetically induced piezoelectric
stimulation had no positive or negative influence on MSCs proliferation in the proposed
3D cell culture platform. Regarding MSCs’ osteogenic differentiation, combination with
osteogenic medium revealed an increase of RUNX2 expression after 7 days compared
to non-stimulated samples, indicating a stronger activation of the osteogenic differentia-
tion pathway.

4. Materials and Methods
4.1. Microsphere Production by Electrospray Technique

PVDF microspheres with and without magnetostrictive nanoparticles were obtained
by electrospray technique, adapting the protocol from references [25,34]. A 9% (w/v)
PVDF (Solef® 6010 PVDF Homopolymer, Solvay, Brussels, Belgium) solution was prepared
by dissolving the polymer in a mixture 85/15 (v/v) of N,N-dimethyl formamide ((DMF)
synthesis grade, Scharlab, Barcelona, Spain) and tetrahydrofuran ((THF) synthesis grade,
Scharlab) at room temperature for 2 h. The composite solution was prepared by dispersing
Cobalt Ferrite Oxide (CoFe2O4; CFO) nanoparticles (Nanoamor, 35–55 nm diameter) at
a concentration of 20% (w/w) in DMF solvent containing 1% (v/v) Triton X-100 (Sigma-
Aldrich, St. Louis, MI, USA) to prevent particle agglomeration. A high-performance
dispersing machine (ULTRA-TURRAX ®, IKA, Staufen, Germany) at 6500 rpm was used to
disperse the CFO for 30 min, and after that, PVDF (4% (w/v)) and THF solvent were added.
PVDF concentration was reduced for PVDF-CFO microsphere manufacturing due to the
presence of the MNPs in the solution, which produced an increase in viscosity and the
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dielectric constant. The mixture was stirred for another hour until the complete dissolution
of the polymer.

The solutions were placed in a commercial plastic syringe fitted with a steel needle
of 1.7 mm inner diameter. Electrospray was conducted by applying a voltage of 20 kV
with a high-voltage power supply (Glassman High Voltage, Inc., High Bridge, NJ, USA).
A syringe pump (SyringePump) pumped the solution at a rate of 2 mL/h. Microspheres
were collected in a grounded conductive aluminium collector immersed in a bath of liquid
nitrogen [58] placed at 20 cm from the needle tip. The syringe’s content was replaced every
20 min for the composite solution to avoid nanoparticle precipitation.

Microspheres were rinsed with ethanol, sonicated in an ultrasound bath, and sieved
with a 40 µm strainer to eliminate polymer aggregates.

4.2. Microsphere Characterisation
4.2.1. Field Emission Scanning Electron Microscopy

Microspheres were morphologically characterised using a field emission scanning
electron microscopy (FESEM) (AURIGA compact, Zeiss, Jena, Germany) with an accelerat-
ing voltage of 2 kV. Samples were coated with platinum following a standard sputtering
protocol for 90 s (JFC 1100, JEOL, Tokyo, Japan). For observation of nanoparticle distribu-
tion, PVDF-CFO microspheres were cross-sectioned using a focused ion beam (FIB) device
coupled to FESEM, and images were taken after sectioning. Microsphere diameter was
assessed from FESEM images. At least 700 microspheres from three independent batches
were measured using ImageJ software (National Institutes of Health, Bethesda, MD, USA).

4.2.2. Vibrational Sample Magnetometer

Magnetic properties and nanoparticle content in the PVDF-CFO microspheres were
determined using a Microsense 2 Tesla vibrational sample magnetometer (VSM). Magneti-
sation loops M(H) were evaluated up to ± 18 kOe, and pure CFO saturation magnetisation
value (60 emu/g) was compared to the one obtained in the composite samples to obtain
the effective filler content in the microspheres by means of Equation (1) [25]:

CFO wt% =
Saturation magnetization microspheres

Saturation magnetization pure CFO
× 100 (1)

Measurements were taken from samples produced in three different batches.

4.2.3. Fourier Transform Infrared Spectroscopy

Fourier transform infrared spectroscopy (FTIR) has proven to be an effective technique
for determining the electroactive phase content of PVDF. Gregorio and Cestari [39] de-
scribed a method based on identifying the characteristic peaks at 840 cm−1 and 762 cm−1,
which are associated with the presence of β and α phases, respectively. They can be
quantified using Equation (2):

F(β) =
Aβ( Kβ

Kα

)
Aα + Aβ

(2)

The assumption of Lambert-Beer’s law is a requirement to apply Equation (2). Kα

and Kβ values are 6.1 × 104 and 7.7 × 104 cm2/mol, respectively, and correspond to the
characteristic absorption coefficients at 762 and 840 cm-1 obtained from pristine α or β-
phase samples [39]. Aα and Aβ were obtained using a spectrometer in ATR mode (ALPHA
FTIR, Bruker) in the wavenumber range of 4000 to 400 cm-1, at a resolution of 4 cm-1.

Measurements were taken from samples produced in three different batches.
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4.2.4. Differential Scanning Calorimetry

PVDF’s semicrystalline nature requires its thermal characterisation to determine the
crystallinity degree (Xc). Samples were evaluated by differential scanning calorimetry
(DSC) in a DSC 8000 (PerkinElmer). A mass of 2–4 mg of microspheres was encapsulated
in aluminium pans and heated from 0 ◦C to 200 ◦C at a heating rate of 20 ◦C/min in a dry
nitrogen atmosphere.

The degree of crystallinity was calculated with the obtained data by applying Equa-
tion (3) [29]:

Xc =
∆Hm

wPVDF
(

x∆Hα + y∆Hβ

) (3)

∆Hm is the melting enthalpy of PVDF and PVDF-CFO microspheres measured by
DSC. ∆Hα and ∆Hβ values are 93.07 J/g and 103.4 J/g, respectively, and correspond to the
melting enthalpies of α and β phases total crystalline samples [59]. The magnetic properties
allow obtaining the percentage of polymer present in the microspheres (mass fraction;
wPVDF) and FTIR measurements provide the percentage of α and β phases (x and y).

4.3. Microsphere Polarisation

Microspheres were polarised by the corona poling method in a homemade poling
chamber for 60 min at 100 ◦C and ~10 kV to maximise their macroscopic piezoelectric response.

4.4. Cell Response
4.4.1. Microsphere and MSCs Encapsulation in 3D Gelatin Hydrogels

Human bone marrow mesenchymal stem cells (PromoCell, Heidelberg, Germany)
together with PVDF (Gel-PVDF) or PVDF-CFO (Gel-PVDF-CFO) microspheres were encap-
sulated in gelatin hydrogels to generate a 3D cell culture platform. An illustration of the
3D cell culture platform and its components are presented in Scheme 1.

Gelatin (from porcine skin, gel strength 300, type A, Sigma-Aldrich) was conjugated
with tyramine (Sigma-Aldrich) following the protocol described in reference [47], based
on N-hydroxysuccinimide (NHS) (Sigma-Aldrich) and 1-ethyl-3-(3 dimethylaminopropyl)
carbodiimide hydrochloride (EDC) (Iris Biotech GmbH, Marktredwitz, Germany) chem-
istry. Tyramine conjugation allows gelatin enzymatic in situ cross-linking, as described in
reference [60].

To obtain the hydrogels, tyramine conjugated gelatin was dissolved at 2% (w/v) in
Calcium-free Krebs Ringer Buffer (CF-KRB; 115 mM sodium chloride, 5 mM potassium chlo-
ride, 1 mM potassium dihydrogen phosphate, and 25 mM 4-(2-hydroxyethyl)piperazine-1-
ethanesulphonic acid)) for 30 min at 37 ◦C. Hydrogels were prepared with 80% (v/v) of the
gelatin solution, 10% (v/v) horseradish peroxidase ((HRP) Sigma-Aldrich) at 12.5 U/mL
(1.25 U/mL in the final volume), and 10% (v/v) H2O2 (Sigma-Aldrich) 20 mM (2 mM in the
final volume). All solutions were sterile filtered after complete dissolution. 50 µL hydrogels
were used for cell culture assays. For hydrogels containing microspheres, those were added
at 0.6% (w/v) concentration. Microspheres were weighted, resuspended in ethanol and
placed in an ultrasound bath to avoid agglomeration. Microspheres were sterilised by
performing three washes with ethanol 70% under shaking for 5 min each. After sterilisation,
due to PVDF hydrophobicity, ethanol was gradually replaced by sterile deionised water
and microspheres were incubated in a 20% (v/v) FBS aqueous solution overnight. Then,
microspheres were washed three times with deionised water and resuspended in a solution
of HRP/Gel at a volume ratio of 10/80 (mL of HRP/mL of Gel).

Basal medium and standard temperature, humidity and CO2 concentration conditions
were used to expand MSCs [31]. Cell passages above 5 were not reached for any of the
experiments presented here.

Cells were resuspended at 1 × 106 cells/mL in the HRP/Gel solution containing the
microspheres. 45 µL of cell suspension were cross-linked by adding 5 µL of H2O2 on each
well of a 48-well plate and left in an incubator for 15 min to ensure hydrogel cross-linking.
Once crosslinked, a cell culture medium was added.
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4.4.2. Cell Viability Assessment

After 24 h, the viability of MSCs encapsulated with PVDF, and PVDF-CFO micro-
spheres were evaluated. Hoechst 3342 (1.5 µg/mL, Thermo Fisher, Waltham, MA, USA)
and propidium iodide (1.5 µg/mL, Sigma-Aldrich) were added to the cell culture medium
and incubated for 20 min at 37 ◦C. After incubation with fluorescent probes, cells were
imaged using the INCELL 6000 Analyzer system (GE Healthcare, Chicago, IL, USA). Four
randomised visual fields per well were analysed, and viability was determined using
ImageJ software and applying Equation (4):

Viability (%) =
blue counts − red counts

blue counts
x 100 (4)

Gelatin hydrogels without microspheres (Gel) were used as viability controls.

4.4.3. Cell Spreading and Microsphere Distribution

Cell spreading and microsphere distribution within the gelatin matrix were evaluated
after 1 and 14 days of culture. Hydrogels were fixed in paraformaldehyde 4% (v/v) for
15 min at room temperature. Subsequently, samples were submerged in sucrose (Sigma-
Aldrich) solution 30% (w/v) overnight, immersed in OCT (Tissue Tek) and stored at −80 ◦C.
Hydrogel sections of 30 µm were obtained using a cryostat (Leica CM 1860 UV) and placed
on SuperFrost slides (Thermo Scientific).

Samples were washed twice with Dulbecco’s Phosphate Buffer Saline ((DPBS) Gibco)
and permeabilised using Triton X-100 (Sigma-Aldrich) 0.1% (v/v) in DPBS for 10 min.
Permeabilisation solution was removed, and samples were washed twice with DPBS. Slides
were incubated with Rhodamine Phalloidin (ActinRed 555 ReadyProbes Reagent, Invitro-
gen, Waltham, MA, USA), following the manufacturer’s instructions, and Hoechst 3342
(1:250) for 1 h. Slides were finally washed with DPBS, and a mounting medium was added.
Representative images were taken using a fluorescence microscope (Nikon Eclipse 80i).
Gelatin hydrogels without microspheres (Gel) were used as controls.

Non-cryosectioned hydrogels were also observed in a confocal microscope (Leica
DMI8), following the same staining protocol, and image processing for 3D reconstructions
was performed using ImageJ software.

4.4.4. Piezoelectric Stimulation Influence on MSCs Proliferation

The influence of piezoelectric stimulation on MSCs proliferation was assessed by
analysing cell metabolic activity on days 2, 7, 14 and 21 under static (no applied stimuli)
and dynamic (cell culture under magnetic stimulation) conditions. An alternating magnetic
field (0–230 Oe) was provided using a homemade magnetic bioreactor placed inside the
incubator, applying a 0.3 Hz frequency and a 10 mm magnet displacement under the
48-well plate [61]. The stimulation program was divided into an active period of 16 h based
on 5 min of magnetic stimulation and 25 min of resting time, followed by a non-active
period of 8 h when no magnetic stimulation was applied [22,62]. A diagram of the magnetic
stimulation program can be found in Scheme 1.

At different time points, hydrogels were transferred to a new culture plate. The
basal medium was replaced for DMEM without phenol red (Sigma-Aldrich) containing
the tetrazolium salt MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium) (Biovision) at a working dilution of 1:10. Hydrogels were
incubated for 1 h at 37 ◦C. After that, the supernatant was transferred to a new plate and ab-
sorbance at 490 nm was read with a Victor3 microplate reader (PerkinElmer). Gelatin hydro-
gels without microspheres stimulated (S) and non-stimulated (NS) were used as controls.

4.4.5. Influence of Piezoelectric Stimulation on MSCs Osteogenic Differentiation

Gene Expression Analysis
Gene expression of characteristic osteogenic markers was analysed to determine the

influence of piezoelectric stimulation on MSCs’ osteogenic differentiation.
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Gel-PVDF and Gel-PVDF-CFO hydrogels were seeded, and after 24 h of culture in
the basal medium, it was replaced by a commercial osteogenic differentiation medium
(PromoCell). Stimulated samples were placed in the bioreactor. After 7 and 14 days of cul-
ture, hydrogels were digested with collagenase 993 U/mL (Collagenase from Clostridium
Histolyticum, Sigma-Aldrich) in DPBS for 30 min at 37 ◦C. Qiazol lysis reagent (Qiagen)
and chloroform (Scharlab) were added with a ratio of 5:1 to purify nucleic acids. RNA was
purified using an RNA extraction kit (RNeasy Micro Kit, Qiagen, Hilden, Germany), and
the obtained concentration was measured by spectrophotometer (Nanodrop ONE, Thermo
Scientific). 300 ng of total RNA were reverse transcribed using the Superscript III reverse
transcriptase (Invitrogen) and oligo dT primers (Invitrogen), following the manufacturer’s
instructions. Real-time qPCR was performed using LightCycler 480 SYBR Green I Master
(Roche, Basel, Switzerland) in a LightCycler 480 Instrument (Roche), and amplifications
were performed for 40 cycles. Primers used for amplification were designed from se-
quences found in the GeneBank database and are listed in Table S1. For normalisation,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used.

Primer sequences were validated by dissociation curve/melt curve analysis. The rela-
tive changes in gene expression were calculated by E-method, applying Equation (5) [63]:

Fold difference = (Etarget) Ct(target) calibrator − Ct(target) sample/(Enormalizer)
Ct(normalizer) calibrator − Ct(normalizer) sample (5)

where E is the efficiency of the target gene or the normaliser housekeeping gene GAPDH.
Non-stimulated Gel-PVDF-CFO hydrogels were used as calibrators. The raw data were
transferred using the LC480 conversion software (Version 2014), and then PCR efficiency
for each pair of primers was calculated by LineReg PCR (Version 2021.1) [64].

Alkaline Phosphatase Activity Determination
Following the same cell culture protocol described in the previous section hydrogels

were kept in culture for 7 and 14 days, and alkaline phosphatase (ALP) activity was assessed
using SensoLyte ® pNPP Alkaline Phosphatase Assay Kit (Anaspec, Fremont, CA, USA).
Briefly, hydrogels were digested by adding 200 µL of collagenase 993 U/mL in 1X Assay
Buffer for 30 min at 37 ◦C. After digestion, 50 µL of Triton X-100 (Sigma-Aldrich) 1.2%
(v/v) in 1X Assay Buffer was added, and samples were incubated for 10 min at 4 ◦C in an
orbital shaker. After that, samples were centrifuged at 4275 rpm for 10 min at 4 ◦C, and
the supernatant was used to determine ALP activity following the kit’s manufacturer’s
instructions. Acellular hydrogels were used as blanks.

ALP activity was normalised against cell metabolic activity determined by MTS assay,
following the protocol described in Section 4.4.4. Non-stimulated Gel-PVDF-CFO hydrogels
were used as controls.

4.5. Statistical Analysis

Cell culture experiments were performed, at least, in triplicates and a minimum of two
technical replicates were used per technique. All results were expressed as mean ± standard
deviation. Statistical analysis was performed on GraphPad Prism 9 (USA). Non-parametric
Kruskal-Wallis and Dunn’s multiple comparison test were applied, and a 95% confidence
interval was set to accept significant inter-group differences (p-value < 0.05).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/gels8100680/s1, Table S1: Real-time qPCR primer sequences; Figure S1: Z
projection of non-cryosectioned Gel, Gel-PVDF and Gel-PVDF-CFO hydrogels after 14 days in culture;
Video S1: 3D projection of MSC encapsulated in a Gel-PVDF hydrogel after 14 days in culture.
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