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Abstract: Unmanned aerial vehicles (UAVs) have gained increasing attention in boosting the perfor-
mance of conventional networks due to their small size, high efficiency, low cost, and autonomously
nature. The amalgamation of UAVs with both distributed/collaborative Deep Learning (DL) algo-
rithms, such as Federated Learning (FL), and Blockchain technology have ushered in a new paradigm
of Secure Multi-Access Edge Computing (S-MEC). Indeed, FL enables UAV devices to leverage their
sensed data to build local DL models. The latter are then sent to a central node, e.g., S-MEC node,
for aggregation, in order to generate a global DL model. Therefore, FL enables UAV devices to
collaborate during several FL rounds in generating a learning model, while avoiding to share their
local data, and thus ensuring UAVs’ privacy. However, UAV devices are usually limited in terms of
resources such as battery, memory, and CPU. Some of the UAV devices may not be able to build a local
learning models due to their resources capacity. Hence, there is a great need to select the adequate
UAVs at each FL round, that are able to build a local DL model based on their resource capacities.
In this paper, we design a novel and S-MEC-enabled framework that optimizes the selection of
UAV participants at each FL training round, named FedSel. FedSel considers the available UAVs
along with their resource capacities, in terms of energy, CPU, and memory, to determine which UAV
device is able to participant in the FL process. Thus, we formulate the UAV selection problem as
an Integer Linear Program, which considers the aforementioned constraints. We also prove that
this problem is NP-hard, and suggest a Tabu Search (TS) metaheuristic-based approach to resolve it.
Moreover, FedSel is built on top of blockchain technology, in order to ensure a secure selection of UAV
participants, and hence building reliable FL-based models. Simulation results validate the efficiency
of our FedSel scheme in balancing computational load among available UAVs and optimizing the
UAV selection process.

Keywords: UAV networks; Federated Deep Learning; UAVs selection; blockchain; edge computing

1. Introduction

The unmanned aerial vehicles (UAVs) paradigm is a revolutionary innovation with a
strong potential for civic and industrial applications. Internet of Drones (IoD) or Internet
of Flying Things (IoFT) is an actual result of UAVs connections to other smart devices by
means of a powerful multi-sensor platform, communication technologies, computation
units, and IP-based Internet connectivity. Many service providers are investigating to
leverage UAV devices for products transportation and shipping, home package delivery,
crop monitoring and agricultural surveillance, road traffic monitoring, and lastly, as a
search and rescue assistance technology [1].
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Recently, tech giants such as Amazon and Google expressed interest in implementing
new drone-based parcel delivery systems, igniting a trend that has spawned a slew of
commercial UAV-based services and applications. The Federal Aviation Authority (FAA)
and civil aviation authorities in other governments; however, they steadfastly refuse to
open up the national airspace (NAS) to such services and applications, until they fully meet
specific safety and security standards [1,2].

As depicted in Figure 1, the high level of heterogeneity, pervasiveness, and large scale
of UAV systems, are expected to increase security risks to modern aerospace, which is
becoming increasingly reliant on humans, drones, and robots in multiple combinations.
Furthermore, existing security countermeasures and privacy enforcement policies cannot
be directly applied to UAV technology, due to its low computational power and pay-
load capacity. As a result, in order to attain UAVs full potential and obtain widespread
adoption, appropriate confidentiality, privacy, and trust models must be designed for the
heterogeneous UAV environment [2].

Figure 1. MEC-enabled Internet of Flying Things for Smart Cities.

Indeed, security could well be assessed from three main perspectives: (i) foremost,
confidentiality and integrity of data ought to be assured for both stationary and transferred
data, as well as controlling the access and authorisation to the system by other drones
and users; (ii) users’ personal information and data should be well preserved, since UAVs
acquire and handle sensitive data; (iii) trust aspect since UAV environment is composed of
several and heterogeneous devices/users, that handle data of various sorts [1–3].

In this context, on one hand, blockchain is emerging as a promising technology to
provide the confidentiality and integrity of exchanged data between UAV devices, and
generate trust between the involved UAVs, without the need for a trusted third entity [4,5].
On the other hand, collaborative/distributed Deep Learning (DL), such as Federated
Learning (FL), emerges also to not only optimize UAV network management and thus
meeting the requirement of their emerged applications, but also to ensure the UAVs’
privacy by keeping the needed data (i.e., sensed data) on UAV devices [6–10]. Specifically,
FL enables UAV devices to leverage their sensed data to build local DL models. The latter
are then sent to a central node for aggregation, in order to generate a global DL model.
Therefore, FL enables UAV devices to collaborate during several FL rounds in generating a
learning model, while avoiding to share their local data, and thus ensuring UAVs’ privacy.
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Hence, the deployment of blockchain technology as a ledger to provide distributed FL
training is a viable option to address the aforementioned security issues [11,12].

In addition, the amalgamation of UAVs with both collaborative FL and Blockchain
technology have ushered in a new paradigm of Secure Multi-Access Edge Computing
(S-MEC), where the objective is to bring computation very close to UAV devices and in a
secure way. Indeed, a S-MEC node may act as a central node in the federated learning in
order to aggregate the UAVs’ local models and build a global DL model.

However, UAV devices are usually limited in terms of resources such as battery,
memory, and CPU. Thus, some of the UAV devices may not be able to build a local learning
models due to their resources capacity. Hence, there is a great need to select the adequate
UAVs at each FL round, that are able to build a local DL model based on their resource
capacities [5,13].

In this paper, we design a novel and S-MEC-enabled framework, that optimizes the
selection of UAV participants at each FL training round, named FedSel. FedSel considers
the available UAVs along with their resource capacities, in terms of energy, CPU, and
memory, to determine which UAV device is able to participant in the FL process. Thus, we
formulate the UAV selection problem as an Integer Linear Program, which considers the
aforementioned constraints. We also prove that this problem is NP-hard, and suggest a
Tabu Search (TS) metaheuristic-based approach to resolve it as in [14]. Generally speaking,
an NP-hard problem may be addressed in three different ways: (i) applying an iterative
method that produces an optimal solution, (ii) using an approximation algorithm that
runs in a polynomial time, or (iii) using a heuristic technique without any prior guarantee
for both solution quality and computing time. Local search methods are commonly used
to locate nearly optimal solutions to an NP-hard problem in a reasonable computing
time. In this context, tabu search (TS) is one of the most effective heuristic algorithms
available. Moreover, FedSel is built on top of blockchain technology, in order to ensure
a secure selection of UAV participants, and hence building reliable FL-based models.
Simulation results validate the efficiency of our FedSel scheme in balancing computational
load among available UAVs and optimizing the UAV selection process. Our contributions
are summarized as follows:

• We study the problem of participants selection in FL. The problem is formulated as an
Integer Linear Program (ILP), where the objective is to select a subset of UAVs that are
able to build local DL models, while increasing the learning accuracy. Noting that we
leverage Python’s PuLP optimization package [15] to resolve our ILP.

• We show that the problem can be NP-hard and design a novel Tabu Search-based
(TS) algorithm to determine near-optimal solutions. This is critical when the number
of UAVs and their applications is very high and exact solutions are computationally
costly.

• We validate the performance of the proposed scheme via simulation, showing our
scheme to succeed in selecting the suitable UAV participants for FL process, while
optimizing the aggregated accuracy of the generated learning models in FL.

The following is how the rest of the paper is organized: In Section 2, we present
the most relevant existing works. Our proposed UAV selection model formulation and a
metaheuristic solution are presented in Section 3, followed by experimental results and
performance evaluation in Section 4. Finally, Section 5 concluded this peace of work. Note
that used acronyms in this work are illustrated in Table 1, in alphabetical order, for the ease
of reference.
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Table 1. Acronyms List.

Acronym Definition

B5G Beyond 5 Generation
CF Coalition Formation
CPU Central Processing Unit
D2D Device-to-Device
DL Deep Learning
ETSI European Telecommunications Standards Institute
FAA Federal Aviation Authority
FDL Federated Deep Learning
FL Federated Learning
GLS Guided Local Search
HF Hyper-ledger Fabric
ILP Integer Linear Program
IoD Internet of Drones
IoFT Internet of Flying Things
IoT Internet of Things
MAB multi-armed bandit
MEC Multi Access Edge Computing
ML Machine Learning
NAS National Airspace
NP Non Polynomial
NP-Hard Non Polynomial Hard
OCF Overlapping Coalition Formation
RL Reinforcement Learning
SA Simulated Annealing
S-MEC Multi Access Edge Computing
TL Tabu List
TS Tabu Search
TZ Tracking Zone
UAV Unmanned Aerial Vehicle

2. Related Work

This work addresses the UAVs selection in FL process based on blockchain technology,
due the resource-limited nature of UAV nodes. Hence, related work discussion is divided
into two broad categories: Client/Participant selection whatever the network/participant
nature, and resource-constrained client/participant selection in FL process.

2.1. Client/Participant Selection in FL Process

In general context, a wide range of solutions have been designed, that investigate
client/participant selection in FL. The authors in [16], suggested Oort as a strategy to
enhance federated training and testing performance, by guided participant selection. In-
tending to increase model training time-to-accuracy performance, the proposal focuses
on the use of customers who have both data, that can help improve model accuracy as
well as time training complexity. Based on its present loss and estimated delay, each client
is assigned a utility. Each epoch, they recalculate the utility of each client accessible for
training and choose the top k clients. In their work, they consider captured statistical
heterogeneity, but only to a low level of the loss function, used in model training.

The authors in [17] introduced a tier-based FL system (Tifl), which divides clients into
tiers depending on training results. By optimizing both accuracy and training time, the
algorithm dynamically selects participating clients from the same tier for each training
session. As a result, the performance challenges caused by data and resource heterogeneity
are reduced. It is a resource-demanding hardware-based solution. The overall training
duration for each client is unknown initially, so they assess all of the clients at the beginning.

FedSAE is a self-adaptive FL system introduced in [18], which adaptively selects
clients with higher local training losses, in each training cycle to accelerate global model
convergence. To increase device dependability, a prediction technique for each client’s
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affordable workload is also suggested. This would allow for dynamic modification of
the number of local training epochs for each client. The authors measure their model
convergence by training loss.

The authors in [19] introduced FAVOR, which selects a subset of participating clients
for each training round to offset the bias generated by non-IID data. To maximize accuracy
while reducing the number of communication rounds, a deep Q-learning formulation
for client selection is employed. However, the proposed algorithm requires a significant
amount of offline training, and the data on each device should remain consistent during
the process.

Similarly, in [20], a novel client selection method is designed, which is based on the
Multi-Armed Bandit formulation to choose the subset of clients, with the least amount of
class imbalance. They measure local class distributions, by comparing the similarity of FL
server local gradient updates with gradients inferred from a balanced proxy data set on the
server. It is necessary to understand the global data distribution, in order to generate such
a proxy data set, which is difficult to do in FL contexts due to privacy-preservation issues.

2.2. Resource-Constrained Client/Participant Selection in FL Process

Implementing FL in resource-constrained networks has gained a lot of study attention
in the past few years. Various studies investigated the use FL to increase learning efficiency
and enhance network performance. Nonetheless, research targeting UAV selection in
distributed learning is still in its infancy.

In [21], the authors intended to extend the FL process to interact with heterogeneous
clients in a cellular network. To enhance the training process, they present a client selection
scheme for FL at the mobile edge. They aim to solve the problem of longer update/upload
times, due to insufficient computational capabilities or bad wireless channel conditions. To
improve future selections and help design efficient service pricing schemes, it is necessary
to evaluate the contribution of every single client in the training process. Proposing trust
and reputation models to evaluate the reliability of the participating clients is also essential.

Another new resource allocation algorithm for UAV networks based on multi-agent
collaborative environment learning is proposed in [22]. It aims to overcome the communi-
cation delay and enhance the network efficiency, caused by the centralized architecture. In
a distributed architecture, they model each UAV as a self-contained agent, that enhances
the utility of UAV networks, through dynamic selection decisions considering the UAV’s
deployment position, transmission power, and occupied sub-channels.

In [9], the authors introduced Federated Deep Learning concept as a potential solution
for many resource-constrained UAV-enabled wireless applications. In the meantime, several
issues need to be more investigated such as the optimal number of UAVs (clients), as well
as the frequency of local and global model updates. UAVs are not always connected to the
FDL due to energy and connectivity constraints. In this context, FDL algorithms should be
robust to client loss by predicting such scenarios.

In [23], to handle dynamicity, the authors proposed, using a multi-armed bandit
(MAB)-based strategy, to achieve learning convergence effectively in a short period. In
permissioned blockchain context such as Hyper-ledger Fabric (HF), the authors addressed
the trade-off in peers’ number, caused by HF unique execute-order procedure. Meanwhile,
advanced technologies such as federated learning have recently been a better solution for
wireless system self-adaptation problems.

The authors in [24] introduced a combination of algorithms to maximize UAV data
collection from ground sensors, while remaining within time constraints in both offline and
online settings. They use an K-means method to group sensor nodes and deploy selected
cluster heads, then, a UAV-based data collection is used. Tabu-search, simulated annealing
(SA), and guided local search (GLS) were among the offline solutions, while reinforcement
learning (RL) techniques were used online.
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2.3. Comparative Study and Discussion

Table 2 gives a comparative study between the presented related works, according
to several criteria such as, used technology, the heterogeneity support, and considered
parameters. From this table, we can clearly observe that even these works have addressed
the clients selection in FL process, however, the described works in Section 2.1 provided
new selection schemes in general way, i.e., without considering the constraints of the
clients that will be involved in the FL process. Therefore, such works are not suitable for
UAV-based networks due to the resources limited nature of such networks. In addition,
few works have been proposed to deal with UAV selection for FL process, provided in
Section 2.2. Only two solutions among these works that have considered energy, CPU
and memory parameters in their selection. However, these two works did not leverage
any security-related technology, in order to ensure a secure selection of UAV participants.
Furthermore, no solution of these two works have leveraged Edge computing, in order to
enable a distributed UAV selection with a minimum of latency. To alleviate these issues,
we design a novel selection optimization scheme of UAVs in FL, that uses Tabu-search and
considers UAVs’ energy, CPU, and memory capacities in selecting the suitable UAV clients
for each FL round. In addition, our scheme leverages Blockchain and edge computing
paradigms to not only ensure a secure UAV selection, but also to provide a distributed and
low-latency UAV selection.

Table 2. A Comparative Study.

Ref. Year
Used Technologies

Selection Heterogeneity
Considered Parameters

ML FL BC Edge UAV Energy CPU Memory

Res-F
networks

[16] 2021

[17] 2020

[18] 2021 //

[19] 2020

[20] 2021

Res-C
networks

[21] 2019

[22] 2022

[9] 2020

[23] 2022

[24] 2021

Our FedSel 2022

Res-F: Resource-Free, Res-C: Resource-Constrained.

3. FedSel: Our S-MEC-Enabled Selection of UAVs Participants Framework

In this section, we describe our UAVs selection framework for an effective FL process.
We present the problem formulation of UAVs selection as Integer Linear Program (ILP). We
then provide our tabu-search algorithm to resolve our ILP and find a near optimal solution.
Before we proceed, we first give the system model of our UAVs selection problem.

3.1. System Model

Our system considers several geographical regions, that are divided into a set of
Tracking Zones (TZ), as defined by ETSI UAS [25]. Each TZ is covered by only one MEC
infrastructure, as depicted in Figure 2. Thus, each region is covered by several UAVs and
MEC infrastructures, where each UAV is associated with only one MEC infrastructure.

We consider U r
i = {u1, u2, . . . , un} as a set of n UAVs flying in a TZi, with a region ID

r = 1, . . . , k and i = 1, . . . , z the ID of a TZ in the region r. Note that n, the number of UAVs
may vary from one zone to another. We also consider Appj = {app1, app2, . . . , appm} as a
set of running DL-based applications, for which we need to build deep learning models in
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federated way. Such applications may be related to energy consumption of each UAV device,
UAVs placement, routing performance, etc. For more details, the readers may refer to [9].

R 1 R 2

TZ1 TZ2 TZ3 TZ4 TZ5

UAV 
Tier

Blockchain 
Tier

Server Server Server Server Server Server Server

Edge
Tier

TZ1

MEC1

TZ2

MEC2

R 1

R 1

R 2

R 2

TZ1

MEC1

TZ2

MEC2

TZ2

MEC3

UAV selection Training initialization Models update

Figure 2. Envisioned Architecture.

As illustrated in Figure 3, for each considered application, its deep learning model can be
built in FL way, as follows: Ê Based on our model (detailed in Section 3.2), each MEC node
selects the suitable UAVs to participate in the FL process related to each running application.
Ë Each MEC node initiates the federated learning process by building a first global model and
sends it, along with its main parameters, such as learning rate, neural network architecture,
and activation functions, to the involved UAVs, through blockchain layer. Ì Each selected
UAV starts to build its local learning model using its sensed data, in distributed way. Í finally,
each UAV sends its local model (weights) to its MEC node. The latter aggregates the received
local models and generates a global learning model, for each considered application.

Edge Computing Domain

Global Model

Global Models 
Aggregation

Blockchain Infrastructure Domain

Server

Server

Server

Internet of Flying Things Domain

Local Models Local Datasets

Local Models 
Trainings

Energy level less than a threshold.

Insufficient CPU resource. 

Suitable.

Insufficient memory resource.

Participants   
Selection

Training   
Initialization

Models
Updates

Local Learning   
Models Creation

Figure 3. Overview of UAV Selection Problems in Edge-enabled Secure IoFT.
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Noting that blockchain acts as an intermediate layer between the MEC nodes and the
UAV devices, in order to ensure a secure, trust, and confidential FL process. In addition,
this process is repeated during several iterations/rounds, that will be decided by the MEC
node. Hence, our model is applied at each round to decide which UAVs will participate in
the FL process.

3.2. Uavs Selection Problem Formulation

As mentioned before, we aim to design an optimization model that will help us in
selecting the suitable UAVs, for each considered applicationAppi, to participate in building
the needed deep learning model in FL manner, while considering UAVs’ constraints in
terms of resources as well as the leaning accuracy that each UAV can provide. Therefore,
we consider the following formulation (Equation (1)):

Max
n

∑
i=1

m

∑
j=1

(C[i, j] ∗ Accuracyi)

with : C[i, j] =
{

1 ; UAVi is selected f or Appj
0 ; otherwise

(1)
m

∑
j=1
C[i, j] = 1, ∀i = 1, . . . , n

(2)
n

∑
i=1
C[i, j] >= 2, ∀j = 1, . . . , m

(3) C[i, j] ∗ energyi ≥ required_energyj, ∀i ∈ {1, n}, j ∈ {1, m}
(4) C[i, j] ∗ cpui ≥ required_cpuj, ∀i ∈ {1, n}, j ∈ {1, m}
(5) C[i, j] ∗memoryi ≥ required_memoryj, ∀i ∈ {1, n}, j ∈ {1, m}
(6) ∀i ∈ {1, n}, j ∈ {1, m}, C[i, j] ∈ {0, 1}

(1)

where, C[i, j] is a binary decision matrix. The objective function aims to select the adequate
subset of UAVs, among the UAVs covering a tracking zone, maximizing the accuracy of their
local learning models Accuracyi. The first constraint ensures that a UAV is participating
in one and only one FL process for a specific application j, while the second constraint
ensure that for each application, at least two UAVs are involved in building its (application)
learning model. The third constraint guarantees that the energy required to generate
the local model for an application j does not exceed the UAVi battery level. The fourth
constraint aims to ensure that the resource required to build a local model for an application
j, in terms of CPU does not surpass that of UAVi. The fifth constraint ensures that the
resource required for an application j in terms of memory does not exceed that of UAVi.
The last constraint maintains the coefficient matrix C[i, j] as a binary matrix.

It is clear that from the above formulation, our model aims to optimize the participant
(UAVs) selection in the FL process. It ensure that the selected UAVs not only are able to
build their local models in terms of computing resources, but also improve the accuracy
of their learning models. In fact, the UAVs participant selection problem (1) is NP-hard,
where the proof can be deduced by reduction from the partition problem, which is also
proved to be NP-complete.

Besides, the problem is formulated as an integer linear program, which is known
to be NP-complete. In fact, for the matrix C[UAVs, apps], the solutions space size is 2n

(n = UAVs× apps); so, in the worst case, an exact algorithm has to perform a constant
number of 2n operations, which is (O(k× 2n)).

3.3. Tabu-Search Problem Resolution

For large instances of the problem, its complexity can make its solution compu-
tationally extremely expensive. In these instances, meta-heuristics such as the Tabu
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search [24,26,27] are key to finding a sub-optimal solution. Before carrying on, we first
hover at how the Tabu Search method works.

1. Overview of Tabu Search: Tabu search (TS) is a mathematical optimization approach
that uses a metaheuristic local search method to find sub-optimal solutions to large
combinatorial problems, in many practical scenarios. To avoid cycles, TS prevents pre-
viously visited solutions or others using user-provided rules and short-term memory.
The Tabu List (TL) is formed of these memory structures and comprises a list of re-
cently visited locations. As a result, until a termination condition is met, a local search
algorithm is applied to move from one solution to another within the neighborhood
solution space. A predefined number of algorithm iterations or a threshold value is
usually used as a termination condition.
To construct an initial potential solution Cinit, the TS algorithm begins with an ini-
tialization phase. Note that the farther this solution is from the optimal solution, the
greater is the overall execution time.

2. TS-based UAVs participant selection: In the following, we describe how we use TS to
optimize the selection of UAVs to participate in FL process. We first present the main
elements of Tabu Search approach:

• For the first step, we select the available UAVs for an Appj, excluding those that
do not supply the Appj’s required services.

• A potential solution C is a (N 5 M) assignment matrix ensuring that all the
constraints in our formulation are met:

C =

1 · · · 0
... Cij

...
0 · · · 1


• To switch from one solution to another, we simply swap the assignments of two

applications to two UAVs that are randomly chosen. As a result, a move m(N,M)
is a matrix with all of its values equal to zero except the values corresponding to
the new and old assignment positions, which are set to one.

• To achieve a neighborhood solution of C or a new solution C ′, we use the XOR
function: C ′ = C ⊕m.

• The attribute of each solution is the value of its objective function. The TL is then
updated by including the Cbest attribute, which represents the best-obtained solution.

In particular, including the attribute of the best-obtained solution to the TL will allow
to avoid returning to previously visited solutions. As a result, both TL computational time
and required memory are reduced.

To generate an initial potential solution that meets all of our problem constraints, we
apply a “greedy-based” algorithm. To this aim, and for each application, we randomly
choose two UAVs at least, verifying both energy and computational requirements. This
approach is maintained until all UAV applications are assigned. As shown in Algorithm 1,
once an initial solution is obtained, we use the TS-based algorithm to explore the solu-
tion space.
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Algorithm 1: TS-based UAVs participant selection.
Require: An initial solution Cinit, number of UAVs N, number of applications M,

required_energy(M), required_cpu(M), required_memory(M), and
Maxiter;

1

Ensure: An optimal (sub-optimal) assignment matrix Cbest;
2

3 Procedure Move(C : matrix):
4 Generate a neighbor C ′ of the current solution Cbest by applying a move

m ∈ Neighbors(Cbest);

5

6 Procedure Attribute():
7 Compute the attribute of a new solution C ′ (Objective function value);

8

9 Procedure UpdateTL():
10 Add the AttributeC ′ to the TL;

11

12 Program Main:
13 Cbest ← Cinit
14 Attributebest ← Attributeinit
15 while iter ≤Maxiter do
16 Move(Neighbors(Cbest));
17 Attribute();
18 if Attributebest > AttributeC ′ then
19 Cbest ← C ′;
20 Attributebest ← AttributeC ′ ;
21 UpdateTL();

22 iter ← iter + 1;

23 return Cbest;

4. Experimental Results

In this section, we validate our proposed FedSel UAV selection scheme through
simulation for various scenarios as well as comparative study.

4.1. Simulation Setup

The evaluation process was carried out over python implementation of our TS-based
approach. Python is developed under an OSI-approved open source license, making it
freely usable and distributable [28]. In our implementation, we consider one tracking zone
covered by a MEC node, in addition to n UAVs flying in this tracking zone and m MEC
applications requiring federated learning. Specifically, we evaluate our UAV selection
algorithm in terms of objective function outcomes, while varying the number of MEC
applications as well as the number of UAVs. In our simulation, we aim to validate the
efficiency of our scheme in maximizing the objective function value (learning accuracy)
with means of the resource capacity of selected UAVs. Table 3 provides the main simulation
parameters we used. We also note that we generate randomly the different matrices
respecting to the aforementioned formulation constraints. Furthermore, our proposal is
compared to three solutions: (i) energy-based UAV selection, which considers only the energy
capacity in its objective function formulation, (ii) CPU-based UAV selection, which replaces
the accuracy by the CPU capacity in the objective function, and (iii) Memory-based UAV
selection, which is based only on the storage capacity in its objective function.
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Table 3. Simulation Parameters.

Parameter Value

Number of UAVs 30, 45, 60, 75, 90, 105
Number of MEC apps 3, 6, 9, 12, 15, 18 25
UAV accuracy [15 , 100]
CPU capacity [15 , 100] GHz
CPU required [1 , 15] GHz
Memory capacity [15 , 100] GB
Memory required [1 , 15] GB
Energy capacity [15 , 100] watt
Energy required [1 , 15] watt

4.2. Performance Evaluation of Our UAV Selection Scheme

The main performance metric considered in the evaluation process of the developed
approach is the result of the objective function considered in two scenarios: (i) we varied
the number of applications, while the number of UAVs deployed takes two fixed values: 30
and 105. (ii) we varied the number of UAVs, while the number of MEC applications takes
two fixed values: 18 and 25 as mentioned in Table 3.

Table 4 recaps the main results relative to our FedSel approach, along with three
comparative proposals. The obtained objective function scores are presented in the two
different aforementioned cases. In case 1, when the number of UAVs is 90, our FedSel
approach clearly outperforms the other single-criterion algorithms, while the results are
relatively stable for the other UAVs number variations. In case 2, by changing the number
of UAVs each time, the results are relatively convergent, with a clear advantage of FedSel.

Table 4. Objective function numerical results.

Case 1: 18 Apps Case 2: 25 Apps

UAVs Number FedSel Energy-Based CPU-Based Memory-Based FedSel Energy-Based CPU-Based Memory-Based

30 1717 1668 1457 1539 1763 1727 1661 1514

45 2739 2620 2447 2351 2645 2463 2321 2375

60 3439 3350 3139 2915 3638 3529 3481 3212

75 4414 4177 3891 3891 4270 4241 4096 4013

90 5184 5162 4803 4996 5179 5158 5160 5113

105 5780 5745 5650 5405 6265 6210 5935 5962

To prove the supremacy of our FedSel algorithm, we used the Friedman rank test on
the data presented in Table 4. Figure 4 depicts the outcomes of the Friedman rank test. It
clearly shows that the p-values for both scenarios are strictly less than 0.05, which means
that the differences between the obtained objective function scores for each number of
UAVs, and for both cases, are statistically significant.

Figure 5a,b depict the results of the objective function when we increase the number
of applications. As we observe, our TS-based scheme outperforms the other schemes by
maximizing the objective function values, whatever the number of MEC applications in
both scenarios. In other words, our scheme succeeds to select the sub-set of UAVs, for the
federated learning process, that maximize the learning accuracy with respect to their (UAVs)
resource capacities. Therefore, these results demonstrate the efficiency of our TS-based
algorithm to find an optimal (sub-optimal) solution, that improves both learning accuracy
as well as the offered computational resources and energy.
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Figure 4. Friedman rank test results.

(a) (b)
Figure 5. Performance evaluation of our UAV selection scheme in terms of objective function results
while varying the number of applications [3, 6, 9, 12, 15, 18]. (a) the number of UAVs deployed is 30,
(b) the number of UAVs deployed is 105.

Figure 6a,b illustrate the results of our TS-based solution, when we vary the number
of UAVs, while fixing the number of applications to 18 and 25 applications, respectively.
We clearly see that our scheme outperforms the other schemes, by maximizing the objective
function values whatever the number of UAVs. Thus, our scheme enables to optimize
the UAVs selection even when we fix the number of applications and vary the number
of UAVs.

(a) (b)
Figure 6. Performance evaluation of our UAV selection scheme in terms of objective function results
while varying the number of UAVs [30, 45, 60, 75, 90, 105]. (a) the number of applications is 18, (b)
the number of applications is 25.

In general, the evaluation of our TS-based solution confirms beyond doubt the utility of
load-balancing the applications among UAVs to provide the required computing resources
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while considering the energy issue of UAVs. It validates the efficiency of our TS-based
algorithm to select and find the suitable UAVs sub-set that can be involved in the federated
learning process and built an accurate learning models for the MEC applications.

5. Conclusions and Future Directions

This work describes FedSel, as a novel S-MEC-enabled framework that optimizes the
selection of UAV participants at each FL training round. It considers the learning accuracy
of each UAV node, along with its computational resources and energy, to determine whether
a UAV device is able to participate in the FL process or not. Thus, we formulate the UAV
selection problem as an Integer Linear Program, which considers energy, CPU, and memory
constraints. The problem is proved to be NP-hard, and we suggested a Tabu Search (TS)
metaheuristic-based approach to resolve it. In addition, FedSel is built on top of blockchain
technology, in order to ensure a secure selection of UAV participants, and hence building
reliable FL-based models. The evaluation results validate the efficiency of our FedSel
scheme in balancing computational load among available UAVs and optimizing the UAV
selection process in terms of learning accuracy. They also show through the Friedman rank
test on realistic data that the differences between the obtained objective function scores for
different numbers of UAVs are statistically significant.

As a future work, we plan to evaluate the scalability of our scheme in a realistic
UAVs-enabled environment.
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