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Abstract: Climate change is increasing temperatures and causing periods of water scarcity in arid
and semi-arid climates. The agricultural sector is one of the most affected by these changes, having to
optimise scarce water resources. An important phenomenon within the water cycle is the evaporation
from water reservoirs, which implies a considerable amount of water lost during warmer periods
of the year. Indeed, evaporation rate forecasting can help farmers grow crops more sustainably by
managing water resources more efficiently in the context of precision agriculture. In this work, we
expose an interpretable machine learning approach, based on a multivariate decision tree, to forecast
the evaporation rate on a daily basis using data from an Internet of Things (IoT) infrastructure, which
is deployed on a real irrigated plot located in Murcia (southeastern Spain). The climate data collected
feed the models that provide a forecast of evaporation and a summary of the parameters involved
in this process. Finally, the results of the interpretable presented model are validated with the best
literature models for evaporation rate prediction, i.e., Artificial Neural Networks, obtaining results
very similar to those obtained for them, reaching up to 0.85R2 and 0.6MAE. Therefore, in this work,
a double objective is faced: to maintain the performance obtained by the models most frequently
used in the problem while maintaining the interpretability of the knowledge captured in it, which
allows better understanding the problem and carrying out appropriate actions.

Keywords: smart agriculture; evaporation forecast; interpretable machine learning; IoT

1. Introduction

Access to water is a fundamental right of today’s societies. It is a vital resource
for living beings but also for the economic performance, growth, and viability of many
business sectors [1]. However, it is also a finite and shared resource, whose indiscriminate
consumption, whether by individuals, companies, or economic sectors, can have dramatic
consequences for the common good. Therefore, optimising the use of water resources is
a determining factor for the social and economic stability of modern societies [2]. The
application of new technologies in these sectors, such as agriculture, guides the revolution
of a society with an active role to face the related water scarcity problems [3].

Irrigated agriculture accounts for 20% of total cultivated land and contributes 40% of
the total food produced in the world [4]. Fortunately, the agricultural sector is increasingly
applying new technologies that improve its services and processes to increase profits,
reduce costs, and make the system more sustainable [5]. Precision agriculture promotes
the deployments of new technologies such as IoT or Artificial Intelligence in the sector
of agriculture. This discipline covers issues ranging from pest detection to water saving,
frost risk management, harvesting, and climate control of greenhouses, among others.
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Water shortage concerns are growing exponentially in many places around the world but,
particularly, in arid or semi-arid regions such as southeastern Spain. These regions are
suffering high temperatures and a lack of precipitation that causes periods of drought.

This climate scenario also impacts on the water storage used in irrigation due to
evaporation increases [6]. Evaporation is the main component within the hydrological cycle
and plays an important role in the planning, operation, and management of available water
resources for agriculture [7]. In particular, evaporation losses can represent a significant
part of the amount of water stored in a reservoir in semi-arid and arid regions with low
rainfall. That makes it essential to consider evaporation estimates in the design of water
management systems [8]. The evaporation rate can be calculated using direct or indirect
methods [9]. Direct methods measure evaporation by means of pan or Piche evaporime-
ters. These methods are valid and reliable, but they are difficult to maintain, as manual
and daily measurements are necessary. In contrast, indirect methods use meteorological
variables to estimate the evaporation rate, which are based on mathematical models such
as Penman–Monteith and Priestley–Taylor [10]. However, both methods are not able to
achieve acceptable results for estimating evaporation data [11,12] as the physical process of
evaporation is a highly non-linear problem; hence, the methods to be applied must take
this aspect into account.

Machine learning (ML) techniques are efficient tools for solving complex, dynamic,
and non-linear problems; they are capable of predicting different parameters through the
relationships between inputs and outputs without considering the internal mechanisms of
the system [13]. ML has been particularly applied in the field of agriculture [14] for crop
management [15], yield prediction [16], disease detection [17], weed detection [18], crop
recognition [19], crop quality [20], water management [21], soil management [22], and
livestock management [23]. Regarding the evaporation prediction through ML models,
some works have been proposed but mainly using ML methods as black box, i.e., the
internals. The internals of these models are hidden, and therefore, users cannot understand
the interactions between features. This hinders the estimation of the importance of each
feature in the model predictions [24]. However, simpler models such as decision trees (DTs)
may offer less predictive accuracy, and, in some complex scenarios, they are even able to
model the inherent complexity of the dataset, but they are much easier to interpret and
allow understanding the interactions in the modelling process [25,26]. This is particularly
important when the system is intended to model physical phenomena, such as evaporation
that has socioeconomic implications. Indeed, users need to know not only the prediction of
the target variable (e.g., evaporation) but also the causes of the phenomenon in order to
take corrective measures.

In this paper, we present an interpretable model, based on multivariate DTs, for the
daily evaporation forecasting. We also validate this model by using an artificial neural
network (ANN) model. Both models have been trained, validated, and tested with data
from an IoT infrastructure deployment in an irrigated agricultural plot located in a semi-
arid area of the Region of Murcia (Spain) that measures different meteorological and
irrigation events and provides a two-year dataset, covering two dry and hot summer
periods. In addition, for these two periods, the evaporation in the field has been recorded
manually on a daily basis. In what follows, the main research objectives of this manuscript
are addressed:

1. Saving water in evaporation scenarios: The main objective of this work is to design
and deploy a hardware and software infrastructure that, based on the monitoring of
different meteorological components in irrigated plots, can predict the evaporation
rate in following days to take actions that reduce water loss.

2. Using an accurate and interpretable model: To achieve the above objective, the use of
a multivariate DT model is proposed and subsequently evaluated to provide daily
predictions of the evaporation rate. A white box model has been chosen; i.e., the
influence of the input variables on the evaporation prediction can be understood.
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3. Data characterization: A two-year dataset of data from a real irrigated agricultural
plot has been generated. This dataset has been used to develop the exposed models
and is made available for the reproducibility of the results presented here.

4. Assessment with black box methods: In addition to the interpretable method, a black
box method has been used, specifically ANN, that is the most commonly used for this
type of problem in the literature. The aim is to validate the interpretable model results
by means of the black box method results.

The rest of the paper is structured as follows. First of all, Section 2 shows related
works and the background necessary to better understand the main contribution of this
paper. Section 3 shows the in situ IoT infrastructure deployed on the irrigation plot, the
dataset layout generated, and the ML models used, their configuration and measures to
assess results. Finally, Section 4 shows the performance and the result discussion of the
methods targeted before the conclusions and future work are provided in Section 5.

2. Background

Since the early 1990s, ML techniques have started to be used in a wide range of
problems related to water resources management such as precipitation forecasting, rainfall-
runoff modelling, groundwater modelling, water quality assessment, sediment load predic-
tion, and evaporation modelling. However, evaporation is considered the most difficult
hydrological component to estimate. Although there are many works studying and assess-
ing evaporation forecast, there is not any method that has demonstrated strong performance
in all cases. In addition, the use of a particular method depends on the data availability,
quality, and the application objectives. In general, studies show that ANN-based models
perform better than more traditional techniques because they capture the non-linear nature
of the problem [27]. However, since the evaporation problem is complex, researchers
continue to work on obtaining accurate and reliable predictive models, highlighting the
importance of reducing the number of measures used to obtain simpler models.

If we make a non-exhaustive study, in recent years, the analysis of various methods
of evaporation forecasting from data using ML techniques has been carried out. Most
of the studies explore the capabilities of ML techniques in various climates because each
climate has its own characteristics of non-stationarity and stochasticity [28]. In addition,
most of the studies analysed which combinations of weather measures are most suitable
for building the models and compare the results obtained by ML models with the ones
obtained by various empirical methods. The results in all of them indicate that ML models
perform better than empirical ones.

In [8], the authors analysed the use of several ML techniques such as ANN, Least
Squares–Support Vector Regression (LS-SVR), Fuzzy Logic, and ANFIS techniques to
forecast the evaporation in subtropical climates. The most suitable set of measures to
carry out evaporation forecasting was previously analysed by Gamma test. The authors
concluded that the predictions made by ML models improved the results of the traditional
Hargreaves and Samani and the Stephens–Stewart methods. The best results were obtained
by Fuzzy Logic and LS-SVR techniques, and the measures needed in the estimations were
minimum and maximum temperature, minimum and maximum humidity, rainfall, and
sunshine hours.

The authors of [12] used an RBNN and an SVM to predict the evaporation rate in
Malaysia taking into account two different scenarios. In the first scenario, they used time-
series historical data, considering time increments to examine different patterns of data
input and output. The second scenario used the mean temperature together with the
historical evaporation rate. The best results were obtained by the RBNN.

In [29], evaporation forecasting with RBNN, self-organising map neural network, and
multiple linear regression was carried out in Pantnagar (India). First, they carried out a
selection of the most suitable combination of measures for the models using a Gamma
test; then, they calibrated and validated the models for these combinations, and the results
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obtained were compared with empirical models. The best results were obtained with six
variables and RBNN.

In [30], the authors carried out evaporation forecasting using SVR and ANN, and
a combination of them with wavelet transforms at stations in Iran and Turkey. At the
Iran station, the best result was obtained by ANN with temperature and solar radiation
measures. At the Turkish station, the best result was obtained by ANN with temperature,
relative humidity, and solar radiation measures. The combination with wavelet transforms
was not substantially positive in reducing the error in either model.

In [27], the estimation of daily evaporation was performed using a combined MLP
and krill herd optimisation model. They were applied to two stations in northern Iran. The
results were compared with the measured ones with MLP and SVM models. The results
obtained showed that the combined model had lower error. The bio-inspired krill herd
optimisation algorithm was used to find the optimal neural network parameters.

Wu et al. [31] explored the benefits of coupling an extreme learning machine model
with two new meta-heuristic algorithms, i.e., the whale optimisation algorithm and flower
pollination algorithm for monthly pan evaporation prediction. Mohamady et al. [32]
developed several models for monthly pan evaporation prediction. Particularly, they
use optimisation approaches to train the adaptive neuro-fuzzy interface system (ANFIS),
multilayer perceptron (MLP) model, and radial basis neural network (RBNN) model.

Another paper that also used the multilayer neural network and SVM was presented
in [7]. The authors presented a hybrid model with a multilayer neural network and
the Firefly algorithm that was used to predict daily evaporation using meteorological
data from two stations in northern Iran. The Firefly algorithm was used to obtain the
parameters of the multilayer neural network. The proposed model was compared with an
unoptimised multilayer network and the SVM technique, with the hybrid model obtaining
the best result.

In [11], the authors used four ML models for evaporation forecasting in Iraq from data
provided by two weather stations in different climatic zones. A comparison of the different
models in terms of accuracy was carried out, and the most appropriate set of measures
to carry out the prediction was analysed. The paper concluded that in countries where
there was not an adequate maintenance of weather stations, evaporation prediction by ML
models was very interesting. The best results were obtained using the model obtained
by SVM. Regarding the most interesting weather measures in the models, in each studied
station, the set was different.

In [28], the authors worked with data obtained from two stations in Malaysia and
apply three ML models: Extreme Gradient Boosting, ElasticNet Linear Regression, and
Long Short-Term Memory and compared them with the empirical Stephens–Stewart and
Thornthwaite techniques. The models were run on different types of measures, and the
best results were obtained with Long Short-Term Memory. All machine learning models
improved the empirical models.

The authors of [33] presented a study of ML techniques using climatological variables
in three stations located in the Golestan province (Iran). The techniques used had been the
Gaussian process, the K-nearest neighbours, the Random Forest, and the SVM for regression.
The Gaussian process technique obtained better results with fewer climatic variables.

The previous literature review shows ML techniques have better performance than
empirical ones. In addition, ANNs are a good option for modelling the evaporation forecast
by using climate variables. However, ANN models act as a black-box and do not allow
interpreting and understanding the model. Thus, it is not possible to extract knowledge
from the process or the model. It would be interesting to obtain results comparable to those
obtained with ANN models but with techniques that generate highly interpretable models.
In this paper, we present an evaporation study with a twofold objective: good accuracy
and interpretability.
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3. Materials and Methods
3.1. IoT Infrastructure

This study uses data from an IoT system deployed in a southeast Spain plot. The
infrastructure was deployed and explained in [34] . The IoT system measures and saves
periodical climate data. Libelium company (http://www.libelium.com/ (accessed on
23 December 2021)) provided and installed a Smart Agriculture Xtreme device in the
plot. It enables the monitoring of multiple environmental parameters in a wide range of
applications, from plant growth analysis to weather observation. Sensors are available for
atmospheric, soil monitoring, and plant health. Figure 1 shows part of the IoT infrastructure
and some sensors in detail. The sensors used in this study are as follows:

1. Apogee SQ-100x: Collects photosynthetically active radiation expressed as photo-
synthetic photon flux density (photon flux in units of micromoles per square meter
per second).

2. Meter ATMOS 14: Measures air temperature in Celsius degrees, air humidity in
percent, barometric pressure, and vapour pressure in kilo Pascals.

3. Teros 12: Measures soil temperature in Celsius degrees, soil conductivity, and soil
permeability in deciSiemens.

4. MaxiMet GMX: Measures wind velocity in meters per second.

The IoT infrastructure has three main sub-modules with three sensors connected to
each of them (i.e., humidity, temperature, and wind speed). Each sub-module communi-
cates with the central module (actuator) using LoRa technology. LoRa enables long-distance
communications, which allows the sensors to be dispersed in the agricultural field, keeping
the connection to the local network. Finally, the module sends data to the cloud; specifically,
the data are stored in an Amazon Web Services database. In addition to IoT infrastructure,
we measure daily evaporation using a Piche evaporimeter; see Figure 1c. From it, we
collected two seasons of data manually every day during the warmer and drier months in
the region of Murcia.

(a) (b) (c)

Figure 1. IoT infrastructure deployed for data collection. (a) Overview of IoT sensors deployed.
(b) Detail of the leaf vaporisation sensor. (c) Piche evaporimeter model deployed.

http://www.libelium.com/
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3.2. Dataset

The IoT infrastructures and instrumentation described above have been used to gen-
erate a real dataset from an irrigated plot located in Cieza (Murcia, Spain). The dataset
is structured as follows. Firstly, continuous meteorological data are available from the
deployed Libelium IoT infrastructure since February 2020 at a 15-min granularity. As the
objective of this paper focuses on the daily evaporation forecast, these data have been
processed and grouped to generate the daily mean of these variables. Moreover, the dataset
has been completed with the evaporation rate measured manually using the evaporimeter
described above. In particular, it has been collected during the driest periods of the hydro-
logical year in the study region. They started to be obtained from 3 August to 27 October
2020 and from 15 April to 5 September 2021.

Some authors include “Hydrometrical deficit or balance” (HD) as a variable to predict
evaporation. The HD is calculated on the basis of certain climate variables, where the most
common equation is E = K×HD, where K sets out the relation with other climate variables
such as wind velocity, air temperature, etc. [35]. In our case, we are going to include in
the dataset the variable HD to study if it is relevant. However, the above equation is not
going to be used, since in this work, the evaporation prediction is going to be done by other
techniques. Thus, HD is defined as the difference between the saturated vapour pressure
at the free surface Ea and at the ambient conditions VP.

HD = (Ea−VP) (1)

Unfortunately, the in situ infrastructure described above does not provide Ea as such.
However, it is known that Relative Humidity (RH) can be obtained from RH = VP

Ea × 100,
from which Ea = VP

RH × 100.
Replacing this value Ea in Equation (1), HD can be rewritten as HD = VP×100

RH −VP,
which allows us to obtain HD from the measurements provided by our infrastructure.

Summing up, the dataset under study brings together these meteorological and evap-
oration data, which includes 216 total observations. The dataset includes the following
variables: “Soil Temperature” (ST), “Soil Permeability” (SP), “Soil Conductivity” (SC), “Air
Temperature” (AT), “Wind Velocity” (WV), “Vapour Pressure” (VP), “Relative Humidity”
(RH), “Air Pressure” (AP), “Solar Radiance” (SR), “Hydrometrical deficit” (HD), and
the output variable “Evaporation” (E). The measurement units for the different climatic
variables are ◦C, dS/s, dS/s, ◦C, m/s, kPa, %, kPa, µmol/m2/s, kPa, and mm, respec-
tively. Therefore, each instance is described by the values of 10 climate variables and
1 output variable.

3.3. Techniques Used, Their Configuration, and Measures to Assess Results

This section briefly describes the techniques used for the regression process: an Artifi-
cial Neural Network and a Decision Tree. Although one of the more popular techniques to
solve the regression task is the conventional regression analysis method, due to the rise of
ANN and DT techniques, researchers are starting to use them, obtaining good results [36].
In addition, the configurations used in the experiments are detailed, and the different
measures used to asses results are indicated.

3.3.1. Artificial Neural Network Technique

ANN models are one of the most widely used ML models. They imitate the way that
biological neurons learn. The most common learning algorithm for this classifier is known
as backpropagation. In the training phase, it adjusts the values of the weights of its neurons
so that an input pattern generates a target output [37,38].

One of ANN’s difficulties is to choose a correct architecture, i.e., the number of hidden
layers, neurons per layer, learning rate, etc. For this purpose, the optimal architecture has
been defined by testing different values of its hyperparameters: among them, the relu and
tanh activation functions have been tested, being the functions that activate neurons within
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the ANN; constant and adaptive learning rate, it is the rate schedule for weight updates;
the solver function that optimises weights, such as sgd and adam; internal validation
percentages of 10% and 20% [39]; with or without early stopping, to terminate training
when the validation score does not improve; and different values for maximum iterations,
penalty parameter alpha, and the number of hidden neurons has been tested. The ANN
architecture and hyperparameters configuration used in this work will be given in Section 4.
All parameters and hyperparameters have been optimised by performing a set of additional
tests to get the most optimal ones for the given problem.

In addition, the Python library sklearn has been used to create the ANN, where the
model used is the MLPRegressor [40].

3.3.2. Decision Tree Technique

A DT is a tree structure in which each internal node corresponds to a question about
one of the variables and each leaf node corresponds to a prediction for the output vari-
able. A DT can be seen as a rules set of the form “if x then y”, where each rule is a
branch from the root node to each leaf node of the DT. The DT model-base techniques
allow both classification and regression tasks to be performed [41]. The DTs for the re-
gression task obtain numerical values at the leaf nodes. The M5P technique obtains DTs
for regression [42]. This technique builds regression trees with the characteristic that the
leaf nodes contain multivariate regression models, which are used to obtain the numerical
values as predictions [43]. Specifically, the M5P technique obtains leaf nodes of the form
w1 × attr1 + . . . + wn × attrn + w, and therefore, the rules (branches of the regression tree)
show relationships of the form:

if (attr1 = v1) and . . . and (attrp = vp) then Y = w1 × attr1 + . . . + wn × attrn + w.

The M5P technique has been run using Weka workbench [44]. The stop condition in
the construction of a branch of the regression tree is “number of instances M in the node”.
The values of the parameter M that obtain the different results will be given in Section 4.

3.3.3. Measures Used to Assess Results, Validating Experiments

For all experiments, 5-fold cross-validation averaged 3 times (denoted 3 × 5 cv) is
performed. That is, the dataset is divided into 5 equal parts, and 5 different models are
obtained by taking 4 parts to learn the model and the remaining part as a test. This process
is repeated 3 times. The measure used to evaluate shows the average value of the 15 models
obtained [45]. In addition, an evaluation with a complete training dataset is carried out.
Given the real data for variable X (evaporation) and their predictions Y (obtained by the
corresponding techniques), different measures [46] are used to evaluate the predictions
quality. These measures are defined as follows:

• Coefficient of determination (R2) between two samples, observed values X and pre-
dictor values Y, measures the proportion of the variance in the sample X that is

predictable from the sample Y. It is defined as R2(X, Y) = 1− ∑n
i=1(xi−yi)

2

∑n
i=1(xi−X)2 ∈ [0, 1]

where X is the mean of the sample. High values of the measure indicate a behaviour
highly reliable for future forecast of X by Y .

• Pearson Correlation Coefficient (CC) between two samples, X and Y, measures the
linear statistical correlation between X and its prediction Y. This measure is defined
as CC(X, Y) = Cov(X,Y)

σXσy
∈ [−1, 1] where Cov is the covariance between X and Y, and

σX and σY are the standard deviation of X and Y, respectively. If CC(X, Y) ∈ [0.5, 1],
there is a strong positive correlation (when X is increased, there is also an increase
in Y) and if CC(X, Y) ∈ [−1,−0.5], there is a strong negative correlation (there is a
inverse relation between X and Y, when X is increased, Y is decreased).

• Mean absolute error (MAE) between samples of observed values X and predictor
values Y is defined as MAE(X, Y) = 1

n ∑n
i=1 |xi − yi|.
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• Mean squared error (MSE) between samples of observed values X and predictor
values Y is defined as MSE(X, Y) = 1

n ∑n
i=1(xi − yi)

2.

4. Results and Discussion
4.1. Preliminary Analysis

Table 1 shows a descriptive analysis (mean, standard deviation, minimum and maxi-
mum) for all variables included in the dataset. Moreover, the linear correlation coefficient
of each variable in the dataset with the manually measured evaporation is included.

Table 1. Variable descriptive statistics. Mean, standard deviation (std), minimum (Min) and maxi-
mum (Max), and correlation with the measured evaporation (CC).

Variable Mean std Min Max CC

Evaporation (E) 8.18 2.51 4.30 14.60 —
Soil Temperature (ST) 22.54 3.69 13.61 27.80 0.7814
Soil Permeability (SP) 8.40 0.96 7.04 13.25 −0.0974
Soil Conductivity (SC) 0.02 0.03 0.00 0.16 −0.2126
Air Temperature (AT) 29.18 5.25 12.20 40.60 0.7369
Wind Velocity (WV) 1.57 0.50 0.57 3.66 0.1711
Vapour Pressure (VP) 1.53 0.40 0.63 2.59 0.4835
Relative Humidity(RH) 58.20 12.68 23.03 88.28 −0.3032
Air Pressure (AP) 97.68 0.36 96.23 98.46 −0.2648
Solar Radiance (SR) 484.85 156.72 10.94 949.18 0.2314
Hydrometrical deficit (HD) 1.16 0.53 0.16 2.72 0.6541

Table 1 also describes how the variables with the highest correlation with respect to
evaporation are soil temperature and air temperature followed by hydrometrical balance
and vapour pressure. Weakly and inversely correlated with evaporation are the variables,
in decreasing order, solar radiation, wind velocity, soil permeability, soil conductivity, air
pressure, and relative humidity.

4.2. Black Box and Interpretable Models

Next, by applying the ANN and DT techniques presented, the relationship between
all the input variables and the evaporation output is studied. To do that, two tests are
performed using different dataset variables. The two dataset configurations, denoted
dataset1 and dataset2, differ in different variables derived from the use or not of the variable
HD (these datasets are available on the website http://www.vielca.com/web/pages/
proyectos/idi/gestion_recursos_waterot.php (accessed on 23 December 2021)).

• dataset1: Obtained from nine variables (all variables of the dataset except the variable
HD) to predict the output variable E.

• dataset2: Obtained from eight variables (all variables of the dataset except the variables
VP and RH) to predict the output variable E.

The models obtained with the different dataset configurations are denoted by (Model A)t
and (Model B)t indicating with the subscript t the technique (ANN or DT) used.

4.2.1. Artificial Neural Networks for Regression

Table 2 shows the best optimised parameters for (models A)ANN and (model B)ANN .
Table 3 shows the results for models A and B obtained by the ANN. It is noteworthy

that at the R2 level, both models are equivalent, but at the level of the MAE and MSE metric,
model A obtains lower error.

http://www.vielca.com/web/pages/proyectos/idi/gestion_recursos_waterot.php
http://www.vielca.com/web/pages/proyectos/idi/gestion_recursos_waterot.php
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Table 2. Artificial Neural Network hyperparameters.

Parameter Value Parameter Value

hidden_layer_sizes (120, 80, 40) learning_rateinit 0.01
activation relu alpha 0.0001

solver adam early_stopping True
learning_rate adaptive validation_ f raction 0.2

max_iter 3000

Table 3. Artificial Neural Network results. Values (mean and standard deviation) of the different
measures when using a 3 × 5-fold cross-validation and when using the whole dataset as training
are shown.

(Model A)ANN (Model B)ANN

3× 5 cv Training 3× 5 cv Training

R2 0.8265 (0.0128) 0.8842 0.8287 (0.0156) 0.8870
CC 0.9091 (0.0070) 0.9405 0.9103 (0.0086) 0.9419

MAE 0.5800 (0.1030) 0.6286 0.6170 (0.0876) 0.6152
MSE 1.0391 (0.1089) 0.7289 1.2030 (0.0554) 0.7115

4.2.2. Decision Tree for Regression

In the DT M5P, the best optimised parameters of M are 16 and 23 for dataset1 and
dataset2, respectively. Table 4 presents the results obtained by the DT M5P. The model that
obtains better values (higher values for R2 and CC, and lower values for MAE and MSE
with smaller standard deviations) is the one that uses all variables except the variable HD
(model A)DT .

Table 4. Decision Tree results. Values (mean and standard deviation) of the different measures when
using a 3 × 5-fold cross-validation and when using the whole dataset as training are shown.

(Model A)DT (Model B)DT

3× 5 cv Training 3× 5 cv Training

R2 0.8448 (0.0056) 0.9004 0.8391 (0.0111) 0.8670
CC 0.9198 (0.0034) 0.9503 0.9162 (0.0062) 0.9390

MAE 0.7033 (0.0059) 0.5737 0.7449 (0.0451) 0.6217
MSE 0.9767 (0.0353) 0.6268 1.0128 (0.0701) 0.7529

4.3. Analysis and Discussion

The results obtained by the ANN are satisfactory, and the models are robust and
consistent, as indicated in the literature. However, ANN models are black box models, and
it is not possible to draw a conclusion about which variables are the most significant or
important. Thus, DT are proposed to improve the model’s interpretability. The results of
the ANN and the DT are at the same level of accuracy, robustness, and satisfiability, and
both models can be used as a predictive level. However, regarding the interpretability, the
best model is the DT. Analysing the accuracy and fit of the two DT models, the best model
is (model A)DT . This model is shown in Figure 2.
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if ST ≤ 24.837 then
if AT ≤ 27.25 then

if SC ≤ 0.004 then
if AP ≤ 97.577 then L1;
if AP > 97.577 then L2;

if SC > 0.004 then L3;
if AT > 27.25 then

if SP ≤ 8.608 then L4;
if SP > 8.608 then L5;

if ST > 24.837 then
if ST ≤ 26.172 then L6;
if ST > 26.172 then

if VP ≤ 1.562 then L7;
if VP > 1.562 then L8;

where the leaf nodes are as follows:
L1 : E = 0.0458 AT − 0.0020 AP + 0.0526 ST + 0.0989 SP + 1.0533 SC + 2.8464
L2 : E = 0.0458 AT − 0.0501 AP + 0.0526 ST + 0.0989 SP + 1.0533 SC + 7.6735
L3 : E = 0.0774 AT − 0.1223 AP + 0.0526 ST + 0.0989 SP + 0.4222 SC + 14.4847
L4 : E = 0.0601 AT − 0.2768 AP + 0.1984 ST + 1.3820 SP− 1.1266 SC− 0.0011 SR + 17.6927
L5 : E = 0.1210 AT − 0.3084 AP + 0.1037 ST + 0.1527 SP− 1.1266 SC + 0.0004 SR + 29.9683
L6 : E = 0.1378 AT − 0.1944 AP− 0.3096 VP + 0.3853 ST + 0.7966 SP + 8.6632
L7 : E = 0.0437 AT − 0.1944 AP− 1.2272 VP + 0.9411 ST + 0.0453 SP + 6.2571
L8 : E = 0.0437 AT − 0.1944 AP− 0.7572 VP + 0.6474 ST + 0.0453 SP + 12.5635

Figure 2. M5P regression tree to predict the value of the variable evaporation (E).

For illustrative purposes, Figure 3 shows the behaviour of (Model A)DT in predicting
the output variable E for the two used time periods. At the bottom of the figure is the
residual error graph, showing for each observation the difference between the predicted
value and the true value. As can be seen, the errors are minimal, and the obtained prediction
is quite satisfactory.
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Figure 3. Behaviour of (Model A)DT in predicting the output variable Evaporation. The red line
shows the behaviour of (Model A)DT and the black line shows the actual values in the analysed time
periods. The residual error plot shows for each observation the error between the predicted and the
real value.

Analysing the results in detail, (Model A)DT obtains very satisfactory results: high
value of the coefficient of determination (R2) and an average error of 0.6 mm in the evapo-
ration rate. The detailed analysis of the interpretable model (Model A)DT is as follows:

• The climate variables used in the model are Soil Temperature, Soil Permeability, Soil
Conductivity, Air Temperature, Vapour Pressure, Air Pressure, and Solar Radiance.
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• The climate variables that the model does not use are Relative Humidity and Wind
Velocity. Therefore, these measures do not need to be collected.

• The discriminant climate variables are: Soil Temperature, Air Temperature, Soil Conduc-
tivity, Air Pressure, Soil Permeability, and Vapour Pressure.

• The most important climate variable is Soil Temperature.
• At a second level of importance, the climatic variables are Air Temperature and Vapour

Pressure.
• If Soil Temperature is greater than 24.837 ◦C, then 37% of the predictions only use that

variable with the support of the variable Vapour Pressure.
• If Soil Temperature is smaller than 24.837 ◦C, then 63% of the predictions are made with

the support of the variables Air Temperature, Soil Conductivity, Air Pressure, and Soil
Permeability.

– If Air Temperature is smaller than 27.25 ◦C, then 32% of the predictions are made
with the support of the variables Soil Conductivity and Air Pressure.

– If Air Temperature is greater than 27.25 ◦C, then 31% of predictions are made with
the support of the variable Soil Permeability.

With the detail of the model, the thresholds for each input variable describing the
prediction of the evaporation rate can be checked. In addition to these thresholds, the most
relevant variables and those that the model does not use are also specified. This can be
understood by any non-technical person and can help to design a new IoT infrastructure
with fewer sensors, thus reducing the economic cost of the infrastructure.

5. Conclusions and Future Work

Evaporation is one of the major reasons for water loss in irrigated agriculture. Mech-
anisms are in place to prevent evaporation losses in storage reservoirs to make the best
use of this scarce resource. The problem with the evaporation rate is that it is a measure
that has to be estimated or collected manually in order to be analysed. Then, this work
presents an interpretable ML model to predict evaporation in irrigated agricultural plots
on a daily basis. It is based on a multivariate DT for regression that takes information from
an IoT system deployed in a real irrigated plot. The interpretable model achieves results
with an average error of 0.6 mm in evaporation rate and a value of R2 of 0.85. The exposed
model obtains similar quality results to the ANN, (i.e., black box model) that has shown
good results in the literature. However, this model also offers the possibility to understand
which meteorological variables are most likely to affect the predicted evaporation. Thus,
the climatic variables in the best DT model are Soil Temperature, Soil Permeability, Soil
Conductivity, Air Temperature, Vapour Pressure, Air Pressure, and Solar Radiance. On
the other hand, the variables Relative Humidity and Wind Velocity are not used, so in the
future, they might not be necessary in a new IoT infrastructure. In addition, the proposed
model as the best predictor allows that the farmer can cultivate in a sustainable way, realis-
ing better water management for irrigation. In fact, because evaporation prediction can
affect irrigation decisions, in the future, we will work on obtaining sub-daily predictions to
develop more efficient irrigation systems.
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