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Abstract

Lifespan and healthspan machines can undergo C. elegans image segmentation errors due

to changes in lighting conditions, which produce non-uniform images. Most C. elegans mon-

itoring machines use backlight techniques based on the transparency of both the container

and media. Backlight illumination obtains high-contrast images with dark C. elegans and a

bright background. However, changes in illumination or media transparency conditions can

produce non-uniform images, which are currently alleviated by image processing tech-

niques. Besides, these machines should avoid C. elegans exposure to light as much as pos-

sible because light stresses worms, and can even affect their lifespan, mainly when using

(1) long exposure times, (2) high intensities or (3) wavelengths that come close to ultraviolet.

However, if short exposure of worms to light is required for visual monitoring, then light can

also be used as a movement stimulus. In this paper, an active backlight method is analysed.

The proposed method consists of controlling the light intensities and wavelengths of an illu-

mination dots matrix with PID regulators. These regulators adapt illumination to some

changing conditions. The experimental results shows that this method simplifies the image

segmentation problem because it is able to automatically compensate not only changes in

media transparency throughout assay days, but also changes in ambient conditions, such

as smooth condensation on the lid and light derivatives of the illumination source during its

lifetime. In addition, the strategic application of wavelengths could be adapted for the

requirements of each assay. For instance, a specific control strategy has been proposed to

minimise stress to worms and trying to stimulate C. elegans movement in lifespan assays.

Introduction

The tiny nematode worm Caenorhabditis elegans (C. elegans) offers us a window into biology

because they allow researchers to track in vivo biological events [1, 2]. The ease with which C.
elegans can be grown, manipulated and observed has driven research to new areas.
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Different in vivo assays can be run in which C. elegans models are used to analyse their phe-

notypes, through which toxicity factors can be inferred to certain compounds, such as thera-

peutic factors to some neurodegenerative diseases, alterations in ageing, etc. As part of this

wide variety of assays, two models interest us, Lifespan and Healhspan, for which the motility

phenotype is the most widely observed. The Lifespan model [3–10] measures the survival per-

centage of samples submitted to different conditions to infer which factors alter life expec-

tancy. Survival is determined by worm movement existence (life) or its lack of movement after

poking (death). In the particular case of the lifespan assay with C. elegans, it is known that

maximum life is about 3 weeks, and lasts a few weeks more for some strains, which make

experiments shorter than for other animals. Healthspan [11–13] studies the nematode life

quality by observing animal motility features. Reduced movement or its lack of coordination

can be due to causes such as ageing, neurodegenerative diseases, intoxication, muscle prob-

lems, etc. These assays need about 100 specimens per condition, which entails a huge workload

for researchers to handle them, count them and measure their features. In addition, some of

these tasks have to be done daily, which means arduous work. This is why a need arises to

automate these assays. Apart from saving researcher time, automated technology also promises

objectivity, constant monitoring and new measures of worm features.

There are a number of researcher groups worldwide that are developing new technologies

to automate C. elegans monitoring tasks. Each technology uses a different methodology, but

the common subject is to detect worm movement by imaging at the mesoscale level when

monitoring standard Petri plates completely [14–17].

Full automation of lifespan and healthspan experiments is a challenging problem because

the images captured during assays can present spatial and temporal variability. Spatial variabil-

ity in an image can be due to different Escherichia coli or tested compound concentrations,

contaminated areas, lint from the outside on caps (which can adopt quite similar shapes to

worms), light refractions on Petri walls, etc. Despite worms’ short lifespans, temporal variabil-

ity remains for various reasons: biological changes (worms feeding, worms defecation, worm

tracks, E. coli growth, contamination, etc.), changes in temperature (agar evaporation, internal

condensations on lids, etc.) and derivatives from devices (illumination derivatives, differences

in Petri plate location on different days, sensor sensitivity changes, etc.). The present study

pays attention to the C. elegans segmentation problem on standard Petri plates, which are due

mainly to: (1) medium changes; (2) internal condensations on lids; (3) illumination source

derivatives. These variations in lighting conditions could affect the image quality in some

areas, and could imply losing some information that might not be recovered with conventional

segmentation algorithms.

In the last few years, several software techniques have been used to correct these uneven

lighting errors in assays run with C. elegans for capturing images and subsequently processing

them. Usually a threshold is tuned manually during the assay. However, automatic adaptive

methods are used by, for example, [18–20], and adaptive Gaussian is also employed [21], as is

Otsu’s method [22, 23], which is a clustering-based image and a method based on contrast

[24]. There are also graph methods [25, 26] or background modelling [27]. Another technique

is edge [28, 29], which detects image gradient magnitude. Filling object areas is usual for

improving the segmented image by using dilate and erode methods [30, 31] or filling opera-

tions [31].

From our point of view, instead of solving this problem manually or via software, it is better

to solve it by hardware with an intelligent illumination system that is able to adapt illumination

to changing conditions. This solution must be robust for some changing conditions by simpli-

fying the image segmentation problem. Nevertheless, as far as we know, none of the state-of-

the-art monitoring systems has actively controlled its light.
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Besides, it has been demonstrated that all visible light wavelengths are lethal for transparent

C. elegans, especially when applying (1) long exposure times, (2) high intensities and/or (3)

wavelengths that come close to ultraviolet [32]. However, this mortality becomes insignificant

if light intensity is reduced to units less than μW/mm2 and the exposure time is cut to a few

seconds per day. Exposure of worms to light leads to withdrawal responses [33, 34], mainly if

blue light is applied. WorMotel [35] used a non-controlled red light to detect movement and

emitted a blue flash as a stimulus to force movement behaviour in lifespan assays, instead of

using illumination with on/off control, which affects the whole plate. In our view, it could be

very interesting to control light intensities, exposure times and wavelengths in small zones of

the plate as and when desired.

In this paper, an active backlight method is proposed for lifespan and healthspan machines

that work with transparent Petri plates and media as it allows precise automatic illumination

control. We analyse a control technique based on active backlight capable of regulating dot-to-

dot intensity light and its wavelength (Red, Green, Blue). The proposed method consists of

controlling the light intensities and wavelengths of a matrix of illumination dots with PID reg-

ulators. These regulators obtain feedback from captured images to adapt illumination to

changing conditions. The control references are the desired image intensities. These references

are set to the lowest intensity values to allow robust segmentation for minimising worms stress.

In addition, a new control action strategy is proposed to take advantage of the wavelength con-

trol to stimulate C. elegans in an attempt to improve lifespan results.

Materials and methods

Materials

Different illumination techniques can be applied to monitor behaviours of the worms

cultured on standard Petri plates. These techniques are defined by the location in relation to

the illumination device, the inspected plate and the camera. A backlight configuration consists

of placing a camera in front of the illumination system and the inspected plate in between. In

our case, the inspected subjects are C. elegans cultured on a 55-mm Petri dish with NGM (Fig

1A).

A matrix of light dots is required to develop a spatial control, with which intensity and

wavelength can be controlled dot-by-dot. Each dot is composed of some subdots of different

wavelengths. In our case, these subdots are red, green and blue (R, G, B). There are dead zones

between these dots where no light could be emitted, which produces a dark reticular structure

on captured images. To avoid this problem, we propose using a diffuser, which is placed on

top of the light matrix. On the diffuser, we place the Petri dish in such a way that the light emit-

ted by the dots crosses the transparent Petri dish and media towards the camera that captures

high-contrast images with dark C. elegans and a bright background. The camera, besides being

used to capture images for monitoring purposes, also serves as the control loop feedback sen-

sor to allow the lighting of each dot to be regulated.

Moreover, in order to control lighting, it is necessary to isolate the system from the environ-

ment to reduce ambient light disturbances. Consequently, the system is enclosed in a box,

which is not depicted in Fig 1A. In addition, the interior of this box is covered with black mate-

rial to avoid internal reflections.

We have developed a low-cost system as a proof-of-concept. However, this system can be

made using other materials and components. Our system is composed of the 7” Raspberry Pi

Display with 800 × 480 texels as the light matrix, a glass diffuser, 55-mm Petri dishes, a Rasp-

berry V1.0 camera (Pi camera) and a Raspberry Pi 3 processor.
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Lighting and camera configuration

The first step for system configuration (Fig 1A) is to obtain the camera working distance to the

dish (77.5mm) in order to observe the whole dish in an image of 1944 × 1944 pixels, which is

determining from the smallest camera angle of view (21˚) and then by focusing the lens for

that distance to make the image as sharp as possible.

The display can emit three different wavelengths (R, G, B) from each dot or texel (Fig 1C).

However, the camera does not distinguish among these wavelengths because it is configured as

a grey camera. Therefore from the camera’s point of view, the three wavelength intensities are

integrated into a pixel as grey intensity. We seek an operation point in which lighting should

be as dim as possible to minimise stress for worms.

Fig 1. Physical configuration. A: Backlight scheme. B: Homography calibration scenario. C: Physical features of some components.

https://doi.org/10.1371/journal.pone.0215548.g001
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In order to avoid a chaotic system in control, the automatic camera settings are disabled.

We tune two configuration parameters (integration time and brightness). The integration time

must be quite high to improve image quality in a low illuminated scenario. Brightness is irrele-

vant for image quality because it also affects noise. To obtain optimal parameters, we place a

Petri dish with C. elegans and look for integration time values, which make the maximum con-

trast and sharpness between worms and the background for the given illumination. When

finding the best integration time for that light, the same search is performed for different illu-

mination intensities.

After numerous tests, we verified that the optimum operating point was given by an illumi-

nation that came close to orange (R = 255, G = 190, B = 0), an integration time of 100 ms and a

brightness of 25, which gave the background image with an intensity level of 48 and the worm

intensity near the 0 level.

Calibration

Camera calibration is a mature procedure [36]. Several camera calibration techniques exist,

but the present paper focuses on the calibration method based on a bi-dimensional pattern. In

this work, the open source software library OpenCV is used. It offers three types of calibration

patterns: symmetric, asymmetric and checkboard. Some studies, such as [37], have established

that patterns of circles are less sensitive to blurring than a calibration checkerboard. We use an

asymmetric pattern of circles (Fig 1B) to calibrate the projection matrix pHt (Eq (1)). In our

case, this projection is a homography, a 3x3 matrix. This transformation defines the mapping

between texels (points defined in relation to the coordinate system of the illumination system)

and pixels (points defined in relation to the camera’s coordinate system).

yk ¼ pHt � texel ð1Þ

The OpenCV calibration tool runs an automatic circle recognition procedure. Circles rec-

ognition is based on the well-known OpenCV BLOB (binary large object) detection method.

This consists of calculating the connected blob centroids with sub-pixel precision. The blob

detection method also allows the filtration of returned blobs by colour, area, circularity, etc.

The default values of these filter parameters are tuned to extract dark circular blobs. In general,

OpenCV calibration can be run without having to adjust these default parameters, but the

default values in our specific research had to be adjusted to detect circles.

Controller

Research works to regulate the amount of illumination at a constant level have been previously

performed [38, 39]. These works demonstrate that a simple model for each zone can be used to

control lighting by a PID regulator. In our case, the dynamics and non-linearities were

negligible.

The control references (ref) were established to an intensity level of 48 because it is the cal-

culated optimum operation set point. Therefore, the controller was designed around a nominal

light amount of 58% (255, 190, 0).

The output (yk) was measured by the intensity value of the image pixel (Eq (2)), where k is

the index of each sampling time (Tsa = 0.11s). To avoid the transformation product matrix cal-

culation for each texel in every iteration, a lookup table was used.

yk ¼ ImagekðpHt � texelÞ ð2Þ

The controller was estabilised when the null control error was reached (ek = 0), which

meant that the intensity output reached the reference level (yk = ref). In order to achieve this
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goal, a PID control action (uk) was implemented for each texel (Fig 2A). A PID controller (Eqs

(3) and (4)) had three parameters: kp (proportional constant), ki (integral constant) and kd
(derivative constant). In our case, the kd constant was set at 0 to obtain a proportional and inte-

gral regulator. Our application required a moderate settling time (Tse< 15s). Therefore to sim-

plify our controller, we proposed ki = kp (Eq (5)) by obtaining a regulator of one degree of

freedom. In our case, proportional constant kp was tuned experimentally to become the maxi-

mum positive value, which gave a stable output response (kp = 0.9).

At each sampling time k and for each texel, one controller reads the corresponding output

intensity level (yk) from the captured image and applies the control action (uk), which

depended on the previous control errors, to close the loop.

ek ¼ ðref � ykÞ ð3Þ

uk ¼ kp � ek þ ki �
Xj¼k� 1

j¼0

ej þ kd � ðek � ek� 1Þ ð4Þ

let ki ¼ kp then uk ¼ kp � ek þ uk� 1 ð5Þ

A control action (uk) was proposed as the integration of the three wavelength intensities

after taking into account a strategic order. This control strategy started when using only red

intensity until saturation took place at the 255 level. It continued by adding green intensity

and finally blue intensity when green was saturated (Fig 2B). The control action increased pro-

gressively from black, red, orange, yellow to white. It should be noted that control strategy

used blue light as the last option to reach the reference. If this control strategy was not interest-

ing for a specific assay, it could be easily changed to apply only red light, white light, or others.

Fixing the control action strategy

There are a number of control loop iterations after which a stable output was achieved. In our

case, the control loop was run until the control error was estabilised at a low value. The control

action was fixed when a low control error was detected (fixed control event). This event was

defined by S� 5 (Eq (8)), where Ek (Eq (6)), is the average total error per image at each sam-

pling time k; n is the texels number of the lighting pattern; _Ek (Eq (7)) is the differential of Ek.
This event was detected when the integral of the last 10 instants of the _Ek came close to zero

(S� 5).

Ek ¼

Pn
i¼0

ei
n

ð6Þ

_Ek ¼ Ek � Ek� 1
ð7Þ

S ¼
Xk

k� 10

absð _EkÞ � 5 ð8Þ

Experiments and results

The homography mapped each texel with the central pixel of its projected area on the image.

The reprojection error (RE) was used to measure the calibration quality assessment. RE was

defined as the geometric error corresponding to the average image distance, measured in
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pixels, between a texel point, and its projection according to the calibration model, and its cor-

responding measured counterpart. The retroprojection errors obtained at different calibra-

tions fell within the 2.50 ± 0.06 pixels interval. According to these calibrated homographies, a

texel projected approximately on an area of 6 × 5 pixels on the image when no diffuser was

used, as seen in Fig 3A. The intensity on the image caused by texel was maximum in the pro-

jected area centre, which is the integration of the three emitted RGB wavelengths (Fig 3B).

There were control dead zones between texels, which is why a dark reticular structure is

observed in the image (Fig 3A).

There were different reasons for the calibration errors, which we observed one due to physi-

cal imperfections, such as small curvatures on the display surface, which caused light refractive

dispersion (smaller red dispersion, green and a bigger blue one). As seen in Fig 4A, in area 1

the RGB projections match the same pixels, which means that we can act in the desired place.

Fig 2. Control principle. A: Control scheme. B: Control action going from black, red, orange, yellow to white, from

the minimum level (zero) to the maximum level (255R+255G+255B = 765).

https://doi.org/10.1371/journal.pone.0215548.g002

Fig 3. Textel projection on image. A: Greyscale image of white illuminated texels with no diffuser. The white box is

the image of one texel acquired by the camera. Both images (B and C) show non-zero wavelength intensity values

instead of intensities values. B: Image of the each RGB channel of one texel with no diffuser. C: Image of one texel with

a diffuser.

https://doi.org/10.1371/journal.pone.0215548.g003
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However, RGB have a small offset between the different wavelengths of one pixel or two in

area 2.

Instability

The calibration errors of pHt could produce output instabilities. As stated, calibration errors

were over 2 pixels, of which can occur in certain areas, which might move mapped pixels to

dead zones (non-sensed dark zones). These calibration errors can cause an erroneous control

by increasing the control action to the maximum, but without the mapped pixel detecting any

change. Instead this control action can alter the measure in a pixel corresponding to a nearby

texel, which could generate instabilities in the control (Fig 4B).

To avoid this problem, a diffuser was added to the display, which made the light diffuse

obtaining bigger projected texels images (Fig 3C). Therefore, illumination with no dead zones

was achieved and neighbouring pixels had a similar lighting level, which minimised the effects

of calibration errors.

Fixing the control action

The effectiveness of the fixing control action strategy was analysed with no Petri dish. Thus the

control light pattern had no occlusion therefore it allowed each pixel on the image to reach the

reference level (48). In these experiments, the control action on the display was applied contin-

ually over approximately 38s to compare the control error evolution of the pattern light applied

at each time instant k. After a number of iterations km of the control loop, a stable control

error was achieved henceforth. The period between the k0 and km control iteration is defined

as transient period. After km iterations, the control lighting pattern tended to achieve a compo-

sition with maximum (white) and minimum (black) values (Fig 5B), although this provokes

no change on the output image. This output image is maintained at the reference properly (a

uniform grey image of 48 level) after km. Hence, once the control error was estabilised, the con-

trol action was fixed (Fig 5A) henceforth. Fig 5C shows an experiment in which fixed control

event is reached at km equals 45 iterations. Thus when (S� 5) was detected, the control action

was fixed. Fig 5A shows the fixed control lighting pattern at km equals 45 iterations. After per-

forming different compensation processes, the time required to fix the control action to fall

within the 6.16 ± 1.68s interval was estimated.

Fig 4. Texel colour dispersion. A: Three images were taken with no diffuser, one with each displayed texel illuminated

in red, another with all the texels displayed in green and another one, all blue. All these captures was merged in this

image at three layers, RGB. Thus we can see for each image pixel how much of each wavelength is affected individually

(pseudo-colour image). B: Image captured after eight control loop iterations with no diffuser.

https://doi.org/10.1371/journal.pone.0215548.g004
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Spatial variability

Some experiments were performed to analyse the quality of the images acquired with compen-

sated at the 48 reference level and the uncontrolled standard white light. Several plates with

NGM were tested by illuminating under the stated conditions. The images with background

pixels at a grey level circa the 48 intensity level were expected when applying the light control

to the system.

When applying the proposed illumination control strategy (Fig 6B and 6E), the captured

images achieved nearly uniform illumination and improved image quality (Fig 6A and 6D).

According to Fig 6F, when applying the illumination control, most of the background image

pixels were around the 48 intensity level with worm pixels around the 0 level, as shown in the

blue line profiles (Fig 6G and 6H). Fig 6C shows an image plate that underwent some kind of

spatial intensity variations. When applying the control action (Fig 6E), these spatial variations

were compensated (Fig 6D). The camera was configured at a low gain level and, therefore,

images are dark. For this reason, images Fig 6C and 6D are seen to be normalised to simply

improve their graph visualisation. The line profile on this contaminated plate (Fig 6H) could

reach the reference in almost the whole area, but not all the contamination can be compen-

sated. Some kind of opaque contamination was noted, which produced the low intensity level

spots shown in Fig 6H.

Other experiments compared the first uncontrolled pattern light, used as the starting point

in the active control loop, with the final compensated pattern light. The first pattern light was

an orange pattern, which produced a constant grey image of the reference intensities (at level

48) with an ideal transparent medium.

It is well-known that the zones near the wall require greater light intensities than the plate

centre. This effect is seen in Fig 7D. Therefore, if we used uncontrolled standard light, we

would need to overlight the plate centre to properly illuminate the wall zones. However by

using active light, we applied only the light required in each zone (Fig 7A). This generally

reduces the light applied in the centre of the plate. It is stressed that active light would apply

Fig 5. Stop control. (A) and (B) are the light patterns used as the control signal at different k instants when the error came close to zero, but (A) is the first one to

reach it, and (B) is 283 iterations later. (C) Shows the output (blue) which is the grey level mean of image and control error to get reference.

https://doi.org/10.1371/journal.pone.0215548.g005
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Fig 6. Spatial variability under white light. A: Captured image with compensated illumination. B: Control pattern applied to the captured image. C: Normalised

image with white backlight. D: Normalised image with compensated light. E: Control pattern applied to the captured image (C). F: Comparison of the image

histograms: the red one without applying any control and the blue one after applying the control. G: Comparison of profile lines, the red one without applying the

control to (A) and the blue one after applying the control (A). The blue and red squares are the grey levels caused by a worm. H: Comparison of profile lines (C) and

(D).

https://doi.org/10.1371/journal.pone.0215548.g006

Active backlight for automating visual monitoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0215548 April 16, 2019 10 / 18

https://doi.org/10.1371/journal.pone.0215548.g006
https://doi.org/10.1371/journal.pone.0215548


Fig 7. Spatial variability under orange light. A: Captured image pseudo-colour with compensated illumination. B: Segmented image of (A) by a threshold method. C:

Histogram of grey level of background (blue) and worms (red) from (A). D: Captured image pseudo-colour with orange standard illumination. E: Segmented image of

(D) by a threshold method. F: Histogram of grey level of background (blue) and worms (red) from (D). G: Worm image examples from (A) in pseudo-colour, grey

scale and segmented. H: Worm image examples from (D) in grey scale, pseudo-colour and segmented.

https://doi.org/10.1371/journal.pone.0215548.g007
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exactly the amount of light required to reach the reference. Images of worms can be more eas-

ily segmented using lower intensity light when applying the active control (Fig 7B) than

uncontrolled light (Fig 7E).

In order to quantify image quality improvement, Fisher index was used [40], F (Eq (9)),

which is a method that computes the importance of a feature (in our case the intensity levels)

for segmentation in two classes (positive o negative). The respective score F(j) of feature j is

given by:

FðjÞ ¼ j
mþj � m

�
j

ðsþj Þ
2
þ ðs�j Þ

2
j ð9Þ

where mþj ðm
�
j Þ is the mean value for the jth feature in the positive (negative) class and sþj ðs

�
j Þ is

the respective standard deviation.

We compared the mean and deviation between background intensities (histogram blue

bars) and worms intensities (histogram red bars), for the uncontrolled standard light (Fig 7F)

with the compensated light (Fig 7C). The compensated images show a higher Fisher index

(0.8636 ± 0.1427) than the non-compensated images (0.2049 ± 0.0267). This is why the com-

pensated images provide a better contrast in the zones near the wall and have, at the same

time, a narrower variance than the non-compensated images. Fig 7G shows some examples of

worms in several areas as the background is hold constantly by compensation, while the back-

ground of these same worms in the same areas has a wide variability for non-compensated illu-

mination (Fig 7H). More examples can be found in S1 Fig.

Temporal variability

Temporal variations were studied in three experiments (Fig 8), which correspond to the three

effects that may occur: illumination derivatives due to display fluctuations, media light charac-

teristics which define that media have more or less opacity; condensation on lids, which causes

occlusions.

An experiment to show that the source illumination derivatives were performed. In this

case, light intensities were captured over a long time (7.5h). The camera and illumination

source noise produced variation in intensities with time. Fig 8A shows there was a mean varia-

tion by noise with time at less than the ±0.25 grey level. However, there were also illumination

derivatives of some peaks that were higher than noise (circa the Δ2 grey level) only for an

instant. Display frequency was 60Hz and the camera was 8Hz. Thus the camera integration

time was longer than the display refresh time and, therefore, the refresh action was not

significant.

Another experiment was conducted to evaluate the effectiveness of the active illumination

control strategy to compensate for medium variability. This experiment consisted of monitor-

ing two Petri plates with solid medium (NGM) and E. coli strain OP50 for 33 days. Images

were taken once a day (except for weekends) to observe the medium behaviour evolution with

the non-compensated white backlight and the compensated backlight. All the media had dif-

ferent light transmittance characteristics, which presented temporal changes throughout the

assays days. Fig 8B shows two media behaviours for 33 days, and an image grey level over time

with a white backlight, from which the media’s increase opacity was deduced. When the con-

trol was applied, this variability was corrected by keeping the image mean value close to 48

every day, and its standard deviation at the ±2 grey level for the first 3 weeks. When no control

was applied, the mean image grey level could vary from 70 grey levels to 55. Finally, in order to

evaluate our active illumination control method over condensation, two Petri plates were

monitored at an ambient room temperature of approximately 25˚C for circa 2 hours. This
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time was necessary for condensation to occur. Plates were stored in an incubator at 20˚C so

that the rise in temperature in the room-warmed plates and condensation would be slowly

evoked. At the zero time, and before any condensation was observed, a series of control actions

was applied until the control error was estabilised. Then the last control action of this series

was fixed and saved. Afterward, the error increased over time because condensation slowly

appeared and made darker images. When this error was -3 intensity levels, we repeated the

previous steps. A new series of control actions was applied until the error once again estabil-

ised, and so on. Every time, and immediately before a new control action was fixed and saved,

the control action of the first series was applied only to take one image. This series of images

allowed to measure errors in relation to the first lighting compensation throughout the

Fig 8. Temporal variability graphics. A: The average grey level of the image produced by a white backlight with time (about 30,000s). B: The mean grey levels and

deviations of two plates for the white backlight and for the compensated light. C: The mean control signals and deviations applied for compensating images: (B) every

day. D: The mean grey levels and deviations of two plates with condensation slowly increasing for the new backlight compensation every time that the mean image

grey level error dropped below -3, and for the compensated light at the beginning (this lasted approximately 2h). E: The mean control signals and deviations applied

for compensating the images in (D) during each new compensation event.

https://doi.org/10.1371/journal.pone.0215548.g008
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experiment. The control (Fig 8E) was also able to compensate for some soft condensation (Fig

8D). Condensation brought about a decrease of up to 18 grey levels in the mean, which could

also be compensated.

Discussion

First of all, it was important to analyse all the lighting factors that could affect image quality.

Sometimes achieving a pure backlight illumination is difficult. We used a box to isolate the sys-

tem from outside ambient lighting, but part of the light generated by our backlight bounced

off on the box walls, with which a small ambient light component inherently appeared. Thus

in order to reduce it, it was necessary to cover the interior with materials that were as little

reflective as possible. It was proved that by covering the interior with black EVA rubber, ambi-

ent light reduced, which increased the contrast between worms and the background. This was

verified by analysing the grey levels of worms, which went from 13 low levels to low ones of 0.

At the plate level, different reflections and refractions appeared on the standard Petri plate

walls. Reflections could produce a mirror effect on the wall to show that reflected worms were

near the walls. This was why our camera was configured at low sensitivity in an attempt to

avoid these mirror effects. Regarding refractions, some light beams that passed through the

Petri walls did not arrive at the camera, which produced dark circles near the walls (Fig 6).

These areas were about 6% of the inspected area, which means that it was unlikely that a worm

would be found in that areas because an E. coli lawn was strategically placed in the middle of

the plate. Moreover, special segmentation software solutions can be applied for these areas.

Homography calibration was performed once at the setting up time with no Petri plate. So

when the plate was inserted into the system, it provoked small refractions that increased the

calibration errors. This error type could produce small intensity waves on the image when

errors are too high. An alternative procedure would be to calibrate homography for each plate.

However, the experiments showed that one calibration at the starting time with no plate was

robust enough.

From the control point of view, there was a number of iterations k of the control loop, after

which a stable lighting pattern was applied. This lighting pattern achieved a composition of

maximum (white) and minimum (black) values (Fig 5B). However, to allow an effective wave-

lengths control strategy, the control action was fixed earlier when the control error was low

(Fig 5A). We defined a detection event strategy to fix the control action, but other strategies

can be used.

The strategic order (R, G, B) upon the control action was chosen after considering that the

wavelengths near the ultraviolet are more detrimental for C. elegans’ survival. Therefore, blue

light proved more detrimental than green light, and green light was more detrimental than red

light [32]. Given this strategy, most of the plate was illuminated with light that was close to

orange (255, 190, 0), as seen in Fig 8C and 8D. The maximum control action, white light (255,

255, 255), was applied automatically, but only to opaque zones (Petri walls and strong contam-

ination) and worms. As it was not possible to detect worms in opaque zones, applying blue

light to these zones is a very interesting strategy because worms tend to avoid blue-illuminated

zones [33]. In addition, applying blue light to worms stimulates their movement, which could

improve lifespan results. In our case, the maximum intensity level of the blue light was applied

to worms because the monitoring process lasted only few seconds. Depending on the applica-

tion, other control strategies can also be implemented by applying light as desired.

To avoid control instabilities due to calibration errors, stable PIDs regulators were intro-

duced and a diffuser was added to the display. Another solution without a diffuser would be to

measure output (yk) as the average of 30 pixels, which was related to the same texel. However,
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if we used a diffuser, we would only have to take the central pixel, and in such a way that the

computational load of all these means calculations would be avoided. When using a diffuser, a

new problem could arise due to the texel lighting affecting not only the pixels associated with it

in calibration, but also those associated with neighbouring texels. Hence it became a coupled

system by conferring interactions in the control. In order to control these interactions (Fig

3C), a controller with a small kp was designed. If a faster settling time is required, these interac-

tions can be modelled to apply advanced controllers.

The experimental results show that this method is able to compensate for automatically dif-

ferent illumination changes. This changes involve media transparency on all the assay days,

whose mean image grey level can vary from 70 to 55 (Fig 8B); changes in ambient conditions,

such as smooth condensation on lids, whose mean image grey level can vary by 18 grey levels

(Fig 8D); light derivatives of the illumination source during its lifetime. Therefore, the pro-

posed control technique simplifies the worms segmentation problem by reaching near uni-

form illumination throughout the image. This might both increase the quality in all areas (by

reducing information loss) and obtain constant illumination in the whole area (by allowing

fixed threshold image segmentation).

To a greater or lesser extent, uneven lighting is quite a common problem when monitoring

C. elegans and other organisms, such as Saccharomyces cerevisiae, zebrafish larvae and Dro-
sophila larvae cultured in Petri plates systems. The new proposed method compensates for

some spatial and temporal changes, and makes segmentation easier and more efficient. This

method can not only be used in lifespan or healthspan assays, but it should also serve a broad

range of applications in optogenetics.

Future research could improve system accuracy by calculating three different homogra-

phies, one for each wavelength (R, G, B), which would reduce calibration errors. In addition,

this system could be implemented with other lighting matrices with other wavelengths and

intensities. Finally, other regulators like predictive control could also be implemented.

Supporting information

S1 Video. Example video of method. Here is an example video of method performance.

(MP4)

S1 Fig. Worm images. More worm images captured, which are pseudo-colour where blue is

the darkest grey level value and red is the 48 grey level.

(TIF)

S1 Appendix. Code. In this section is the code we developed. It is C++ program for raspbian

operating system running on a Raspberry Pi. https://github.com/JCPuchalt/c-elegans_

smartLight.

(RAR)

S2 Appendix. Hardware assembly. In this section is detailed (1) software configuration; (2)

mechanical assembly; (3) display, camera and processor are wired etc.

(PDF)
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