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Abstract

Unplanned hospital readmissions mean a significant burden for health systems. Accurately

estimating the patient’s readmission risk could help to optimise the discharge decision-

making process by smartly ordering patients based on a severity score, thus helping to

improve the usage of clinical resources. A great number of heterogeneous factors can influ-

ence the readmission risk, which makes it highly difficult to be estimated by a human agent.

However, this score could be achieved with the help of AI models, acting as aiding tools for

decision support systems. In this paper, we propose a machine learning classification and

risk stratification approach to assess the readmission problem and provide a decision sup-

port system based on estimated patient risk scores.

Introduction

Unplanned hospital readmissions mean a great burden for health systems due to their reper-

cussion on the quality of healthcare and their economic impact, as well as the direct conse-

quences on the patients, who see their health deteriorated. At least in Europe, this threat is

expected to worsen as the population increases in age, thus being more susceptible to develop

comorbidities and chronic diseases. For these and other reasons, the number of hospital read-

missions is currently among the most important indicators of quality of care [1].

It is believed that around 27% of readmissions that happen within 30 days of discharge from

the initial admission date could be avoided or anticipated by more exhaustively monitoring the

patients at risk [2–4]. However, making a human decision on which patients to profusely track

and which not can be difficult because of the amount and heterogeneity of indicators, diseases,

and clinical features with their corresponding interactions that come into play.

Having a patient’s score from 0 to 100 which served as a proxy for the risk of readmission

would offer physicians and hospital resource managers interesting information that could be

exploited in several ways. For instance, this score would allow for the creation of ordered lists

sorted by readmission risk, which in turn would allow physicians for better scheduling of the

monitoring visits, as well as providing a broader picture to dynamically adapt the allocation of
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clinical resources as the number of patients at risk or available resources change. On the other

hand, it would also offer physicians additional information to decide the best moment for hos-

pital discharge.

Foreseeing readmission episodes without this critical score can be very difficult for physi-

cians. This is due to the high workload that brings taking a large number of decisions in a

short time, and because of the great number of heterogeneous factors that must be considered

during the decision-making process for every single patient.

The amount of heterogeneous factors that can affect the readmission risk for a patient

makes it a typical task to tackle with multidimensional statistics and machine learning models,

which would support physicians during the decision-making process. These techniques are

not influenced by external factors, consistently offering the same prediction for the same input

values. On the other hand, some techniques allow for a better understanding of the prediction

process, disclosing the most relevant features, their specific effects on the results, or how they

interact with each other. Besides, these can offer measures about prediction errors, which

could help physicians know the risk associated with their decisions. Finally, a continued assess-

ment of the estimated error can help to continuously improve the model by searching for new

features or applying progressive adjustments to minimise this error.

Logistic regression models are the most common solution to estimate the hospital readmis-

sion risk. The two most often used models are LACE [5] and HOSPITAL [6, 7]. On the one

hand, LACE accounts for: Length of stay, Acuity of admission, Comorbidity score and Emer-

gency dept. visits. On the other hand, HOSPITAL accounts for: Hemoglobin before discharge

(positive if< 12g/dl), discharge from an Oncology service, Sodium level before discharge, Pro-

cedure performed during hospitalisation, Index admission Type, number of Admissions in

the previous 12 months, and Length of stay.

Reviewing some metastudies in hospital readmission risk assessment [8–10] done at differ-

ent points in time gives a broad idea of the evolution of the works in the field. Statistical regres-

sion models and traditional survival analysis methods, such as Cox regression models [11] and

Kaplan-Meier estimators [12], which once dominated the field, are gradually being replaced

by newer, more complex machine learning-based techniques beyond logistic regression.

It is difficult to select the best algorithm among the candidates, due to differences in design,

approach and context of the different studies: patient cohorts, sample sizes, reproducibility

across health systems or the focus on specific pathologies versus the general case. Most studies

in the field (around 75%) estimate the overall model performance basing on the ROC-AUC

[10]. A ROC-AUC value of 0.75 has not been surpassed by most models since 2011 [10], except

for a few exceptional cases which we use as references for our model design. The work with the

best-found results for general readmission causes, released in 2013, reports an AUC of 0.76 [13].

The remainder of this paper is structured as follows: in Section Dataset, the dataset used in

this work is defined. Section Design and procedure describes how classification models are

trained and evaluated using this data. Moreover, this section features a costs optimisation sce-

nario which is proposed to prove the effectiveness of the trained models. Then, the results of

the classification and cost optimisation cases are presented in Section Results and discussed in

Section Discussion. In Section Conclusion the reached conclusions and future research in this

area are disclosed.

Materials and methods

Ethics

This research was carried out with accordance with University and Polytechnic La Fe Hospital,

which approved the study on 26th November 2019 under the name “Desarrollo de un modelo
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predictivo de ingresos y reingresos no programados a 30 dı́as en el Departamento de Salud-

Valencia La Fe” (Registration number: 2019–309-1). Patient privacy was maintained by using

data previously pseudo anonymised with non-traceable codes and only authorised people

obtained data from electronic health records. The Hospital’s Ethics Committee waived the

requirement for written consent since data was pseudo anonymised and the study complies

with national and European legal requirements regarding data protection.

Dataset

This work was done in collaboration with La Fe Health Department and the Health Research

Institute of La Fe University Hospital. Therefore, the dataset used during the experiments was

build from a subset of patient information included in their Electronic Health Record (EHR)

system. La Fe Health Department has deployed an EHR at different care levels, including over

20 million records, effectively organized reaching stage 6 in the eight-stage (0–7) EMRAM

maturity model. Currently, the data lake layer includes structured and semi-structured infor-

mation, coming from several information systems involving clinical activity, such as emer-

gency care settings, outpatient, hospitalization, clinical reports, surgical unit, intensive care

unit, hospital at home care. The data feeding the platform is composed by the aggregation of

22 datamarts and comprises 750 million rows, 84 tables, 4064 columns resulting in a total size

of 640Gb. Data updates are scheduled on a daily, weekly, or monthly basis, depending on the

datamart. This pseudo-anonymised and non-public dataset is protected by GDPR and spanish

LOPDGDD laws.

The subset of data used contains information from 35034 episodes of 22370 patients. Data

from five different categories was gathered and merged into one table:

• Consumptions: 10 features with information about the aggregated consumption of services

and tests. These include previous visits to hospital, outpatient or urgency departments,

among others.

• Laboratory: features with information from laboratory tests, such as results from urine or

blood tests. Each feature contains the numerical result for a test. 462 features were selected

according to clinical advice.

• Treatments: list of per patient active principles and time of treatment before and after the

hospitalisation episode. Treatments were grouped by Anatomical Therapeutic Chemical

(ATC) Classification System codes. 422 features were extracted from this data source.

• Hospitalisation: 53 features regarding hospitalisation episodes and their context, including

admission diagnosis and procedure codes, length of stay and time of discharge, etc. This data

also contained patient data, such as gender or age.

• Comorbidities: information on patient’s Charlson comorbidities [14] in a given episode and

the time from diagnosis of comorbidity to the hospitalisation episode. 18 features (one fea-

ture for each comorbidity) were extracted.

As a result, a table of 35034 rows and 962 columns was obtained, where each row accounts

for an admission episode. For each one of these episodes we know the date of admission and

discharge. The observation period for this dataset ranges between 1/1/2015 and 30/12/2018. In

order to train a classification model, the target variable takes unit value if readmission has

taken place within 30 days following previous discharge, and zero otherwise. Following this

rule, only 9.85% of the episodes in the dataset are positive class (readmissions).
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Design and procedure

In this section, the data processing and model selection, training and evaluation processes are

described.

Prior to model training, the dataset described in Section Dataset is processed. Laboratory

features were reduced to 46 according to clinical advice. Treatments that occur within a time

window of 90 days prior to the hospital admission are considered, as well as those prescribed

during the hospital stay and discharge. Then, these were grouped in higher levels of ATC,

resulting in a total of 36 treatment features. Two more features are computed by counting the

number of prescription drugs before and after the hospitalisation episode. Lastly, one hot

encoding was applied to binnarize categorical features with three or more categories, such as

diagnostic and procedure codes.

Missing values are common in EHR, so feature values must be imputed or discarded if

missing value count is high. For this task, first, columns with a missing value percentage

greater than 30% are removed. In the remaining laboratory columns, imputation quality is

assessed by replacing 30% of the values with missing ones and then imputed, measuring the

R2-score between the true and guessed value arrays. Then, columns which have less than 30%

but more than 15% missing values and an R2-score lesser than 0.5 are also removed. The

remaining missing values are imputed depending on the feature’s source. Laboratory features

are imputed using the iterative method found in scikit-learn [15] implementing the Bayesian

Ridge algorithm as the regression model [16]. In contrast, missing values in consumption,

comorbidities or treatment features are imputed with zeros, meaning the absence of that

feature.

Pearson correlation coefficient is then calculated for each possible pair of features, and one of

each pair that surpasses a value of 0.9 is filtered out. This action is performed recursively until

no pairs have a correlation coefficient above the said threshold. Moreover, invariant features,

that is to say, those where more than 99% of the values are equal to the mode value, are removed.

Lastly, features with a variance inflation factor (VIF) greater than 10 are also filtered out.

After performing all the aforementioned preprocessing steps, as well as removing dupli-

cates, the dataset contains 35034 rows and 200 features. Tables 1–3 show summary statistics

for each numerical, categorical and binary feature. Note that categorical features are trans-

formed using one-hot encoding, so the final number of features is higher than those shown in

these tables. S1 Appendix provides a short description of these features.

The class imbalance is redressed using random undersampling of the majority class and

ADASYN [17] oversampling of the minority class in different instances, whose results will be

later compared. Only training samples selected in each fold are resampled in the balancing

process, in order to avoid the introduction of biases in the test data. No other performance-

based feature selection nor feature extraction methods are used in this study.

Three ensemble methods are chosen for the binary classification task:

• Random Forest (RF) [18] is an ensemble supervised learning method which incorporates

many weak decision tree models. During the training phase, each of these individual trees

sees a random set of features, ensuring some level of individuality. To make a prediction,

each of these trees makes its guess and then a voting phase takes place to select the ensem-

ble’s final decision.

• Gradient Boosting (GB) [19] is also a decisiong tree ensemble technique, not bagged hori-

zontally but in a stage-wise manner known as boosting. Arranged like a chain, each tree’s

training parameters depend on the result of the previous one, optimising the performance in

the later tree.
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• Extreme Gradient Boosting (XGBoost) [20] is an enhanced, highly efficient and computa-

tionally effective implementation of the GB algorithm. Moreover, XGBoost is regularized in

a way which usually lends to better results and prevents overfitting.

• Additionally, decision tree models are trained in order to compare the performance of the

previous with that of a simpler one.

Table 1. Numerical features: Summary statistics.

Feature name Mean STD Q1–Q3

lengthofstay 7.035 7.262 3.0–8.0

age 68.136 18.87 57.0–83.0

count_external 0.156 0.524 0.0–0.0

count_imaging 0.646 1.809 0.0–1.0

count_cex 26.588 47.467 3.0–36.0

count_hosp 2.008 3.038 0.0–3.0

count_urg 7.155 8.387 2.0–9.0

count_ecgs 0.929 1.167 0.0–1.0

count_octests 0.33 1.077 0.0–0.0

count_surgery 0.204 0.615 0.0–0.0

pro_bnp_pg/ml 3810.276 6530.72 396.55–3991.25

hemoglobin_g/dl 12.097 2.115 10.5–13.6

leukocytes 103/l 9.057 6.369 6.34–10.7

pco2_arterial_mm_hg 44.498 12.047 36.3–50.4

neutrophils_%_% 67.465 13.251 59.2–76.8

hematocrit_% 37.233 6.011 32.9–41.6

ph_venous_nounit 7.384 0.06 7.35–7.42

leukocytes_/l 106.383 182.531 0.0–100.0

basophils_%_% 0.438 0.336 0.2–0.6

lymphocytes 103/l 1.752 3.868 1.07–2.09

chlorine_meq/l 101.584 4.731 99.0–104.6

CRP_mg/l 46.341 63.618 5.61–60.062

pco2_venous_mm_hg 43.15 8.542 37.5–47.9

creatinine_mg/dl 1.088 0.946 0.69–1.15

po2_venous_mm_hg 51.583 31.228 31.8–60.05

MCV_fl 90.195 6.708 86.5–94.1

eosinophils 103/l 0.172 0.231 0.04–0.24

alt/gpt_u/l 31.402 71.666 11.9–29.3

eosinophils_ 2.192 2.421 0.5–3.1

albumin_g/dl 3.542 0.559 3.17–3.94

basophils 103/l 0.039 0.332 0.02–0.05

potassium_meq/l 4.188 0.535 3.86–4.5

monocytes 103/l 0.774 0.544 0.53–0.93

ckd_epi_ml/min 74.927 29.52 54.0–96.0

sodium_meq/l 140.027 3.879 138.0–142.0

rdw_cv_% 14.657 2.313 13.2–15.5

ph_arterial_nounit 7.409 0.062 7.38–7.448

po2_arterial_mm_hg 71.104 27.473 56.0–78.1

total_comorbidities 1.796 1.792 0.0–3.0

For each feature, mean, standard deviation and the range between percentile 25% and percentile 75% are shown.

https://doi.org/10.1371/journal.pone.0271331.t001
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In this study, samples are distributed between train and test sets using nested 10-fold cross-

validation. After the model is trained in each split, performance metrics are calculated on the

corresponding test set. When this procedure is over, these metrics will be averaged to get an

overall model performance.

After classification, a probability calibration pipeline is also implemented in order to assert

that class probabilities yielded by models match a better estimation of the real-world

Table 3. Binary features: Summary statistics.

Feature name Freq. 0 (%) Freq. 1 (%)

sex 46.64% 53.36%

readmission30d 9.65% 90.35%

prev_n02be 16.539% 83.461%

prev_n06ab 5.612% 94.388%

prev_h02ab 6.778% 93.222%

prev_b01ab 4.392% 95.608%

prev_m04aa 4.124% 95.876%

prev_r03al 3.28% 96.72%

prev_j01dc 3.816% 96.184%

prev_a11cc 5.462% 94.538%

prev_other_atc0_a 21.743% 78.257%

prev_other_atc0_b 9.421% 90.579%

prev_other_atc0_c 20.566% 79.434%

prev_other_atc0_other 8.963% 91.037%

post_a02bc 5.261% 94.739%

post_h02ab 7.858% 92.142%

post_other_atc0_r 5.0% 95.0%

For each feature, the frequency of the null and unit values is shown.

https://doi.org/10.1371/journal.pone.0271331.t003

Table 2. Categorical features: Summary statistics.

Feature name #Categories Most common (%) Least common (%)

ccsr_dx 21 40.62% 2.064%

ccsr_px 27 85.325% 0.0%

charlson_code 17 8.216% 0.891%

prev_route_admin 12 4.392% 7.397%

post_route_admin 7 12.289% 1.166%

cod_reason_admission 19 84.824% 0.004%

cod_service_admission 64 12.468% 0.004%

cod_nursingunit_admission 33 10.669% 0.004%

cod_realservice 68 12.103% 0.004%

cod_reason_discharge 4 87.128% 0.011%

cod_service_discharge 67 12.103% 0.004%

cod_nursingunit_discharge 32 11.363% 0.004%

cod_destination_discharge 12 45.889% 0.018%

cod_service_destination 111 7.54% 0.004%

month_admission 12 9.982% 7.5%

For each feature, the number of categories, as well as the frequency of the most and least common values, are shown.

https://doi.org/10.1371/journal.pone.0271331.t002
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probabilities. This technique is not intended to enhance the overall model performance, but to

increase its results understandability and its aiding power on decision-making (i.e. knowing at

which level of risk the discrimination threshold would be set). The tested calibration methods

are Isotonic and Beta Calibration [21], an enhanced version of the classical Platt Scaling for

binary classifiers. Probability calibration’s goodness of fit is assessed via Brier Score and Log-

Loss [22]. Both metrics accounting for errors, the best calibration would be the one obtaining

the lesser score. Although similar in that regard, Log-Loss will give greater weight to errors in

the lesser probabilities. These will be later reviewed in the Results section and a definitive cali-

brator will be chosen.

Once the probabilities are calibrated, all test cases are stratified based upon the percentiles

to which their probabilities belong. Then, these percentiles, which range from 0 to 100, can be

divided into different readmission risk tiers. Percentile and probability ranges give different

information that can be used for different ends. Taking the very same readmission problem as

an example, based on the data available in this study, the a priori probability of readmitting

before 30 days after discharge is around 9.8%. Thus, while a predicted probability of 20% may

intuitively seem to fall on the low end, it would actually pertain to the highest risk percentiles

as it is much higher than the base risk.

Cost analysis

Finally, a costs-optimization scenario will be simulated in order to better understand the effec-

tiveness of implementing readmission prevention plans based on the information given by a

predictive model, under a cost analysis point of view. Fig 1 shows two fictional probability dis-

tributions: the left (blue) one corresponds to negative cases, e.g. patients than do not require

readmission within 30 days after discharge. Correspondingly, the right (yellow) one belongs to

positive cases, e.g. patients that do require readmission.

As it is shown in Fig 1, in the case that a model is not perfect, the probability distribution of

both classes would appear overlapped. A chosen threshold τ establishes the risk score from

Fig 1. Probability distribution of the output of a model for controls and readmission cases. False Positives (FP), true

negatives (TN), false negatives (FN) and true positives (TP) are depicted over their respective class distributions. Threshold τ
establishes the risk score from which patients are classified between control and readmission. Example case with synthetic data.

https://doi.org/10.1371/journal.pone.0271331.g001
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which patients that lay at the left will be discharged from the hospital, and patients that lay at

the right will be exhaustively monitored or will stay at the hospital. Since the distributions

overlap, several errors will be made in both directions (FN, FP).

An easily understandable decision support system is proposed by means of a unidimen-

sional objective function related to a cost that varies as a function of the established threshold.

We define two different cost functions (Fh, Fd) whose addition will explain the total cost for

the public healthcare system (Ft = Fh + Fd). The function Fh corresponds to the cost of patients

that stay at the hospital (h) or are exhaustively monitored (readmission prevention plans),

while Fd corresponds to the patients that are discharged (d), some of whom then require read-

mission. Let c1 be the cost for an individual that enters the readmission prevention plan, c2 the

cost per patient that is readmitted after a discharge and finally c3 the cost for discharged

patients that do not require readmission. c3, which acts as a baseline cost, reflects the use of

non-hospitalisation resources, such as medication. For the sake of simplicity, c2 and c3 will be

defined as multiples of c1: c2 = n2 � c1, c3 = n3 � c1, considering n2 > 1, n3 < 1. Note that the n2

limit implies that the cost of managing a patient’s readmission is higher than performing a pre-

vention plan, as stated by the asked physicians.

Under these assumptions, plus assuming all readmissions as potentially avoidable, the costs

for a given threshold (τ) can be computed as in Eqs 1 and 2.

Fh ¼ c1ðFP þ TPÞ

Fd ¼ c2ðFNÞ þ c3ðTNÞ

Ft ¼ Fh þ Fd

ð1Þ

Ft ¼ c1ðFPþ TPÞ þ c2ðFNÞ þ c3ðTNÞ

¼ c1ðFPþ TPÞ þ n2c1ðFNÞ þ n3c1ðTNÞ

¼ c1ðFPþ TPþ n2FN þ n3TNÞ

ð2Þ

For each cost factor n2, gradually changing the decision threshold will yield a costs curve

whose bottom point will correspond to the optimum threshold. In a sense, this is equal to opti-

mising cost matrices with different cost ratios.

Software

In this study we used Python packages frequently used in machine learning. We used scikit-

learn’s [15] implementation of DT, RF and GB models, and xgboost’s [20, 23] implementation

of XGBoost. For missing data imputation, we used scikit-learn’s IterativeImputer and Sim-

pleImputer. We also used scikit-learn’s permutation importance [18] procedure to evaluate

feature importance. For calibration, we used the betacal library [21] and scikit-learn for Isoto-

nicCalibration. For oversampling and subsampling, we used the imbalanced-learn library [24].

For other processing procedures, pandas [25, 26] and numpy [27] were used. Plots and figures

were built using matplotlib [28] and seaborn [29] packages.

Results

Binary classification

All results in this section are computed performing nested 10-fold cross-validation on the

entire dataset and averaging the resulting metrics computed on each test set. The best

ROC-AUC results are obtained with XGBoost models and no balancing method (Fig 2).

PLOS ONE Decision support in 30-day hospital unplanned readmission

PLOS ONE | https://doi.org/10.1371/journal.pone.0271331 July 15, 2022 8 / 16

https://doi.org/10.1371/journal.pone.0271331


Moreover, the best calibration is achieved performing Beta Calibration, as it shows both the

lowest BrierScore and LogLoss metrics in Table 4. While the ROC-AUC varies slightly with

different calibration options, improving the model performance is not a target of this task. The

calibration step aims to scale the prediction results to a more understandable, truthful class

probability range, but does not enhance class separability.

The top ten most important features in this model are shown in Fig 3, where three features

stand out over the others:

• readmission_30d: whether or not the past admission was a readmission. Whilst� 20% of

cases where this feature takes positive value end up in readmission, only� 9% of cases

where the value is zero do, which suggests successive readmission are relatively common.

• totalComorbidities: the total number of comorbidities a patient has at the time of admission.

• hemoglobin_g/dL: laboratory measurement of the amount of haemoglobin in blood. Anae-

mia, described as a low presence of haemoglobin in blood, is often associated with some of

the most common causes of readmission [30, 31].

Fig 2. ROC-AUC with different models, balancing and calibration methods.

https://doi.org/10.1371/journal.pone.0271331.g002

Table 4. Results with different balancing methods (no balancing, random majority subsampling and ADASYN oversampling) and calibration methods (no calibra-

tion, Beta Calibration and Isotonic Calibration).

Balancing Calibration BrierScore LogLoss ROC-AUC

No balancing No calibration 0.08517 0.30110 0.69321

BetaCalib 0.08513 0.30087 0.69296

IsotonicCalib 0.08518 0.30290 0.68784

Subsampling No calibration 0.22497 0.63911 0.68525

BetaCalib 0.08544 0.30239 0.68489

IsotonicCalib 0.08556 0.30368 0.68040

Oversampling No calibration 0.08774 0.31154 0.67023

BetaCalib 0.08598 0.30549 0.66999

IsotonicCalib 0.08602 0.30650 0.66555

All results in this table are obtained with XGBoost, 10-fold cross-validation.

https://doi.org/10.1371/journal.pone.0271331.t004
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Fig 4 shows the ROC and Precision-Recall curves for all trained models. Since both curves

(especially the latter) show low profiles for any decision threshold τ, there is no obvious cut-off

point to choose. Table 5 shows true positives and negatives counts when the decision threshold

is set at different probability percentiles. The Positive Predictive Value is also shown for each

one of the thresholds. Note that the matching calibrated probabilities to each threshold are low

from the bottom to the top percentiles, with percentile 90% still falling under a 20%

probability.

If the problem is approached as a risk stratification task instead, different probability cut-

off points could be used based on the specific needs of a given hospital at a given point in time.

Table 6 shows how different probability percentile ranges contain readmission and control

cases in very different proportions. While readmissions become increasingly predominant as

we move towards higher percentiles, control cases still constitute the vast majority even in the

upper tiers, which is indicative of an overall low precision score.

Fig 3. Top ten features sorted by permutation importance in the XGBoost model.

https://doi.org/10.1371/journal.pone.0271331.g003

Fig 4. Comparison of model performance curves. For each one of the machine learning models, the left graph shows

the receiver operating characteristic (ROC) curve, while the right shows the precision (PPV) versus recall (TPR) curve.

No balancing was applied, since it led to the best results.

https://doi.org/10.1371/journal.pone.0271331.g004
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Cost analysis

Fig 5 shows costs per patient when setting the decision threshold at different risk percentiles.

Each pair of lines accounts for a different value of n2, where the solid line represents our own

model and the dashed line corresponds to a naive model (ROCAUC = 0.5). The value of c3 is

set at half of c1 at all times (c3 = n3 � c1, n3 = 0.5). Recall that cost factors n2 and n3 in Eq 2 are

parameters to indicate that costs are multiples to one another. These costs should be set to the

real costs that exist at each hospital. This Figure is further discussed at Section Discussion.

Discussion

The best classification results are obtained with an XGBoost model, with a better match

between predicted and real class probabilities after performing Beta Calibration (ROCAUC:

0.693, BrierScore: 0.0851, LogLoss: 0.3009). Besides, classification metrics have great room for

improvement in terms of both recall and precision. Furthermore, the best results are obtained

when no class balancing is performed, but it is worth noting that the subsampling approach

Table 5. Metrics at different readmission probability thresholds τ.

Percentile Threshold τ TP Sensitivity TN Specificity PPV

10% 0.03 3383 0.981 3438 0.109 0.107

20% 0.04 3263 0.946 6821 0.216 0.116

30% 0.06 3095 0.897 10156 0.322 0.126

40% 0.07 2884 0.836 13449 0.426 0.137

50% 0.08 2590 0.751 16658 0.527 0.148

60% 0.10 2264 0.656 19835 0.628 0.162

70% 0.12 1858 0.539 22933 0.726 0.177

80% 0.15 1353 0.392 25931 0.821 0.193

90% 0.19 764 0.222 28845 0.913 0.218

Thresholds matching each calibrated probability decile are shown with their corresponding true positive (TP) and true negative (TN) counts, sensitivity (TPR),

specificity (TNR), as well as their Positive Predictive Value (PPV).

https://doi.org/10.1371/journal.pone.0271331.t005

Table 6. Percentage of patients whose true target is positive, i.e. readmitted before 30 days after discharge, at dif-

ferent percentile ranges of predicted risk.

Percentiles % Readmission

0–10% 1.88

10–20% 3.43

20–30% 4.80

30–40% 6.02

40–50% 8.39

50–60% 9.31

60–70% 11.59

70–80% 14.42

80–90% 16.81

90–100% 21.80

All records in the dataset are used for this table, merging test predictions of a 10-fold cross-validated experiment to

sort patients based on their predicted risk. For reference, the a priori< 30d readmission rate in the complete dataset

is around 9.8%.

https://doi.org/10.1371/journal.pone.0271331.t006
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yielded notably better results than the oversampling one. This might suggest there is no need

for more general data, but it will help to have more minority class (readmissions) data.

Regarding probability calibration, the low values matching each percentile observed in

Table 5 show that the probability spectrum agglomerates within a low range, probably due to a

natural class imbalance that reflects in the test dataset. Redressing this imbalance to spread the

readmission probability across the 0 to 1 axis could introduce a bias altering results in real

setups.

Analysing Table 6, it can be seen that even in the top risk percentile ranges, the proportion

of control cases is still considerably large compared to that of readmission cases. However, it is

worth remarking that the proportion of readmissions in the top level is more than ten times

larger than in the bottom level, evidencing an effective class separation. Since the a priori<30

d readmission probability is around 9.8%, cases predicted in the lower decile range are around

5 times less likely to be positive class than the general case, while those in the upper decile

range are around 2 times more likely.

In Section Introduction, the need for a score, preferably between 0 and 100, was stated.

Although the class probabilities do not range between these limits, risk percentiles do. There-

fore, taking into account previous patient data, the probability percentile (0–100%) assigned to

a patient could constitute a score with a clear real-life meaning in which patients can be ranked

along.

Fig 5. Costs per patient at different decision thresholds and readmission costs, modelled by n2. Points and crosses mark optimum

cost in our model and in the naive model, respectively.

https://doi.org/10.1371/journal.pone.0271331.g005
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Lastly, the cost analysis results previously shown in Fig 5 are analysed. It can be seen that, as

the difference between c1 (readmission prevention acting) and c2 (unplanned readmission)

grows, the optimal minimum is set at a lower risk. When comparing the performance of our

model (a solid line for each n2) with the naive model (dashed line), it appears that the costs

when making decisions based on our model’s predictions are always lower, being only equal at

extreme points where randomness does not play any effect (selecting all or none patients).

Moreover, the random model’s optima only fall at 100% (no prevention planning whatsoever)

or at 0% (all patients included in the prevention plan) with the highest costs of readmission. It

is worth mentioning that the cost reduction achieved using our model instead of the naive

model greatly increases as the readmission costs grow.

Conclusion

Thoroughly gathering patient data and hospital indicators is critical to reducing readmission

rates. A model like the ones proposed here could seize this data to aid in foreseeing avoidable

episodes, helping in managing and optimising hospital resource utilisation. Despite the limited

predictive power shown by classification models, probably due to the lack of readmission data

at the moment of writing, accurately ranking patients by estimated risk could allow improving

resource allocation for those in the top levels of risk. As shown, cost-effectiveness at different

risk decision thresholds could variate greatly depending on cost ratios. However, despite this

study still lacks clinical validation, the obtained results suggest that the predictions made by

the currently proposed models would always lead to equal or lower costs per patient.

Future work

The performance of the prediction models could be improved by adding the dataset a collec-

tion of socio-demographic variables available for most of the patients. We expect that these

variables would explain some of the high variance that perhaps our current data does not

grasp. It should be composed of information as the presence of home companions or sitters,

socioeconomic status, location, etc. If some of these variables were inaccessible, median infor-

mation of a population based on the known approximate location, neighbourhood or postal

code could be used.

A machine learning-based survival analysis approach could prove to perform as well as the

classification models presented in this paper, if not better, while providing great flexibility in

its possible use cases. In this approach, features would act as regress covariates against time

until readmission, and assess the risk of each patient being readmitted within any specified

number of days after discharge. Unlike traditional regression methods, survival models are tai-

lored to take into account data censoring (e.g. patients not yet readmitted as of the end of the

study period). In the classification approach, two patients who were readmitted at 29 and 31

days after discharge, while probably having similar risks, are assigned opposite classes. This

can difficult the class separation during training. However, a survival analysis model is not as

heavily affected by this minor difference in days since discharge, which could be beneficial in

the training steps.

A suited cost analysis like the one described in Section Cost analysis could be as well devel-

oped for a survival analysis model, based on the cumulative hazard function for each patient.

One potential improvement achievable by taking this alternate approach is the possibility of

finding the optimal time duration from discharge to next admission that defines a readmission

episode. If the 30-days restriction is lifted, an alternate period that optimises the accuracy of

predictions or minimises costs based on these predictions could be set up. If this new period is

in turn used for the classification task, it could potentially reduce the imbalance issue if it
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happened to be set above the 30 days limit. Note that more episodes would be considered hos-

pital readmissions in this case.

Future research also includes implementing extended feature selection and extraction pipe-

lines prior to the training step. Moreover, if more data could be acquired, a pre-clustering step

could be included in order to group patients with a similar diagnosis or procedure codes

together, assuming the features of individuals with the same code are in general closer, or

interact differently from those with other codes. With the current dataset, many of the result-

ing groups end up heavily unpopulated and have high variance presumably due to lack of data.

This high variance also hinders the performance of a hierarchical clustering step to agglomer-

ate similar codes together.
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