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Abstract: Tanneries produce large amounts of wastewater with high concentrations of suspended
solids, organic matter, and salts. Treatment and reuse of these effluents are of great importance
to preserve water resources and save costs. Although suspended solids and high percentages of
organic matter can be eliminated by physico-chemical and biological processes, refractory chemical
oxygen demand (COD) and salts will remain in the wastewater after these processes. In particular,
chloride and sulphate ion concentrations may hinder the treated wastewater from being reused or
even discharged according to legal standards. In this work, two nanofiltration membranes and two
reverse osmosis membranes are tested to assess these technologies as regeneration processes for
biologically treated tannery wastewater. Permeate flux and rejection of organic matter and ions were
measured at different operating conditions (transmembrane pressure and cross-flow velocities) at
both total recycle and concentration modes. Results showed that the difference between permeate
fluxes of nanofiltration (NF) membranes and reverse osmosis (RO) membranes was very high. Thus,
at 20 bar and 1.77 m·s−1, the permeate flux of the two tested NF membranes in the total recycle
mode experiments were 106 and 67 L·m−2·h−1, while the obtained permeate fluxes for the RO
membranes were 25 and 18 L·m−2·h−1. Concerning rejections, RO membranes rejected almost 100%
of the salts, whereas NF membranes reduced their rejection when faced with increasing concentration
factors (salt rejection between 50–60% at the highest concentration factor). In addition, the fouling
of RO membranes was lower than that of NF membranes, recovering more than 90% of initial
permeability by only water rinsing. In contrast, chemical cleaning was necessary to increase the
permeability recovery of the NF membranes above 90%. The considerably lower rejections and the
higher membrane fouling of the NF membranes lead us to conclude that reverse osmosis could be
the most feasible technique for water reuse in the tannery industry, though the permeate fluxes are
lower than those achieved with NF membranes.

Keywords: tannery wastewater; nanofiltration; reverse osmosis; fouling

1. Introduction

It is well known that tannery industries are characterised by high water consumption,
which leads to the generation of high quantities of wastewater [1]. Therefore, the treatment
and reuse of these effluents are of great importance to preserve water resources and
save costs.

As in other industries, there are two strategies for water reuse: from effluents of some
processes and from the global wastewaters. The first strategy has been studied widely
in the last few years. Thus, the reuse of water and chemicals from the unhairing [1,2],
deliming [3], pickling [4,5], and tanning processes [6] has been assessed in a significant
number of works by different authors. All the authors used either membrane technologies
or electrochemical processes for this purpose.
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However, in most tanneries, the effluents from the different processes are not treated
separately. Three types of wastewater can be distinguished in a tannery processing raw
skins to produce finished leather. The first type is alkaline wastewater from previous
processes to tanning. The second type corresponds to acidic wastewater from tanning
operations, usually containing trivalent chromium (chromium is the most used tanning
agent). The third type of wastewater includes the effluents from the finishing processes [7].

Researchers have mainly paid attention to the trivalent-chromium-containing wastew-
ater due to its toxicity and, especially, to the risk of its oxidation into hexavalent chromium,
the toxicity of which is much higher than that of Cr (III). For its removal, precipitation,
adsorption [8], electrocoagulation [9], and membrane technologies [10] have been studied
by different authors.

In many tanneries, alkaline wastewaters are subjected to an oxidation process to
convert sulphide into sulphates to eliminate the risk of SH2 formation. After that, this
stream is mixed with the acidic wastewaters and the effluents from the finishing operations.
A physico-chemical treatment is performed for chromium separation and for suspended
solids and COD reduction. Further biological treatment would maximise the elimination
of the organic matter in the wastewater. For this, biological treatment techniques such as
membrane bioreactors (MBRs) [11], MBRs combined with adsorption [12], and sequencing
batch reactors (SBRs) [13–15] have been reported in the literature.

After biological treatment, a refractory COD remains in the treated wastewater. In
addition, these biologically treated effluents are characterised by high conductivity due
to sodium chloride and sulphate salts. Sodium chloride comes from hide preservation
(transferred to the soaking effluent). The high content of sulphates is due to the use of
sodium sulfphide (further oxidised to sulphate), sulphuric acid and chromium sulphate in
the tannery process. In this way, tertiary treatment for salt removal is needed to reuse the
water in the industry or even to discharge it into the sewers.

Since the objective is the separation of both refractory organic matter and salts, mem-
brane technologies such as nanofiltration (NF) and reverse osmosis (RO) are the appropriate
techniques to achieve it. These technologies are used for municipal wastewater reclamation
when salt elimination is required. In the last few years, these techniques have been assessed
for micropollutant elimination [16]. Hafiz et al. [17] compared NF and RO membranes
to treat ultrafiltered municipal secondary effluent for its reuse in agriculture, selecting
the RO process due to the quality of the permeate stream. The management of the reject
streams is a crucial factor in implementing these techniques. The main alternatives have
been described in the literature [18].

Unlike the secondary effluents of municipal wastewater treatment plants, tannery
wastewater after biological treatment is characterised by higher COD and conductivity. Due
to these characteristics, low-fouling membranes have to be applied. Reducing membrane
fouling is a challenge that is being studied currently. Thus, some authors have achieved
the improvement of the anti-fouling properties of PES membranes by their modification
with different types of nanoparticles [19–21]. The fabrication or modification of commercial
membranes, specifically for application to tanneries, will be of great importance in the
near future. Few papers dealing with NF or RO applied to biologically treated tannery
wastewater can be found in the literature. De Gisi et al. [22] applied RO membranes
to tannery wastewater after biological treatment, removing only 67% of organic matter.
Jang et al. [23] used a combination of adsorption, ultrafiltration and RO to clean biologically
treated tannery wastewater. Concerning NF, this technique has been used to treat effluents
from tanneries to separate chromium. There is still a gap in the literature related to the
application of this technique to biologically treated tannery wastewater. In this work, NF
and RO are compared to treat this effluent, which cannot be directly reused, as explained
above. These processes will lead to permeates with enough quality to be reused in the
industry. This study has been conducted with commercial membranes, labelled as low-
fowling membranes.
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2. Materials and Methods

NF and RO tests were performed with tannery wastewater subjected previously to
biological treatment in a laboratory sequencing batch reactor (SBR).

2.1. SBR Effluent Characterisation

The main analysed parameters were chemical oxygen demand (COD), turbidity, pH,
conductivity, suspended solids (SSs), total chromium, sulphates, chlorides, sodium, calcium,
magnesium ions concentration, and toxicity. Total chromium concentration was measured
with an atomic absorption spectrophotometer (Perkin–Elmer model Analyst 100). Sulphate,
chloride, sodium, calcium and magnesium ions concentration and COD were determined
with kits and a Spectroquant Nova 60 apparatus from Merck. Turbidity was measured
with a D-112 apparatus from DINKO and conductivity and pH with CRISON instruments.
Suspended solids were determined according to standard methods [24] and toxicity with
Microtox M-500 (Microbics). Samples were analysed in duplicate.

Table 1 collects the characterisation of the two samples of tannery wastewater after
treatment with the laboratory SBR, which was used in the tests with the membranes. One
of the samples was used as a feed for the total recycle mode tests and the other one for the
concentration mode tests. It can be observed that conductivity values were high, ranging
between 7700 and 8500 µS·cm−1. The high values were mainly due to the sodium chloride
concentration from the wastewaters of the soaking and pickling processes. COD values
were 240 and 100 mg·L−1. These values are higher than the typical COD values for effluents
from the secondary treatment of municipal wastewater treatment plants. The toxicity of the
samples was negligible, which is in concordance with the absence of chromium. Moreover,
the samples presented low values of turbidity, near 1 NTU.

Table 1. SBR effluent characterisation samples.

For Total Recycle Mode Tests For Concentration Mode Tests

Parameter Value Value

pH 8.28 ± 0.10 8.11 ± 0.10
Conductivity (µS·cm−1) 8510 ± 85.1 7760 ± 77.6

Turbidity (NTU) 0.85 ± 0.01 0.92 ± 0.01
Cr3+ (mg·L−1) 0.00 0.00
Cl− (mg·L−1) 2520 ± 22.68 2480 ± 22.32

SO4
2− (mg·L−1) 1160 ± 10.44 630 ± 5.7

Na+ (mg·L−1) 1760 ± 14.08 1420 ± 11.36
Ca2+ (mg·L−1) 410 ± 3.4 350 ± 2.9
Mg2+ (mg·L−1) 124 ± 1.24 144 ± 1.44
COD (mg·L−1) 240 ± 12 100 ± 5

Toxicity (Equitox·m−3) 0 0

2.2. Membrane Tests

The tested NF membranes were NF Duraslick (General Electric) and NF270 (Dow
Chemical), and the tested RO membranes were RO Duraslick (General Electric) and
RO-SWC3 (Hydranautics). Tables 2 and 3 show the characteristics of the membranes.
For all membranes, membrane compaction was performed at 20 bar for 1 h. After that,
deionised water permeability coefficients were measured according to the Darcy equation
(Equation (1)).

JP = A· (TMP − ∆π) (1)

where A (L·h−1·m−2·bar−1) is the permeability coefficient, TMP (bar) is the transmem-
brane pressure, and ∆π (bar) is the osmotic pressure difference between the feed and
permeate streams.
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Table 2. Characteristics of the NF membranes.

Membrane NF Duraslick NF-270

Material Polyamide Aromatic Polyamide
Maximum pressure (bar) 41 41

Maximum operating temperature (◦C) 50 45

Chlorine tolerance 500 ppm-h Dechlorination
recommended <0.1 ppm

pH range 2–11 2–11
% Retention MgSO4 (25 ◦C) 96 >97

Typical operating flux (L·h−1·m−2) 15–25 -
Maximum feed flow (m3·day−1) - 3.2

Table 3. Characteristics of the RO membranes.

Membrane RO Duraslick RO SWC3

Material Polyamide Aromatic Polyamide
Maximum pressure (bar) 41 83

Maximum operating temperature (◦C) 50 45

Chlorine tolerance 500 ppm-h Dechlorination
recommended <0.1 ppm

pH range 4–11 3–11
% Retention MgSO4 (25 ◦C) 97 >99

Typical operating flux (L·h−1·m−2) 15–25 -
Maximum feed flow (m3·day−1) - 17

The membrane tests were performed in two operating modes (total recycle mode and
concentration mode), as can be seen in Figure 1. In the total recycle mode, the feed volume
concentration was constant (volume concentration factor, CF = 1), and the studied variables
were transmembrane pressure (10, 15 and 20 bar) and cross-flow velocity (CFV) (0.89, 1.33
and 1.77 m·s−1, corresponding to feed flow rates of 200, 300 and 400 L·h−1, respectively).
Tests were carried out with a flat sheet membrane module with a total active surface of
31 cm2. In the concentration mode, different CFs were studied at 20 bar with an initial
feed volume of 35 L. For these tests, the same membranes were tested but with a spiral
wound membrane configuration with a total active surface of 2.2 and 2.6 m2 for NF and
RO membranes, respectively. The feed flow rate was 300 L·h−1, and the temperature was
kept constant at 20 ◦C with a cooling system.
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The effects of TMP and CFV on permeate flux (JP) and COD, total dissolved solids
(TDSs) and ion (Cl−, Na+, Ca2+, Mg+2, SO4

2−, Cr3+) rejection were determined. Permeate
flux (JP) was calculated according to (Equation (2)):

JP =
QP
Am

(2)

where QP (L·h−1) is the flow rate of the permeate stream (the volume collected during a
certain time), and Am (m2) is the active surface of the membrane.

Rejection was calculated according to (Equation (3))

R(%) =
(CF − CP)

CF
(3)

where C is the salt concentration or the concentration of a particular ion in the feed (F) or
permeate (P) stream.

The influence of TMP and CFV on permeate flux and salt retention was assessed
statistically with Statgraphics Centurion XVIII software. Firstly, a factorial experimental
design considering TMP and CFV as factors and salt rejection and permeate flux as response
variables was carried out. In order to determine the optimal operating conditions, a
response surface analysis was performed. Analysis of variance was used to study the
effects of each factor on the response variables. Finally, the relation between factors and
variables was determined with multiple regression.

2.3. Membrane Cleaning

A cleaning procedure was applied to recover membrane permeability at the end of
each experiment (total recycle and concentration modes). It consisted of a membrane rinse
with deionised water for 40 min at a high feed flow rate to remove the reversible fouling.
No TMP was applied to avoid pushing the foulants into the membrane pores and causing
membrane clogging. After this stage, an additional chemical cleaning was carried out if the
initial permeability was not recovered. The chemical cleaning procedure started with the
application of a sodium hydroxide solution (pH 10) for 20 min. In the next step, a rinse
stage with deionised water was performed until the rejection stream had the same pH as
the feed stream (deionised water). After that, the initial permeability was measured again
to check whether the recovery was accomplished.

It has to be remarked that after each cleaning step, the permeate flux (Ji) was deter-
mined again to check the membrane fouling state in comparison with the initial permeate
flux (J0). In this way, the recovery flux parameter was calculated (Equation (4)).

rj =
Ji
J0

(4)

The images of new and cleaned membranes were obtained with an atomic force
microscope from Digital Instruments Nanoscope IIIA (Santa Barbara, CA, USA) and a
scanning electronic microscopic (SEM) JSM6300 from JEOL (Musashino, Akishima, Tokyo,
Japan). For the images, the membrane surface for the analysis was 2 × 2 cm2.

3. Results
3.1. Membrane Permeability

The hydraulic permeability coefficient (A) was obtained with Equation (1), as explained
in the Material and Methods section (Section 2.2). For the membranes NF270 and NF
Duraslick, the values obtained were 10.25 and 9.45 L·h−1·m−2·bar−1, respectively. For RO
membranes, the A values were significantly lower, as expected (2.10 L·h−1·m−2·bar−1 for
RO Duraslick and 1.05 L·h−1·m−2·bar−1 for SWC3). The variation between A values in RO
membranes is in concordance with the kind of membrane since SWC3 is specifically for
treating seawater while the RO Duraslick is used for brackish water.
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3.2. Membrane Tests
3.2.1. Total Recycle Mode

• Influence of CFV and TMP on Permeate Flux

Figure 2 shows the variation of JP with the TMP at different CFVs for the tested
membranes. In all cases, it can be observed that TMP affected the permeate flux more
significantly than CFV. As expected, the permeate flux increases with TMP since it is the
main driving force for the membrane processes. However, the permeate fluxes remained
almost constant for all CFVs. The lack of CFV influence could be attributed to the narrow
range of CFVs tested, as other authors have pointed out [25].
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(c) 1.77 L·h−1.

In the tested TMP range, the highest Jp values were achieved for NF270, followed
by NF Duraslick, whereas RO membrane permeate flux values were very similar, though
quite low. The performance of RO membranes was not in concordance with the hy-
draulic permeability obtained. Thus, it was expected that RO Duraslick would achieve
higher Jp values than SWC3. Using Statgraphics Centurion XVIII software, the vari-
ability of JP for each main effect (TMP and CFV) is plotted in Figure 3. In this case, it
can be observed that JP is hardly affected by CFV. The obtained p-values for TMP were
lower than 0.05. However, the p-values sequence for CFV in the ascendant order was
0.0715 (M2) < 0.2846 (M1) < 0.6831 (M3) < 0.9396 (M4), with the M4 membrane achieving
the highest value. These p-values indicate that the tested crow flow velocities did not affect
Jp values.
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The estimated response surface was also statistically assessed to find the optimal
operating conditions (TMP, CFV) for each membrane. Table 4 shows the combination
of factor levels that maximises JP. The optimal JP value was reached at 20 bar and a
CFV value of 1.77 m/s for all membranes except M3. Table 4 also includes a comparison
between empirical and experimental JP values, pointing out that deviation errors were not
considered significant. JP_empirical values have been calculated with the fitted equations
collected in Table 5.

Table 4. Optimal TMP and CFV for maximising JP. Comparison between empirical and experimen-
tal values.

Parameter
Membrane

M1 M2 M3 M4

TMPoptimal (bar) 20 20 20 20
CFVoptimal (m·s−1) 1.77 1.77 1.77 1.77

JP_empirical (L·m−2·h−1) 105 67.07 23.63 18.83
JP_experimental (L·m−2·h−1) 105.57 67.35 24.98 18.53

Deviation error (%) 0.54 0.42 5.73 1.61
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The empirical correlation of the operating conditions (TMP and CFV) for each mem-
brane was determined by multiple linear regression analysis using Statgraphics software.
In the equations of the fitted model, JP is given in L·m−2·h−1, CFV in m·s−1, and TMP
in bar.

Table 5. Equations from the multiple regression statistical model for JP (total recycle mode).

JP = −0.245821 + 6.58937 · TMP − 18.6966 · CFV − 0.0569 · TMP2 + 0.205114 · TMP · CFV + 7.03771 · CFV2 Equation (5) (M1)
JP = 12.1096 + 3.70292 · TMP − 10.2743 · CFV − 0.0282 · TMP2 − 0.242045 · TMP · CFV + 6.04339 · CFV2 Equation (6) (M2)
JP = 4.81371 + 1.98553 · TMP − 17.7852 · CFV − 0.0247667 · TMP2 − 0.0278409 · TMP · CFV + 6.73209 · CFV2 Equation (7) (M3)
JP = 7.8469 + 1.51421 · TMP − 22.4112 · CFV − 0.0269333 · TMP2 + 0.271023 · TMP · CFV + 6.87844 · CFV2 Equation (8) (M4)

• Retention index

Figure 4 depicts the influence of TMP on salt retention at different CFVs for the tested
membranes. RO membranes achieved higher rejections than NF membranes, as expected,
achieving values near 100%. For NF membranes, a range between 80–90% was reached,
depending on the TMP applied since the influence of CFV was negligible.
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Below, these results are explained according to the statistical analysis. Figure 5 shows
the main effects of salt rejections for all tested membranes.
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For M2, M3 and M4, it can be observed that salt rejection was not practically affected
by TMP and CFV. These results were confirmed by p-values higher than 0.05 (Table 6).
However, for M1, TMP had a significant effect since the p-value was <0.05, which would
explain the depicted tendency (the higher TMP applied, the higher the salt rejection).

Table 6. Effect of TMP and CFV on salt rejections in terms of p-values.

p-Values

Membrane TMP (bar) CFV (m·s−1)

M1 0.0000 0.2372
M2 0.2018 0.9375
M3 0.8971 0.8417
M4 0.8736 0.6209

The estimated response surface was also statistically assessed to find the optimal
operating conditions for each membrane. Table 7 collects the combination of factor levels
that maximises RSalt. It can be observed that the optimal values for CFV and TMP were
0.89 m/s and 20 bar, respectively. For membrane M3, the optimal values were 0.89 m/s and
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15 bar. Furthermore, this table compares empirical and experimental RSalt values, showing
that the deviation error was not significant (0.28–2.67%).

Table 7. Optimal parameters for maximising RSalt according to Statgraphics. Comparison between
empirical and experimental values.

Parameter
Membrane

M1 M2 M3 M4

TMPoptimal (bar) 20 20 15.2 20
CFVoptimal (m·s−1) 0.89 0.89 0.89 0.89

JP_empirical (L·m−2·h−1) 92.57 86.30 98.65 99.35
JP_experimental (L·m−2·h−1) 94.09 88.60 99.23 99.60

Deviation error (%) 1.64 2.67 0.60 0.28

The equations of the fitted model for RSalt (%), determined by multiple linear regression
analysis, are collected in Table 8.

Table 8. Equations from the multiple regression statistical model for Rsalt (total recycle mode).

RSalt = 58.0939 + 4.69936 · TMP − 17.8002 · CFV − 0.0943 · TMP2 − 0.877841 · TMP · CFV + 12.2159 · CFV2 Equation (9) (M1)
RSalt = 93.9891 + 2.9747 · TMP − 58.6342 · CFV − 0.0556 · TMP2 − 0.761932 · TMP · CFV + 26.2655 · CFV2 Equation (10) (M2)
RSalt = 99.2921 + 0.18217 · TMP − 3.31018 · CFV − 0.0055 · TMP2 − 0.0170455 · TMP · CFV + 1.30424 · CFV2 Equation (11) (M3)
RSalt = 100.002 − 0.0197348 · TMP − 0.870954 · CFV + 0.0004 · TMP2 + 0.00681818 · TMP · CFV +
0.271178 · CFV2 Equation (12) (M4)

In addition to salt rejection, divalent and monovalent ion rejection was also consid-
ered. Related to divalent ions (sulphates, calcium and magnesium), the rejection values
achieved were higher than 90% for all operating conditions (TMP and CFV) and tested
membranes [16]. Moreover, for monovalent ions (Figure 6) in general, the typical tendency
for the studied variables was also observed. Specifically, RO membranes (M3 and M4)
achieved near 100% rejection values for sodium and chloride, except at 15 bar for chloride.
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the tested membranes.

On the other hand, CFV values did not influence these results (data not shown). It is
worth mentioning that the results collected in our study indicate that pore size exclusion
and net charge repulsion were the predominant mechanisms in salt retention for NF
membranes. This statement is supported by the idea that, typically, NF membranes have
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two separation mechanisms, depending on the membrane pore size (sieving) and electric
repulsion (Donnan and dielectric effects). NF membranes achieved the highest permeate
flux and lowest ion rejections in our study. The low salt rejection led to a brine waste stream
with lower conductivity compared to RO membranes [26].

3.2.2. Concentration Mode

• Permeate flux

Figure 7 shows the variation of JP with the volume concentration factor (CF). It can be
seen that the JP values of RO membranes remained practically constant for all the CFs tested.
However, the differences between M1 and M2 are worth mentioning. M2 had a notable
permeate flux decrease of 41% compared with M1 (12.5%). These results could be attributed
to the membrane pore size since M2 (0.84–1.2 nm) has higher values than M1 (0.80 nm). A
similar decreasing trend in permeate flux was also observed by Zakmout et al. [10].
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Concentration mode (TMP = 20 bar and CFV = 1.33 m·s−1).

• Retention index

Figure 8 depicts the influence of CF on salt retention. The reverse osmosis membranes
were not affected by the studied concentration factor, keeping RSalt near 100%. Nevertheless,
the NF membranes showed a decreasing tendency, in which RSalt for M2 was lower than
for M1, probably due to the membrane pore size.

For monovalent ions (chloride and sodium), Figure 9 shows that RO membranes were
not affected by CF, achieving rejections close to 100%. On the contrary, NF membranes
showed different behaviour: M1 (NF270) presented higher rejection (60–72%) than M2
(21–44%). It has to be said that the rejection index followed a similar tendency in the two
studied operating modes for both NF membranes.
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(b) chloride ion.

Related to divalent ions (sulphate, magnesium and calcium), the rejection values
were around 93% and 100% for NF and RO membranes, respectively. Concerning COD
rejection, a 94% value was achieved for the total recycle mode, in contrast with 80% for the
concentration mode.

3.3. Permeate Flux Recovery

Table 9 collects the flux recoveries (rj) after the cleaning step was applied. After the
first rinse with water, flux recovery for M3 and M4 achieved 93% and 100%, respectively.
Since the RO membranes reached flux recoveries higher than 90% after the rinsing step, it
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was not necessary to apply chemical cleaning. However, the NF membranes accomplished
recoveries higher than 90% after alkaline cleaning.

Table 9. Recovery of permeate flux (%) after cleaning procedure.

Cleaning Step
Membrane

M1 M2 M3 M4

After rinsing 79.53 73.05 93.22 100
After alkaline cleaning 92.11 96.17 - -

Although CFV hardly affected permeate fluxes and rejections, it seems that it has a
positive effect in terms of fouling prevention. This fact is especially remarkable in RO
membranes versus NF membranes, which present pores. Thus, it can be stated that CFV
is an efficient tool to control fouling and improve membrane hydrodynamics near the
membrane surface, which reduces concentration polarisation and fouling. Figure 10 shows
the M3-RO membrane surface after the test was carried out at a concentration factor of 2.8.
It can be observed that there was no significant fouling on the membrane. This fact shows
that CFV plays an important role in reducing the fouling phenomenon.
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Other authors have also compared the behaviour of NF and RO membranes for
treating wastewater. Thus, Ogawa et al. (2010) [27] also observed that membrane fouling
was more significant in the NF membrane than in the RO membrane. In addition, Haan et al.
(2018) [28] observed similar results. The initial permeability of the tested RO membranes
was restored completely after their cleaning. On the contrary, Hacifazlioglu et al. (2019) [29]
evaluated the chemical cleaning of NF and RO membranes used to treat wastewater after
use in a membrane bioreactor. These authors observed that the permeability of the RO
membranes decreased more sharply than the permeability of the NF membranes. Thus,
regarding fouling, the behaviour of NF and RO membranes is different depending on feed
water and membrane characteristics, among other factors.

Comparing the AFM images of the surfaces of pristine membranes (on the left of
Figures 11 and 12) with used membranes after cleaning (on the right of Figures 11 and 12),
the elimination of membrane fouling can be checked.
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Taking into account the above-mentioned results, some comments about the costs of
membrane processes can be made. RO and NF would present the same energy costs when
operated at the same transmembrane pressure. However, the high difference in permeate
flux implies that the installed area of RO membranes will be much higher than the installed
area of NF membranes. This difference will be lower when it is considered that a part of the
feed can bypass the membrane facility in order to blend it with RO permeate to achieve the
desired final water quality. On the other hand, the operating costs of RO membranes will
be lower than those of NF membranes if it is confirmed that membrane fouling is higher
for NF membranes, as our tests have proved. Thus, cleaning costs will be higher for NF
membranes. Other techniques for salt elimination, such as ion exchange resins, have been
discarded since they are not economically competitive due to the high salt concentration of
tannery wastewater.

4. Conclusions

In this work, four membranes were tested to treat biologically treated tannery wastew-
ater in order to eliminate refractory COD and salts.

For the total recycle mode, the influence of TMP on permeate flux was more significant
than CFV. The statistical analysis showed that the optimal TMP and CFV values were 20 bar
and 1.77 m/s, respectively. For NF membranes, salt rejection ranged between 80–90% at
the studied TMPs.

In the concentration mode tests, it was observed that the fouling of NF membranes
was higher than the fouling of RO membranes. In addition, the more open NF membrane
(M2) exhibited more flux decline than the other NF membrane (M1). Thus, M2 showed a
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sharp decline (41%) compared with that shown by M1 (12.5%). Maximum durability of the
RO membranes due to the low fouling observed could be expected.

As a general conclusion, it can be stated that RO could be the most feasible technique
for water reuse in the tannery industry due to the considerably higher rejections and the
low membrane fouling.

Further experiments on a larger scale are needed to assess an eventual blending of
the feed solution with RO membranes, diminishing, in this way, the operating costs of
the process.
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