
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Dept. of Computer Systems and Computation

Application of 3D reconstruction techniques for realistic
images over drawings and sketches

Master's Thesis

Master's Degree in Artificial Intelligence, Pattern Recognition and
Digital Imaging

AUTHOR: Colom Colom, Joan

Tutor: Martínez Hinarejos, Carlos David

Cotutor: Abad Cerdá, Francisco José

External cotutor: SAITO, HIDEO

ACADEMIC YEAR: 2022/2023

Application of 3D reconstruction techniques for realistic images over drawings and sketches

2

Abstract

Reconstruction from realistic images has evolved very differently when compared to reconstruction
from sketches. Even though both present similarities, the latter aims to surpass the subjectivity that
drawings present, increasing the task's uncertainty and complexity. In this work, we aim to study the
domain of 3D reconstruction from multi-view sketches and drawings by taking inspiration from
reconstruction over realistic multi-view images. In contrast to previous reconstruction methods from
sketches, we aim to recover not only shape but also color, offering an optimization system that does
not require prior training. We make two proposals. Firstly, we present a workflow for applying the
state of the art in realistic reconstruction by leveraging NVDiffRec to study its performance over
the non-realistic domain. Secondly, we adapt existing methods, using inverse rendering as a
refinement process for 3D colored meshes, and propose modifications to work over the domain of
drawings. Finally, we highlight the challenges of using both proposals and evaluate how different
quality factors in sketches affect the reconstruction quality to determine their viability for fictional
3D content generation from concept art.

Keywords: Computer Vision and Pattern Recognition, Computer Graphics, Image and Video
Processing, 3D Reconstruction, Inverse Rendering, Machine Learning.

3

Application of 3D reconstruction techniques for realistic images over drawings and sketches

Resumen

La reconstrucción a partir de imágenes realistas ha evolucionado de forma muy diferente a la
reconstrucción a partir de bocetos. Si bien ambos presentan similitudes, el segundo pretende superar
la subjetividad de los dibujos, lo que aumenta la incertidumbre y complejidad de la tarea. En este
trabajo aspiramos a estudiar el dominio de la reconstrucción 3D a partir de bocetos y dibujos
multivista, inspirándonos en la reconstrucción sobre imágenes realistas multivista. A diferencia de
los anteriores métodos de reconstrucción a partir de bocetos, este trabajo tiene como objetivo
recuperar tanto la forma como el color, ofreciendo un sistema basado en optimización que no
requiera entrenamiento previo. Hacemos dos propuestas. En primer lugar, presentamos un flujo de
trabajo basado en NVDiffRec para aplicar el estado de la cuestión en reconstrucción realista,
estudiando su rendimiento en el dominio no-realista. En segundo lugar, adaptamos métodos
existentes, utilizando renderizado inverso para refinar mallas 3D coloreadas y proponiendo
modificaciones para aplicarlo en el dominio de los dibujos. Finalmente, exponemos los retos
asociados a ambas propuestas y evaluamos cómo diferentes factores de calidad en los bocetos
afectan a la calidad de la reconstrucción, determinando su viabilidad para la generación de
contenido ficticio 3D a partir de arte conceptual.

Palabras clave: Visión por Computador y Reconocimiento de Formas, Gráficos por Computador,
Procesamiento de Imagen y Vídeo, Reconstrucción 3D, Renderizado Inverso, Aprendizaje
Automático.

4

Resum

La reconstrucció a partir d'imatges realistes ha evolucionat de manera molt diferent a la
reconstrucció a partir d'esbossos. Si bé tots dos presenten similituds, el segon pretén superar la
subjectivitat dels dibuixos, cosa que augmenta la incertesa i complexitat de la tasca. En aquest
treball aspirem a estudiar el domini de la reconstrucció 3D a partir d'esbossos i dibuixos multivista,
inspirant-nos en la reconstrucció sobre imatges realistes multivista. A diferència dels anteriors
mètodes de reconstrucció a partir d'esbossos, aquest treball té com a objectiu recuperar tant la forma
com el color, oferint un sistema d'optimització que no necessite entrenament previ. Fem dues
propostes. En primer lloc, presentem un flux de treball basat en NVDiffRec per aplicar l'estat de la
qüestió en reconstrucció realista, estudiant-ne el rendiment al domini no-realista. En segon lloc,
adaptem mètodes existents, utilitzant renderitzat invers per refinar malles 3D acolorides i proposant
modificacions per aplicar-lo al domini dels dibuixos. Finalment, exposem els reptes associats a les
dues propostes i evaluem com diferents factors de qualitat dels esbossos afecten a la qualitat de la
reconstrucció, determinant la seua viabilitat per a la generació de contingut fictici 3D a partir d’art
conceptual.

Paraules clau: Visió per Computador i Reconeixement de Formes, Gràfics per Computador,
Processament d'Imatge i Vídeo, Reconstrucció 3D, Renderitzat Invers, Aprenentatge Automàtic.

5

Application of 3D reconstruction techniques for realistic images over drawings and sketches

6

Index

1. Introduction ...13

1.1. Motivation ..13

1.2. Objectives ...14

1.3. Structure ..14

2. State of the art ...15

2.1. Reconstruction from sketches ...15

2.1.1. Interactive approaches ...16

2.1.2. Single-view automatic approaches ..17

2.1.3. Multi-view automatic approaches ...19

2.1.4. Comparison between the approaches ..19

2.2. Reconstruction from realistic images ...20

2.2.1. Implicit representation ...20

2.2.2. Explicit representation ...23

2.2.3. Comparison with reconstruction from sketches ..26

2.2.4. Structure-from-Motion ..27

3. Specific technologies ..33

3.1. Differentiable rendering ..33

3.1.1. Deferred shading ...34

3.1.2. Path tracing ..36

3.2. NVDiffRec ..41

3.2.1. Description ..41

3.2.2. Architecture ...43

4. Development ...47

4.1. Problem statement and justification ...47

4.2. First proposal: using NVDiffRec ..48

4.2.1. Generating masks ..49

4.2.2. Generating view information ..50

4.2.3. GRASP algorithm for sphere estimation ...52

4.2.4. Implementation ..54

7

Application of 3D reconstruction techniques for realistic images over drawings and sketches

4.3. Second proposal: modifying the SFT architecture ...55

4.3.1. Optimization scheme ...57

4.3.2. Losses ..58

4.3.3. Remeshing and resampling ...60

4.3.4. Implementation ..61

5. Results ...65

5.1. First proposal ..65

5.1.1. Use cases ...65

5.1.2. Results ...68

5.2. Second proposal ..74

5.2.1. Datasets ...74

5.2.2. Baseline results ..76

5.2.3. Quality factors study ...77

5.2.4. Ablation study ...83

5.2.5. Comparison with inverse rendering techniques ..86

5.2.6. Results from hand-drawn sketches ..89

6. Conclusions ...91

7. Future work ...95

8. References ...97

8

Index of figures

Figure 1. Inflation of a curve [54]. ...16

Figure 2. Interactive sketch reconstruction proposal by Li et al. [41]. 16

Figure 3. Reconstruction system proposed by Gao et al. [16]. ..17

Figure 4. Unsupervised reconstruction system proposed by Wang et al. [75]. 18

Figure 5. Implicit scene representation for volume rendering proposed by NeRF [48]. 21

Figure 6. Architecture for implicit reconstruction proposed by NeRFactor [84]. 22

Figure 7. Deformable tetrahedral grid representation proposed by Gao et al. [17]. 24

Figure 8. Possible unique topologies inside a tetrahedron following MT [68]. 25

Figure 9. Reconstruction scheme proposed by Goel et al. [20]. ..26

Figure 10. General pipeline for incremental SfM [67]. ...27

Figure 11. Differentiable rendering pipeline built using Laine et al.’s proposal [40]. 34

Figure 12. Scheme of the antialiasing operation by Laine et al. [40]. 36

Figure 13. Schematic representations of ray tracing and path tracing. 37

Figure 14. Heaviside step function and Dirac delta function. ..37

Figure 15. Sampling strategies proposed by Li et al. [44]. ..39

Figure 16. Equivalence between the boundary and area integrals [2]. 40

Figure 17. Graphic representation of the warp field proposed in [2]. 40

Figure 18. Nested sampling proposed by Bangaru et al. [2]. ...41

Figure 19. Summary of NVDiffRec [52]. ..42

Figure 20. Architecture of NVDiffRec. ..43

Figure 21. Summary of the proposed workflow. ..49

Figure 22. COLMAP center estimations for different view distributions. 51

Figure 23. Summary of our second proposal. ..55

Figure 24. Reconstruction results for the drawn sphere. ..66

Figure 25. Sketches depicting the partial turn-around of a fictional dog. 66

Figure 26. Samples corresponding to the game character use case. 67

Figure 27. Results saved on the last training iteration in NVDiffRec (initial experiment). ...69

Figure 28. Results saved on the last training iteration in NVDiffRec (second experiment). .69

Figure 29. Reconstructed meshes for the dog from the front and top. 70

9

Application of 3D reconstruction techniques for realistic images over drawings and sketches

Figure 30. Game character reconstructions with maps (initial experiments). 71

Figure 31. Generated 3D models for the game character (initial experiments). 72

Figure 32. Models obtained for the game character without and with improved masks. 73

Figure 33. Models used and synthetic sketches in three styles. ...74

Figure 34. Baseline results on different styles. ..76

Figure 35. Reconstruction results over Axolotl with an increasing number of samples. 78

Figure 36. Results without remeshing of increasing levels of camera inconsistency. 80

Figure 37. Examples of samples simulating geometry inconsistency. 80

Figure 38. Results without remeshing of increasing levels of geometric inconsistency. 80

Figure 39. Results from different resolutions. ..82

Figure 40. Examples of references with respectively eroded and dilated masks. 83

Figure 41. Results from altered masks. ..83

Figure 42. Reconstructions of the reference set under different ablations. 84

Figure 43. Close-ups of the results obtained with different color repair methods. 85

Figure 44. Reconstructions with SFT from the sets with six canonical views. 87

Figure 45. Comparison of the reconstructions obtained by our system and NVDiffRec. 88

Figure 46. Reconstructions from hand-drawn sketches. ..90

10

Index of tables
Table 1. Summary of the state of the art in sketch reconstruction. ..30

Table 2. Summary of the state of the art in realistic reconstruction. 31

Table 3. Validation metrics for the game character reconstruction (initial experiments). 71

Table 4. Validation metrics for the game character reconstruction (mask experiments). 73

Table 5. Validation metrics of the reconstructions from different styles. 77

Table 6. Validation metrics of the Axolotl reconstructions from different dataset sizes. 79

Table 7. Validation results of reconstructions with increasing camera inconsistencies. 79

Table 8. Validation results of reconstructions with increasing geometric inconsistencies. 81

Table 9. Validation metrics of Vasque reconstructions from different image resolutions. 82

Table 10. Validation results for reconstruction with different ablations. 84

Table 11. Validation results for reconstructions with our system, [52], and [20]. 86

Table 12. Comparison between the sketches and the associated models. 89

Table 13. Comparison of the reconstructions and the human-made models.90

11

Application of 3D reconstruction techniques for realistic images over drawings and sketches

12

1. Introduction

Since ancient times, sketches and drawings have proven to be powerful mediums for depicting ideas
as they convey information visually without words. Therefore they are a powerful communication
tool capable of surpassing age, background, or cultural barriers. Indeed, early in life, one of the first
skills we learn is to draw and represent our vision of reality on paper.

These are the reasons why, to this day, sketching and developing concept art is a key step in design.
From architecture and manufacturing to character and environment design, sketches are a quick and
convenient way to settle a concept, its properties, and its appearance [5, 22, 23, 46, 72, 79]. Despite
all the advances in human-computer interaction and digital design systems, sketching with pen and
paper is the most intuitive medium for professionals to express their ideas.

Throughout this work, we will aim to obtain the 3D information contained in sketches. We will look
towards the successful area of multi-view reconstruction from real-life images [20, 33, 44, 52] to
draw inspiration. By analyzing their techniques, we intend to apply them to sketches, determining
their suitability, advantages, and issues, hoping to open the path for future work.

1.1. Motivation

As stated, sketches and drawings constitute a powerful medium for expressing new and existing
content. They are often used as the initial step for designing items in architecture, industrial design,
or entertainment industries [5, 23, 79]. To an extent, sketches are flexible and convenient tools to
convey 3D shapes without the hassle of dealing with actual three-dimensional matters.

However, the next steps in these design processes often imply formalizing the objects or characters
described in the sketches into 3D [5, 72]. This usually involves manually converting these
representations into actual 3D models using Computer-Aided Design (CAD) tools [69], which is
difficult, requires skill and practice, and offers a less intuitive medium than the original sketches.
Therefore, there is a great interest in generating systems capable of automatizing or aiding designers
in this process, reducing the cost of 3D model generation and allowing for faster prototyping [25,
41, 42, 46, 75]. Moreover, due to the thriving of augmented and virtual reality and game industries
in recent years, the need for 3D content is quickly increasing [16, 46, 74, 76].

On the other hand, the capability of recovering 3D information from 2D content has been highly
researched in computer vision since the start [7, 15, 35, 58]. The ability to understand the spatial
properties of objects by observation is linked to a better understanding of reality. This not only
relates to the capability of recovering 3D information from 2D content but also to a potential
improvement in other tasks such as object detection, segmentation, and classification [47, 49].

Sketches are an exciting medium because they can convey 3D information with less visual
complexity than real-life images. In contrast, they present a higher ambiguity, and their successful
interpretation is highly linked to knowledge, not only involving recognition but rather
interpretation. In this way, the latter requires a deeper understanding of reality and the capability to
effectively use this understanding. With all this, the study of systems capable of recovering 3D
information from drawings and sketches opens the door to studying this interpretation process, a
fundamental step in developing systems with a higher understanding of reality.

Lastly, approaching the task from the more practical side of things, we aim to study how promising
results found in reconstruction for realistic images can be applied to the domain of sketches. In this

13

Application of 3D reconstruction techniques for realistic images over drawings and sketches

way, we explore solutions that, to the best of our knowledge, have yet to be applied in the domain of
drawings, determining if they are suitable for such a task.

1.2. Objectives

Our objectives with the development of this project are the following:

• Determining if recent techniques successfully developed for 3D reconstruction from realistic
images can be applied over the domain of sketches and drawings. We make a particular
emphasis on the use of inverse rendering techniques [20, 52].

• Analyzing the particularities of sketches, obtaining a better understanding of the task, its
limitations, and requirements. In this way, we want to determine how different quality factors
inherent to sketches interfere with 3D reconstruction. By doing so, we aim to establish where
future research efforts should be placed.

• Taking the opportunity that this project offers to get not only a better understanding of the state
of the art surrounding computer vision and 3D reconstruction but also further practical
experience with them. Therefore, we aim to apply, in the range of possibility and reasonability, a
wide set of tools and frameworks to cover the needs of our development, increasing our
knowledge in the combined field of machine learning and computer graphics.

1.3. Structure

This document presents our research and development through a total of eight chapters. While the
current chapter aims to introduce our motivations, intents, and topics, the following chapters will
detail the context of our work, its development, and the results we obtained from it. The remainder
of this thesis is structured as follows:

• Chapter 2 presents the state of the art about 3D reconstruction. Firstly we introduce previous
approaches in reconstruction from sketches. Secondly, we detail current techniques for
reconstruction in realistic scenarios and compare both areas to motivate our choices.

• Chapter 3 presents the specific technologies used throughout our work. We focus on the concepts
and methods behind differentiable rendering and on providing a detailed overview of the main
system used in our first proposal, NVDiffRec [52].

• Chapter 4 details our development, which is structured into two proposals. Firstly, we explain
how NVDiffRec can be used over drawings and the associated challenges, suggesting a workflow
to be applied when only images are available. Secondly, we leverage techniques from
reconstruction over realistic images and adapt them to sketches, building our own system.

• Chapter 5 showcases the results obtained from both proposals, displaying their limitations and
capabilities. Moreover, a study is performed on how different quality factors in sketches affect the
reconstruction quality.

• Chapter 6 leverages the results to determine if the techniques and systems detailed throughout this
work suit our task, obtaining the appropriate conclusions regarding their usability.

• Chapter 7 presents future work for our research, building upon the conclusions obtained.

• Finally, Chapter 8 showcases the references used throughout our work.

14

2. State of the art

The field of 3D reconstruction from images has been widely covered in the past. In this work, we
desire to tackle automatic reconstruction from multi-view sketches. However, for doing so, we will
draw inspiration from techniques developed to be applied to photographs or physically based
renders, which we will jointly refer to as realistic images.

Consequently, throughout this section, we will first present previous works related to 3D content
generation from sketches, covering not only multi-view reconstruction but also single-view
reconstruction and interactive approaches, summarized in Table 1. This will help us better
understand the state of the art in sketch reconstruction and settle a point of comparison. Next, we
will complete this comparison by presenting recent approaches in 3D reconstruction from multi-
view realistic images, summarized in Table 2. Both Tables 1 and 2 can be found at the end of this
chapter. Finally, we will cover the related area of Structure-from-Motion, which also will be
relevant to our development.

2.1. Reconstruction from sketches

The estimation of three-dimensional shapes from sketches has been a broadly researched topic.
However, compared with reconstruction from real-life images, it involves additional challenges.
Sketches usually lack shading, which can hint at the object's shape, and geometric inconsistencies
between different views may appear. Furthermore, there is a lack of sufficient hand-drawn ground
truth data paired with 3D models in many cases. Even though some hand-drawn datasets exist, such
as [23] and [79], they generally do not provide enough samples for training a system, causing
previous works to rely on training with synthetic data [25, 46, 74, 83].

Multi-view reconstruction, from any source, aims to obtain a three-dimensional description of an
object depicted in multiple two-dimensional representations through different views. Consequently,
both tasks have a similar nature. However, real-life image reconstruction often aims to revert a
rendering process, recovering original unknown scene parameters from observations [33, 40, 44, 45,
52, 55]. Therefore, a rendering pipeline is assumed, consistently approximating the laws of light
transport, significantly reducing the ambiguity of the task with the number of meaningful
references.

In contrast, sketches are not the result of the laws of physics. Instead, they are subjective views of
reality [79]. If different people draw the same object, the results will be very different. In the same
way, different people interpret sketches differently. This ill-posed nature distinguishes the task over
sketches from the task over realistic images. While the latter aims to invert a well-known process
and recover the lost scene information, the former aims to overcome subjective interference to build
the most plausible object.

In this intent, multiple methods have been developed. Some have presented interactive alternatives
involving the user in the reconstruction [41, 42], leaning on the user’s decisions to deal with
uncertainty. Other works have tackled automatic reconstruction from single [16, 22, 24, 72, 74, 75,
83] or multi-view sketches [46, 25]. The following sections showcase these approaches.

15

Application of 3D reconstruction techniques for realistic images over drawings and sketches

2.1.1. Interactive approaches

Interactive approaches take advantage of the user’s actions to solve the uncertainty. Even though
many interactive 3D content generation systems have been developed over the years, we will focus
in this section on two recent works closest to sketch reconstruction.

Figure 1. Inflation of a curve [54].

On the one hand, the work by Li et al. [42] exemplified this. In their system, the reconstruction from
a reference drawing was guided by the user, who progressively sketched out the regions of the
picture to reconstruct, offering a constructive modeling approach. Each traced line was matched
against the contours of the image, identifying which parts of the reference should be reconstructed.
Additionally, the free form of the sketched line could be maintained if it did not match the
reference, allowing for novel shapes. Once a spline was defined for each sketched line, a 3D shape
was generated by inflation, as exemplified in Figure 1. In this way, the final 3D model was
progressively constructed as a set of inflated splines.

On the other hand, another interactive approach was SketchCNN, proposed in [41]. Through deep
learning techniques, they introduced a system capable of generating surface depth and normal
estimations from specially styled sketches. SketchCNN was divided into two modules, as seen in
Figure 2.

Figure 2. Interactive sketch reconstruction proposal by Li et al. [41].

Firstly, the input maps for the system were the sketch, mask identifying the target, and optional
depth and curvature clues. The sketches were encoded following a specific style, in which contour
lines were recorded as pure black while other surface lines, such as valleys and ridges, used lower
grey levels. From them, a sub-network based on the U-Net architecture [64] was proposed to
generate a flow field map, which characterized the curvature of the surface, aiming to help
disambiguate the 3D shape. Secondly, all the previous inputs plus the flow field map were fed into a
deeper sub-network, which regressed the confidence, normal, and depth maps as result. From them,
the 3D surface could be estimated from the corresponding view.

Given the specially annotated inputs, the described system worked automatically until this point.
However, a multi-view interactive modeling system was implemented to generate complete shapes.
This allowed users to sketch progressively in different views to create closed models by fusing

16

individual surfaces. Additionally, the interactive approach allowed for incremental sketching, being
able to progressively adapt and modify the 3D model to resolve any ambiguities.

2.1.2. Single-view automatic approaches

Another set of works focused on reconstruction from a single view. Wang et al. [74] used a two-
module design to generate point clouds from single sketches. First, a standardization module
converted sketches to a standard style, being trained to transform distorted synthetic sketches into
their original counterparts. Later, the generation module took these standard sketches to obtain
viewpoint estimations and generate a point cloud representing the sketched object. The
standardization module aimed to solve generalization issues due to training based on synthetic
samples, as hand-drawn sketches were able to be converted to a standard common style.

Generating point clouds as well, Gao et al. [16] introduced 3D reconstruction based on sketch
translation and a point cloud generator, as seen in Figure 3. The translator followed an encoder-
decoder architecture [1], generating spatial features that could extract the 3D information contained
in the sketch. The maps generated were processed through convolutional layers to get a density
probability map of the sketch, which allowed for sampling 2D points corresponding to the
projections of the desired point cloud. Finally, the depth of the points was generated by using the
features at the corresponding location. Synthetic samples were used to train the system.

Figure 3. Reconstruction system proposed by Gao et al. [16].

Zhang et al. [83] worked with mesh representations by estimating the deformation of a template
mesh through vertex displacements given a single sketch. This was done by explicitly encoding the
viewpoint separately from the latent shape vector, allowing for view estimation. To ensure that the
viewpoint was considered for the generation, a proposed random view reinforced training combined
with adversarial training [21] was used. In contrast to Wang et al. [74], where the network was
trained through a Chamfer distance loss [61], this system proposed a silhouette loss by applying
differentiable rasterization, shape regularizations, a view prediction loss, and adversarial losses. To
generalize to hand-drawn sketches, they proposed an encoder to generate indistinguishable features
for synthetic and hand-drawn drawings.

Following a different approach, the work of Wang et al. [75] was based on voxelated
representations. To deal with the lack of paired data, they proposed an unsupervised method in
which known parings between sketches and models were not required, shown in Figure 4. Instead,
an autoencoder [3] was used to project the sketches and the rendered views into a common latent
space to obtain similar representations. Then, given the encoding of a sketch, the objects with the
nearest render encodings were retrieved. Using another autoencoder for voxel representations,
objects were used to generate a final single encoding, which allowed to obtain the final shape. L1
distance with the initial objects and adversarial loss was used to train the shape generator.

N
N

N

17

Application of 3D reconstruction techniques for realistic images over drawings and sketches

Figure 4. Unsupervised reconstruction system proposed by Wang et al. [75].

So far in this section, the enumerated methods relied on image sketches as input. However, another
notable line of work exists aiming to regress 3D information from line sketches encoded as
vectorized lines, keeping direct compatibility with tools such as drawing tablets. We will just briefly
introduce this line of research as our work focuses on plain image representations.

The approaches over vector strokes generally have a more algorithmic nature rather than using deep
learning techniques. Gryaditskaya et al. [22] and Tian et al. [72] tackled the problem by proposing
systems capable of obtaining the three-dimensional properties of the intersections found in the 2D
sketches. This implied finding the 3D alignment most adequate for the given sketch, driving the
reconstruction as the optimization of a score function measuring the quality of the solution. Given
the vast range of possible solutions for the problem, both relied on restrictions to make it tractable,
simplifying the process and reducing the solution space.

On the one hand, Gryaditskaya et al. assumed that sketches were designed using reference strokes,
imposing restrictions regarding connectivity. This allowed them to tackle the problem as a labeling
task to classify 2D intersections as occlusions or true intersections, defining the 3D connectivity.
The labeling was done progressively, optimizing a score function capable of measuring how well
each possible connectivity fulfilled the established constraints.

On the other hand, Tian et al. applied the parallelism constraint: parallel lines in 2D space must
have the same angle with the XY plane. Even though this condition is necessary for 3D parallelism,
it is not sufficient, allowing for inaccuracies. This made it possible to tackle the problem of
estimating the intersection’s depth by grouping lines into classes based on parallelism. In this way,
an optimization based on incremental updates of the depths maintaining the defined parallelism was
used. This procedure was guided by an optimization function measuring the complexity of the
geometry, aiming to minimize it. From the depths, the sketch was able to be converted into a mesh.

Finally, Hähnlein et al. [24] also presented a system based on time-stamped polylines to reconstruct
their 3D properties. In this case, a modular sketch design and symmetries were assumed. This

18

allowed them to divide the sketches into chronological blocks, locating their symmetry planes and
determining the symmetry correspondences of each stroke. The method was based on an integer
optimization [19] targeting to increase the degree of symmetry and connectivity of the
reconstruction.

2.1.3. Multi-view automatic approaches

Despite the wide variety of works tackling reconstruction from single-view sketches, the number of
works covering multi-view reconstruction in the same domain is lower. On the one hand, Han et al.
[25] worked over a voxel representation and proposed extracting geometric features using a
Conditional Generative Adversarial Network (CGAN) [50] to generate attenuation maps for each
sketch. This allowed optimizing a voxel grid by a Direct Shape Optimization algorithm [26],
obtaining the voxel representation of the target object that best fitted the attenuation maps.

Besides the image sketches, this approach required the view poses too. Even though this system was
automatic, they also proposed an interactive editing scheme based on shape retrieval [71] and
progressive refining by adding new sketched views. Two alternatives were proposed for dealing
with geometric inconsistencies: attributing higher weights to the last sketch or assigning higher
weights to the voxels that could be directly inferred. For training, a synthetical dataset was used.

On the other hand, Lun et al. [46] used a similar scheme with different ideas. Through a
Convolutional Neural Network (CNN) [38], from sketches, they generated the depth, normal, and
foreground probability maps from 12 fixed viewpoints. Using them, partial point clouds were
obtained and later fused through optimization to reduce the noisiness and misalignments. Finally,
the global cloud was converted into a mesh, which could be further refined through contour fitting.

In this case, the proposed network had to be trained for a fixed set of input views. Therefore, it
presented the drawback of assuming a selected set of viewpoints, being a new network retrained for
each desired combination of views. As in [25], a synthetically generated dataset was used for
training.

2.1.4. Comparison between the approaches

Until now, we have presented a summary of the recent techniques in reconstruction from sketches,
introducing the main three approaches. In interactive reconstruction, the user manages ambiguities,
allowing for a more precise and satisfactory solution from the user's point of view. Moreover, they
offer iterative design, allowing the user to iterate over the reconstruction to improve it. However,
this is at the cost of a higher requirement in user effort.

In contrast, automatic approaches imply a lower effort for the user, as the reconstruction is done
without their intervention. However, this is generally at the price of a lower capacity of
disambiguation. To help solve the issue, automatic deep learning approaches usually rely on
intermediate representations capable of extracting the 3D information of the sketches, easing the
application of generative methods for point clouds, meshes, or voxels. These systems usually
require training and, due to the limitations in paired training data, they use synthetic datasets to
learn. This can difficult the generalization to hand-drawn sketches, making it necessary to consider
techniques such as standardization or encoding into a shared latent space. Moreover, even when
using these techniques, the system will still depend on the types of objects used for training, being
difficult to generalize to any kind.

19

Application of 3D reconstruction techniques for realistic images over drawings and sketches

An important area of automatic reconstruction works over vector stroke data. These approaches are
algorithmic, not requiring previous training, and being independent of the type of objects drawn.
However, they impose restrictions and assumptions on the characteristics of the designs. This,
together with the need for specialized inputs, limits their application to specific styles and use cases,
more focused on industrial design and architecture.

Finally, multi-view reconstruction has been less explored than single-view. This relates to the
difficulty of generating multiple drawn samples for the same object and the inconsistencies that
arise between multiple sketches. Despite this, the approaches followed are similar to the deep
learning techniques used in single-view. They generate intermediate representations capable of
capturing a higher degree of 3D information before generating a 3D shape representation. However,
as seen with [46], depending on the approach used, these techniques can be difficult to adapt to a
variable number of input views.

Even though it presents a more challenging task, the presence of multiple views has benefits. By
observing the target from different points of view, we can better understand the object, helping to
disambiguate it. This implies a lower dependence on recognizing the object’s class to reconstruct it,
being able to have a higher emphasis on understanding the shape rather than recognizing the shape.

Even though these constitute the main types of approaches, they are not mutually exclusive. Single-
view reconstruction could be seen as a particular case of multi-view reconstruction with only one
view. Furthermore, [25] and [72] showed that automatic approaches could also be used to build
interactive systems, allowing the user to fix any mistakes. This offers a middle ground in which the
effort required by the user is lower while offering higher flexibility to obtain the desired output.

2.2. Reconstruction from realistic images

In contrast to reconstruction from multi-view sketches, the generation of 3D representations from
multiple realistic views has been broadly studied [10, 20, 27, 35, 48, 52, 67]. Fields such as scene
reconstruction, novel view generation, and Structure-from-Motion fall under this category.
Although single-view approaches also exist for realistic images, for brevity, this section focuses
only on multi-view approaches, as they are the ones we will take as inspiration for our proposals.

As in Section 2.1, we summarize the most recent techniques in 3D reconstruction from realistic
multi-view images by presenting the taxonomy of approaches used in the area. First, we cover
works using Multi-Layer Perceptrons [18] to represent scenes. Next, we describe works tackling the
reconstruction of 3D shapes through explicit representations. Finally, we briefly present the related
area of Structure-from-Motion.

2.2.1. Implicit representation

Before covering implicit representation approaches, reviewing the concept of Signed Distance
Functions (SDF) –also known as Signed Distance Fields– is important. An SDF establishes the
distance of a point in space to an object's surface [11]. Not only that, but the sign of the given
distance indicates whether the point is found outside –positive– or inside –negative– of the object.
Therefore, the object's surface is characterized by the points of the space whose SDF equals zero.
Related to SDFs is the concept of occupancy. In this case, occupancy is a binary function that
characterizes the space as full or empty, defining the inside and outside of an object and locating the
surface in the frontier [56].

20

Implicit representations offer an alternative to explicit 3D shape representations such as point
clouds, voxels, and meshes. They characterize the 3D properties of the scene through a function,
usually modeled as a Multi-Layer Perceptron (MLP) [18] capable of regressing the properties of the
space given the position and other factors. Therefore, implicit neural representations can
approximate SDFs and occupancy functions to characterize 3D shapes [11, 56, 60, 70].

One of the most notable works in 3D scene reconstruction through implicit representations was
NeRF [48]. In this work, scenes were represented through an MLP that returned the emitted color
and volume density, given the position in space and the viewing direction, following Figure 5. The
position and direction were transformed using positional encodings, allowing for higher detail.
Additionally, hierarchical sampling was used thanks to a coarse and a fine network. Initial samples
were taken from the coarse network. Then, new samples were extracted from the resulting values
near the points with more density, using the fine network to obtain the final values.

Figure 5. Implicit scene representation for volume rendering proposed by NeRF [48].

Given the position and viewing direction of a point in space, the color and
density of said point are returned. This allows the optimization of the MLP through
volume rendering.

To ensure consistency, the density was predicted using only the position, as the shape does not
depend on the point of view. Once predicted, the viewing direction was appended to obtain the
color. The dependency of the color with the viewing direction was necessary to simulate complex
view-dependent material effects, such as specular reflections.

With this approach, the reconstruction was modeled as an optimization process, having to train the
weights of a new MLP for every new scene. Given the images from multiple points of view and
their viewpoints, the scene was optimized through volume rendering, as depicted in Figure 5.

NeRF established a simple but elegant approach that could recover any scene, capturing 3D spaces
from their images to offer novel view synthesis and scene inspection. In fact, this approach inspired
many subsequent works. Müller et al. [51] proposed an improvement on NeRF based on modifying
the encoding used for the inputs. They proposed a trainable multi-level hash table by dividing the
space into a multi-resolution voxel grid. In this way, the encodings were generated as a combination
of the codes obtained from the voxels containing the point at different resolution levels, enabling
efficient high-resolution reconstructions with smaller MLPs.

Also inspired by NeRF, Wang et al. [77] presented NeuS. Focusing on shape estimation, they
leveraged SDFs to represent the surface. Therefore, given the position and looking direction, their
implicit representation returned the color and the distance of the point to the surface. To learn from
images, they adapted the volume rendering equation to work with the SDF values.

(x, y, z, θ, ϕ) (RGBσ)
σ

σ

Ray distance

Ray 1

Ray 2
g.t.

g.t.

2

2

2

2

(x , y, z) (θ, ϕ)
σ

21

Application of 3D reconstruction techniques for realistic images over drawings and sketches

Several works tackled the fact that the NeRF scenes could not be relighted as the lighting was baked
inside the network. Firstly, Boss et al. [6] presented NeRD. Instead of only learning shape and color,
they proposed to learn the shape, Bidirectional Reflectance Distribution Function (BRDF)
parameters, and lighting. This way, it was also possible to use source images with different lighting
conditions by learning the illumination locally for each image.

The most significant differences of NeRD reside in the estimation of spherical Gaussians for the
lighting and the modification of the fine network. While the coarse network estimated the density
and a view-independent but illumination-dependent color to guide the sampling, the fine network
generated the BRDF parameters and surface normal. By approximating the general rendering
equation through a sum of spherical Gaussians, the scene could be rendered from the BRDF and
normals. To avoid inconsistencies, the surface and normal estimations were coupled. Meanwhile, to
ensure smoothness in the BRDF, its prediction used an autoencoder to map similar BRDFs to the
same encoding, improving the surface consistency. Finally, the modifications proposed also allowed
the extraction of consistent texture meshes in contrast to NeRF.

Figure 6. Architecture for implicit reconstruction proposed by NeRFactor [84].

From the initial NeRF estimation, the surface position , normal , light visibility ,
albedo , and BRDF latent code are obtained. represents a point in space, is
the density, and is the light direction, represents the view direction, and
are Rusinkiewicz coordinates [65].

Secondly, Zhang et al. [84] aimed to provide a re-lightable reconstruction, solving the noise
problems derived from the NeRF optimization. This was accomplished through NeRFactor, which
leveraged NeRF as an initial step to obtain a base volumetric representation and whose architecture
is displayed in Figure 6. Once this representation was initialized, NeRFactor’s additional modules
could be optimized to refine the estimations and obtain a re-lightable scene.

Concretely, explicit surface points, normals, albedo, specular BRDF, and light visibility were
refined from the NeRF scene. The noise was reduced using MLP modules, trained to induce
smoothness while maintaining proximity with the direct estimations. A particularity of this system
was using a frozen pre-trained decoder for predicting real BRDF values from estimated encodings.
Moreover, lighting was optimized directly, learning the values of a High Dynamic Range (HDR)
light probe. The optimization was guided by Physically Based Rendering (PBR) equations
considering local lighting, optimizing NeRFactor until the initial estimation, excluding it.

xsurf n v
a zBRDF x σ

ωi ωo (ϕd, θh, θd)

22

Thirdly, PhySG [82] not only intended to obtain re-lightable scenes but also to allow editing
materials. With this aim, Zhang et al. proposed encoding the shape through an MLP SDF, as in [77],
while modeling environmental lighting with spherical Gaussians, as in [6]. To capture materials, an
MLP was used to define a spatially varying albedo based on the surface point, and spherical
Gaussians were used to capture the specular BRDF. By sphere tracing and approximating the
rendering equation through the spherical Gaussians, the system could be optimized from images,
not considering self-occlusion or indirect lighting. An image-based L1 loss and regularizations to
enforce non-negative SDF values in the background and unitary normals were used to this end.

Lastly, we close this section with a different type of approach also based on NeRF, proposed by
Yang et al. [80]. As input, they used multi-view and multi-light images. Therefore, not only multiple
views of the object were provided, but also multiple illuminations for each view. Multi-light images
could be used to estimate normal maps, which helped to regularize an initial NeRF estimation.
Later, similar to [84], this initialization was refined by optimizing MLPs to obtain refined normals,
light visibility, and materials. BRDF materials were encoded through an albedo MLP and a specular
MLP, characterizing the latter the weights of spherical Gaussians. Finally, the lighting for each
image was determined by a light with a learnable intensity and direction. As in previous works, this
system was optimized per scene based on image loss and regularizations.

2.2.2. Explicit representation

As we have seen, implicit representation methods use MLPs as functions to encode shape and
material properties. This has advantages like a lower memory footprint, higher flexibility, and a
theoretically infinite resolution. However, we have also seen how they present the caveat of difficult
access to the optimized content. Many works try to soften this limitation by using SDFs to ease the
generation of meshes from the implicit representation, as well as the direct estimation of BRDF
materials and lighting maps to be able to edit the scene’s materials and illumination.

In contrast, explicit approaches deal with these difficulties by directly optimizing a defined data
structure for spatial representation, generally in the form of point clouds, meshes, or voxels. Even
though this usually implies an increase in memory footprint with geometry resolution, the explicit
representation of the shape and materials allows for easier recovery of the optimized contents. In
turn, this facilitates the modification of scenes and their integration with standard systems for 3D
content manipulation.

In 2016, Kim et al. [35] proposed a refinement approach for reconstruction based on multi-view
images. Like NeRF [48], an optimization scheme was also assumed, refining the shape for each
scene given the source images. However, in this case, instead of optimizing a network, the
displacement of the mesh's vertices was directly optimized. Starting from an initial Structure-from-
Motion estimation [67], the shape and the view poses for each source image were obtained. Once
initialized, the mesh, its albedo, and per-camera lighting were optimized using a simple Lambertian
without complex reflections as the rendering equation. The rendering error regarding the source
images was used to guide the refinement, being normalized per vertex using the number of visible
cameras, complemented with geometric and photometric regularizations. While the former aimed to
minimize the surface curvature, the latter regularized the ambiguity between albedo and lighting by
enforcing that vertices with similar albedo should have a similar color.

This work describes the base approach for the explicit representation reconstruction techniques,
which would be further defined in Hasselgren et al. [27]. They built upon the method, using

23

Application of 3D reconstruction techniques for realistic images over drawings and sketches

triangular meshes and PBR-based materials to represent the scene. Through optimization based on
differentiable rendering using deferred shading –which will be detailed in Section 3.1.1– and an
image loss, they were able to optimize textured shapes. However, they extended the method to also
refine aggregated geometry, displacement maps, or skinning based on given animations.

Additionally, they complemented the loss function with a Laplacian regularization, which is widely
used in these approaches. As the optimization directly manages the vertices’ positions, they can be
moved freely without geometry regularization, leading to potentially degenerated stages in which
the mesh triangles may clip or overlap. The Laplacian regularization solves this by enforcing
geometry smoothness and helping to maintain the relative positions inside vertex neighborhoods.

However, pure mesh representations are not the only ones used in the reconstruction. Mixing ideas
from explicit representations and the use of SDFs, Gao et al. [17] and Shen et al. [68] settled for
reconstruction based on deformable tetrahedral grid representations that stored SDF or occupancy
values at their vertices. In this representation, meshes were optimized explicitly but represented
through a gridded space, reducing the problems related to degenerations.

Figure 7. Deformable tetrahedral grid representation proposed by Gao et al. [17].

On the one hand, Gao et al. [17] initially proposed these representations thanks to a middle
approach between voxels and meshes, shown in Figure 7. The base was a tetrahedral grid composed
of vertices, triangular faces, and tetrahedrons. By characterizing the tetrahedrons with occupancy,
the mesh was defined by the faces shared between empty and occupied tetrahedrons. Moreover, to
avoid the problems of aliasing, a deformable grid was defined to better adapt to the desired shape.

Gao et al. proposed two possible methods for reconstruction: using gradient-based optimization to
refine displacements and occupancies, similarly to [48], or using trained networks to predict the
occupancies and vertex displacements, as in Figure 7. This work computed the occupancy per
vertex, defining the tetrahedron’s value as the maximum of its vertices. Even though this
representation circumvented problems related to mesh degeneration, it had to avoid the tetrahedrons
flipping.

On the other hand, Shen et al. [68] built over the proposal in [17] to define a system capable of
recovering high-resolution models from low-resolution 3D representations. Despite tackling a
different task than us, their extension of [17] is relevant to our work. They proposed using SDFs
instead of occupancy and a Differentiable Marching Tetrahedra (MT) layer to convert the SDF
values into meshes. First, given the surface tetrahedrons identified by different SDF signs in their
vertices, the MT algorithm located the topology inside them. Then, the SDF values were used to
compute the positions of the vertices of the resulting triangle faces, as depicted in Figure 8,
obtaining the mesh. It is important to note that both [17] and [68] normalized the tetrahedral grid to
a unit cube size.

Building upon these ideas, Munkberg et al. [52] presented NVDiffRec. Even though this system
will be described in further detail in Section 3.2, we provide a summary here. NVDiffRec proposed

s

24

a two-phase optimization over meshes intending to obtain exportable 3D reconstructions ensuring
compatibility with standard tools. The deformable SDF tetrahedral grid was used as an internal
representation to accomplish this. For recovering materials, an implicit MLP representation was
used in the first training phase while converting them to learnable texture maps in the second phase.
Finally, the environment light was also optimized thanks to learnable cube maps.

This optimization was possible through differentiable rendering and an image loss, accompanied by
regularizations. Therefore, the scene was reconstructed by providing the images, viewpoints, and
masks, obtaining a full textured mesh and an HDR environment map. The relevance of NVDiffRec
resides in its capability of generating complete scenes with promising results and maintaining
compatibility, recovering formats usable by off-the-shelf tools.

Figure 8. Possible unique topologies inside a tetrahedron following MT [68].

As we have seen so far, most approaches for reconstruction, wherever explicit or implicit, rely on
rendering to obtain feedback and guide the optimization of the reconstruction. This rendering is
usually tailored to the representation, approximating the general rendering equation in different
ways. Nonetheless, looking to balance efficiency and realistic-looking results, these approaches
apply simplifications, generally focusing on local lighting without shadows or complex reflections.
Even though this allows faster refinements, it is usually a limiting factor in the quality of the
reconstructions.

Goel et al. [20] proposed a reconstruction method using differentiable path tracing to avoid the
limitations of local lighting, as seen in Figure 9. Starting from an initial mesh estimation, they
applied two alternating steps repeated cyclicly: a material refinement step focused on estimating
BRDF parameters and a geometry refinement step updating the vertex's positions. After
convergence on each cycle, face subdivision was used to increase the resolution of the mesh,
followed by simplification to limit the number of parameters and remeshing to fix artifacts.

Several initialization methods were used in [20], such as voxel carving and COLMAP estimations
[67], reporting better performance with the second one. Multi-view images, viewpoints,
environment maps, material masks, and object masks were given for the reconstruction. For
representing the shape, triangle meshes were used, optimizing their vertex positions. A coarse-to-
fine approach was applied to avoid falling in local minimums, thanks to a low-res initial mesh and
the progressive resolution increase through face subdivision.

For encoding the materials, mesh colors were used [81]: a one-dimensional color vector accessed
given the resolution level, triangle index, and barycentric coordinates. This allowed a more
straightforward optimization when considering malleable shapes, as learnable image textures would
require joint color and texture coordinates optimization. As with shape, the colors were also
recovered in a coarse-to-fine fashion. Initially, constant diffuse and specular colors were optimized
to avoid baking-in geometric details. After some cycles, spatially varying diffuse color and constant

25

Application of 3D reconstruction techniques for realistic images over drawings and sketches

specularity were refined. Finally, both spatially varying diffuse and specular materials were
optimized. To avoid baking specularities into the diffuse color, specular glows were detected and
masked.

In this case, the optimization was driven thanks to the Mean Squared Error between renders and
ground truth images, not reporting the use of any shape regularization (just a variance penalty for
specular colors). As the lack of regularizations could lead to non-recoverable situations, Poisson
remeshing after each cycle was used to fix possible issues. It is important to note that after
remeshing, the materials were reset to a neutral grey color, effectively discarding the previous color
estimations.

Figure 9. Reconstruction scheme proposed by Goel et al. [20].

2.2.3. Comparison with reconstruction from sketches

When comparing the presented techniques for realistic reconstruction to those from sketches, we
can observe how the former often rely on an optimization approach guided by inverse rendering.
Meanwhile, non-interactive sketch reconstruction approaches mostly rely on trained deep models to
regress 3D information that can be used in the reconstruction. Moreover, while reconstruction from
realistic images focuses on joint estimation of both shape and materials, reconstruction from
sketches is limited to shape. Even though this is reasonable when considering pure line sketches, we
argue that, when dealing with colored sketches or concept art, considering color becomes highly
desirable as it is crucial to define the visual identity of an object.

Therefore, when wishing to recover color from sketches for reconstruction, our nearest sources of
inspiration lie in reconstruction from realistic images. One advantage of the optimization-based

26

approaches resides in their higher degree of generality. While deep learning systems are trained
under specific object classes and styles, optimization approaches are designed to approximate the
best reconstruction possible to the given inputs, reducing the bias.

Nonetheless, optimization methods also present some limitations. They require time to refine a
reconstruction for each case, and they are designed with a particular domain in mind. Consequently,
the quality of results varies when applied to other fields, even though they are inherently more
generic.

2.2.4. Structure-from-Motion

Before closing off the review of the state of the art, discussing the related task of Structure-from-
Motion (SfM) [58, 67] is relevant. While reconstruction from multi-view images tries to recover a
target or a scene from a given number of images, it generally involves some restrictions or
assumptions such as known viewpoints, constant illumination, shared camera parameters, or object
masks. In contrast, SfM aims to process extensive image collections of a mutual landmark or scene
from multiple sources, such as Internet image collections, to recover the underlying structure.
Therefore, SfM deals with a broader task: images of unknown nature and bigger datasets. This more
general nature of SfM implies not only recovering the scene structure but also estimating the
camera poses. This makes the techniques in this area commonly used as preprocessing steps for
reconstruction, whether for obtaining viewpoints or providing an initial shape estimation.

Figure 10. General pipeline for incremental SfM [67].

One of the most notable works in SfM in recent years has been COLMAP [67]. This system, openly
provided to the community, was developed as a result of the work of Schönberger et al. and has
been widely used since then. Said work provided a general overview of the existing approach for
incremental SfM and contributed improvements that helped increase its robustness and efficiency.
COLMAP was the result of their improved algorithm.

27

Application of 3D reconstruction techniques for realistic images over drawings and sketches

Following [67], the general pipeline for incremental SfM systems consisted of four steps, shown in
Figure 10. Firstly, images were processed to extract characteristic key points. Secondly, the
correspondences between key points in different images were identified, forming a list of pairs of
potentially overlapping images. Thirdly, the image pairs were geometrically validated to filter the
true correspondences. This was done by finding the transformation that mapped a sufficient number
of key points between images. Finally, the incremental reconstruction step was applied,
progressively generating the view poses and the set of 3D points characterizing the scene.

The incremental reconstruction started from a two-view reconstruction process. This first step was
critical as a bad initialization could lead to unrecoverable states. Then, images were progressively
added using the correspondences with triangulated points from already registered images,
estimating their pose and intrinsic parameters. In turn, registering more images contributed to more
points consistently viewed and their triangulation. Finally, bundle adjustment jointly refined both
camera and point parameters.

Building upon this basic pipeline, Schönberger et al. [67] introduced improvements to increase the
accuracy and robustness of the reconstruction. Firstly, they augmented the image correspondences
(also known as scene graph) with additional information to find a robust initialization more
efficiently. Specifically, by computing the fundamental, homography, and essential matrices, the
number of inlier key points complying with these matrices was added. Watermarks, timestamps, and
frames were also detected and discarded as key points.

Secondly, a next-best view selection scheme was proposed for efficiently dealing with extensive
collections. In this scheme, images were scored considering the number of triangulated points seen
–the higher, the better– and the uniformity of their distribution –the more uniform, the better–. The
latter was measured by dividing the images into multi-resolution grids and adding the weight of the
cells containing key points at each level, favoring a uniform distribution.

Thirdly, a robust and efficient triangulation system for dealing with outlier contamination was
proposed. With this aim, initially, a set of pairs of image observations and poses was said to contain
an unknown number of inliers. Then, iteratively, the well-conditioned features were identified based
on sufficient triangulation angle, positive depths, and reprojection error lower than a threshold.

Fourthly, the bundle adjustment scheme was modified to mitigate accumulative errors. Local
adjustment of the most connected images was applied after each registration. Conversely, global
adjustment was only used after reaching a certain reconstruction size. Filtering was applied to delete
observations with significant reprojection errors and degenerate cameras. Re-triangulation was also
used both before and after the global bundle adjustments for better estimation. Lastly, these steps
were applied iteratively until the number of filtered observations and points decreased.

Finally, the number of views was reduced to alleviate the bottleneck caused by bundle adjustment.
First, images and points were divided into two groups, depending on whether they were affected by
the last incremental step. Considering that bundle adjustment naturally affects more the newly
added parts, the images non-affected were grouped in groups of highly overlapping cameras,
fusing each group into a single camera. Meanwhile, the remaining images were maintained as
individuals to allow a better refinement.

Thanks to the improvements introduced in [67], the more efficient and robust reconstructions, and
the easy-to-use access provided to its implementation, the use of COLMAP has been widespread,
becoming a reference and staple in SfM. Nonetheless, other approaches have been proposed since
then, such as the works of Cui et al. [10] and Kong et al. [37].

N

28

On the one hand, Cui et al. [10] proposed a hybrid approach to combine the advantages of both
incremental and global SfM. In contrast to the incremental process of COLMAP, global techniques
relied on a single bundle adjustment after estimating simultaneously all camera poses. This was
possible thanks to a rotation and translation averaging step. While the former estimated all the
camera rotations from relative orientations between overlapping images, the latter tried to estimate
the camera positions. Compared to incremental approaches, global techniques avoided the need for
a seed model and possible bad initializations, reducing the use of bundle adjustment.

However, they also presented some drawbacks, as they were more sensitive to the errors and
outliers in the initial scene graph estimation. Therefore, [10] proposed a hybrid approach to improve
the cost of incremental methods and the robustness of global techniques, striking a good balance
between quality and efficiency.

The proposal of Cui et al. was divided into two stages. Firstly, an initial rotation estimation
inherited from the global approaches was defined. Secondly, inheriting from incremental
techniques, center estimation was used. The initial pair of cameras was chosen based on the higher
number of matches, wider angle, and higher number of connections. From the initialization, camera
registration, triangulation, and bundle adjustment were applied iteratively, keeping constant the
intrinsic parameters and rotations in the latter.

On the other hand, the work of Kong et al. [37] dealt with 3D shape and pose estimation given 2D
images with annotated landmarks of a given object class. This was approached through Non-Rigid
SfM, considering the objects of the same class as deformations of a representative class object. To
model a sparse solution space characterizing deformations as combinations of smaller steps, an
encoder-decoder was proposed to learn hierarchical dictionaries and sparse encodings. This allowed
obtaining the viewpoint and 3D coordinates for the landmarks, recovering the object’s structure.

As a summary to close this chapter, Tables 1 and 2 present an overview of Sections 2.1 and 2.2.
Both tables follow the same structure. For each paper presented, the number of views required by
their proposed system is indicated as 1 (single-view) or N (multi-view). Moreover, the “Automatic”
and “Interactive” columns indicate if the described approach was capable of performing complete
reconstruction automatically and if an interactive strategy involving the user was presented,
respectively. Next, a brief compilation of the keywords describing the main technologies used on
these systems is shown. Finally, the last columns indicate the inputs required by the systems to
apply reconstruction (once trained, if needed) and their outputs by indicating in which form the
shape, materials, and lighting of the target were recovered.

29

Application of 3D reconstruction techniques for realistic images over drawings and sketches

Table 1. Summary of the state of the art in sketch reconstruction.

30

Table 2. Summary of the state of the art in realistic reconstruction.

31

Application of 3D reconstruction techniques for realistic images over drawings and sketches

32

3. Specific technologies

In this section, we will discuss specific technologies relevant to our work. Firstly, we will present
the principles of differentiable rendering, a key component of inverse rendering. We will cover the
fundamentals of both local lighting approaches in the form of deferred shading and global lighting
techniques in the form of path tracing. Both rendering methods, on their differentiable framework,
will be necessary for our work.

Secondly, we will make a detailed presentation of NVDiffRec and its inner workings. This will give
the reader a better understanding of the system as we will use it as a core component of our first
proposal.

3.1. Differentiable rendering

Rendering techniques have been developed since the early days of computer graphics [12, 29, 31,
32, 39]. When talking about rendering, we refer to the process of transforming data structures into
graphic visualizations, usually displayed on a screen. The most common application and the one
relevant to us corresponds to transforming data structures representing 3D geometry and visual
appearance properties into 2D images depicting such described three-dimensional scenes.

When considering the graphic representation of 3D scenes, we must refer to the foundation in this
area: the rendering equation, seen in Equation 1. This equation characterizes the behavior of light in
a scene, defining the light emitted on a surface point in a direction based on the integral on the
hemisphere around it of the incident light , the characteristic function of the surface’s
material , the surface’s normal , and the direction of the incident light . This equation
must be solved to find the appropriate color for each scene point, conferring a realistic appearance
to computer-generated three-dimensional scenes.

However, estimating the equation’s integral is highly complex, as it usually does not have a closed
form. To approximate it, it is generally divided into diffuse and specular components, having been
proposed many models to approximate both, such as Lambert, Cook-Torrance, and Disney, among
others [8, 39, 86]. Moreover, both global and local methods have been developed. While local
lighting approaches compute the color of a point based only on its local properties, global methods
compute it given both the local properties and how the rest of the scene affects them. Consequently,
global approaches account for complex phenomena such as object inter-reflection, transparency, or
translucency.

While the process of rendering and the rendering equation have been widely studied and are well
known, its inverse operation has received more attention in recent years. Often known as inverse
rendering, this procedure aims to reverse the rendering operation: given the graphic 2D
visualization generated, obtain information related to the underlying data structures that allow it.
Inherently, inverse rendering represents a more complex task and often suffers from a higher
uncertainty.

The recent development of inverse rendering techniques has been closely linked to the development
and growth of auto-differentiation systems, such as PyTorch [92] or TensorFlow [93]. Thanks to

ωo
Ω L (ωi)

f (ωi, ωo) n ωi

(1)L (ωo) = ∫Ω
L (ωi) f (ωi, ωo) (ωi ⋅ n) dωi

33

Application of 3D reconstruction techniques for realistic images over drawings and sketches

them, the most successful approaches have been found in developing differentiable rendering
pipelines. By doing so, auto-differentiation allows reverting the rendering process and updating
scene parameters from image metrics using gradient descent optimization techniques, as seen
throughout Section 2.2.

Nonetheless, the task of defining a differentiable rendering pipeline is a challenging one. On the one
hand, discontinuities may appear, making it difficult to differentiate the process without bias. On the
other hand, rendering can be a resource-intensive and time-consuming process, making its
differentiation very costly and tradeoffs necessary for using it on iterative optimization.

As seen in Section 2.2, there are many possible alternatives for differentiable rendering, depending
on how the rendering equation is approximated. Some examples are volume rendering, used in
models such as NeRF and NeRD, or spherical Gaussians, used in PhySG. However, these methods
are tailored for the given task and representation, losing generality. In the following sections, we
will detail the state-of-the-art main models for the generic differentiable rendering of explicit 3D
representations.

3.1.1. Deferred shading

Deferred shading refers to the strategy in which all the spatially-varying attributes of the scene are
stored in an image-space regular grid over which the shading function is later applied [40]. The base
for the current lines of research for differentiable rendering using deferred shading is found in the
work developed by Laine et al. [40].

They conceived differentiable rendering as a means for using modern machine learning with 3D
geometry. Therefore, a pipeline capable of computing the loss gradient with respect to arbitrary
scene parameters was desired. Furthermore, they aimed to leverage the well-known developments
in real-time graphics to use existing pipelines. By doing so, not only desirable features such as
programmable shading, parallelization, and correct outputs could be preserved, but also current
hardware pipelines could be used.

Figure 11. Differentiable rendering pipeline built using Laine et al.’s proposal [40].

To reach these goals, some design choices were put up front. The critical primitive operations that
required differentiation were identified. By providing custom implementations for them, a modular
design was accomplished. Geometry and textures were modeled as tensors for compatibility with
existing auto-differentiation systems. Furthermore, deferred shading was leveraged to define
shaders externally using efficient tensor operations. Finally, triangular meshes were considered to
use the optimized rasterization in modern pipelines for graphics.

With these choices, four main primitive differentiable operations were defined, allowing for
assembling differentiable rendering pipelines with them, as shown in Figure 11. The first was

34

rasterization, in charge of projecting the triangles to the image space. The forward of this module
took as input the mesh’s triangles and vertices in homogeneous clip-space coordinates of the form

. Therefore, the user was in charge of obtaining these coordinates by multiplying the
vertices coordinates by the world, view, and perspective transformation matrices. From
them, a 2D sample grid storing at each position the triangle ID, barycentric coordinates in the
triangle, and depth was obtained. Additionally, the derivates of with respect to the screen
coordinates were also provided. By using OpenGL fragment shaders to obtain every output,
the hardware graphics pipeline was used for the rasterization, ensuring accuracy.

Meanwhile, the backward of the rasterization received the gradient of the loss with respect to the
barycentric coordinates and generated the gradient with respect to the vertices’ coordinates,
effectively updating the geometry. Similarly, the gradient concerning the derivates of was also
computed. A scatter-add operation was used to implement the backward to accumulate the gradients
of the pixels on the correct vertices by using the triangle IDs.

The second primitive proposed was the interpolation. Given the grid of barycentric coordinates, this
module’s forward computed the grid cells’ attributes by applying a weighted sum of the vertices’
attributes through the barycentric coordinates. Moreover, as these attributes generally involve
texture coordinates, this module also generated the Jacobian of all the attributes to be able to
determine the texture filter footprint later. The backward of the interpolation worked similarly to the
one of the rasterizer, using scatter-add to accumulate the gradients of each attribute into the
barycentric coordinates.

The third defined module was the texture mapping module, which obtained texture values from the
interpolated attributes. The implementation was similar to the interpolation module. First, a
fractional mipmap level was selected, using the derivatives of the texture coordinate attributes to
measure the major axis of the sample area. Then, trilinear interpolation from the four closest pixels
of lower and upper resolution levels was applied. In this case, both gradients for the texture
coordinate attributes and the screen-space derivatives of said coordinates were computed. Given the
multi-scale nature of this module, the backward needed to revert the mipmap generation process,
accumulating the gradients of all the levels into the finer one.

Finally, the last module introduced was the antialiasing system. The use of this module was crucial
for differentiable rendering. While texture filtering allowed smoothness in the interior of surfaces,
point sampling produced aliasing at silhouette discontinuities, making it impossible to compute
visibility gradients. Antialiasing after the shading process converted these discontinuities into
smooth changes, allowing for the estimation of gradients.

The forward step in the antialiasing module worked in two stages. Firstly, pixel pairs with visibility
discontinuities were located by finding neighboring pixel pairs with different triangle IDs. Then, if
the closest triangle to the camera contained a perpendicular edge to the pair crossing between their
centers, said pair was considered to present a discontinuity. Secondly, for all pairs with
discontinuity, blending was applied by considering the distances to the edge, as seen in Figure 12.

For the backward step, the discontinuity analysis performed in the forward was stored, avoiding the
need for recomputing it. Then, for the aliased pixels, the gradient of the color was transferred to the
vertex positions by scatter-add operations.

It is important to note that, although effective and efficient, this antialiasing method presents some
limitations. Coverage is only estimated exactly with perfectly perpendicular edges, presenting
coverage error for diagonal edges. Moreover, in the case of finely tessellated meshes, a higher error

(xc, yc, zc, w)
(xv, yv, zv,1)

(u, v)
(u, v)

(x, y)

(u, v)

35

Application of 3D reconstruction techniques for realistic images over drawings and sketches

could be potentially introduced as any arbitrarily shaped polyline could define the silhouette edge.
Not only that but with finer enough levels, some triangles might be too small to get rasterized,
causing some silhouette edges not to receive visibility gradient, slowing the optimization.

Figure 12. Scheme of the antialiasing operation by Laine et al. [40].

As we have seen, Lain et al. settled the bases for a differentiable rendering pipeline highly
compatible with modern hardware for graphics and auto-differentiable systems. This allows for
efficiency, quality, and flexibility, enabling the use of the four key modules presented to build full
pipelines using auto-differentiable operations. It is important to note that, due to the deferred nature
of the design, the shaders must work over the grids of attributes to provide a grid of pixels. This
limits the rendering to a local lighting model in which the resulting colors can only depend on the
local surface attributes. However, as a trade-off, the system's differentiable nature allows
propagation of the loss gradient to arbitrary scene parameters, making this framework powerful.

3.1.2. Path tracing

Path tracing and ray tracing algorithms were proposed to provide a global illumination model
capable of computing the color of a point in the scene based on global influences [32]. These
algorithms approximate the rendering equation integral based on the principles of Monte Carlo
sampling: the integral of any function can be computed as the average of samples of the function
multiplied by its range. When tends to be infinite, the integral estimation tends to be exact.

Therefore, the ray tracing algorithm combines the principles of sampling and the behavior of light
to compute the shading of the scene by shooting rays from the camera’s pixels. As it can be seen in
Figure 13, for each ray, the closest intersection with the scene is computed, using it as the source for
newly recursively generated rays. Once the hierarchy of rays reaches its maximum depth or the end
of the scene, the color of the first point is computed by combining all the subsequently sampled
points along the hierarchy.

Following similar principles to ray tracing but aiming to reduce the variance, path tracing was
proposed as a ray tracing algorithm in which the branching factor is reduced. Instead of tracing
reflection and transmission rays at each intersection, only a single new ray is born from each
intersection, as depicted in Figure 13. However, to keep the correct proportions between the
different types of rays, the proper ray type to trace at each intersection has to be chosen based on the
probabilities of the desired distribution.

N
N

36

Figure 13. Schematic representations of ray tracing and path tracing.

Path tracing allows approximating the integration of the rendering equation through Monte Carlo
sampling. However, when considering the differentiation of this process, the rendering integral
presents discontinuities that make visibility parameters not differentiable at the object boundaries.
These discontinuities in the screen space were already observed in Section 3.1.1, solved using
antialiasing filtering. However, when considering the global illumination model, discontinuities also
exist in the 3D space when computing the radiance, as objects may block the light received by the
shading point. Li et al. [44] proposed a sampling technique for an unbiased differentiable path-
tracing renderer to solve this issue.

Li et al. tackled the problem by locating the issue at the edges of the geometry. Even though Monte
Carlo sampling could approximate the rendering equation integral and its derivative, the
discontinuities made it impossible to capture changes caused by camera parameters or geometry
translation. This was because, at the discontinuities, the derivatives were Dirac delta functions ,
depicted in Figure 14. Thus, traditional sampling techniques failed as they distribute the samples
uniformly, being difficult to capture the changes in boundaries.

Figure 14. Heaviside step function and Dirac delta function.

Therefore, Li et al. proposed to model the edges causing discontinuities both in the screen space –
primary visibility– and in the scene space –secondary visibility– as Heaviside step functions ,
shown in Figure 14. Therefore, using the edges to control the step function, the space was divided
into two half-spaces (and) separated by a discontinuity. Formally, the Heaviside step function
created by a triangle edge in screen space can be expressed as in Equation 2, where and are 2D
coordinates in the screen space.

δ

θ
α

fu fl
x y

37

Application of 3D reconstruction techniques for realistic images over drawings and sketches

This formulation allowed transforming the integration of the pixel colors as the summation of the
integrals of the Heaviside functions regulating arbitrary functions . Then, the objective of
obtaining the gradient could be tackled by estimating the gradient of each Heaviside function.

The analytic gradient of the step function gave the key result for the proposal. Using the product
rule, the gradient of the integral of by could be expressed as a sum of two integrations, as seen
in Equation 3. On the one hand, the first part presented the integral of the derivative of the step
function , characterized as a Dirac delta function . On the other hand, the second part contained
the integral of the gradient of the arbitrary function , whose content will be detailed later.

Equation 3 revealed that the gradient could be estimated through two Monte Carlo estimators. The
continuous spaces corresponding to the second term could be estimated by the traditional pixel
integral using auto-differentiation. Meanwhile, the first term represented the discontinuities and
could be estimated by explicitly sampling at the edges. Therefore, an explicit sampling strategy was
proposed to compute the boundary gradients, recording the difference between both sides of the
edge , following Equation 4. As in previous equations, and represent the half-spaces and is
the edge equation. Additionally, and represent the length and probability of selecting the
edge , respectively. Both sampling strategies are depicted in Figure 15.

Until this point, this formulation only covers the primary visibility. However, discontinuities can
also appear in secondary visibility, caused by shading and shadows. Recalling Equation 3,
Heaviside functions regulate arbitrary functions . These functions can also contain additional step
functions, representing the operations needed to compute the color of the image’s pixels. In
particular, they represent the integration of all the scene points determining the shading of the
evaluated point .

When considering the shading integration, geometric silhouettes can block the influence of any
point over , introducing additional discontinuities. Therefore, the approach followed on primary
visibility was generalized to secondary visibility, allowing a similar factorization as Equation 3 for
the shading integration in three dimensions. Consequently, given respect to , the shading
gradient was computed by explicitly sampling the three-dimensional edges of potential blockers
between them. However, sampling in secondary visibility is more involved than in screen space, as
the shading point can be located anywhere.

fi

(2)θ (α (x, y)) fu (x, y) + θ (−α (x, y)) fl (x, y)

θ fi

θ δ
fi

(3)

∇I = ∑
i

∇∫ ∫ θ (αi (x, y)) fi (x, y) d xdy

= ∑
i

∫ ∫ δ (αi (x, y))∇αi (x, y) fi (x, y) d xdy

+ ∑
i

∫ ∫ ∇fi (x, y) θ (αi (x, y)) d xdy

E fu fl αi
∥E∥ P(E)

E

(4)
1
N

N

∑
j=1

∥E∥∇αi(xj, yj)(fu(xj, yj) − fl(xj, yj))
P(E)∥∇xj,yj αi(xj, yj)∥

fi

m
p

m p

m p

38

To implement this specialized edge sampling, Li et al. proposed a scalable hierarchical sampling for
an arbitrary viewpoint. Two volume hierarchies were generated: one containing all the edges
belonging to a single triangle or to triangles non-smoothly shaded, and another containing the rest.
Moreover, two traversals were applied. The first one aimed to detect the edges blocking the light as
they had a more meaningful contribution, speeding up the process by excluding the non-intersecting
volumes with the cone defined by the point and the light source. The second one sampled all the
edges, computing their importance based on the length, distance, and response of the edge’s
material. Finally, importance sampling was also applied internally for each edge based on the
material, light sources, and perspective distortion.

Figure 15. Sampling strategies proposed by Li et al. [44].

With this explicit Monte Carlo sampling of edges, the discontinuities could be explicitly captured,
allowing for a differentiable pipeline concerning any arbitrary parameters in an unbiased way. Some
restrictions were imposed, however, as triangle interpenetrations, point lights, and perfectly specular
materials were not considered. Moreover, despite the implementation of importance sampling, the
need for explicitly sampling the edges introduced a considerable bottleneck, increasing the
differentiation's temporal costs.

Striking to offer a new model improving the efficiency of the differentiable path tracing in [44]
while producing unbiased results, Bangaru et al. [2] proposed a formulation based on area sampling
to avoid explicit edge sampling. They also based their proposal on a partitioned definition of the
integration domain , expressing the gradient over the image as the sum of the gradients of the
integral for each subregion. In turn, similar to [44], they split the derivative of the integral for each
subregion into a sum of two components: the interior derivative integral and the boundary
derivative integral.

Until this point, the result reached by [2] presented similarities with [44], finding the solution in the
estimation of the continuous regions plus the estimation of the discontinuities. However, Bangaru et
al. reached this solution by applying the Reynolds transport theorem [63] to measure the change in
the boundary. This allowed them to model the boundary integral as the rate at which the domain
expanded or contracted over the edge, which enabled the application of the divergence theorem.

The divergence theorem relates the integral of a flux through a volume with the integral of the flux
through the surface, making it possible to convert the boundary integral into an area integral using a
warp field, avoiding explicit edge sampling as shown in Figure 16. Equation 5 shows the final
formulation of the image gradient, where is the domain minus the boundary , is the

D

D′ D − ∂D ⃗(θ

39

Application of 3D reconstruction techniques for realistic images over drawings and sketches

warp field, represents arbitrary scene parameters, is the rendering function, and is a 3D
direction in the domain .

However, the warp field had to be chosen appropriately to be continuous on and closely match
the true warp at the surface points. Therefore, Bangaru et al. proposed using the warp field obtained
from the differentiated intersection function. Although this was consistent with the true values, it
was not continuous. Therefore, a convolution over it was proposed using harmonic interpolation to
generate inverse weights with the distance to the boundaries and make the warp continuous, as
depicted in Figure 17. To avoid finding the closest boundary point, a simpler boundary test function
tending to zero close to the boundary was used.

Figure 16. Equivalence between the boundary and area integrals [2].

Figure 17. Graphic representation of the warp field proposed in [2].

Finally, with these ideas, a nested Monte Carlo estimator was established following the scheme in
Figure 18. A secondary estimator was used for each sample generated through the primary estimator
to compute the warp field. This Monte Carlo warp estimator fetched new samples, determining the
boundary test and computing the convolution weights. Lastly, the warp estimation was obtained,
making it possible to compute the gradient. To obtain an unbiased estimation, the warp field was
determined with a high enough number of samples.

θ f ω
D

(5)∇I = ∑
i

∇∫Di(θ)
f (ω; θ)dω = ∑

i
∫D′ i(θ)

∇f (ω; θ)dD′ i(θ) + ∑
i

∫ ∫ D′ i(θ)
∇ω ⋅ (f (ω; θ) ⃗(θ(ω)) dω

D

40

Figure 18. Nested sampling proposed by Bangaru et al. [2].

By converting the boundary integral into an area integral, Bangaru et al. provided a more efficient
implementation unbiased inside some limitations, as the truncation in the number of samples used
could lead to non-negligible bias depending on the memory constraints. Both the works of Li et al.
[44] and Bangaru et al. [2] contributed to the development of the API pyredner [87]. Implemented
in PyTorch, this library eases the use of differentiable rendering pipelines by providing the basic
structures necessary for representing 3D scenes, such as meshes, materials, and cameras, as well as
the required functions for rendering. Moreover, it is completely compatible with the auto-
differentiation provided by PyTorch, allowing its integration and ease of use in machine learning
systems with tensors.

3.2. NVDiffRec

As introduced in Section 2.2.2, NVDiffRec [52] constitutes a system capable of reconstructing
textured 3D objects from multi-view realistic images. In this section, we detail its principles and
architecture, settling the bases for our first proposal, where we will apply this system over non-
realistic depictions.

3.2.1. Description

NVDiffRec's input comprises a set of images, masks isolating the target object, and the viewpoints
associated with each image. The output is composed of a 3D triangular mesh, texture maps
containing diffuse color, normals, and specular parameters, and an environment cube map.
Therefore, shape, materials, and lighting are jointly recovered.

The objective of NVDiffRec was to generate reconstructions compatible with standard 3D content
tools. This extended not only its utility and applicability but also relegated tasks such as simulating
and relighting to specialized external systems. These principles are reflected in the design of the
various components of the system, summarized in Figure 19.

41

Application of 3D reconstruction techniques for realistic images over drawings and sketches

Figure 19. Summary of NVDiffRec [52].

First, the deformable tetrahedral grid from [17, 68] was used to represent the shape. Using
Differentiable Marching Tetrahedra (MT) in each optimization step, the mesh was obtained and
directly rendered. Therefore, explicit mesh optimization was performed. This compensated for the
inherent discretization of the grid representation and its associated errors, allowing for a more
closely refined shape.

Second, to texturize the meshes, volume textures were chosen. This choice was due to the joint
optimization nature of shapes and textures. 2D textures require a mapping from the 3D vertices to
the 2D space, potentially introducing discontinuities during the optimization when the number of
vertices and their position is not constant. Meanwhile, volume textures allow accessing them
through space coordinates. This provides a smooth variation with positional or topological changes.

The material model used for the textures was based on the PBR specification by Disney [8],
continuing to look for compatibility. Therefore, materials with a diffuse term and a specular
Trowbridge–Reitz (GGX) [73] lobe were considered. Three textures were used to characterize this
material. Firstly, the diffuse texture contained the base colors. Secondly, the normal texture defined
surface normals in tangent space. Finally, a specularity texture represented the roughness (green
channel) and metalness (blue channel).

An MLP was defined based on [82] to represent the volume textures, encoding the diffuse, normal,
and specular values based on the spatial position. However, image textures needed to be generated
to export the results in a standard format. To this aim, the optimization progress was divided into
two phases. While the first jointly optimized shape and MLP materials, the second aimed to refine
the materials, fixing the topology and allowing only minor surface refinements. In this second
phase, learnable 2D textures were automatically mapped to the mesh and initialized based on the
values provided by the MLP, further refining them progressively.

2D feedback based on ground truth images and masks was used in the optimization. Key to this
strategy was the use of differentiable rendering. For efficiency, deferred shading based on Lain et
al.’s proposal was used [40], not considering reflections, refractions, or translucency. Moreover, the
split sum approximation was used, dividing the rendering equation into two components: the
integral of the Bidirectional Scattering Distribution Function (BSDF) under solid white lighting and
the integral of the incoming radiance with the specular Normal Distribution Function (NDF). Both
could be pre-integrated and stored, depending the first on the roughness and the cosine between the
normal and the incident light ray , while the second depended on the roughness and the
direction of the outgoing ray . Equation 6 was obtained from the split, where is the hemisphere
around the desired point, is the incident light in a direction, is the characteristic function of the
material, and represents the surface’s microfacet distribution function.

n ωi
ωo Ω

L f
D

(6)L (ωo) ≈ ∫Ω
f (ωi, ωo) (ωi ⋅ n) dωi ∫Ω

L (ωi) D (ωi, ωo) (ωi ⋅ n) dωi

42

The use of this approximation defined the representation of the environment map as a differentiable
cube map. While the base level described the pre-integrated lighting on the lowest roughness, the
lower mip levels accounted for increasing roughness. These were computed through differentiable
filtering, allowing to learn the base map directly. Additionally, a single low-res cube map was used
for the diffuse lighting, sharing learnable parameters with the environment map. To enable
differentiability, the mipmap generation had to be applied after each optimization update.
Nonetheless, the split-sum approach allowed for speed-up computation, thanks to requiring only
two texture lookups when compared to other methods.

Once rendering was applied over the mesh and materials given the view poses, feedback was
generated to guide the optimization. NVDiffRec opted for an L1 loss for the images and a squared
L2 loss for the masks. Additionally, multiple regularizations were applied. Firstly, light
regularization was used to penalize the shift in environmental light color, as most of the real-world
datasets contain neutral white light. Secondly, material regularization allowed for smooth material
parameters. Thirdly, Laplacian regularization was only used on the second pass for maintaining the
relative positions of the vertices and avoiding significant shifts. Finally, SDF regularization was
only used in the first phase to avoid random structures in the models' interior, as they cannot be seen
by the image or mask losses.

3.2.2. Architecture

The architecture used by NVDiffRec in its implementation is summarized in Figure 20. Throughout
this section, we will provide a guided description of the different components detailed in this
scheme.

Figure 20. Architecture of NVDiffRec.

NVDiffRec was implemented using Python and PyTorch. The system is built on the train.py file, in
charge of the required initializations, running the optimization loop, and saving the results. By
running this program, a new reconstruction can be obtained. A wide variety of arguments can be
provided, either directly on the invocation or through a configuration file. The main ones are the
following, being noted with dashes the direct command arguments and, without them, the
configuration properties that can be defined on a JSON file:

43

Application of 3D reconstruction techniques for realistic images over drawings and sketches

• —config: configuration JSON file.

• -i, —iter: number of iterations for the optimization of each one of the phases.

• -b, —batch: batch size used for optimizing.

• -r, —train-res: resolution of the images used for the optimization.

• -tr, —texture-res: resolution for the generated image textures.

• -lr, —learning-rate: learning rate used for the optimization. An individual learning rate for each
phase can be specified.

• -rm, —ref_mesh: path to the input. It can be either a mesh file or a data folder.

• -bm, —base-mesh: path to a mesh file. If this argument is specified, this mesh will be used as the
base for the optimization instead of the tetrahedral grid, skipping the first phase of the
optimization.

• envmap: path to the HDR environment texture.

• learn_light: wherever the lighting should be optimized or not.

• dmtet_grid: resolution of the tetrahedral grid to be used. It can be set to 32, 64, or 128 by default.

• mesh_scale: scaling factor for the mesh.

Once the arguments are processed, train.py proceeds to execute the corresponding initializations.
Two main initializations are performed. Firstly, the input data is loaded. This is carried out in
multiple ways depending on the properties of ref_mesh. On the one hand, if this argument points to
a 3D mesh file, this object is used to render reference samples from random points of view, using
them for optimization.

On the other hand, if a folder is provided, the images and viewpoints are directly loaded. The
loading process considers the folder's contents to keep compatibility with previous works, allowing
training data from NeRF and NeRD. Independently of the input method, the images obtained
integrate their masks on the alpha channel. At the same time, the viewpoints are specified through
model-view and model-view-projection matrices for each image.

Secondly, the environment map is either loaded if no lighting optimization is performed or
randomly generated otherwise. In either case, a cube map is obtained, represented as a tensor of 6
by 512 by 512 dimensions, and used to initialize an EnvironmentalLight object. Being a PyTorch
module, this object presents a dual functionality.

On the one hand, it is responsible for generating the specular and diffuse mipmaps from the base
learnable one. This is performed by average-pooling progressively to generate the specular
mipmaps, locating the diffuse cube map at the lowest resolution. Once generated, the maps are pre-
filtered with the GGX distribution using importance sampling.

On the other hand, it also implements the shading function. Given the global position , normal ,
diffuse color , roughness , metalness , occlusion , diffuse lighting , specular lighting , view
vector , reflection vector , and precomputed BSDF integration, the shaded color is obtained
following Equation 7.

p ⃗n
d ro m o ld ls

⃗v ⃗r c

(7)c = (1 − o) ⋅ (ld(⃗n)(d ⋅ (1 − m)) + ls(ro, ⃗r)(BSDF1(⃗n ⋅ ⃗v, ro)((1 − m) ⋅ 0.04 + d ⋅ m) + BSDF2(⃗n ⋅ ⃗v, ro)))
44

Next, the reconstruction is executed. A new tetrahedral grid DMTetGeometry is constructed if no
base mesh is provided, and a random MLP material is initialized. Then, after the first optimization
loop, the estimated mesh is extracted, generating its texture coordinates through xatlas [89] and
converting the MLP material to 2D textures. Finally, the second optimization loop is applied. If a
base mesh was provided, the reconstruction jumps directly to the second phase with random 2D
material textures. Once the optimization finishes, the reconstruction is exported as an OBJ file for
the mesh, PNG textures for the material, and an HDR image for the cube map.

The optimization loop applied in all instances follows the same structure. First, the learning rate,
learning rate scheduler following Equation 8, image loss function –being the default the log L1–,
Adam optimizer, data loaders, and Trainer object are set up. Note that warmup in Equation 8 is a
variable that takes a value of zero in the first phase and a value of 100 in the second phase. Then,
for every training batch of the set repeatedly for the number of iterations, a training step is applied
to the Trainer. From it, image losses and regularizations are obtained, being able to backpropagate
the gradient to the geometry, material, and lighting parameters.

The Trainer object is responsible for obtaining the losses to optimize the reconstruction. Internally,
the construction of this object is simple, being a derivation of the PyTorch nn.Module class.
Basically, it stores all the needed attributes for the optimization, setting up its parameters to all the
learnable parameters in the scene. Then, for each forward pass, it generates the environment light
mipmaps by calling the function in EnvironmentalLight and runs the function tick inside the
geometry object to perform the rendering and compute the loss. Therefore, the Trainer object can be
considered as a wrapper for these functions.

The tick function is critical to the process, as it calls the rendering function, allowing it to compute
the losses and regularizations. Depending on the optimization stage, this function can be called in
two different classes.

On the first pass, optimization is performed over the tetrahedral grid, represented by the class
DMTetGeometry. This PyTorch module stores the vertices of the grid, the vertex indices of each
tetrahedron, the SDF values of each vertex, and the displacement of each vertex, making the last
two optimizable. This object presents a method for mesh generation, encapsulating the class DMTet,
which implements the MT algorithm.

DMTet constitutes a functional class that transforms the tetrahedral grid representation into
triangular meshes. The algorithm starts by identifying all the tetrahedrons located on the defined
geometry's surface. In other words, the tetrahedrons whose number of vertices with positive SDF
value is in the range are selected. Then, all the unique edges are obtained, filtering out those
whose vertex SDF values present the same sign. From the remaining, the position of the intersection
of the edge with the mesh surface is computed as in Figure 8. Once the intersections are calculated,
triangles joining them are defined using a look-up table containing all possible intersection cases. A
total of 16 exist, being the different possible orientations and sign permutations of the non-empty
cases in Figure 8. With the faces of the mesh defined, the algorithm performs a last step to generate
texture coordinates for the vertices by evenly placing the triangles in a 2D space based on their ID.

(8)lr (iteration) =
iteration
warmup if iteration < warmup

max (0,10−0.0002(iteration − warmup)) otherwise

]0,4[

45

Application of 3D reconstruction techniques for realistic images over drawings and sketches

Finally, DMTetGeometry also contains the classes required for rendering the geometry and the tick
method. While the former runs DMTet to obtain the explicit mesh and calls the render function over
it, the latter obtains the rendered images to compute the Mean Squared Error (MSE) of the alpha
channels, the image loss over the remaining channels, and the regularizations. As this class
corresponds to the first pass, SDF, albedo, visibility, and white balance regularizations are
computed. The first penalizes the change of sign between the vertices of unique edges. The albedo
and visibility regularizations penalize the difference between the values and the jittered values for
smoother variation. Finally, the white balance regularization computes the average per-channel
difference with the average intensity.

On the second pass, the optimization is performed over DLMesh. This class works directly over
triangular meshes, making its vertex positions trainable. Its structure is very similar to
DMTetGeometry, presenting mostly the same functions. In this case, the normals and tangents of the
mesh are computed automatically before rendering. Moreover, as it is linked to the second pass, the
used regularizations change, replacing the SDF regularization with a Laplace regularization for
penalizing the vertices’ change in relative neighboring positions.

Two main components remain to be detailed. First, the file render.py settles the differentiable
renderer through hierarchically related functions. The function render_mesh corresponds to the head
of the hierarchy, performing the full render and being the one used by DLMesh and
DMTetGeometry. This function gathers the viewpoint matrices and converts the mesh vertices into
clip space. Once in clip space, the scene is rasterized, interpolating vertex attributes such as the
world positions, world normals, world tangents, texture coordinates, and texture coordinates
derivatives, similarly to Section 3.1.1. Finally, from this raster, shading is performed using the
shading function defined in the EnvironmentalLight map, generating the rendered image on a single
pass. Composing operations can be performed afterward by using the alpha channel, as well as
rendering other properties instead of shading, such as normals or specular parameters.

However, to apply shading, an important intermediate step is required. The material properties need
to be obtained from the attributes in the raster. Depending on the pass, the materials, represented by
the Material PyTorch module, can be accessed in two different ways. For the first past, the property
kd_ks_normal can be sampled directly using the global position of the vertices, obtaining all the
material properties at once. For the second pass, the texture coordinates are used to sample the
individual diffuse, specular, and normal properties.

This behavior of Material is because it is designed like a dictionary, offering properties that the
renderer can access. The key feature is that these properties represent textures as PyTorch module
parameters that can be sampled using the appropriate coordinates.

During the first pass, the kd_ks_normal property stores an MLPTexture3D object. In turn, this object
defines a hash grid positional encoding module in 16 levels connected to a sequential network of
two hidden layers of width 32 with ReLu activation and a final layer of nine channels. Meanwhile,
in the second pass, each material property is linked to a Texture2D. This PyTorch module represents
a learnable image texture stored as a tensor and its associated mipmaps. For accessing the textures,
both the texture coordinates and their derivatives are used.

Lastly, as shown in Figure 20, validation is applied after each training phase. If desired, this
operation takes a validation set of images, masks, and viewpoints to generate renders of the current
reconstruction and compare them with the ground truth. The MSE and the Peak Signal-to-Noise
Ratio (PSNR) are used as metrics for the comparison, not contributing to the reconstruction while
constituting a good reference to study its performance and progress.

46

4. Development

Once the relevant technologies and previous research have been presented, we proceed to detail our
proposals. We aim to tackle the problem of 3D reconstruction from multi-view drawings. To this
end, we make two proposals inspired by the use of inverse rendering techniques. Firstly, we will
propose using NVDiffRec over the domain of non-realistic images. We will present a pipeline for
using this existing system, highlighting the challenges for its use and how they can be approached.
Secondly, we will leverage the architecture and principles proposed by Goel et al. [20] and
introduce modifications for using it over the domain of sketches.

Therefore, this section will first define the problem we will be considering throughout this work and
the justification for our approach. Then, we will detail both of our proposals. It is worth mentioning
that both of them correspond with papers developed as part of our research. The first proposal
corresponds with the work we presented at the 14th Asian-Pacific Workshop on Mixed and
Augmented Reality [9]. Meanwhile, a second paper was elaborated from the development of our
second proposal, having been sent to the 31st International Conference in Central Europe
on Computer Graphics, Visualization, and Computer Vision. However, at the time of writing, the
acceptance result of our second paper has yet to be published.

4.1. Problem statement and justification

We desire to obtain a system capable of automatically processing sketches to obtain 3D
representations. In our work, we will only consider sketches represented as plain 2D RGB(A)
images. Moreover, we will be working on the multi-view setup of this problem. This means that
sketches will be considered, depicting the sketched object from different points of view. To properly
consider the multi-view framework, we assume the number of images to be . Additionally, in
contrast to previous reconstruction efforts over sketches, we will also consider the color in them as
a relevant property. This extends our potential scope, ranging from simple line sketches to more
complete levels of colored drawn illustrations.

Given the multi-view references of a drawn target object, we desire to obtain a three-dimensional
geometric representation resembling said object. However, drawings and sketches present
inconsistencies due to the artist's skill and the subjectivity involved in the process, especially in the
multi-view context. In most cases, this will make it impossible to find a single object capable of
exactly matching and representing all the views. Therefore, rather than a perfect reconstruction of
the target object, we will aim to obtain a reasonable approximation that contains the same visual
essence and meaning as the desired object.

Similarly to [52], we will aim for compatibility with standard 3D content tools. Consequently, we
will look for the generation of triangular texture meshes whose materials will be characterized
through 2D RGB textures.

With this problem statement, we draw inspiration from the inverse rendering approaches developed
for reconstruction over realistic images to build our proposals. The reasons behind this choice,
striking a difference from the previous methods for automatic sketch reconstruction, are multiple.

Firstly, previous works on the same domain do not consider color, proposing techniques focused on
obtaining untextured shapes. When considering the recovery of both geometry and materials, the
closest references are found in the realistic domain.

N

N ≥ 3

47

Application of 3D reconstruction techniques for realistic images over drawings and sketches

Secondly, previous methods rely on deep generative modules to extract enough three-dimensional
information to build the reconstructions. This implies that training is required to set up these
modules, which can be troublesome as the amount of available paired data of hand-drawn sketches
and 3D shapes is limited. This can lead to generalization issues as synthetic datasets are used for
training. Moreover, these approaches tend to be trained for particular object classes, making the
generalization to any class difficult. By leveraging the optimization techniques based on inverse
rendering, we can tackle the problem through optimization, allowing for a generic system capable
of working over differently styled sketches and potentially any object class.

Finally, the works in realistic reconstruction have shown that inverse rendering optimization is a
powerful framework capable of delivering promising and good-quality results. However, as far as
we know, this technique has never been applied to sketches directly. By approaching the problem
through inverse rendering, we aim to determine if this technique is suitable for drawings, providing
a new point of view for the domain of sketch 3D reconstruction.

Due to the nature of the techniques used in our proposal, some additional information will be
needed to be able to perform the reconstruction. In particular, it will be required to augment the
available sketches with information regarding the segmentation masks for the target object and the
viewpoints corresponding to each drawing. We will propose generic alternatives for computing this
information from images, aiming to apply them over sketches and drawings to see their viability.
However, we will primarily focus on the reconstruction tasks, especially on our second proposal,
leaving the deeper study of mask and view pose estimation from sketches for future work.

4.2. First proposal: using NVDiffRec

As we have presented in Sections 2.2.3 and 4.1, optimization-based approaches have a higher
generality by nature when compared to deep learning methods. The limitations on their applicability
for any domain reside in the assumptions taken during their design. Nonetheless, in general, as their
operation is not limited by the number of cases seen in any training, they present a broader scope.

With these ideas in mind and given the promising results of NVDiffRec and their higher external
compatibility, we aim to apply this system to non-realistic images. To do so, it was first necessary to
determine the characteristics that the input images needed. As seen in Section 3.2, for being able to
apply a reconstruction with NVDiffRec, it is required:

• A set of multi-view images of an object. In our case, the collection of plain 2D sketch images
depicting a target from multiple points of view.

• A set of masks, one for each image, preserving the target object and hiding the rest. These will be
provided as the alpha channel of the drawings in our case.

• A set of view matrices, one for each image, describing the position and orientation of the camera
used to capture the image. In our case, the fictional viewpoint from which the sketch was drawn.

Given a collection of multi-view images without masks and viewpoints, such as is the case with
illustrations, obtaining this information can be challenging. While the masks can be easily included
in the design if we consider digital art, generating them for drawings already rendered or made
traditionally is more complicated. Moreover, the need for camera information can be limiting.
Given an illustration drawn from an arbitrary viewpoint by an artist, defining the exact
mathematical point of view of the object is an even more challenging problem to overcome.

48

In this section, we present a workflow for using NVDiffRec with illustrations. As we consider a
broad range of possible completeness levels and styles for the illustrations, we include two
pathways in our workflow. On the one hand, we will present an automatic approach for mask and
viewpoint generation using state-of-the-art techniques. On the other hand, we will also cover the
manual methods. Figure 21 shows a summary of this workflow.

Figure 21. Summary of the proposed workflow.

Dashed arrows are conditional paths. Multi-view drawings and sketches represented as
images are taken. First, mask generation is applied, either manually or automatically.
Then view poses are generated either with prior information or automatically using
COLMAP and adapting the results. Finally, images, masks, and views are used in
NVDiffRec to obtain a textured model.

4.2.1. Generating masks

For identifying the target object that we want to reconstruct, it is required that we provide
NVDiffRec with masks indicating which pixels belong to the target in each image. Given a set of
2D images that are not masked, we can follow two possible approaches to mask them:

• Process all images manually with an edition software such as Gimp or Photoshop to alpha mask
everything except the target. This can allow more accurate results, with the tradeoff of being

49

Application of 3D reconstruction techniques for realistic images over drawings and sketches

much more costly from a user standpoint. For considerable amounts of data, it becomes
unfeasible.

• Automatically analyze the images to identify the target object and mask it. This is also known as
object segmentation. Image segmentation constitutes an open problem for which broad research
exists with many good solutions, although none is perfect. This kind of automatic generation can
be prone to error depending on the target object and can easily introduce faulty masks that can
mislead the reconstruction. However, it allows the generation of masks for big volumes of images
at a much lower cost.

The election of the method for generating masks will depend on the application, the complexity of
the target object, and the number of images. When considering reconstructions from sketches or
drawings, potentially created as concept art for designing characters or objects in the entertainment
industry, the number of images available for a single reconstruction will be low. However, their
complexity could be potentially high. In this case, manual mask generation may be effective,
especially for artists already working with digital drawing tools, requiring less effort. Despite it,
when a high number of reconstructions need to be generated and, therefore, many objects are
illustrated, it may still be convenient to rely on automatic mask generation.

When considering automatic mask generation for our experiments, we opted for using Detectron2’s
API [78] and the PointRend model [36] to identify recognizable objects and their segmentation
masks. By joining all the segmentations, we generated the mask of the image. This approach has the
inconvenience of occasionally introducing outlier objects in the masks or masking out the target.
Therefore, we removed from the set those images that, after masking, were empty.

4.2.2. Generating view information

NVDiffRec uses rendering to generate images comparable with the given samples to obtain
feedback and guide the optimization. Therefore, knowing the view matrix associated with each
sample is necessary to render it correctly from the same viewpoint relative to the object.

Given that we have a set of multi-view images with no camera information, we need to generate the
view matrices in a way that is consistent with the target object, keeping the transformations between
views compatible with the images. In this case, we can also identify two different approaches:

• If the images follow a known uniform transformation relationship between them, we can
programmatically simulate this transformation for each image and generate the corresponding
view matrices.

• When the images do not follow a known uniform distribution, estimating the view matrices can
be a challenging problem. Indeed, this falls under the umbrella of research areas such as
Structure-from-Motion (SfM) [67] and camera pose regression [66]. Therefore, to automatically
generate image pose information, we must face an open problem and recur to the developed tools
in these areas.

Again, choosing the approach to follow depends on the use case we face. Throughout Section 5.1,
we will present three use cases that will exemplify the application of the different strategies we have
described. However, before that, we consider it appropriate to give a more detailed insight into how
camera views can be obtained.

50

When considering the first case, a clear example we will be facing in Section 5.1 is when the
provided sketches depict the turn-around of an object. Turn-around animations are a common way
of clearly presenting objects. By displaying the target through multiple views, turning the camera
around the vertical axis of the object and tracing a circle of a given radius around it, we can show
all its geometric and color features. Especially when looking at character design, it is common to
find turn-around depictions of such characters using a few views around them. This special case of
multi-view setup allows for an easier camera pose estimation. Assuming that the angle turned
around the vertical axis is constant between images, we can compute the view matrix by
progressively turning the camera around the scene's center at a fixed radius and incrementally for
each image. In this way, the turning angle in each step will be computed as radians divided by
the number of images.

In contrast, when the source images available do not follow a known uniform transformation,
computing the camera for each image following the previous approach seems unfeasible. Therefore,
the second approach needs to be used. For our experiments, we decided to use COLMAP to
automatically generate viewpoints, given its widely available documentation, good performance,
and ease of use.

As seen in Section 2.2.4, this system allows processing large amounts of images and using their key
points to find the spatial relations between them, generating a point cloud representation of the
scene. As a result, from multi-view images, COLMAP estimates the camera pose of each image.
However, the compatibility between COLMAP and NVDiffRec is not direct.

Figure 22. COLMAP center estimations for different view distributions.

Left, COLMAP estimation of a uniformly distributed scene view. The origin falls at the
center of the object. Right, estimation of a non-uniformly distributed view in a different
scene. The origin does not fall in the object.

Firstly, COLMAP and NVDiffRec have different coordinate systems, being the Z and Y axis
inversed in one respect to the other. Secondly, COLMAP also estimates the origin of the coordinates
of the scene. Given that this point depends on the camera distribution, as shown in Figure 22, the
center generally does not match the target's center unless a uniform view distribution is given. This
causes a disparity between the render and the ground truth because NVDiffRec places the mesh at
the origin, but in the estimated view by COLMAP, the target is not at the origin. Therefore, to
properly use the views estimated by COLMAP in NVDiffRec, we must determine the object's
center in the coordinate system estimated and use it as a new origin. We explored two solutions to
accomplish this.

On the one hand, if we do not know the nature of the object and its location in the different views,
we can only consider the view poses to estimate the real origin. To do so, we can assume that, as the

R

2π

51

Application of 3D reconstruction techniques for realistic images over drawings and sketches

samples capture a single object from different viewpoints, the camera positions are approximately
distributed on the surface of a sphere of radius around the target.

Given these considerations, we can locate the new origin by finding the sphere that most closely
explains the camera positions. Moreover, we can also guide our decision by considering the
cameras' looking directions. To solve this problem, we designed a Greedy Randomized Adaptive
Search Procedure (GRASP) algorithm that, given camera positions and looking directions, tries to
approximate the desired sphere by heuristically generating solutions and saving the best one.
Section 4.2.3 details this algorithm.

On the other hand, we can use additional information to get a better estimation. In some cases, such
as the one we will present in Section 5.1, we know that the target will always be located in a
concrete region of the screen. Therefore, we can assume a known bounding box inside the images
that always contains it. This is a reasonable assumption as, when taking multi-view samples of an
object, it is usually kept in the same area of the image. Moreover, a single bounding box could be
easily defined by a user.

With this bounding box (BB), we can use the information generated by COLMAP to filter the point
cloud of the scene and then compute the center of this filtered version. Filtering is archived by
applying a voting scheme such that each key point inside the BB in an image receives one vote.
After analyzing all the samples, we can preserve the most voted key points. Therefore, the center
can be computed as the weighted average, using the votes as weights.

This approach is intuitive as key points of the target should be more commonly seen. However, it
can be limited by the requirement of specifying a bounding box depending on the use case.

Finally, we can obtain a new averaged center using both estimation methods. For this alternative,
we proposed applying a weighted average between the centers of each estimation, computing the
required weights using Equation 9. In this equation, given as the set of all cameras with look-at
vector and position , the cosine of the angle between the view and the direction to the point is
measured for each camera. Then, this measure is inverted and accumulated, decreasing the weight
with the increase of accumulated value. Therefore, we compute the weights by giving higher
importance to the points better aligned with the views and presenting a smaller angle with the view
directions.

4.2.3. GRASP algorithm for sphere estimation

Finding the sphere that best describes the view distribution of a set of cameras constitutes an
optimization problem for which exact methods would be unfeasible in big datasets. Therefore, we
try to find an approximation in a reasonable time using a Greedy Randomized Adaptive Search
Procedure (GRASP) algorithm.

Our implementation reduces the sphere estimation problem to the task of finding four cameras
whose positions describe a sphere that approximates the distribution of all the views. Consequently,
our GRASP can focus on generating solutions formed by a sequence of four camera positions. After

R

K

C
⃗v ·p ·x

(9)w(·x) = ∑
(⃗v, ·p)∈C

1 − (⃗v ⋅ (·x − ·p)
∥ ·x − ·p∥)

−1

52

obtaining these points, the center and radius of the sphere can be obtained by applying the general
equation of the sphere.

Algorithm 1 presents our GRASP proposal for sphere estimation. Following the general scheme of
this type of algorithm, every iteration has two phases:

• A constructive phase in which solutions are generated. Each solution is built step by step,
adding progressively new elements (camera positions). The first element is picked randomly
among all the points. Then, every subsequent element is added semi-randomly, considering the
cost of every remaining option as the inverse of the sum of the distances to each point in the
current solution. In this way, we favor a more dispersed set of points. The best solution of the
generations is stored if it improves the current best solution.

N

N

53

Algorithm 1. GRASP Sphere Estimation.

1: function sphereEstimation(points, dirs)
2: distances ← distanceMatrix(points)

3: max_r ← 2 · max(distances)

4:

5: for _ ← 1 to max_iterations:

6: for _ ← 1 to N:

7: sol ← { random(points) }

8: for _ ← 1 to 3:

9:

10: costs ← dists(cands, points)-1

11: cmin ← min(costs)

12: cmax ← max(costs)

13:

14:

15: if cost(sol) < best_cost and radius(sol) < max_r:

16: best_sol ← sol

17: best_cost ← cost(sol)

18: for _ ← 1 to max_depth:

19: neighs ← getNeighbors(best_sol)

20: for sol in neighs:

21: if cost(sol) < best_cost and radius(sol) < max_r:

22: best_sol ← sol

23: best_cost ← cost(sol)

24: else:

25: break

26: return sphere(best_sol)

 sol ← sol { random(cands) } ∪

 cands ← points sol∉

 cands ← { c cands | costs[c] cmin + · (cmax – cmin) }∈ ≤ α

 best_sol ← , best_cost ← ∅ ∞

Application of 3D reconstruction techniques for realistic images over drawings and sketches

• A local search phase in which the algorithm tries to improve the current best solution by exploring
its neighborhood. For generating the neighborhood, we take the indices of each point in the
current solution and displace them randomly and circularly, one value up, down, or maintaining
the value. With the new indices, we can find a neighboring set of points. In all iterations, local
solutions are generated. If none is better than the current solution, the search stops. Else, the best
replaces the current, and the exploration continues up to the maximum depth.

Once the algorithm reaches the maximum number of iterations, the center and radius of the sphere
described by the best solution can be obtained. Note that we define the best solution as the one that
allows obtaining a sphere that minimizes Equation 10, where is the sphere's center, is the radius,

 is the set of all cameras described by a look at vector and a position , and is defined in
Equation 9. As it can be seen, this function measures how well-aligned the center of the current
solution sphere is with the viewing directions and how consistently placed at a distance it is. It is
important to point out that, to avoid the sphere growing excessively, the radius of any solution is
limited for it to be considered a valid solution. In our experiments, we used a fixed number of
iterations of 1000, N of 20, M of 60, max depth of 50, of 0.6, and the maximum allowed radius to
double the maximum distance between cameras.

4.2.4. Implementation

For implementing the automatic paths of the workflow proposed in Figure 21, we extended the
publicly available implementation of NVDiffRec with two additional dataset managers inheriting
from the NVDiffRec class Dataset. Firstly, we integrated a newly DatasetSketchTurnAround class
for loading the datasets involving the turn-around multi-view case. Secondly, a class
DatasetColmap was added, integrating the automatic mask generation and view pose estimation of
the images.

The class DatasetSketchTurnAround presents a basic behavior similar to the rest of the dataset
managers in NVDiffRec. After loading image sketches as reference samples, the corresponding
model-view matrix for each image is generated. This is possible by a fixed translation of the camera
of two units in the Z axis towards the viewer, and a rotation of the said camera around the vertical
axis (Y), following an angle of multiplied by the ID of the image in the sequence, being the
first one the ID zero. Finally, an orthographic camera is used to generate the model-view-projection
matrix due to the common nature of sketches. As far as we know, NVDiffRec has not been tested
under orthographic views before our work.

The class DatasetColmap involves a longer process in its preprocessing step. We extended the
program’s flags to apply additional operations after loading the images in this class:

• —use-bb: this corresponds to the second alternative to the scene center estimation. When this
option is true, the flag bounding_box is read as it is supposed to store the bounding box inside the
images. The bounding boxes are defined through the upper-left and lower-right corner pixel
positions.

• —center_estimation: this argument allows the choice of the center estimation technique. The
GRASP Sphere Estimation algorithm is used if “grasp” is provided as a value or a BB was not

M

·x r
C ⃗v ·p w

r

α

(10)c(·x, r) = 0.4 ∑
(⃗v, ·p)∈C

|∥ ·x − ·p∥ − r| + w(·x)−1

N

2π /N

54

provided through —use-bb. If “averaged” is used, then the average center between the GRASP
and the BB estimation is utilized. Finally, the BB estimation is used otherwise.

Once loaded the images, DatasetColmap processes them to generate automatic masks by using the
detectron2 API [78] and the pertained PointRend model provided by it, as described in Section
4.2.1. Optionally, this estimation can be improved using the bounding box by directly masking out
all the content outside it, as well as by deleting the samples completely masked inside the bounding
box region after the segmentation.

From all the images without masks, COLMAP is executed over them using the pycolmap API [88]
to extract features, match them, and generate the view poses and the scene point cloud from them.
After properly transforming the points and views to NVDiffRec’s coordinate system, the GRASP or
the BB center estimations are applied and optionally averaged. While the first works only over the
estimated cameras, the second uses the point cloud and its corresponding protections over each
image provided by COLMAP. Once the new center is found, all the camera views are remapped to
the new coordinate system origin, being able to use them for the reconstruction.

4.3. Second proposal: modifying the SFT architecture

Our first proposal aims to study whether the state-of-the-art reconstruction techniques over realistic
multi-view images can be applied directly over illustrations. As seen in Section 4.2, we propose
using NVDiffRec due to its promising reported results, compatibility, and generality of use.

Figure 23. Summary of our second proposal.

Given multi-view sketches, masks, and view poses, an initial mesh is estimated using
projections into a voxelated space. The initial mesh and random colors are refined
through differentiable path tracing until obtaining the reconstruction.

However, even though the nature of this kind of optimization-based approach allows for applying it
over any kind of image by providing the required inputs, it is important to keep in mind that we are
working outside the intended domain. Even though the system may allow enough generality to be
used outside its original target domain, its core components will always be better tailored and tuned

55

Application of 3D reconstruction techniques for realistic images over drawings and sketches

to work on it. This implies that, over other domains, the expected performance will be generally
lower than the original one, being equal in the best possible scenario.

Moreover, some features may not be required for the new domain. In the particular case of drawings
and sketches, NVDiffRec includes components such as the reconstruction of specular and
environment maps, which are not really required in our case. Illustrations, especially when made as
design references, generally present a constant illumination and do not realistically reproduce
specularities. Including the estimation of these parameters in the optimization raises the level of
uncertainty and the number of variables, increasing the difficulty of the task and wasting resources.

With these ideas in mind, it may be convenient to use the principles of inverse rendering
optimization to build a more tailored solution for the domain we are tackling. As seen throughout
Chapter 2, this scheme has not been previously used directly over drawings as far as we know.
Therefore, we propose developing an inverse rendering optimization system for 3D reconstruction
over multi-view illustrations by modifying the proposal of Goel et al. [20]. Even though we will
focus mostly on sketches and flat-closed drawings in this proposal, it is important to note that the
introduced system could also be used with higher-level illustrations.

As mentioned in Section 2.2.2, Goel et al. proposed a system for optimizing meshes from multi-
view realistic images, which we will refer to as SFT. In this section, we detail the modifications we
propose to apply over SFT to make it suitable for the domain of sketches and colored drawings, also
gathering inspiration from some aspects of NVDiffRec. Our modifications fall into four areas:

• Sketches do not generally require realistic materials or complex lighting, as we will further see in
Section 5.1. Therefore, we replace the BRDF materials with a single purely diffuse material and
fix the environment map to completely white. Consequently, the system's input is reduced to
multi-view plain image drawings, masks isolating the target –assumed to be represented by the
alpha channel of the provided images–, and the view poses of each image, similarly to
NVDiffRec. Even though requiring the view poses keeps being a limiting factor when working
with sketches, the need for camera information is inherent to inverse rendering approaches. To be
able to focus on the reconstruction, in this instance, we will assume them as known, being already
provided to the system.

• Simultaneous optimization of mesh and materials is possible, as shown by [27, 35, 52]. We
replace the alternating scheme proposed by Goel et al. with joint optimization, followed by a
long-tail refinement of the colors inspired by the double-phase setup of NVDiffRec. Even though
disjoint optimization can allow finer geometric detail [20], the detail requirement in sketch
reconstruction is generally lower, given that inconsistencies difficult the correct capture of finer
details. Therefore, simultaneous optimization can lead to good results with fewer steps.

• Goel et al. reset the material to a neutral grey after remeshing, discarding the estimated color in
the previous material phases. This was done to avoid the propagation of any possible error during
the optimization. However, we argue that completely discarding the color reduces the system's
efficiency and increases the required optimization steps. In contrast, we propose a resampling
scheme to recover the color partially, allowing the following steps to build upon the previous base
color while still reducing the impact of possible previous errors.

• While Goel et al. used a single Mean Squared Error loss over the images to optimize either
geometry or color, we guide the refinement process using split losses for shape and color, as well
as regularizations. The use of split losses is motivated by our joint estimation of shape and color.
By splitting the loss, we can tailor the function guiding each component, reducing the impact of

56

inconsistencies and joint uncertainty. Moreover, the use of regularization is motivated by the
higher inconsistency of our task, requiring further guidance toward reasonable solutions.

Nonetheless, our system also presents common elements with Goel et al.’s work. These are the
refinement over an initial mesh, using the mesh colors data structure proposed in [81], and using
remeshing for solving potential artifacts and degenerations. The following sections present the
solution in more detail, and Figure 23 summarizes it.

4.3.1. Optimization scheme

Given the sketches, masks, and viewpoints, an initial mesh is optimized to represent the sketched
object. Goel et al. experimented with several mesh initialization techniques, such as voxel carving
or using COLMAP to generate an initial mesh from the estimated point cloud structure, reporting
the best performance with the latter. However, sketches and flat-colored drawings usually contain
few key points, rendering COLMAP generally inadequate to obtain meshes from them, as further
discussed in Section 5.1 and Chapter 6. Instead, we use a simple visual hull estimation based on
parallel projections from a given subset of sketches into a voxelated occupancy space.

Given a subset of reference views the user provides, we project their footprint orthogonally into a
voxelated space following the viewing direction. Therefore, the total shape can be computed as the
intersection of all the voxelated projections. Then, a mesh is obtained through marching cubes,
remeshing, and simplification. It is important to note that, to keep the resolution of the mesh low,
the images are scaled down before projecting their silhouette.

To encode the colors linked to the mesh, a mesh colors data structure is used instead of textures
[81]. With this representation, colored samples can be associated with a triangular mesh by storing
them in a single vector. The number of samples per triangle depends on the mesh colors resolution

, which defines the level of simulated subdivision inside the triangle. The lowest resolution is
, used when there is only one sample at each vertex. Augmenting behaves like imaginarily

tessellating the triangles adding more color samples, increasing the colors per edge to and the
colors per face to . We fixed to three in our system.

Therefore, given the triangle ID , the resolution , and the barycentric coordinates of a
sample with and , the index of the sample in the color vector is computed
with Equation 11.

As we can see, this representation allows us to directly link the triangles to their colors, making it
possible to perform sampling with barycentric coordinates. By using this representation, we can
directly optimize the color vector as the mapping is coherent and direct to the mesh, independently
of the geometry. Therefore, like in NVDiffRec and SFT, we avoid the need to optimize both colors
and mappings between mesh vertices and image textures.

With this setting, the refinement involves optimizing the mesh vertex positions and the color vector.
These parameters compose a 3D scene containing a single object in the origin that, when rendered
from the viewpoints provided, is converted into 2D images. These images can be, in turn, compared
with the references using loss functions. Finally, the differentiable rendering allows using gradient
descent optimization to update the parameters jointly.

R
R = 1 R

R − 1
(R − 1)(R − 2)/2 R

t R (i, j)
0 ≤ i ≤ R 0 ≤ j ≤ R − i c

(11)c = (R + 1)(R + 2)
2 t + 2R − i + 3

2 i + j

57

Application of 3D reconstruction techniques for realistic images over drawings and sketches

4.3.2. Losses

Losses are essential for our system, as they will be in charge of guiding the optimization toward a
desirable reconstruction. Therefore, they must account for the properties of the task and the
desirable features of the result. Our objective is to obtain a colored 3D triangular mesh that
resembles the sketched object. However, sketches are not consistent descriptions but interpretations
of the world. Consequently, we do not aim to find a replica but a reasonable approximation. In this
way, the losses should be designed to allow enough flexibility to tolerate inconsistencies inside the
range of reasonability while still capturing the features of the target object.

The main losses must inform the characteristic shape and colors of the sketched target. Instead of
capturing both with one loss [20, 35], we establish dedicated losses. This not only allows better
tailoring but also helps to reduce uncertainty in joint optimization as the changes in color and shape
are explicitly separated, easing the process. Our proposed losses are:

• Color loss. Color details in sketches are inconsistent when considering the multi-view case.
Sketch lines have two uses: conveying the surface color detail and representing geometric
features. Both produce color feedback when applying image metrics, but only the former
corresponds to true color information. Moreover, the second type is inconsistent between views.
This can be visualized when considering outline lines, as they change with the silhouette of the
target throughout different views, always tangent to the camera. We use a Laplacian pyramid loss
[4] for comparison at different resolution levels to deal with these issues. Coarser levels inform
the general color. Meanwhile, finer levels reinforce consistent lines, while inconsistent lines are
overtaken by coarse color feedback. In this way, we can capture the general surface colors while
ignoring the geometry-related lines. Equation 12 presents the formulation for our color loss where

 and are the rendered and reference images; is the number of levels (which we fixed to
three); is the Gaussian filter function; and are the number of pixels and channels of
the image; and represents the image scaled down by a factor of .

• Silhouette loss. Due to the inconsistency in color and general lack of shading in sketches, the
silhouette defined by the masks is the primary source of shape information. We can capture this
information using the Mean Squared Error between the reference and rendered masks. Even
though the outline can also present inconsistencies, this loss balances the feedback among the
references, averaging them. This is our intended behavior as, when considering multi-view
sketches, especially when dealing with character design, it is possible that some parts of the target
present a slightly different pose. Choosing which one should be the right one is highly difficult
and ambiguous, as any of them would correspond with the desired object. Therefore, we consider
it appropriate to strike a balance by averaging the solution so the result tends to be the most
consistent shape between different views. Equation 13 models this loss, being and the
rendered and ground truth masks.

IP IT K
G ∣ I ∣ D(I)

Il l−1

(12)LC(IP, IT) =
|IP|D(IP)

∑
i=1

IK+1
Pi − IK+1

Ti

|IP|D(IP) +
K

∑
l=1

|IP|D(IP)

∑
i=1

Il
Pi − G (Il

Pi) − Il
Ti + G (Il

Ti)
|IP|D(IP)

MP MT

(13)LM(MP, MT) = 1
|MP|

|MP|

∑
i=1

(MPi − MTi)
2

58

With these losses, we can capture the desired shape and color, guiding the solution toward them.
However, the solution must also present some desirable features, such as non-degeneration and
smoothness. Therefore, to guide the reconstructions toward these desirable properties and to help
narrow down the solution space, we define additional regularizations:

• Shape regularization. It favors a smooth mesh and avoids degeneration, being its use inspired by
NVDiffRec. Equation 14 formulates it, where is the set of vertices; obtains the set of pairs of
vertices that form a face with the input; and is the angle at a vertex in a given triangle. This
regularization was designed by adapting the curvature flow smoothing presented in [57] because
it allows a more uniform smoothing under uneven mesh distributions –as the mesh is optimized,
we cannot grant a priori an even distribution–.

• Normal regularization. In our case, we estimate the normals automatically from the optimized
vertices. Therefore, this loss favors meshes that induce automatic smooth normals. Equation 15
defines it based on Laplacian regularization defined in [52] and [57], which we apply over the
normal vectors instead of vertices to penalize high differences between normals inside a
neighborhood. In this equation, and are the one-ring neighborhood and normal of a vertex.

• Color smoothness regularization. This loss favors color uniformity inside the same triangle. We
accomplish this by choosing samples at random each time we compute the function, estimating
the average difference between the first and the rest of the samples. Through the optimization
steps, this function favors uniformity between samples without prioritizing any given sample.
Equation 16 defines it, where is the set of triangles, is the color vector, and is the color
of a randomly chosen sample in . We set to five in our system.

• Spring regularization. Inspired by [30], it aims for a minimum solution by disfavoring
overgrowing and balancing triangle sizes. Equation 17 defines this function, which measures the
total edge length of the mesh.

Finally, during our experimentations, we observed that shape and normal regularizations can still
lead to overgrowing of the shape. However, shape regularization is crucial to avoid extreme
degenerations as it controls the relative positions of the vertices, avoiding triangle interpenetrations.
Therefore, we settled on balancing both regularizations by, on the one hand, applying decay to the
normal regularization and a general low weight to the shape regularization to reduce the tendency to
overgrow. In contrast, on the other hand, to keep control, avoid degenerations, and maintain higher

V F
αv v

(14)LCF (V) = ∑
vi∈V

∑
vj,vk∈F(vi)

(vj − vi)cot αvk + (vk − vi)cot αvj

2

N nv

(15)LN (V) = ∑
vi∈V

1
|N (vi) | ∑

vj∈N(vi)
nvj − nvi

2

S

T C Ct
R(s)

t S

(16)LCS (T, C) = ∑
ti∈T

1
S − 1

S

∑
s=2

|Cti
R(1) − Cti

R(s) |
2

(17)LS (T) = 0.0025∑
ti∈T

∑
v1,v2,v3∈ti

∥v1 − v2∥ + ∥v2 − v3∥ + ∥v3 − v1∥

59

Application of 3D reconstruction techniques for realistic images over drawings and sketches

topology stability, especially in later stages, a progressive weight increase is applied to the shape
regularization. We settled for a smooth linear increase in the shape weight while a fast logarithmic
decrease for the normal, the latter to avoid falling into the overgrowing tendency. The total loss is
expressed by Equations 18, 19, and 20, where is the maximum number of iterations and is the
current one.

4.3.3. Remeshing and resampling

With the aim of avoiding overgrowing of the reconstruction, we proposed the decay of the normal
regularization while keeping the weight of the shape regularization generally low. Despite the
increase in shape regularization weight during the process, this still leaves room for the appearance
of slight shape degenerations. Taking inspiration from SFT, we apply periodic screened Poisson
reconstruction to fix any possible shape artifact, followed by simplification to keep the number of
faces constant.

However, this has the disadvantage of interfering with color estimation, as mesh colors are linked to
triangle IDs, which are their respective index positions in the internal tensor. When remeshing, a
new mesh is generated, redefining the vertices and the faces. As a result, triangles in the same
spatial position generally have different IDs, shuffling colors along the surface. Therefore, part of
the progress is lost, and colors must be refined again.

Instead of reinitializing the color as in [20], we propose a sampling method to recover lost progress.
By storing a copy of the mesh before the remeshing, the colors of the new mesh can be updated by
sampling it. From now on, we will refer to the input and output meshes of the remeshing as and

, respectively. Similarly, the color vectors of the input and resulting meshes will be named and
. With this notation, the resampling procedure performs the following steps:

• For each triangle in , it computes the world coordinates of every color sample inside by
using the barycentric coordinates to interpolate the triangle’s vertex coordinates [81].

• For each triangle in , it computes the center by averaging the positions of its vertices.

• The distance matrix from every color sample in to each triangle center in is computed. This
allows finding the closest triangle of to each sample in , obtaining the set:

• For every pair in , the barycentric coordinates of the projection of into can be obtained,
following the proposal in [28]. With them, the index in of the projection is computed [81]. By

MI i

(18)

(19)

(20)

L = 40LM + 10LC + 0.02dCF(i)LCF + 0.01dN(i)LN + 0.0002LCS + LS

dN(i) = max 0.05, min 0.4, log (i
MI

+ 10−4)
5

dCF(i) = 1 − max (0.01, (1 − 1.5 i
MI))

mi

mo ⃗ci

⃗co

to
k mo so

n to
k

ti
k mi t i

k

mo mi

mi mo

(21)3 = {(so
n , ti

k) so
n ∈ mo, ti

k = arg min
t i
h∈mi

∥so
n − t i

h∥}
3 so

n ti
k

j ⃗ci

60

also obtaining the index of in , the color value of the original mesh can be copied into
for the new mesh.

In summary, this approach finds the closest color in for each sample in . By assuming
topological similarity between a mesh and its remeshed version, the colors for the new mesh are
expected to be the same as the closest points in the original mesh. This is reasonable, as Poisson
remeshing tends to generate a smoother version of the original mesh, preserving the initial topology
unless very degenerated meshes are provided.

Our algorithm finds the closest triangle using the distance to its center. Even though this can fail in
some cases, such as with very stretched triangles and samples near their extremes, it is generally a
good approximation, allowing an efficient implementation with matrix operations. Additionally, it
can be compensated by finding the nearest triangles in for each , averaging the colors
obtained for the projections. This has a blurring effect, recovering a less detailed version of the
original colors. However, this same effect also has the advantage of diminishing any possible error
of the previous mesh, allowing for an easier correction by the optimization process. Nonetheless,
the general colors are still restored, being able to take advantage of the previous progress to
complete the color estimation further. We fixed the number of nearest triangles sampled to three.

4.3.4. Implementation

We implemented the system described so far by using Python and PyTorch. Therefore, all our
internal data structures supporting the system are based on tensors. We leveraged the pyredner API
as a differentiable rendering pipeline for our system, providing us with the required components and
data structures to manage 3D scenes. This rendering pipeline was chosen because a differentiable
ray tracing renderer can reveal artifacts hidden by local lighting, which helps to reduce ambiguity.

By default, the materials defined by pyredner are based on color constants or image textures as
tensors. To use mesh colors on pyredner, Goel et al. modified the API to extend the materials to
work correctly with one-dimensional tensors representing mesh colors. However, this was
performed two years before our work and was never included in the official pyredner distribution.

Consequently, for using mesh colors in the current distribution of pyredner, we decided to modify
the currently available source code distribution to include mesh colors, following the modifications
performed by Goel et al. on the older version. We accomplished this through manual inspection and
comparison between pyredner’s source files and the modified files available at Goel et al.’s
repository, making the proper changes to add mesh color support. Most changes fell onto materials,
their underlying texture structures, and their sampling, extending textures to support one-
dimensional tensors accessed through the triangle IDs and barycentric coordinates. Once the
pyredner’s source code modifications were performed, the library was compiled and installed using
its default installation script setup.py.

Building upon these bases, our system follows design conventions inspired by NVDiffRec. The
code train.py presents the optimization system, which parses the input, loads the proper resources,
runs the optimization, and saves the result. The main arguments of the system are:

• -i, —iterations: total number of iterations for the optimization. In each iteration, all the reference
images are used to optimize the mesh.

h so
n ⃗co ⃗ci

j ⃗co
h

mi mo

N mi so
n

N

61

Application of 3D reconstruction techniques for realistic images over drawings and sketches

• —mesh: path to the initial mesh we wish to optimize, which is expected to be formatted as an
OBJ file.

• —texture-samples: number of samples used to generate image textures from the optimized mesh
colors.

• —texture-refinement-steps: number of iterations used to refine the image textures.

• —batch-size: we apply batch optimization. Therefore, in each iteration, the provided image set is
divided into mutually exclusive subsets of size equal to the batch size, being the parameters
updated once per subset.

• —remeshing-interval: it indicates the remeshing period. Given a value , the remeshing operation
will be applied every iterations.

• —longtail: it defines the number of iterations dedicated to joint geometry and material
optimization. Once this number of iterations is reached, the rest of the process focuses on color
refinement.

• —views: path to the JSON file containing matrices defining the camera rotation around the origin
of coordinates for each view.

• —cameras: path to the JSON file containing the camera positions and up vectors for each image.

Once processed the arguments, the reference images and cameras are loaded as tensors. The images
are expected to be RGBA, defining their mask on the alpha channel. For the cameras, it is always
assumed that their looking direction is toward the origin of the scene. When the —views argument is
used, the position and up vector of each camera are computed from the matrix, fixing the camera at
a distance of two units from the origin. When —cameras is used, the positions and up vectors are
directly employed to set up the pyredner.Camera objects for each image. Cameras in the former
case are assumed to be orthographic, while cameras in the second case can be either perspective or
orthographic, determined by their JSON configuration.

Next, the initial mesh is loaded using utils provided by pyredner. The result is a pyredner.Shape
object whose vertices tensor property is prepared to be optimized. Additionally, a new
pyredner.Material object for the mesh is created, using only a diffuse component defined from a
uni-dimensional mesh colors texture, initialized randomly. The underlying tensor for the material is
also prepared to be optimized. With the required components, a list of pyredner.Scene objects can be
built for each reference image, containing the reference to the proper camera, shape, material, and a
fixed common white environment, also previously loaded.

While train.py manages the optimization loop, running it for the number of specified iterations, our
defined class Optimizer executes the optimization. Given the shapes, materials, target images, and
configurations, Optimizer sets up the Adam optimizer and our Remesher class. Then, an
optimization iteration can be applied by running its step function. Internally, this method performs
an optimization step for each batch, computing the losses depending on the training status and
properly updating the parameters. Additionally, once finished the iteration, it manages the use of
remeshing to repair the mesh if appropriate.

Remeshing is performed through our Remesher class. This class encapsulates the remeshing process
by using the screened Poisson and simplification operations provided by pymeshlab [53], applying
our proposed resampling over the result. Therefore, after every remeshing step, the optimized mesh
is replaced by the newly generated mesh.

n
n

62

As stated at the beginning of Section 4.3, we employ a long-tail optimization approach inspired by
NVDiffRec. This consists of optimizing the shape and colors jointly until a given iteration later in
the process, when the geometry is fixed, and only the color continues to be optimized. This aims to
compensate for the interference of the remeshing step in the detail of the color estimation and to
allow a better color refinement once all vertices remain still. Given the initial configuration,
Optimizer automatically applies this scheme. If the remeshing interval is not zero, remeshing is also
used right before fixing the geometry.

Once the optimization is complete, the results are exported. To keep compatibility with external
tools, the estimated color for the mesh needs to be converted into a 2D texture format. To do this,
we rely on a second optimization phase inspired by NVDiffRec. This phase is targeted to generate
image textures from the current optimization. Therefore, high-quality renders from random
viewpoints around the mesh are generated as reference samples from the reconstructed mesh. Then,
based on these samples, a random image texture is linked to the fixed mesh and optimized to
reproduce the same appearance as the mesh colors. This optimization uses a simplified operation of
Optimizer without remeshing or long-tail, using as loss functions the color loss in Equation 12 and
the texture smoothness regularization in [52], being their weights 10 and 0.002 respectively. The
number of optimization steps for the image texture is given by —texture-refinement-steps.

Before closing the section, making some final remarks about the implementation is important. Early
in the development phase, we considered optimizing a tetrahedral grid by using the Differentiable
Marching Tetrahedra similarly to NVDiffRec, leveraging their DMTet implementation. However, it
was observed that this kind of representation tends to generate holed meshes, being difficult to
obtain a uniform shape, as it will be further shown in Section 5.1. Therefore, we discarded this
alternative to use triangular meshes (as Goel et al. [20] did) and regularizations.

Additionally, it was observed that the automatic generation of normals for the mesh after each
update using the tools provided by pyredner could lead to undesired cases of inverted normals. This
situation blocked the color optimization, as the surfaces were rendered as purely black. To detect
this situation and reverse the generated normals, a naive approach of generating a low-resolution
render of the mesh with purely white material and measuring the level of black was used.

As we have seen, our system requires the initial mesh to be optimized. This was done to increase
modularity and make the optimization procedure independent from the initial mesh estimation.
Given a subset of reference samples and viewpoints, the initial mesh can be generated following our
proposed strategy through our script build_initial_mesh_v3.py. This script takes as inputs the JSON
file describing the images and view rotations (—cameras), the desired result filename (—output),
and the scale-down factor for the source images (—reduction). From them, numpy vectors are used
to define the voxel projection for each image and obtain the final voxel representation, which is
converted into a mesh using the mcubes API [91]. Post-processing is applied to scale down the
model using the images as references, as well as to remesh and simplify the mesh using pymeshlab.

Lastly, to increase the robustness of the system, we implemented a custom checkpoint mechanism.
Said system, encapsulated by the classes CheckpointManager and TrainingStatus, saves the
optimized mesh and color vector at fixed intervals during the optimization, as well as a status file.
Then, based on this file, automatic recovery of the last checkpoint is enabled when relaunching the
optimization, helping to recover the progress in case of any failure.

When considering our proposal, some configurations are fixed in our experiments unless otherwise
stated. A batch size of four samples is used, and the initial mesh is estimated from a frontal and a
side sample. Additionally, optimization renders use one bounce and four samples. Finally, ten

63

Application of 3D reconstruction techniques for realistic images over drawings and sketches

reference views, 100 steps, and a texture resolution of 2048 by 2048 pixels are used for image
texture generation. We use a learning rate of 0.005 for the reconstruction and 0.05 for the texture
generation.

64

5. Results

Given our two proposals, this section will be structured into two main subsections. Firstly, we will
present the experimentation carried out with NVDiffRec over the domain of non-realistic
depictions. The objective of this section will be to help determine the viability of this system and
our suggested workflow for the task, studying the degree of generality of NVDiffRec. For this, we
will present several use cases over which we will observe NVDiffRec’s performance.

Secondly, we will present the results obtained with our proposed system. We will introduce the
datasets used for its evaluation, perform the ablation study of our contributions, and compare the
system with NVDiffRec and SFT. This later comparison will aim to determine if our proposal
adapts better to sketches compared to more generic approaches designed for realistic images.
Additionally, this section will also perform a controlled study on how different quality factors in
sketches affect the reconstruction, which will be key for determining our system’s weaknesses and
where future research efforts should be led.

5.1. First proposal

Our first proposal had a dual intent. On the one hand, by using the state of the art in inverse
rendering reconstruction, we aimed to determine the adequacy of this method for its application
over illustrations. On the other hand, we wanted to determine if the promising NVDiffRec was
general enough to be applied to our domain successfully. Therefore, the experiments in this section
were designed to this extent. We experimented with NVDiffRec over three use cases.

5.1.1. Use cases

Our use cases represent three situations of interest that allowed us to apply NVDiffRec under
different conditions. In essence, these studies accomplished the purpose of using the system and the
proposed workflow, allowing us to better determine their usability and appropriateness for our
intended task. These experiments were performed before our second proposal as an initial proof of
concept, and their results helped us to know how to guide and continue with our research.
Therefore, these use cases do not aim to test NVDiffRec over drawings exhaustively but instead
allow a general idea of its capabilities and usability. A more formal evaluation will be carried out in
our comparison segment in Section 5.2.

Sphere. As our first use case, we introduce a simpler instance to observe NVDiffRec’s base results
under the sketches domain. We present a digitally drawn circle, already masked and shown in
Figure 24. By repeatedly providing this image from multiple views around the scene's center at a
fixed distance, we aimed to simulate the multi-view samples of a sphere. Two approaches were used
to generate the view matrices:

• Simulating a turn-around of 28 frames around the vertical axis.

• Generating completely random rotations around the scene's center at a fixed distance. This
method implies that samples are generated dynamically during the optimization, providing a new
random viewpoint each time.

This use case is inherently simple by nature. However, it has the advantage of presenting highly
consistent samples, allowing a custom number of reference samples, and being the black outline

65

Application of 3D reconstruction techniques for realistic images over drawings and sketches

line the major inconsistency between views. Therefore, this allows observing the results obtained
under a reasonable base case.

Figure 24. Reconstruction results for the drawn sphere.

Left to right, ground truth, estimation by NVDiffRec with turn-around, estimation with
random rotations, and estimation with Visual Hull [34, 94] with turn-around.

Figure 25. Sketches depicting the partial turn-around of a fictional dog.

The complete set of frames, created by Anja Regnery, can be found in [62], containing 28
reference views.

Dog sketches. In this use case, sketches of a dog like the ones in Figure 25 are available,
corresponding with the 28 frames of a complete turn-around animation. This use case was kindly
provided by Anja Regnery [62], and it represents a real hand-drawn set of sketches depicting a
fictional dog character from multiple views. Therefore, the benefit of this example is that it fully
represents our task, having the advantage of presenting a wide set of samples to use reconstruction.

To use the dog sketches with NVDiffRec, we generated their masks and the camera poses for each
frame. Due to the reduced number of images, we opted for generating the masks manually using
Gimp, alpha masking outside the black outline, and erasing the ground line. This provided us with
higher precision masks. In contrast, the view matrices for each frame were estimated thanks to the
turn-around nature of the source, following the strategy we have detailed in Sections 4.2.2 and
4.2.4. As black-and-white lined sketches are simple in nature, they contain a limited number of key
points. This heavily limits the applicability of COLMAP to this kind of sketch, usually failing in
this case. Consequently, automatic viewpoint generation has to be reserved for more detailed cases.

66

Game character. The last use case we propose consists of reconstructing the character of a third-
person view game in which the camera can freely move around it. However, some remarks must be
made about the election of this use case.

The reason for this example resides in the non-realistic-looking nature of the content –like a
painting– and the ease of generating samples. As previously mentioned in Section 4.1, by
considering the color of the drawings, we extend our scope to more completed and detailed types of
illustrations. This use case helps us simulate a more complete scenario than sketches, allowing us to
explore our automatic workflow better. Nonetheless, its similarity to actual drawings is only partly
due to its high geometric consistency through views given its synthetic origin. Additionally, it
allowed us to obtain many samples, which, even though it enables dataset sizes closer to what was
initially intended in NVDiffRec, is unfeasible with real drawings. Despite these issues, we still
consider it a practical example as it allowed us to deal with challenging automatic mask generation
and view estimation, studying their effects on the reconstruction.

For this use case, we took a screen recording of a game as a sample source, depicting the camera
moving around the standing character. By extracting all the video frames, we obtained a total of 921
multi-view images of said character.

Figure 26. Samples corresponding to the game character use case.

From top to bottom, the original samples, the samples masked automatically with
PointRend, and the samples with improved masks using a bounding box.

Given the nature of the capture method used to generate the samples, there is high variability in
their contents. Moreover, as the camera was controlled manually during the recording, we cannot
assume uniformity in its movements. Furthermore, the camera’s movement is random and cannot be

67

Application of 3D reconstruction techniques for realistic images over drawings and sketches

either assumed. Therefore, for obtaining the masks and camera poses of these samples, we relied on
the automatic approaches through Detectron2 and COLMAP, respectively detailed in Sections 4.2.1
and 4.2.2. Figure 26 shows some examples of the resulting samples.

5.1.2. Results

In this section, we report the reconstruction results for each one of the use cases presented in
Section 5.1.1. Our evaluation of these results will be mainly visual, relying on image metrics and
manual inspection. While the most challenging cases are the dog sketches and the game character
use cases, a reference 3D shape does not exist for the former, and the character model for the latter
is not openly available.

It is important to note that, for all the experiments detailed with NVDiffRec, we used 5000
iterations, random initial textures, texture resolution of 1024 by 1024 pixels, batch size of four, grid
resolution of 128, and reconstruction in two phases with learning rates of 0.03 and 0.003. When
COLMAP estimation was needed, we used all the full-resolution images available without masking.
Shared parameters were used for the cameras and default configuration for the remaining attributes.

Sphere. In this case, we used orthographic cameras, matching the nature of the reference sample.
Figure 24 shows the meshes obtained with NVDiffRec when estimating the simulated sphere. For
the sake of comparison, the same estimation obtained through a more classic approach, the Visual
Hull algorithm, is also provided. The Visual Hull reconstruction was generated thanks to the
algorithm implementation in [34, 94] by providing the masks of the 28 images of the turn-around
setup and their associated camera views, obtaining the intersection hull of all projections.

The results obtained with this toy example already reveal a tendency that will be recurring
throughout this work when dealing with NVDiffRec. As can be seen, the reconstructions generated
by NVDiffRec closely match the sphere silhouette given the reference viewpoints. However,
especially in the turn-around case, we observe many holes and strange topologies for the surface,
being the 28 segments “engraved” into the shape. This is because the lack of shading on the
sketches relegates all the geometry information to the silhouette. Additionally, as NVDiffRec uses
local lighting, there is no self-shadowing when rendering the mesh, not revealing the holes in the
renders. Consequently, as holes do not generate feedback, the only feedback regarding shape is the
silhouette. This can also be seen in the improvement with random views compared to the turn-
around. As the number of silhouettes seen from different viewpoints is higher and more varied, the
shape is more closely approximated. Nonetheless, in this simple case, Visual Hull offers a far better
reconstruction alternative as it does not produce holes and closely approximates a perfect sphere.

Dog sketches. Several tests were performed with this use case. The first experiment was executed
using a perspective camera projection, environment light optimization, and a training resolution of
550 by 550 pixels. All 28 sketches were used for training. The progress result saved by NVDiffRec
during the last iteration can be seen in Figure 27.

The same tendencies as with the sphere can be observed in this case. NVDiffRec tries to
approximate the silhouette of the dog and the general shape obtained when rendering from the given
viewpoints. However, the lower parts of the body, such as the tail and paws, are not recovered. This
can be attributed to the inconsistency between the projection in the sketches and the perspective
camera, as the extremities –further from the center– are the most affected areas by the perspective
deformation. As reference sketches tend to avoid perspective deformation, they are usually more
closely explained by an orthographic projection. Furthermore, we can also appreciate how the grey

68

lines are reproduced using the lighting instead of the textures. Effectively, this is also caused by the
lack of shading in the sketches, which increases the ambiguity regarding the effects of illumination
and materials.

Figure 27. Results saved on the last training iteration in NVDiffRec (initial experiment).

From top to bottom, left to right, rendered mesh, ground truth, environment map, diffuse
texture, specular texture, and normal map. A grey background has been added to the
diffuse map to increase its visibility.

Figure 28. Results saved on the last training iteration in NVDiffRec (second experiment).

From top to bottom, left to right, rendered mesh, ground truth, environment map, diffuse
texture, specular texture, and normal map. The environment map is a fixed pure white
color, while a grey background has been added to the diffuse map to increase its visibility.

Therefore, we repeated the same training using an orthographic projection and fixed white
environment light to improve the reconstruction. The result can be found in Figure 28. It can be
observed that orthographic projection allows for a closer matching of silhouettes and outlines
between reconstruction and sketches. Moreover, the tail and paws are now recovered thanks to the
lack of perspective distortion.

However, we can still observe how the reconstruction presents very sharp surface features and
holes, having a similar defect to the sphere turn-around where the segments are integrated as surface

69

Application of 3D reconstruction techniques for realistic images over drawings and sketches

features. Even though the silhouettes are detailed from the reference viewpoints, the general
topology and views from other angles do not match the expected shape when considering a dog.
This phenomenon has two main causes. On the one hand, the SDF-based representation discretizes
the appearance of geometry, only generating new faces when the values change sign, easing the
modeling of holes. On the other hand, as discussed previously, the source's lack of shading and the
use of local lighting hide these holes from the optimization, avoiding their refinement. We will refer
to this reconstruction phenomenon as the “shadow puzzle” effect. We can also see that the sketch
lines were integrated into the material this time but on the specular map. This shows that there is
still ambiguity regarding material behavior due to the lack of shading.

Finally, we increased the number of samples trying to add additional silhouettes to improve the
reconstruction inspired by the results over the sphere. We accomplished this by generating two
additional frames between the existing ones thanks to AnimeInterp [43], a frame interpolation
system specially designed to work over cartoon animations. With this technique, the number of
samples was increased to 84, and the experiment was repeated using all of them. Figure 29 shows a
comparison of the meshes obtained with each experiment. Again, the reconstruction obtained via
Visual Hull [34, 94] with the set of 28 samples has also been added for reference.

Figure 29. Reconstructed meshes for the dog from the front and top.

Left to right, perspective, orthographic, orthographic interpolated, and Visual Hull
estimations.

As we can see from the comparison of the results, the shadow puzzle effect is still significantly
present despite increasing the number of available samples. However, we can see a slight increase
in silhouette definition and quality. We argue that this points to the fact that more side views are not
necessarily required. Instead, top and bottom silhouettes would be necessary to further reduce the
appearance of holes, reproducing the results seen in the sphere. Unfortunately, these cases cannot be
explored as top and bottom sketches for the dog are not available.

However, it is relevant to note that, in this case, the silhouettes of the reconstructions provided by
NVDiffRec are more detailed and recognizable than the reconstruction provided by Visual Hull.
This shows that the flexibility offered by NVDiffRec due to its optimization nature can surpass the
fitting capability of the more rigid nature of Visual Hull under challenging scenarios with

70

inconsistencies. Therefore, the application of inverse rendering optimization approaches is still
relevant.

Game character. A total of 921 images of 1920 by 1342 pixels were obtained by extracting all the
frames from the source video. While all of them were used for the COLAMP estimation, 737 were
employed to build the training split, and 184 formed the validation split. These splits were
automatically masked, removing from the resulting sets the empty images and resizing every
sample to half size.

We divided the experiments into two groups to study the effects of the center estimation and the
masks. On the one hand, we performed experiments in which the different strategies for center
estimation were applied with automatic masks. On the other hand, experiments with improved
masks were carried out for comparison. In all cases, perspective cameras were used to match the
ground truth images, the training resolution was 960 by 671 pixels, and the lighting was learned.

Table 3. Validation metrics for the game character reconstruction (initial experiments).

The average MSE and PSNR were obtained from 132 validation samples with
reconstructions of the game character for different center estimations with automatic
masks.

Figure 30. Game character reconstructions with maps (initial experiments).

The reconstructions for different center estimations on the game character are compared
with the first validation sample. In each set, left to right, GRASP, BB, and averaged.
Images have been cropped for visibility.

Estimation MSE ↓ PSNR ↑

GRASP 0.008 23.77

Bounding box 0.008 23.90

Averaged 0.008 23.93

G
ro

un
d

tr
ut

h
Re

co
ns

tr
uc

tio
n

D
iff

us
e

Sp
ec

ul
ar

N
or

m
al

71

Application of 3D reconstruction techniques for realistic images over drawings and sketches

Firstly, we applied independent NVDiffRec optimizations with the same images for views estimated
with different center estimations, namely GRAPS, BB projection, and averaging both. Table 3
presents the numeric results provided by NVDiffRec in validation, reporting the image metrics of
the reconstruction renders compared with the ground truth. Figures 30 and 31 visually show the
obtained reconstruction. It is important to note that, after the masking and filtering, the dataset for
these experiments was reduced to 517 samples for training and 132 for validation.

Figure 31. Generated 3D models for the game character (initial experiments).

Both frontal and back views are displayed. Left to right in each set, GRASP, BB, and
averaged estimations.

We can see that the results are similar for all center estimation techniques. Looking at Table 3, the
averaged and BB estimations obtain slightly better PSNR, although the MSE is similar in all cases.
Figures 30 and 31 show that the differences are found in details like the hair shaping and the surface
texture. This is reasonable as the center difference is relatively small and mostly displaced in the
vertical axis. Therefore, given that the camera estimation by COLMAP is consistent enough, the
reconstructions are robust to this vertical displacement of the center as we are still located around
the tetrahedral grid. However, the difference in the estimation can be clearly seen in Figure 31, as
the center of the resulting meshes is different.

It is worth noting that all cases fail to recover the hands, and the feet are very roughly reconstructed.
On the one hand, the former is because the hands are usually not correctly included in the automatic
masks, being mainly classified as not part of the target. On the other hand, the feet are generally
well captured, but they are small, being rounded off and merging with the thicker part of the boots
during reconstruction. We can also observe that the models have an implicit rotation. This is due to
the COLAMP estimation of the system of coordinates. Even though we displaced it, we did not
modify its imposed orientation, causing the whole scene to be rotated. However, this is not a critical
issue as it only affects the result's rotation and does not interfere with its reconstruction, being easily
rectifiable over the obtained mesh.

Secondly, we used the best center estimation techniques to evaluate the effects of the masks on the
result. Given that we had assumed the availability of the BB containing the target, we used this
information to improve the masks. As reported in Section 4.2.4, we did this by automatically
masking anything located outside the bounding box and filtering out those samples whose bounding
box interior was empty. This method allowed for more refined masks, obtaining 501 training and
124 evaluation samples.

We again tested the reconstruction for the BB and the averaged origin estimations but this time with
the improved masks. Table 4 shows the metrics obtained in validation for all models over the

72

validation set with improved masks. Note that the enhanced masks only help reduce the noise but
do not improve the character's silhouette. Figure 32 shows a visual comparison of the estimated 3D
models.

Table 4. Validation metrics for the game character reconstruction (mask experiments).

The average MSE and PSNR were obtained from 124 improved validation samples with
reconstructions of the game character with automatic and improved masks.

Figure 32. Models obtained for the game character without and with improved masks.

Both frontal and back views are shown. In each set, left to right, estimation with normal
and improved masks, top to bottom, average, and BB estimations. All models have been
rotated for the comparison; the original orientations were as in Figure 31.

The reconstructions with the improved masks are visually similar to the initially obtained ones.
Looking at Figure 32, we can see a slight increase in the sharpness of the textures. Regarding the
3D shape, we can observe small improvements in the shaping of the hair. In Table 4, we can see that
the models trained with improved masks perform numerically better than those trained with fully
automatic masks.

These results are reasonable because, as we said previously, the masks improved by the bounding
box only help reduce the noisy parts outside it and better detect the samples where the character is
erroneously masked out. Given that the amount of filtered images is low, reducing the set from 517

Estimation MSE ↓ PSNR ↑

Bounding box 0.004 25.03

Averaged 0.006 23.85

Bounding box+ 0.003 27.73

Averaged+ 0.003 27.77

73

Application of 3D reconstruction techniques for realistic images over drawings and sketches

training images to 501, the improvement on the reconstruction can only be minor in this particular
case. Moreover, filtering noise outside the bounding box mainly helps at a geometric level as the
generation of far-floating geometry is avoided, which is reflected in the results with averaged
estimation. However, given the simplicity of the approach, we still consider that its improvements
are beneficial as they help reduce the geometric and color noises in the reconstruction.

5.2. Second proposal

Our second proposal aimed to adapt existing inverse rendering techniques for reconstruction over
realistic images to increase their suitability for sketches and flat-colored drawings. Therefore, our
objective through this section will be double. First, we will evaluate our system to determine the
effect and relevance of our proposed modifications, analyzing how the system reacts under different
challenges commonly present in sketches. Second, we will study how the results of our tailored
proposal compare to those obtainable with standard approaches not adapted to the domain,
exploring the relevancy and effectiveness of our proposal.

5.2.1. Datasets

With the aim of higher control over the datasets, allowing us to perform a detailed study of our
proposal, we opted to test our system over two synthetic examples. Even though synthetic sketches
overlook the subjectivity of hand-drawn samples, not fully representing our task, they are a
baseline. When working with samples without subjectivity interference, we work under the best
case possible for our system, and the results obtained should be evaluated accordingly. Additionally,
using synthetic sketches allowed us to alter their quality freely, enabling the study of different input
factors.

We gathered two existing 3D models to generate sketch-like reference samples: Axolotl [13] and
Vasque [14], processing them to fit a cube of two units. These models present different desirable
features for our evaluations, being both of medium complexity. While Axolotl presents multiple
colors, roundness, and asymmetries, Vasque presents sharp edges, concaveness, and symmetry
around the vertical axis. Therefore, these models are representative of different frequent features in
common objects.

Figure 33. Models used and synthetic sketches in three styles.

For generating synthetic renders reproducing a sketched appearance, we used Blender and its
Freestyle module as rendering pipelines due to their flexibility, familiarity of use, and powerful
automatization through Python scripting. We generated synthetic samples for each model in three

74

styles representative of the most common use cases: lined sketches without color, flat-colored lined
sketches, and flat-colored sketches without lines, shown in Figure 33. Each generated set contained
128 training and 128 validation random view samples of 512 by 512 pixels. The views were
distributed on the surface of a sphere of radius five around the center of the scene, always looking at
it. From now on, we will refer to the flat-colored lined sketches as the reference set.

We also generated modifications of the initial datasets to study different quality factors. This was
done in all cases by modifying the generation pipeline to alter the quality attributes of the multi-
view samples. In each modified dataset, only the property under study was changed, keeping the
rest of the generation parameters as the reference set for comparison. However, it should be noted
that the views between different datasets may differ due to the random nature of the view
generation. This is compensated by the fact that we will be using a completely random generation,
and a high number of views is mainly considered, being able to assume a uniform distribution of
viewpoints and, therefore, negligible effects over the reconstruction.

Finally, to complete the evaluation of our system, we applied it to real hand-drawn sketches.
However, as mentioned in Section 2.1, the available paired datasets containing both sketches and
3D models are very limited, even more when considering the multi-view case. During this work's
development, we found two publicly available datasets providing hand-drawn sketches and 3D
models.

On the one hand, Xiao et al. [79] proposed a dataset of multi-view sketches corresponding to 3D
models of different categories drawn by people with varying skill levels, containing 3620 sketches.
Through their work, they presented a quantitative analysis of the difference between professional
and novice sketches and how the proposed dataset enabled synthesis and reconstruction-related
tasks. Despite the desirable features of this dataset, such as the explicit multi-view of the sketches,
their hand-drawn nature, and the availability of models, it lacked relevant information required for
our system. Even though a multi-view setup was provided, the camera poses used for the views
were not included in the set. Moreover, given the simplicity of the renders and sketches, it was not
feasible to use COLMAP for their estimation. Therefore, using [79] in our system was not viable.

On the other hand, Gryaditskaya et al. [23] presented a work analyzing the properties and features
of technical sketches and the taxonomy of the lines involved in their design. As part of their
research, they generated a dataset of hand-drawn technical sketches from 3D models called
OpenSketch. Even though this dataset was not explicitly multi-view, each participant designed the
given object sketches from a different view, allowing to obtain multi-view samples by collecting the
drawings made by various participants. Furthermore, this dataset, although smaller than [79] with
180 sketches, included information such as the camera estimation for each view, vectorial
representations of the sketches, time stamps, and labels for the lines of a subset of 107 drawings.
Despite all the available information in OpenSketch, its use in our system proved challenging.

Firstly, as far as we could study, the camera poses provided did not allow for a direct
correspondence between sketches and 3D models, as the drawings were not centered. This made the
matching between renders and illustrations inappropriate for reconstruction through our system by
default. Moreover, the sketches lacked masks, and the more abstract nature of the depicted objects,
joined with the disconnectedness between sketch lines, made it difficult to obtain them
automatically. This showcases the high requirements that the inverse rendering approach imposes
on the input data, which we will discuss in Chapter 6. Given the considerable amount of difficulties
that the use of OpenSketch presented and the high deviation of focus that would have implied

75

Application of 3D reconstruction techniques for realistic images over drawings and sketches

overcoming them, we decided to discard the use of this dataset to concentrate our efforts on the
evaluation of our system.

Therefore, to study the system over real scenarios, we designed a custom dataset. In particular, we
manually drew four canonical views for four different imaginary objects, namely Plane, Shrimp,
Vase, and Abstract, scanning and masking them. The viewpoints were manually defined thanks to
the canonical nature, meaning we used views related to the object's elevation, plant, and profile. To
compare the results against a 3D model, we manually created low poly 3D objects from those
sketches. This will allow us to measure the system reconstruction against the human-made 3D
interpretation of the sketches.

5.2.2. Baseline results

As our first experiment, we performed two reconstructions for each initial training set: one using
remeshing and one without it. This allowed us to obtain the base metrics for our system that will be
the point of comparison throughout the ablation and quality factors study. In all cases, 30+3
iterations were used, meaning the last three only refined color following our long-tail scheme.
When remeshing was used, it was applied every two iterations. We will refer to this configuration as
the reference configuration from now on.

Figure 34. Baseline results on different styles.

We evaluated the reconstructions in the model and image spaces using the generated validation
images and the original models. For the image domain, we measured the Mean Squared Error
(MSE), Peak Signal-to-Noise Ratio (PSNR), Structural similarity (SSIM), and Learned Perceptual
Image Patch Similarity (LPIPS). The latter was measured based on Visual Geometry Group (VGG),
using the function provided by torchmetrics [90]. Meanwhile, the Chamfer distance was measured
to evaluate the similarity between models in 3D space. To compensate for possible scale
mismatches between the compared objects, we measured the pure Chamfer distance and the
distance after scaling the reconstruction to fit the largest dimension of the reference model. In this
way, cases with different scales but similar topologies are not penalized.

76

Figure 34 and Table 5 show that the results present an acceptable quality. Even though sharpness in
silhouettes and colors has been lost, the figures are easily recognizable. We can see how our color
loss effectively preserves consistent lines between views while discarding the rest. Nonetheless,
better color estimation is still observed for the style without lines, as it is the most consistent. We
can see how the concaveness in Vasque is lost, presenting a flat top. This is reasonable considering
the lack of volume shading in the reference samples and the regularizations we defined for shape
and normals, guiding the optimization towards smoother and uniform solutions. Finally, we can
observe how remeshing works best for Axololt due to its more rounded nature than Vasque. This
tendency will be consistent throughout our experiments, pointing to the fact that the use of
remeshing should be decided on a case-per-case basis. While it can correct mesh artifacts, it also
makes it challenging to recover sharper shapes, being more appropriate for highly inconsistent cases
or rounder objects.

Table 5. Validation metrics of the reconstructions from different styles.

The metrics were obtained from 128 validation samples with reconstructions over 128
training samples in each style. The best and worst values are depicted in green and red,
respectively.

5.2.3. Quality factors study

Drawings contain noise and inconsistencies. Even for highly skilled artists, keeping an object's
geometry and appearance constant between multiple views is challenging. These aspects need to be
considered when designing a reconstruction system from sketches. Aiming to study how our system
performs under less ideal conditions, we simulated the most frequent quality factors regarding
drawings to see how they affect the results compared to the baseline.

When considering reconstruction from images in any domain, the most common factors are the
number of available samples, their resolution, and the precision of their masks when required.
However, more specific to the sketched domain, we also must consider the consistency between
viewpoints and views, and the consistency of the geometry between views. While the former relates
to the possible discrepancies between the “real” viewpoints of the images and the ones provided to
the system, the latter refers to potential shape inconsistencies between views due to either precision

Model Axolotl Vasque

Style Color + lines Only color Only lines Color + lines Only color Only lines

Remesh. No Yes No Yes No Yes No Yes No Yes No Yes

MSE ↓ 0.007 0.007 0.005 0.004 0.007 0.006 0.026 0.027 0.009 0.010 0.033 0.031

PSNR ↑ 21.62 21.79 23.30 23.99 21.76 22.23 15.91 15.69 20.57 20.06 14.91 15.11

SSIM ↑ 0.923 0.926 0.934 0.939 0.925 0.929 0.792 0.789 0.871 0.870 0.790 0.789

LPIPS ↓ 0.109 0.107 0.140 0.139 0.147 0.149 0.185 0.197 0.191 0.190 0.246 0.247

Chamfer ↓ 0.057 0.083 0.056 0.082 0.057 0.081 0.079 0.113 0.076 0.108 0.074 0.119

Scaled
Chamfer ↓ 0.014 0.008 0.013 0.008 0.013 0.008 0.025 0.034 0.023 0.030 0.020 0.037

77

Application of 3D reconstruction techniques for realistic images over drawings and sketches

errors or stylistic choices. To study these factors, we present modifications of the initial sets whose
reconstruction will allow us to observe their effects on the result.

Figure 35. Reconstruction results over Axolotl with an increasing number of samples.

Firstly, we evaluated the effect of the number of reference images in the reconstruction. We
generated a training set of flat-colored lined sketches with 512 random view samples with the same
characteristics as the reference set. Then, we obtained reconstructions from the first 4, 8, 16, 32, 64,
128, 256, and 512 samples, respectively. Each data size was reconstructed with remeshing and
without it, as well as in 30+3 iterations and a custom number of iterations. In the second case, the
number of iterations was computed considering the number of samples and the batch size to keep
the number of parameter updates constant. Equation 22 was used to determine the number of
iterations given the number of samples and the desired number of updates , which
we computed from the reference configuration.

Therefore, we used 960+96, 480+48, 240+24, 120+12, 60+6, 30+3, 15+2, and 7+1 iterations,
respectively, in the second case, applying remeshing every 64, 32, 16, 8, 4, 2, 1, and 1 iterations
when used. The remeshing period was computed to keep the ratio with the number of iterations
constant. We evaluated the obtained reconstructions over the validation reference set.

For brevity, only the reconstructions for Axolotl are shown in Figure 35. Nonetheless, the ones for
Vasque follow the same trend. Similarly, Table 6 shows the metrics obtained for Axolotl when using
remeshing and a fixed number of iterations for reference. As expected, we observe how the quality
increases with the number of samples and iterations. This is sensible as, with more iterations, the
results can be further refined, and with a higher number of diverse samples, the ambiguity regarding
its shape and appearance is reduced. Good results are obtained with 32 samples and enough
iterations, not improving significantly for more than 256 samples. The fact that the improvement in
quality reaches a limit is also reasonable, as once enough references are available, new samples do
not provide any meaningful novel viewpoints.

ns Nu = 960 + 96

(22)f (ns) = 4Nu

ns

78

Table 6. Validation metrics of the Axolotl reconstructions from different dataset sizes.

The results were obtained from the Axolotl reference validation set for reconstructions
generated with increasing numbers of reference samples.

Table 7. Validation results of reconstructions with increasing camera inconsistencies.

The results were obtained from the reference validation sets using models reconstructed
with increasing levels of camera displacement without remeshing. The best and worst
values are depicted in green and red, respectively.

The camera inconsistency was simulated by disturbing camera positions randomly. This was done
by generating a random unitary vector to define the direction of the displacement for each camera
individually. Then, a given displacement value was used to set the magnitude of this vector before
adding it to the camera position. In this way, the resulting cameras were not looking at the center,
while our system always expects the look-at point to be at the origin. This effectively introduces a
discrepancy between the real view and the view used in the optimization, reproducing camera
inconsistencies.

We experimented with displacements of 0.2, 0.5, and 0.8. The datasets generated for each value
featured the same statistics as the reference set: 128 training samples of 512 by 512 pixels in a flat-
colored lined sketch style. Additionally, the reconstructions were also evaluated using the reference
validation set. The results can be seen in Figure 36, while Table 7 presents the metrics after 30+3
iterations without remeshing.

Model Axolotl

Iterations 30+3

Samples 4 8 16 32 64 128 256 512

MSE ↓ 0.017 0.012 0.009 0.008 0.007 0.007 0.007 0.007

PSNR ↑ 17.79 19.38 20.71 21.36 21.64 21.79 21.96 21.98

SSIM ↑ 0.904 0.910 0.917 0.921 0.922 0.923 0.923 0.923

LPIPS ↓ 0.125 0.121 0.118 0.113 0.112 0.108 0.108 0.107

Chamfer ↓ 0.053 0.067 0.084 0.084 0.085 0.083 0.084 0.084

Scaled
Chamfer ↓ 0.036 0.026 0.012 0.008 0.008 0.008 0.008 0.008

Model Axolotl Vasque

Displacement 0.2 0.5 0.8 0.2 0.5 0.8

MSE ↓ 0.013 0.024 0.032 0.039 0.067 0.104

PSNR ↑ 18.85 16.37 15.01 14.13 11.77 9.86

SSIM ↑ 0.916 0.915 0.914 0.773 0.757 0.751

LPIPS ↓ 0.125 0.131 0.130 0.222 0.259 0.263

Chamfer ↓ 0.051 0.023 0.037 0.085 0.138 0.085

Scaled Chamfer ↓ 0.020 0.032 0.044 0.045 0.111 0.150

79

Application of 3D reconstruction techniques for realistic images over drawings and sketches

Through these results, we can observe how the reconstructions quickly degrade with the increase of
camera discrepancy. This is caused by the fact that color positions and silhouette positions inside
the ground truth images are not consistent between shots relative to the optimization cameras due to
inconsistency. Therefore, the results are averaged in the view space, meaning that the resulting
reconstruction is the shape and color portion commonly seen by all views. In other words, the
“consistent” part of the target in relation to the camera. This explains the fast degradation, as small
shifts of the camera translate into significant shifts of the target relative to its position in the view.

Figure 36. Results without remeshing of increasing levels of camera inconsistency.

Figure 37. Examples of samples simulating geometry inconsistency.

Figure 38. Results without remeshing of increasing levels of geometric inconsistency.

Next, random scaling factors were applied to the meshes of the models before rendering each
sample to simulate the geometric inconsistencies. Similarly to the camera inconsistency, this scaling
was based on adding a random unitary vector multiplied by the scaling value to the object’s scale.
Figure 37 shows examples of the samples generated.

80

Magnitudes of scaling of 0.05, 0.1, 0.2, and 0.3 were evaluated while the datasets generated for
each value followed the reference set's statistics, presenting the same number of samples,
resolution, and style. The metrics for their reconstructions evaluated over the reference validation
set after 30+3 iterations and without remeshing are presented in Table 8, while Figure 38 shows the
reconstructions visually.

Table 8. Validation results of reconstructions with increasing geometric inconsistencies.

The results were obtained from the reference validation using reconstructions from
samples with increasing levels of geometric distortion without remeshing. The best and
worst values are depicted in green and red, respectively.

We can observe how the increase in geometric inconsistency between frames reduces the quality of
the result. However, this degradation is lower when compared to the camera inconsistency. This is
because, in this case, the degradation results from averaging all the different shapes in the world
space. This is consistent with the intended averaging behavior of the silhouette loss under
inconsistencies, as presented in Section 4.3.2.

Next, we studied the effects of the image resolution in the reconstruction by generating datasets
with the same properties as the initial colored without lines dataset but with different resolutions.
This was done to avoid the interference of the line thickness in the samples as for lower resolutions
the lines generated obscured the target.

Therefore, we produced sets of samples in the flat-colored style without lines of resolutions of 16
by 16, 32 by 32, 128 by 128, and 1024 by 1024 pixels, comparing them to the initial baseline results
from 512 by 512 pixels in the same style. The reconstructions were generated from 128 samples in
30+3 iterations, shown in Figure 39. Additionally, the metrics for Vasque are shown in Table 9,
based on the baseline validation set for flat-colored sketches without lines.

As usually happens with image-based methods, the quality of the results decreases with the
decrement in resolution, as the amount of information contained in the images is reduced. Despite
this tendency, good results are already obtained from a resolution of 128 by 128 pixels. This means
that high resolutions are not necessarily required, placing our system in a competitive range as
reference sketches are usually of much higher resolution than our required minimum. However, it is
also important to note that high resolutions increase the quality mildly, mainly improving color.
This is reasonable as we optimize low-resolution meshes and, therefore, the sampling frequency

Model Axolotl Vasque

Distortion 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3

MSE ↓ 0.008 0.009 0.011 0.013 0.024 0.026 0.030 0.039

PSNR ↑ 21.31 20.57 19.56 18.91 16.29 15.88 15.22 14.21

SSIM ↑ 0.920 0.918 0.917 0.917 0.785 0.776 0.769 0.756

LPIPS ↓ 0.108 0.114 0.119 0.121 0.191 0.203 0.213 0.242

Chamfer ↓ 0.056 0.055 0.052 0.049 0.079 0.080 0.094 0.133

Scaled
Chamfer ↓ 0.015 0.015 0.019 0.022 0.025 0.028 0.038 0.063

81

Application of 3D reconstruction techniques for realistic images over drawings and sketches

required to locate a single vertex per pixel and allow a finer optimization is lower. Thus, shape
estimation can only take advantage of higher resolutions if a more detailed mesh is used.

Figure 39. Results from different resolutions.

Table 9. Validation metrics of Vasque reconstructions from different image resolutions.

The results were obtained from the Vasque flat-colored without lines validation set with
reconstructions from sketches of increasing squared pixel resolution. The best and worst
values are depicted in green and red, respectively.

Finally, the mask precision was studied by generating a set whose samples presented randomly
eroded and dilated masks, as in Figure 40. This sample set also followed the reference set statistics,
using 30+3 iterations for the reconstruction. Figure 41 visually shows the results.

It can be seen that the effects caused by the noise in the masks are minor in this case. This is
because the mask effects get averaged, mainly canceling each other out due to the random presence
of bigger and smaller masks than the target. However, we can see their impact on the loss of detail
on the sides of Axolotl’s head and the loss of roundness in the central section of Vasque.

Model Vasque

Remeshing No Yes

Resolution 16 32 128 512 1024 16 32 128 512 1024

MSE ↓ 0.017 0.015 0.010 0.009 0.011 0.015 0.013 0.010 0.010 0.011

PSNR ↑ 17.67 18.37 20.17 20.57 19.73 18.21 19.01 19.92 20.06 19.75

SSIM ↑ 0.830 0.824 0.819 0.871 0.888 0.815 0.819 0.823 0.870 0.889

LPIPS ↓ 0.261 0.246 0.218 0.191 0.190 0.250 0.244 0.218 0.190 0.190

Chamfer ↓ 0.069 0.065 0.076 0.076 0.070 0.136 0.114 0.116 0.108 0.109

Scaled
Chamfer ↓ 0.039 0.026 0.024 0.023 0.024 0.058 0.037 0.030 0.030 0.033

82

Figure 40. Examples of references with respectively eroded and dilated masks.

Figure 41. Results from altered masks.

Therefore, after studying different quality factors, we can conclude that the most influencing
components are the number of samples used and the camera inconsistencies, followed by the
geometric inconsistencies. The former imposes a challenge that is difficult to solve for our
approach. Given the optimization-based nature of the system, enough meaningful samples are
required for proper optimization. However, this is a limitation of the system, as providing 32 multi-
view samples of a given hand-drawn target is unviable in real scenarios.

Meanwhile, the latter factor is related to the need for our rendering-based system for consistent
viewpoint definitions. Consequently, the fact that the system is highly dependent and sensitive to
errors in the viewpoints is understandable. Still, it imposes a considerable limitation as camera
poses for arbitrary drawings are extremely difficult to specify.

5.2.4. Ablation study

To evaluate the design choices of our proposal, we performed an ablation study. We analyzed the
contribution to the reconstruction of our proposed resampling, the global illumination, and the
defined losses. In these experiments, we used the reference configuration and dataset, taking their
results as points of comparison. The reconstructions obtained from the study are presented in Figure
42, while Table 10 complements them with the detailed metrics for spring regularization,
smoothness regularization, and global lighting ablations. The metrics of the remaining losses are
omitted for brevity, as the results are more clearly portrayed in Figure 42.

For performing the ablation study of the losses, we observed the consequences of removing each
one in isolation. Additionally, we checked the effects of not splitting the silhouette and color losses.
In our implementation, the shape information is omitted in the color loss by premultiplying both
input images with the ground truth mask, hiding the currently optimized silhouette, and obtaining
color feedback only from the relevant area. This allows for a further split between the color and

83

Application of 3D reconstruction techniques for realistic images over drawings and sketches

shape losses. Therefore, we studied the unsplit version by removing the shape loss and multiplying
each image with its mask for the color loss, introducing the silhouette information together with the
color information.

Figure 42. Reconstructions of the reference set under different ablations.

Table 10. Validation results for reconstruction with different ablations.

The results were obtained from the reference validation with the ablated reconstructions
without the spring regularization, smoothness regularization, and global lighting. The
colors compare the values with the ones in the “Color + lines” columns for each object in
Table 5. Green represents an improvement, while red represents a deterioration.

We also compared the results obtained from optimization using albedo rendering with the initial
reconstructions using path tracing. This was done to determine if path tracing was genuinely
beneficial for our task, complementing the results seen in Section 5.1. Given the entirely white
environment, we chose albedo rendering as it is the closest local rendering available without using
light sources in pyredner. Finally, we analyzed the effects of our proposed sampling method for
color recovery by replacing it with the restarting strategy in [20] and by not applying any explicit
operation to repair the colors.

The results clearly show how the silhouette loss captures the shape while the color loss captures the
colors, being the joint loss not enough to register the shape properly. Therefore, the split loss design
is effective. It can also be seen how geometry-related regularizations do not significantly contribute

Model Axolotl Vasque

Style Spring Smoothness Lighting Spring Smoothness Lighting

Remesh. No Yes No Yes No Yes No Yes No Yes No Yes

MSE ↓ 0.009 0.007 0.007 0.007 0.008 0.007 0.025 0.026 0.030 0.027 0.024 0.026

PSNR ↑ 20.64 21.98 21.46 21.86 21.31 21.84 16.16 15.92 15.21 15.74 16.17 15.86

SSIM ↑ 0.916 0.922 0.921 0.923 0.928 0.934 0.793 0.789 0.783 0.787 0.796 0.792

LPIPS ↓ 0.116 0.107 0.109 0.109 0.108 0.103 0.189 0.195 0.208 0.196 0.184 0.192

Chamfer ↓ 0.048 0.083 0.053 0.082 0.055 0.080 0.091 0.113 0.063 0.114 0.077 0.127

Scaled
Chamfer ↓ 0.016 0.008 0.016 0.008 0.013 0.008 0.024 0.031 0.026 0.032 0.024 0.044

84

when using remeshing in this case, as this process already fixes artifacts and produces smooth
shaping. However, with less frequent remeshing intervals or more inconsistent samples, we
observed that these regularizations might be needed to avoid exaggerated degenerations that are
difficult to solve in remeshing.

The normal and shape regularizations help control the mesh and are complementary to each other,
explaining why the results do not strongly degenerate when one is still present. However, both are
needed as artifacts start appearing when removing any of them. The lack of spring regularization
can concentrate more triangles where detail is required but also can cause a higher stretching in
them, improving the color in some areas but blurring others. Therefore, the trade-off is not always
worthwhile, as Table 10 shows. Lastly, the color smoothness regularization has minimal effects, but
they are generally positive, and it induces a better geometry distribution by forcing homogeneity in
the triangle’s color, as shown by the scaled Chamfer distance metrics. Even though this was an
unexpected effect, it is reasonable as limiting the color variation inside the triangle tends to reduce
its flexibility for color detail representation, forcing the optimization to place the triangles more
smartly.

Figure 43. Close-ups of the results obtained with different color repair methods.

The first corresponds to the restart method proposed by Goel et al., the second method
does not apply any operation to repair the color, and the last corresponds with our
proposal.

Comparing the grey restart [20] with our color sampling proposal, the former washes out colors,
being the grey tone still noticeable. Meanwhile, not repairing the colors and leaving the system to
refine them again automatically gives a close result to our approach. This is explained when
considering that most shuffled triangles will have a similar color to the original ones, reducing the
amount of color refinement required in most cases. However, mismatched color patches and higher
bleeding still appear, corresponding to the most discrepant instances resulting from shuffling, while
our approach significantly reduces these effects. Figure 43 shows a closer look at this comparison.

Finally, with albedo rendering, a higher contrast is obtained for the estimated color improving the
image metrics –especially for Vasque– although the results are similar. However, as seen with the
remeshed Vasque, it can lead to open surface holes, coinciding with the results seen in Section 5.1.
Therefore, we consider it worth using global lighting to identify geometric artifacts better and

85

Application of 3D reconstruction techniques for realistic images over drawings and sketches

reduce visual ambiguity. Nonetheless, albedo rendering can be a good alternative if lower
optimization times are required, allowing reconstruction in about 80 minutes compared with about
120 min with path tracing for the reference configuration.

5.2.5. Comparison with inverse rendering techniques

This section compares our proposed system’s performance against SFT [20] and NVDiffRec [52].
The reason for this comparison is that our system presents an adaptation of inverse rendering
optimization methods for realistic images to the domain of sketches. Therefore, to determine if our
efforts were successful, we need to compare how our proposal performs over drawings in relation to
standard systems not adapted to the domain.

Table 11. Validation results for reconstructions with our system, [52], and [20].

The metrics were obtained from the reference validation set with reconstructions from the
reference set (B), the lined set without color (NC), a set with six canonical views (C6),
and the set with a camera displacement of 0.5 (CM).

Model Axolotl

Style B NC C6 CM

System Ours NVDR Ours NVDR Ours NVDR SFT Ours NVDR

MSE ↓ 0.006 0.004 0.006 0.007 0.008 0.007 0.033 0.020 0.017

PSNR ↑ 22.41 23.70 22.61 21.58 21.08 21.67 14.82 17.00 17.83

SSIM ↑ 0.924 0.947 0.925 0.926 0.917 0.929 0.907 0.912 0.896

LPIPS ↓ 0.104 0.086 0.142 0.141 0.107 0.099 0.128 0.133 0.125

Chamfer ↓ 0.068 0.049 0.065 0.032 0.058 0.047 0.048 0.033 0.025

Scaled
Chamfer ↓ 0.005 0.003 0.005 0.016 0.006 0.010 0.064 0.021 0.022

Model Vasque

Style B NC C6 CM

System Ours NVDR Ours NVDR Ours NVDR SFT Ours NVDR

MSE ↓ 0.026 0.033 0.030 0.026 0.037 0.043 0.095 0.067 0.041

PSNR ↑ 15.96 14.85 15.35 15.88 14.41 13.81 10.28 11.77 13.87

SSIM ↑ 0.791 0.817 0.793 0.821 0.779 0.783 0.746 0.757 0.773

LPIPS ↓ 0.185 0.195 0.239 0.214 0.202 0.214 0.251 0.260 0.244

Chamfer ↓ 0.073 0.063 0.077 0.065 0.056 0.086 0.044 0.136 0.072

Scaled
Chamfer ↓ 0.024 0.017 0.024 0.018 0.024 0.031 0.086 0.110 0.023

86

It is important to note that, in the present work, we will not compare our approach against other
multi-view reconstruction systems for sketches. This is because we are not limiting ourselves to
plain-lined sketches. Instead, we also consider color and samples in a potentially higher
completeness state, not having exactly the same objective as previous works. This difference in
focus made us not directly compete with other multi-view reconstruction methods inside the sketch
domain but rather to compete for adapting better in comparison to other inverse rendering
approaches.

Furthermore, the comparison should be done against the works reported in Section 2.1.3, which
entails some problems. These works depend on generative models, requiring previous training to
work. Meanwhile, our approach is fully optimization-based, not needing prior training. Establishing
a fair comparison between generative and optimization-based methods is a challenging task, as it is
difficult to isolate the effects of the training data in the results of the former. This study would have
required the generation of a custom training dataset for these systems that helped accomplish the
fairness of the comparison. Even though this is a highly interesting task, it seemed to exceed the
scope and time available for our development. Consequently, we decided to focus on the
comparison we present now.

The synthetic datasets were used to compare how the systems react to different simulated conditions
common in hand-drawn sketches. In particular, we evaluated the reconstructions for the reference
set, the lined sketches without color, the set with a camera displacement of 0.5, and a set with only
six canonical views located at the sides of a cube centered in the origin.

The configurations were the following. Our system used 30+10 iterations, applying remeshing for
Axolotl every two iterations and no remeshing for Vasque. The normal, shape, spring, and smooth
regularizations were removed when using remeshing following the observations in Section 5.2.4.
For NVDiffRec, we used 5000 iterations, a fixed white environment, a grid of resolution 128, and
the remaining default parameters. Lastly, for SFT, we used our initial meshes, a limit of 2048
triangles, and 12 cycles. For the first ten cycles, the iterations for material –diffuse color and
roughness– and geometry were limited to five and 150, respectively. From that point on, the limits
were set to 75 and 300. Learning rates of 0.01 and were used for material and geometry,
respectively.

Figure 44. Reconstructions with SFT from the sets with six canonical views.

The reconstructions were evaluated using the reference validation set –except for the case with no
color where the validation lined set without color was used–, considering only diffuse colors. Table
11 displays the results. Due to time constraints, SFT was only assessed for the case with six
canonical views, as its execution times were higher than expected. Nonetheless, the available
results, seen in Figure 44, show how our system adapts better to sketches than SFT, as it can be seen

5 ⋅ 10−4

87

Application of 3D reconstruction techniques for realistic images over drawings and sketches

how SFT tends to collapse the optimized geometry, not recovering the shape properly. Therefore,
this reflects that our split loss captures better geometry and color than SFT’s single MSE loss, while
our regularizations help guide the optimization.

Figure 45. Comparison of the reconstructions obtained by our system and NVDiffRec.

From top to bottom, the reconstructions for different datasets were generated with each
system, namely the reference set, the dataset with lined sketches without color, a set with
only six canonical views, and the set with a camera displacement of 0.5.

When comparing with NVDiffRec, we observe mixed results, as Figure 45 shows. It is important to
note for the comparison that we work with a lower triangle count, presenting our reconstructions
807 triangles on average against 35037 for NVDiffRec. In the base case, we can see that
NVDiffRec presents more accurate results thanks to a sharper shape and color estimation. However,
in the case of Vasque, we also see how the image metrics are penalized. This is because NVDiffRec
estimates specular properties, which interfere with the diffuse color in case of an optimized non-
zero specularity. This coincides with the results in Section 5.1 with the dog sketches, where there
was ambiguity involving the effects of the material and the environmental light. Therefore, this
results further back the use of entirely diffuse materials to avoid this ambiguity.

In the other cases, we observe better performance for our approach under a lack of color and a
closer shape estimation under just canonical views. This showcases that, through our method and
taking into account the possible inconsistencies in our loss design, we have sacrificed precision in
the best possible case while increasing the flexibility of the system. However, it is interesting to
observe that the high concentration of lines in Vasque without color guides NVDiffRec towards the
proper shape, behaving almost like the presence of color. This reveals the high structural
information contained in these lines.

With camera inconsistency, both our proposal and NVDiffRec fail. Even though NVDiffRec
presents mostly the best metrics in this case, the reconstructions have higher noise –roughness and

88

holes– being also notably degraded. This reflects how the high dependence on viewpoints is
inherent in the inverse rendering approach.

Finally, thanks to the joint estimation, our proposal presents a temporal cost similar to NVDiffRec
under the given configurations, taking two to three hours. Meanwhile, our experiments with SFT on
the same hardware have shown times ranging from 10 hours in the canonical case to several days
for the remaining cases.

5.2.6. Results from hand-drawn sketches

Finally, to conclude the experimentation over our proposal, we used hand-draw samples to test the
system over real scenarios. In particular, we used the manually drawn samples reported in Section
5.2.1. However, before showcasing the results, it should be noted that the 3D models manually
designed from the sketches also make compromises regarding the inconsistencies between views to
define a coherent shape. Table 12 presents the metrics for each model when comparing their
rendered views using our lined and colored sketch pipeline in Blender with the source sketches to
quantify this compromise.

Table 12. Comparison between the sketches and the associated models.

The results were computed as the average among the four views when comparing the
rendered human-made models and the sketches.

We reconstructed each object from four canonical samples in 1500+200 iterations, using 20
references for the exportable texture generation, and both without and with remeshing every 100
iterations. Moreover, all regularizations were used in all cases.

In particular, Plane was defined through the top, front, left, and right views; Vase and Shrimp were
described through the front, back, top, and side views -right and left respectively-; and Abstract was
represented through the top, front, bottom, and right views. It is important to note that the initial
mesh for Abstract was estimated using the front, side, and top views as this shape presents relevant
hidden features when seen from only two views. Figure 46 shows the reconstruction results.

Once we obtained the reconstructions, we compared them to the human-generated models. We
generated 128 renders of the reconstructions and the references from the same random points of
view, comparing them to obtain image metrics. Additionally, we also measured the Chamfer
distances between reconstructions and models. Table 13 presents these results.

We can see how remeshing generally allows for slightly better reconstructions, as the higher
inconsistencies in real sketches can lead the optimization more quickly towards the generation of
artifacts. However, when sharper shapes are needed, such as in the Vase’s top, not using remeshing
allows results better fitting with the silhouettes, with the caveat of some minor degenerations. The
results also further show how the reconstructions for Plane and Vase are closer to the references

Model Plane Shrimp Vase Abstract

MSE ↓ 0.095 0.061 0.058 0.078

PSNR ↑ 10.43 12.75 12.56 11.13

SSIM ↑ 0.434 0.543 0.579 0.391

LPIPS ↓ 0.546 0.554 0.532 0.445

89

Application of 3D reconstruction techniques for realistic images over drawings and sketches

than the ones for Shrimp and Abstract, which present higher distortion due to the more complex
nature of their target shapes. Additionally, Vase showcases how our system can work with shapes of
a genus higher than zero.

Finally, we note that areas not seen in the views present random colors, as their color remains
unknown to the system. Moreover, when using remeshing, integrated holes, such as in the Plane’s
wing, can appear. This is caused by degenerations on two near surfaces that lead the remeshing to
open a hole increasing the shape’s genus. This phenomenon cannot be fixed by only moving the
vertices, and it would require redefining the faces around them to remove the hole. Our system is
not prepared to apply this kind of face optimization, which is a system limitation.

Table 13. Comparison of the reconstructions and the human-made models.

The results were obtained from 128 validation images generated by rendering from
random points of view both the reference models and the reconstructions from hand-
drawn sketches.

Figure 46. Reconstructions from hand-drawn sketches.

Model Plane Shrimp Vase Abstract

Remeshing No Yes No Yes No Yes No Yes

MSE ↓ 0.017 0.016 0.067 0.066 0.014 0.015 0.063 0.062

PSNR ↑ 18.18 18.48 12.00 12.06 18.53 18.31 12.06 12.14

SSIM ↑ 0.921 0.923 0.837 0.838 0.927 0.931 0.834 0.841

LPIPS ↓ 0.085 0.089 0.178 0.183 0.110 0.115 0.190 0.204

Chamfer ↓ 0.008 0.008 0.037 0.035 0.010 0.011 0.064 0.052
Scaled

Chamfer ↓ 0.008 0.008 0.017 0.017 0.010 0.011 0.049 0.033

90

6. Conclusions

Throughout the development of this work, we have studied and practically applied a wide range of
state-of-the-art technologies. We have focused mainly on studying the field of reconstruction, both
from multi-view sketches and realistic images, analyzing how inverse rendering optimization
techniques can be used for drawings. However, this research has allowed us to study and use
techniques outside the field to aid our development, such as view pose estimation [67], automatic
mask generation [36], and frame interpolation [43]. Additionally, various tools and libraries for
mesh manipulation, rendering, image manipulation, and machine learning have been used.

With our first proposal, we have deeply studied one of the most recent technologies in multi-view
reconstruction, NVDiffRec [52]. This has allowed us to analyze its principles and architectural
designs, obtaining familiarity with the system. From these studies, we have been able to apply
NVDiffRec outside the domain initially intended in its creation, using it for reconstruction from
illustrations. This had a double objective: studying the capacity for generalization of the system and
determining the viability of inverse rendering techniques for sketch reconstruction.

Our qualitative results have shown that NVDiffRec can be used over drawings and allows for
promising results, with the strength of recovering detailed silhouettes that maintain the target's
essence. However, its use is not ready for real users in our domain, as the meshes obtained from
sketches tend to present holes and very abrupt surface topologies. This is related to the kind of
internal representation used by NVDiffRec (based on SDFs), the lack of shading in non-colored
sketches, and the use of local lighting, which hides the holes and avoids further refinement.

Moreover, because NVDiffRec was designed for realistic images, it presents design choices and
components that are not suitable or necessary for drawings. These components are:

• Lighting estimation. In most concept art, objects are depicted without strong shadows, with soft
shading, or with no lighting. As we observed in Section 5.1.2 with the dog sketches, using fixed
lighting may be more beneficial as it reduces visual ambiguities, such as the origin of the sketch
lines.

• Specular texture estimation. In drawings and sketches, specularities are rare and primarily
depicted in a non-realistic way. Therefore, the texture details are more desirable to be wholly
integrated into the diffuse map, avoiding results such as Figure 28, where the sketch lines are
baked into the specular map. Again, removing unnecessary components helps reduce ambiguity
and the scope of the problem.

• Perspective camera. As we have shown, an orthographic camera can be more suitable when
dealing with non-realistic cases as it can better fit drawings that avoid perspective deformation.

• Local lighting. The rendering pipeline used in NVDiffRec is susceptible to the lack of shading
and color, as seen in Sections 5.1.2 and 5.2.5.

Another limiting design choice affecting both NVDiffRec and our second proposal resides in the
requirement of camera pose specification. This constraint is caused by the inverse rendering
approach, as cameras are essential for the rendering process. However, their sensitivity to mistakes
and deviations in the cameras defined compared to the real ones –as hinted through the game
character experiments and showcased by the study of quality factors– is highly restrictive when
working with illustrations. Unless multi-view sketches are designed following canonical views or
turn-around animations, it is highly difficult to specify the viewpoint for an arbitrary drawing.

91

Application of 3D reconstruction techniques for realistic images over drawings and sketches

Despite all this, there are still suitable components in NVDiffRec for drawing reconstruction. The
explicit optimization of the mesh, the normal map, and the diffuse map estimations based on
rendering are relevant. These are aspects we took into consideration when developing our second
proposal.

However, applying our proposed workflow for using NVDiffRec when lacking masks and
viewpoints is difficult when working with sketches. COLMAP requires a significant amount of key
points for automatic view estimation, which makes its application to actual drawings challenging or
even unviable, especially in the absence of any background in the depiction. Similarly, the
sometimes abstract nature of sketches can difficult their automatic masking based on segmentation.
Therefore, this limits the applicability of our automatic workflow path to highly detailed and
completed artworks, which are rare for multi-view setups. The manual workflow will be the most
effective solution for typical sketches and flat-colored drawings, increasing user effort.

The results observed with NVDiffRec and its capability to close silhouette matching with the caveat
of abnormal surface generation drove us to propose a more tailored solution. Aiming to use global
lighting to help avoid the appearance of holes, we built upon the proposal of Goel et al. [20],
proposing modifications to the optimization loop, loss functions, and color management after
remeshing. These design choices allowed us to be more flexible to the inherent subjective
interference in drawings and the uncertainty it causes, showing better behavior than NVDiffRec
under limited canonical views and a significant lack of color. Moreover, thanks to an internal mesh
representation and global lighting, we can more easily avoid generating open holes in the surface,
providing smoother surfaces compared to NVDiffRec. However, under the best conditions with
colored sketches, NVDiffRec still allows more detailed and precise reconstructions than our system.

Our results point to the convenience of a split loss to help reduce the mutual ambiguity regarding
the effects of color and shape when optimizing from a single loss. This also allows us to capture
these properties better and tailor the system to deal with their inconsistencies. Additionally, we have
seen how remeshing can solve degenerations but tends to round the shape, which is not always
beneficial. Therefore, its use should be considered case by case, being most helpful when working
with significant inconsistencies or few samples.

We consider that the results shown by our system are closer to being ready for actual user
applications than the ones observed in our first proposal, providing a potential base mesh that artists
could use as a reference for testing or building finer models. However, its use is not viable as there
are still issues to cover. On the one hand, as Section 5.2.6 has shown, the results over real sketches
can still be improved, presenting frequent deformations and not being consistent enough. On the
other hand, the large number of samples required to obtain good results is also a limiting factor
when considering real use cases. This limitation applies not only to our proposal but to NVDiffRec
as well, being a consequence of the optimization nature of the method and the high level of
uncertainty that the task involves.

The number of samples and the dependency on camera views are inherent limitations of using
inverse rendering optimization techniques over multi-view drawings in real scenarios. However,
they are also the most difficult aspects to comply with when working with sketches due to their
handmade nature. As seen in Section 5.2.3, other aspects such as the resolution, geometric
consistency, or masks’ precision have a lower impact on the quality of the reconstruction, being also
easier to tackle or avoid. Meanwhile, the set size and the precision of the views have a critical
impact, being the most limiting factors of the approach. Therefore, even though these methods show

92

promising results, overcoming these latter caveats will be a crucial step for effectively applying
them to real use cases of the industry.

93

Application of 3D reconstruction techniques for realistic images over drawings and sketches

94

7. Future work

As presented in Chapter 6, we need to tackle the dependency on camera views and many samples to
improve the usability of inverse rendering techniques for reconstruction from sketches. Therefore,
ideally, a reconstruction system for drawings should be able to work over a few samples and
without explicit viewpoint specification from the user.

With these ideas in mind, we propose leading future research efforts toward designing a
preprocessing module capable of transforming the given limited input into an improved input
suitable for inverse rendering systems. This would imply the design of a generative module capable
of, given the provided input sketches as images, increasing the number of samples by
“hallucinating” novel views and consistently regressing their viewpoints.

When considering these ideas, we can find inspiration in the field of novel view synthesis, which
tackles generating novel views of an object given its source image. In particular, the works of Zhou
et al. [85] and Park et al. [59] present a promising approach. By using novel flow networks, given
an image of an object and a desired transformation, they were able to generate a new image of the
object from the transformed viewpoint. Moreover, by using the concept of appearance flow, they
estimated how to move the pixels in the source image to build the resulting image, forcing
consistency of colors and features between them and reducing the degree of hallucination.

By modifying the proposal in [59] to work over the multi-view domain, we could use pixel
information from all available views to generate more precise novel views, reducing the need for
hallucinating new pixels. In this way, obtaining new views would increase the number of samples
available for the reconstruction.

Even though this proposal would require the original viewpoints to work correctly, we envision that
a similar model could also be used to regress the image viewpoint. Given that the proposed design
can generate a novel view from a reference and a transformation, we theorize that if we could
adequately inverse its architecture, obtaining the transformation relating a reference image to a new
view would be possible. This concept would allow recovering the relative positions of all the given
views by choosing one as the reference, enabling the estimation of the viewpoints. Furthermore, the
generative model for novel perspectives could be extended to use the latent representations
regarding all the given views and the new view to regress a correction factor for the input
transformation, aiming to improve consistency with the generated image.

Of course, this approach should be thoroughly studied to be able to determine its actual viability.
Moreover, using a generative module introduces additional considerations. It would require enough
precision to avoid introducing further inconsistencies for the reconstruction, and it would raise
concerns about generality outside the training domain for the module.

Finally, throughout this work, we have used default rendering pipelines in the optimization.
However, the rendering pipeline could be tailored to a non-realistic shading model, trying to
reproduce drawing or sketch styles. For this to be viable, a differentiable non-realistic rendering
pipeline adapted to our domain should be designed, which can be challenging, as seen in Section
3.1. Alternatively, a deep generative styling module could transform a standard rendered image into
a sketch style, avoiding the need for a custom rendering pipeline.

Even though these methods could potentially introduce concerns regarding generality for different
illustration styles, they would allow further tailoring to the domain. Therefore, we also consider
these alternatives are worth exploring in the future.

95

Application of 3D reconstruction techniques for realistic images over drawings and sketches

96

8. References

[1] V. Badrinarayanan, A. Handa, and R. Cipolla, “SegNet: A Deep Convolutional Encoder-Decoder
Architecture for Robust Semantic Pixel-Wise Labelling,” CoRR, vol. abs/1505.07293, 2015,
[Online]. Available: http://arxiv.org/abs/1505.07293

[2] S. Bangaru, T.-M. Li, and F. Durand, “Unbiased Warped-Area Sampling for Differentiable
Rendering,” ACM Trans. Graph., vol. 39, no. 6, pp. 245:1–245:18, 2020.

[3] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” CoRR, vol. abs/2003.05991, 2020,
[Online]. Available: https://arxiv.org/abs/2003.05991

[4] P. Bojanowski, A. Joulin, D. Lopez-Paz, and A. Szlam, “Optimizing the Latent Space of
Generative Networks.” arXiv, 2017. doi: 10.48550/ARXIV.1707.05776.

[5] A. Bonnici, A. Akman, G. Calleja, K. Camilleri, P. Fehling, A. Ferreira, F. Hermuth, J. Israel, T.
Landwehr, J. Liu, N. Padfield, T. Sezgin, and P. Rosin, “Sketch-based interaction and modeling:
where do we stand?,” Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
vol. 33, pp. 1–19, Nov. 2019, doi: 10.1017/S0890060419000349.

[6] M. Boss, R. Braun, V. Jampani, J. T. Barron, C. Liu, and H. P. A. Lensch, “NeRD: Neural
Reflectance Decomposition from Image Collections.” arXiv, 2020. doi: 10.48550/
ARXIV.2012.03918.

[7] C. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, “3D-R2N2: A Unified Approach for Single
and Mul t i -v iew 3D Objec t Recons t ruc t ion ,” Oct . 2016 , pp . 628–644 . do i :
10.1007/978-3-319-46484-8_38.

[8] Brent Burley, “Physically Based Shading at Disney,” in SIGGRAPH Courses: Practical
Physically Based Shading in Film and Game Production, 2012, pp. 1–27, [Online]. Available:
https://disneyanimation.com/publications/physically-based-shading-at-disney/

[9] Colom, Joan and Saito, Hideo, “3D shape reconstruction from non-realistic multiple-view
depictions using NVDiffRec,” presented at the Asia-Pacific Workshop on Mixed and Augmented
Reality 2022, Yokohama, Japan, 2022. [Online]. Available: https://ceur-ws.org/Vol-3297/paper4.pdf

[10] H. Cui, X. Gao, S. Shen, and Z. Hu, “HSfM: Hybrid Structure-from-Motion,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2393–2402. doi:
10.1109/CVPR.2017.257.

[11] B. Curless and M. Levoy, “A Volumetric Method for Building Complex Models from Range
Images,” in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, New York, NY, USA, 1996, pp. 303–312. doi: 10.1145/237170.237269.

[12] R. A. Drebin, L. Carpenter, and P. Hanrahan, “Volume Rendering,” in Proceedings of the 15th
Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 1988,
pp. 65–74. doi: 10.1145/54852.378484.

[13] felixyadomi, “Cute Axolotl.” https://sketchfab.com/3d-models/cute-axolotl-
e4625a288edf41afab1054a0fa529b3a (accessed Jan. 19, 2023).

[1 4] F r e d o 6 , “ Va s q u e . ” h t t p s : / / 3 d w a r e h o u s e . s k e t c h u p . c o m / m o d e l /
de673ddf9df03b8278cf1a714198918/Vasque-in-Sketchup (accessed Jan. 19, 2023).

97

Application of 3D reconstruction techniques for realistic images over drawings and sketches

[15] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, “Visual simultaneous
localization and mapping: a survey,” Artificial Intelligence Review, vol. 43, no. 1, pp. 55–81, Jan.
2015, doi: 10.1007/s10462-012-9365-8.

[16] C. Gao, Q. Yu, L. Sheng, Y.-Z. Song, and D. Xu, “SketchSampler: Sketch-based 3D
Reconstruction via View-dependent Depth Sampling.” arXiv, 2022. doi: 10.48550/
ARXIV.2208.06880.

[17] J. Gao, W. Chen, T Xiang, C.F. Tsang, A. Jacobson, M. McGuire, and S. Fidler, “Learning
Deformable Tetrahedral Meshes for 3D Reconstruction.” arXiv, 2020. doi: 10.48550/
ARXIV.2011.01437.

[18] M. W. Gardner and S. R. Dorling, “Artificial neural networks (the multilayer perceptron)—a
review of applications in the atmospheric sciences,” Atmospheric Environment, vol. 32, no. 14, pp.
2627–2636, 1998, doi: 10.1016/S1352-2310(97)00447-0.

[19] K. Genova and V. Guliashki, “Linear Integer Programming Methods and Approaches–A
Survey,” Cybernetics and Information Technologies, vol. 11, pp. 3–25, Jan. 2011.

[20] P. Goel, L. Cohen, J. Guesman, V. Thamizharasan, J. Tompkin, and D. Ritchie, “Shape From
Tracing: Towards Reconstructing 3D Object Geometry and SVBRDF Material from Images via
Differentiable Path Tracing.” arXiv, 2020. doi: 10.48550/ARXIV.2012.03939.

[21] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative Adversarial Networks,” Advances in Neural Information Processing
Systems, vol. 3, pp. 1–9, Jun. 2014, doi: 10.1145/3422622.

[22] Y. Gryaditskaya, F. Hähnlein, C. Liu, A. Sheffer, and A. Bousseau, “Lifting Freehand Concept
Sketches into 3D,” ACM Trans. Graph., vol. 39, no. 6, Nov. 2020, doi: 10.1145/3414685.3417851.

[23] Y. Gryaditskaya, M. Sypesteyn, J. W. Hoftijzer, S. Pont, F. Durand, and A. Bousseau,
“OpenSketch: A Richly-Annotated Dataset of Product Design Sketches,” ACM Trans. Graph., vol.
38, no. 6, pp 232:1–232:16, Nov. 2019, doi: 10.1145/3355089.3356533.

[24] F. Hähnlein, Y. Gryaditskaya, A. Sheffer, and A. Bousseau, “Symmetry-Driven 3D
Reconstruction from Concept Sketches,” in ACM SIGGRAPH 2022 Conference Proceedings, New
York, NY, USA, 2022, pp. 19:1–19:8. doi: 10.1145/3528233.3530723.

[25] Z. Han, B. Ma, Y.-S. Liu, and M. Zwicker, “Reconstructing 3D Shapes From Multiple Sketches
Using Direct Shape Optimization,” IEEE Transactions on Image Processing, vol. 29, pp. 8721–
8734, 2020, doi: 10.1109/TIP.2020.3018865.

[26] H. Harbrecht, “Analytical and numerical methods in shape optimization,” Mathematical
Methods in the Applied Sciences, vol. 31, no. 18, pp. 2095–2114, 2008, doi: https://doi.org/10.1002/
mma.1008.

[27] J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala, and S. Laine, “Appearance-Driven
Automatic 3D Model Simplification.” arXiv, 2021. doi: 10.48550/ARXIV.2104.03989.

[28] W. Heidrich, “Computing the Barycentric Coordinates of a Projected Point,” J. Graphics Tools,
vol. 10, pp. 9–12, Jan. 2005, doi: 10.1080/2151237X.2005.10129200.

[29] A. Hertzmann, “Introduction to 3D Non-Photorealistic Rendering: Silhouettes and Outlines,”
in ACM SIGGRAPH 99 Course Notes. Course on Non-Photorelistic Rendering, S. Green, Ed., New

98

York: ACM Press/ACM SIGGRAPH, pp. 7:1–7:14, 1999. [Online]. Available: http://mrl.nyu.edu/
publications/npr-course1999/

[30] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Mesh Optimization,” in
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques,
New York, NY, USA, 1993, pp. 19–26. doi: 10.1145/166117.166119.

[31] D. S. Immel, M. F. Cohen, and D. P. Greenberg, “A Radiosity Method for Non-Diffuse
Environments,” SIGGRAPH Comput. Graph., vol. 20, no. 4, pp. 133–142, Aug. 1986, doi:
10.1145/15886.15901.

[32] J. T. Kajiya, “The Rendering Equation,” in Proceedings of the 13th Annual Conference on
Computer Graphics and Interactive Techniques, New York, NY, USA, 1986, pp. 143–150. doi:
10.1145/15922.15902.

[33] H. Kato, Y. Ushiku, and T. Harada, “Neural 3D Mesh Renderer.” arXiv, 2017. doi: 10.48550/
ARXIV.1711.07566.

[34] keith2000, “VisualHullMesh.” Sep. 29, 2021. Accessed: Oct. 30, 2022. [Online]. Available:
https://github.com/keith2000/VisualHullMesh

[35] K. Kim, A. Torii, and M. Okutomi, “Multi-view Inverse Rendering Under Arbitrary
Illumination and Albedo,” in Computer Vision – ECCV 2016, Cham, 2016, pp. 750–767.

[36] A. Kirillov, Y. Wu, K. He, and R. Girshick, “PointRend: Image Segmentation as Rendering.”
arXiv, 2019. doi: 10.48550/ARXIV.1912.08193.

[37] C. Kong and S. Lucey, “Deep Non-Rigid Structure from Motion.” arXiv, 2019. doi: 10.48550/
ARXIV.1908.00052.

[38] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification with Deep Convolutional
Neural Networks,” Neural Information Processing Systems, vol. 25, Jan. 2012, doi:
10.1145/3065386.

[39] M. Kurt and D. Edwards, “A Survey of BRDF Models for Computer Graphics,” SIGGRAPH
Comput. Graph., vol. 43, no. 2, May 2009, doi: 10.1145/1629216.1629222.

[40] S. Laine, J. Hellsten, T. Karras, Y. Seol, J. Lehtinen, and T. Aila, “Modular Primitives for High-
Performance Differentiable Rendering.” arXiv, 2020. doi: 10.48550/ARXIV.2011.03277.

[41] C. Li, H. Pan, Y. Liu, A. Sheffer, and W. Wang, “Robust Flow-Guided Neural Prediction for
Sketch-Based Freeform Surface Modeling,” ACM Trans. Graph. (SIGGRAPH ASIA), vol. 37, no.
6, pp. 238:1–238:12, 2018, doi: 10.1145/3272127.3275051.

[42] C. Li, H. Lee, D. Zhang, and H. Jiang, “Sketch-based 3D modeling by aligning outlines of an
image,” Journal of Computational Design and Engineering, vol. 3, no. 3, pp. 286–294, 2016, doi:
10.1016/j.jcde.2016.04.003.

[43] S. Li, S. Zhao, W. Yu, W. Sun, D. N. Metaxas, C. C. Loy, and Z. Liu, “Deep Animation Video
Interpolation in the Wild,” CoRR, vol. abs/2104.02495, 2021, [Online]. Available: https://arxiv.org/
abs/2104.02495

[44] T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen, “Differentiable Monte Carlo Ray Tracing
through Edge Sampling,” ACM Trans. Graph. (Proc. SIGGRAPH Asia), vol. 37, no. 6, pp. 222:1–
222:11, 2018.

99

Application of 3D reconstruction techniques for realistic images over drawings and sketches

[45] S. Liu, T. Li, W. Chen, and H. Li, “Soft Rasterizer: A Differentiable Renderer for Image-based
3D Reasoning.” arXiv, 2019. doi: 10.48550/ARXIV.1904.01786.

[46] Z. Lun, M. Gadelha, E. Kalogerakis, S. Maji, and R. Wang, “3D Shape Reconstruction from
Sketches via Multi-view Convolutional Networks,” CoRR, vol. abs/1707.06375, 2017, [Online].
Available: http://arxiv.org/abs/1707.06375

[47] P. Mandikal, N. K L, and R. Venkatesh Babu, “3D-PSRNet: Part Segmented 3D Point Cloud
Reconstruction From a Single Image,” in Proceedings of the European Conference on Computer
Vision (ECCV) Workshops, pp. 662–674, Sep. 2018.

[48] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “NeRF:
Representing Scenes as Neural Radiance Fields for View Synthesis.” arXiv, 2020. doi: 10.48550/
ARXIV.2003.08934.

[49] M. Mirbauer, M. Krabec, J. Křivánek, and E. Šikudová, “Survey and Evaluation of Neural 3D
Shape Classification Approaches,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 11, pp. 8635–8656, 2022, doi: 10.1109/TPAMI.2021.3102676.

[50] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” CoRR, vol. abs/
1411.1784, 2014, [Online]. Available: http://arxiv.org/abs/1411.1784

[51] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics primitives with a
multiresolution hash encoding,” ACM Transactions on Graphics, vol. 41, no. 4, pp. 1–15, Jul. 2022,
doi: 10.1145/3528223.3530127.

[52] J. Munkberg, J. Hasselgren, T. Shen, J. Gao, W. Chen, A. Evans, T. Müller, and S. Fidler,
“Extracting Triangular 3D Models, Materials, and Lighting From Images.” arXiv, 2021. doi:
10.48550/ARXIV.2111.12503.

[53] A. Muntoni and P. Cignoni, “PyMeshLab.” Zenodo, Jan. 2021. doi: 10.5281/zenodo.4438750.

[54] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “FiberMesh: Designing Freeform Surfaces
with 3D Curves,” ACM Trans. Graph., vol. 26, no. 3, pp. 41-es, Jul. 2007, doi:
10.1145/1276377.1276429.

[55] B. Nicolet, A. Jacobson, and W. Jakob, “Large Steps in Inverse Rendering of Geometry,” ACM
Trans. Graph., vol. 40, no. 6, pp. 248:1–248:13, Dec. 2021, doi: 10.1145/3478513.3480501.

[56] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger, “Differentiable Volumetric
Rendering: Learning Implicit 3D Representations without 3D Supervision.” arXiv, 2019. doi:
10.48550/ARXIV.1912.07372.

[57] Y. Ohtake, A. Belyaev, and I. Bogaevski, “Mesh regularization and adaptive smoothing,”
Computer-Aided Design, vol. 33, no. 11, pp. 789–800, 2001, doi: https://doi.org/10.1016/
S0010-4485(01)00095-1.

[58] O. Özyeşil, V. Voroninski, R. Basri, and A. Singer, “A survey of structure from motion.,” Acta
Numerica, vol. 26, pp. 305–364, 2017, doi: 10.1017/S096249291700006X.

[59] E. Park, J. Yang, E. Yumer, D. Ceylan, and A. C. Berg, “Transformation-Grounded Image
Generation Network for Novel 3D View Synthesis.” arXiv, 2017. doi: 10.48550/
ARXIV.1703.02921.

100

[60] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “DeepSDF: Learning
Continuous Signed Distance Functions for Shape Representation.” arXiv, 2019. doi: 10.48550/
ARXIV.1901.05103.

[61] N. Ravi et al., “Accelerating 3D Deep Learning with PyTorch3D,” CoRR, vol. abs/
2007.08501, 2020, [Online]. Available: https://arxiv.org/abs/2007.08501

[62] A. Regnery, “Dog Turnaround Animation,” Behance. https://www.behance.net/gallery/
95032661/Dog-Turnaround-Animation (accessed Oct. 19, 2022).

[63] O. Reynolds, Arthur William Brightmore, and William Henry Moorby, The sub-mechanics of
the universe, vol. 3. University Press, 1903.

[64] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical
Image Segmentation,” CoRR, vol. abs/1505.04597, 2015, [Online]. Available: http://arxiv.org/abs/
1505.04597

[65] S. M. Rusinkiewicz, “A New Change of Variables for Efficient BRDF Representation,” in
Rendering Techniques ’98, Vienna, 1998, pp. 11–22.

[66] T. Sattler, Q. Zhou, M. Pollefeys, and L. Leal-Taixe, “Understanding the Limitations of CNN-
based Absolute Camera Pose Regression.” arXiv, 2019. doi: 10.48550/ARXIV.1903.07504.

[67] J. L. Schönberger and J.-M. Frahm, “Structure-from-Motion Revisited,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4104–4113. doi:
10.1109/CVPR.2016.445.

[68] T. Shen, J. Gao, K. Yin, M.-Y. Liu, and S. Fidler, “Deep Marching Tetrahedra: a Hybrid
Representation for High-Resolution 3D Shape Synthesis.” arXiv, 2021. doi: 10.48550/
ARXIV.2111.04276.

[69] M. D. Shivegowda, P. Boonyasopon, S. M. Rangappa, and S. Siengchin, “A Review on
Computer-Aided Design and Manufacturing Processes in Design and Architecture,” Archives of
Computational Methods in Engineering, vol. 29, no. 6, pp. 3973–3980, Oct. 2022, doi: 10.1007/
s11831-022-09723-w.

[70] V. Sitzmann, M. Zollhöfer, and G. Wetzstein, “Scene Representation Networks: Continuous
3D-Structure-Aware Neural Scene Representations.” arXiv, 2019. doi: 10.48550/
ARXIV.1906.01618.

[71] J. W. H. Tangelder and R. C. Veltkamp, “A survey of content based 3D shape retrieval
methods,” Multimedia Tools and Applications, vol. 39, no. 3, pp. 441–471, Sep. 2008, doi: 10.1007/
s11042-007-0181-0.

[72] C. Tian, M. Masry, and H. Lipson, “Physical sketching: Reconstruction and analysis of 3D
objects from freehand sketches,” Computer-Aided Design, vol. 41, no. 3, pp. 147–158, 2009, doi:
https://doi.org/10.1016/j.cad.2009.02.002.

[73] T. S. Trowbridge and K. P. Reitz, “Average irregularity representation of a rough surface for
ray reflection,” J. Opt. Soc. Am., vol. 65, no. 5, pp. 531–536, May 1975, doi: 10.1364/
JOSA.65.000531.

101

Application of 3D reconstruction techniques for realistic images over drawings and sketches

[74] J. Wang, J. Lin, Q. Yu, R. Liu, Y. Chen, and S. X. Yu, “3D Shape Reconstruction from Free-
Hand Sketches,” CoRR, vol. abs/2006.09694, 2020, [Online]. Available: https://arxiv.org/abs/
2006.09694

[75] L. Wang, C. Qian, J. Wang, and Y. Fang, “Unsupervised Learning of 3D Model Reconstruction
from Hand-Drawn Sketches,” in Proceedings of the 26th ACM International Conference on
Multimedia, New York, NY, USA, 2018, pp. 1820–1828. doi: 10.1145/3240508.3240699.

[76] M. Wang, X.-Q. Lyu, Y.-J. Li, and F.-L. Zhang, “VR content creation and exploration with
deep learning: A survey,” Computational Visual Media, vol. 6, no. 1, pp. 3–28, Mar. 2020, doi:
10.1007/s41095-020-0162-z.

[77] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “NeuS: Learning Neural
Implicit Surfaces by Volume Rendering for Multi-view Reconstruction.” arXiv, 2021. doi:
10.48550/ARXIV.2106.10689.

[78] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2.” 2019. [Online].
Available: https://github.com/facebookresearch/detectron2

[79] C. Xiao, W. Su, J. Liao, Z. Lian, Y.-Z. Song, and H. Fu, “DifferSketching: How Differently Do
People Sketch 3D Objects?” arXiv, 2022. doi: 10.48550/ARXIV.2209.08791.

[80] W. Yang, G. Chen, C. Chen, Z. Chen, and K.-Y. K. Wong, “PS-NeRF: Neural Inverse
Rendering for Multi-view Photometric Stereo.” arXiv, 2022. doi: 10.48550/ARXIV.2207.11406.

[81] C. Yuksel, J. Keyser, and D. H. House, “Mesh Colors,” Department of Computer Science,
Texas A&M University, 2008.

[82] K. Zhang, F. Luan, Q. Wang, K. Bala, and N. Snavely, “PhySG: Inverse Rendering with
Spherical Gaussians for Physics-based Material Editing and Relighting.” arXiv, 2021. doi:
10.48550/ARXIV.2104.00674.

[83] S.-H. Zhang, Y.-C. Guo, and Q.-W. Gu, “Sketch2Model: View-Aware 3D Modeling from
Single Free-Hand Sketches.” arXiv, 2021. doi: 10.48550/ARXIV.2105.06663.

[84] X. Zhang, P. P. Srinivasan, B. Deng, P. Debevec, W. T. Freeman, and J. T. Barron, “NeRFactor:
Neural Factorization of Shape and Reflectance Under an Unknown Illumination,” ACM
Transactions on Graphics, vol. 40, no. 6, pp. 1–18, Dec. 2021, doi: 10.1145/3478513.3480496.

[85] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros, “View Synthesis by Appearance Flow.”
arXiv, 2016. doi: 10.48550/ARXIV.1605.03557.

[86] J. D. Zook, “A simple model for diffuse reflection,” Optics Communications, vol. 17, no. 1, pp.
77–82, 1976, doi: https://doi.org/10.1016/0030-4018(76)90183-8.

[87] “GitHub - BachiLi/redner: Differentiable rendering without approximation.” https://
github.com/BachiLi/redner (accessed Mar. 29, 2023).

[88] “GitHub - colmap/pycolmap: Python bindings for COLMAP.” https://github.com/colmap/
pycolmap (accessed Apr. 9, 2023).

[89] “GitHub - jpcy/xatlas: Mesh parameterization / UV unwrapping library.” https://github.com/
jpcy/xatlas (accessed Mar. 29, 2023).

102

[90] “GitHub - Lightning-AI/torchmetrics: Machine learning metrics for distributed, scalable
PyTorch applications.” https://github.com/Lightning-AI/torchmetrics (accessed Apr. 05, 2023).

[91] “GitHub - pmneila/PyMCubes: Marching cubes (and related tools) for Python.” https://
github.com/pmneila/PyMCubes (accessed Apr. 05, 2023).

[92] “PyTorch.” https://www.pytorch.org (accessed Mar. 28, 2023).

[93] “TensorFlow.” https://www.tensorflow.org (accessed Mar. 28, 2023).

[94] “Visual Hulls from Uncalibrated Snapshots.” http://www.dip.ee.uct.ac.za/~kforbes/
DoubleMirror/DoubleMirror.html (accessed Oct. 30, 2022).

103

	Abstract
	Resumen
	Resum
	Index
	Index of figures
	Index of tables
	Introduction
	State of the art
	Specific technologies
	Development
	Results
	Conclusions
	Future work
	References

