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Abstract 

Reconstruction from realistic images has evolved very differently when compared to reconstruction 
from sketches. Even though both present similarities, the latter aims to surpass the subjectivity that 
drawings present, increasing the task's uncertainty and complexity. In this work, we aim to study the 
domain of 3D reconstruction from multi-view sketches and drawings by taking inspiration from 
reconstruction over realistic multi-view images. In contrast to previous reconstruction methods from 
sketches, we aim to recover not only shape but also color, offering an optimization system that does 
not require prior training. We make two proposals. Firstly, we present a workflow for applying the 
state of the art in realistic reconstruction by leveraging NVDiffRec to study its performance over 
the non-realistic domain. Secondly, we adapt existing methods, using inverse rendering as a 
refinement process for 3D colored meshes, and propose modifications to work over the domain of 
drawings. Finally, we highlight the challenges of using both proposals and evaluate how different 
quality factors in sketches affect the reconstruction quality to determine their viability for fictional 
3D content generation from concept art. 

Keywords: Computer Vision and Pattern Recognition, Computer Graphics, Image and Video 
Processing, 3D Reconstruction, Inverse Rendering, Machine Learning. 
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Resumen 

La reconstrucción a partir de imágenes realistas ha evolucionado de forma muy diferente a la 
reconstrucción a partir de bocetos. Si bien ambos presentan similitudes, el segundo pretende superar 
la subjetividad de los dibujos, lo que aumenta la incertidumbre y complejidad de la tarea. En este 
trabajo aspiramos a estudiar el dominio de la reconstrucción 3D a partir de bocetos y dibujos 
multivista, inspirándonos en la reconstrucción sobre imágenes realistas multivista. A diferencia de 
los anteriores métodos de reconstrucción a partir de bocetos, este trabajo tiene como objetivo 
recuperar tanto la forma como el color, ofreciendo un sistema basado en optimización que no 
requiera entrenamiento previo. Hacemos dos propuestas. En primer lugar, presentamos un flujo de 
trabajo basado en NVDiffRec para aplicar el estado de la cuestión en reconstrucción realista, 
estudiando su rendimiento en el dominio no-realista. En segundo lugar, adaptamos métodos 
existentes, utilizando renderizado inverso para refinar mallas 3D coloreadas y proponiendo 
modificaciones para aplicarlo en el dominio de los dibujos. Finalmente, exponemos los retos 
asociados a ambas propuestas y evaluamos cómo diferentes factores de calidad en los bocetos 
afectan a la calidad de la reconstrucción, determinando su viabilidad para la generación de 
contenido ficticio 3D a partir de arte conceptual. 

Palabras clave: Visión por Computador y Reconocimiento de Formas, Gráficos por Computador, 
Procesamiento de Imagen y Vídeo, Reconstrucción 3D, Renderizado Inverso, Aprendizaje 
Automático. 
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Resum 

La reconstrucció a partir d'imatges realistes ha evolucionat de manera molt diferent a la 
reconstrucció a partir d'esbossos. Si bé tots dos presenten similituds, el segon pretén superar la 
subjectivitat dels dibuixos, cosa que augmenta la incertesa i complexitat de la tasca. En aquest 
treball aspirem a estudiar el domini de la reconstrucció 3D a partir d'esbossos i dibuixos multivista, 
inspirant-nos en la reconstrucció sobre imatges realistes multivista. A diferència dels anteriors 
mètodes de reconstrucció a partir d'esbossos, aquest treball té com a objectiu recuperar tant la forma 
com el color, oferint un sistema d'optimització que no necessite entrenament previ. Fem dues 
propostes. En primer lloc, presentem un flux de treball basat en NVDiffRec per aplicar l'estat de la 
qüestió en reconstrucció realista, estudiant-ne el rendiment al domini no-realista. En segon lloc, 
adaptem mètodes existents, utilitzant renderitzat invers per refinar malles 3D acolorides i proposant 
modificacions per aplicar-lo al domini dels dibuixos. Finalment, exposem els reptes associats a les 
dues propostes i evaluem com diferents factors de qualitat dels esbossos afecten a la qualitat de la 
reconstrucció, determinant la seua viabilitat per a la generació de contingut fictici 3D a partir d’art 
conceptual. 

Paraules clau: Visió per Computador i Reconeixement de Formes, Gràfics per Computador, 
Processament d'Imatge i Vídeo, Reconstrucció 3D, Renderitzat Invers, Aprenentatge Automàtic. 
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1. Introduction 

Since ancient times, sketches and drawings have proven to be powerful mediums for depicting ideas 
as they convey information visually without words. Therefore they are a powerful communication 
tool capable of surpassing age, background, or cultural barriers. Indeed, early in life, one of the first 
skills we learn is to draw and represent our vision of reality on paper. 

These are the reasons why, to this day, sketching and developing concept art is a key step in design. 
From architecture and manufacturing to character and environment design, sketches are a quick and 
convenient way to settle a concept, its properties, and its appearance [5, 22, 23, 46, 72, 79]. Despite 
all the advances in human-computer interaction and digital design systems, sketching with pen and 
paper is the most intuitive medium for professionals to express their ideas. 

Throughout this work, we will aim to obtain the 3D information contained in sketches. We will look 
towards the successful area of multi-view reconstruction from real-life images [20, 33, 44, 52] to 
draw inspiration. By analyzing their techniques, we intend to apply them to sketches, determining 
their suitability, advantages, and issues, hoping to open the path for future work. 

1.1. Motivation 

As stated, sketches and drawings constitute a powerful medium for expressing new and existing 
content. They are often used as the initial step for designing items in architecture, industrial design, 
or entertainment industries [5, 23, 79]. To an extent, sketches are flexible and convenient tools to 
convey 3D shapes without the hassle of dealing with actual three-dimensional matters.  

However, the next steps in these design processes often imply formalizing the objects or characters 
described in the sketches into 3D [5, 72]. This usually involves manually converting these 
representations into actual 3D models using Computer-Aided Design (CAD) tools [69], which is 
difficult, requires skill and practice, and offers a less intuitive medium than the original sketches. 
Therefore, there is a great interest in generating systems capable of automatizing or aiding designers 
in this process, reducing the cost of 3D model generation and allowing for faster prototyping [25, 
41, 42, 46, 75]. Moreover, due to the thriving of augmented and virtual reality and game industries 
in recent years, the need for 3D content is quickly increasing [16, 46, 74, 76]. 

On the other hand, the capability of recovering 3D information from 2D content has been highly 
researched in computer vision since the start [7, 15, 35, 58]. The ability to understand the spatial 
properties of objects by observation is linked to a better understanding of reality. This not only 
relates to the capability of recovering 3D information from 2D content but also to a potential 
improvement in other tasks such as object detection, segmentation, and classification [47, 49]. 

Sketches are an exciting medium because they can convey 3D information with less visual 
complexity than real-life images. In contrast, they present a higher ambiguity, and their successful 
interpretation is highly linked to knowledge, not only involving recognition but rather 
interpretation. In this way, the latter requires a deeper understanding of reality and the capability to 
effectively use this understanding. With all this, the study of systems capable of recovering 3D 
information from drawings and sketches opens the door to studying this interpretation process, a 
fundamental step in developing systems with a higher understanding of reality. 

Lastly, approaching the task from the more practical side of things, we aim to study how promising 
results found in reconstruction for realistic images can be applied to the domain of sketches. In this 
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way, we explore solutions that, to the best of our knowledge, have yet to be applied in the domain of 
drawings, determining if they are suitable for such a task. 

1.2. Objectives 

Our objectives with the development of this project are the following: 

• Determining if recent techniques successfully developed for 3D reconstruction from realistic 
images can be applied over the domain of sketches and drawings. We make a particular 
emphasis on the use of inverse rendering techniques [20, 52]. 

• Analyzing the particularities of sketches, obtaining a better understanding of the task, its 
limitations, and requirements. In this way, we want to determine how different quality factors 
inherent to sketches interfere with 3D reconstruction. By doing so, we aim to establish where 
future research efforts should be placed. 

• Taking the opportunity that this project offers to get not only a better understanding of the state 
of the art surrounding computer vision and 3D reconstruction but also further practical 
experience with them. Therefore, we aim to apply, in the range of possibility and reasonability, a 
wide set of tools and frameworks to cover the needs of our development, increasing our 
knowledge in the combined field of machine learning and computer graphics. 

1.3. Structure 

This document presents our research and development through a total of eight chapters. While the 
current chapter aims to introduce our motivations, intents, and topics, the following chapters will 
detail the context of our work, its development, and the results we obtained from it. The remainder 
of this thesis is structured as follows: 

• Chapter 2 presents the state of the art about 3D reconstruction. Firstly we introduce previous 
approaches in reconstruction from sketches. Secondly, we detail current techniques for 
reconstruction in realistic scenarios and compare both areas to motivate our choices. 

• Chapter 3 presents the specific technologies used throughout our work. We focus on the concepts 
and methods behind differentiable rendering and on providing a detailed overview of the main 
system used in our first proposal, NVDiffRec [52]. 

• Chapter 4 details our development, which is structured into two proposals. Firstly, we explain 
how NVDiffRec can be used over drawings and the associated challenges, suggesting a workflow 
to be applied when only images are available. Secondly, we leverage techniques from 
reconstruction over realistic images and adapt them to sketches, building our own system. 

• Chapter 5 showcases the results obtained from both proposals, displaying their limitations and 
capabilities. Moreover, a study is performed on how different quality factors in sketches affect the 
reconstruction quality. 

• Chapter 6 leverages the results to determine if the techniques and systems detailed throughout this 
work suit our task, obtaining the appropriate conclusions regarding their usability. 

• Chapter 7 presents future work for our research, building upon the conclusions obtained. 

• Finally, Chapter 8 showcases the references used throughout our work. 
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2. State of the art 

The field of 3D reconstruction from images has been widely covered in the past. In this work, we 
desire to tackle automatic reconstruction from multi-view sketches. However, for doing so, we will 
draw inspiration from techniques developed to be applied to photographs or physically based 
renders, which we will jointly refer to as realistic images. 

Consequently, throughout this section, we will first present previous works related to 3D content 
generation from sketches, covering not only multi-view reconstruction but also single-view 
reconstruction and interactive approaches, summarized in Table 1. This will help us better 
understand the state of the art in sketch reconstruction and settle a point of comparison. Next, we 
will complete this comparison by presenting recent approaches in 3D reconstruction from multi-
view realistic images, summarized in Table 2. Both Tables 1 and 2 can be found at the end of this 
chapter. Finally, we will cover the related area of Structure-from-Motion, which also will be 
relevant to our development. 

2.1. Reconstruction from sketches 

The estimation of three-dimensional shapes from sketches has been a broadly researched topic. 
However, compared with reconstruction from real-life images, it involves additional challenges. 
Sketches usually lack shading, which can hint at the object's shape, and geometric inconsistencies 
between different views may appear. Furthermore, there is a lack of sufficient hand-drawn ground 
truth data paired with 3D models in many cases. Even though some hand-drawn datasets exist, such 
as [23] and [79], they generally do not provide enough samples for training a system, causing 
previous works to rely on training with synthetic data [25, 46, 74, 83].  

Multi-view reconstruction, from any source, aims to obtain a three-dimensional description of an 
object depicted in multiple two-dimensional representations through different views. Consequently, 
both tasks have a similar nature. However, real-life image reconstruction often aims to revert a 
rendering process, recovering original unknown scene parameters from observations [33, 40, 44, 45, 
52, 55]. Therefore, a rendering pipeline is assumed, consistently approximating the laws of light 
transport, significantly reducing the ambiguity of the task with the number of meaningful 
references. 

In contrast, sketches are not the result of the laws of physics. Instead, they are subjective views of 
reality [79]. If different people draw the same object, the results will be very different. In the same 
way, different people interpret sketches differently. This ill-posed nature distinguishes the task over 
sketches from the task over realistic images. While the latter aims to invert a well-known process 
and recover the lost scene information, the former aims to overcome subjective interference to build 
the most plausible object.  

In this intent, multiple methods have been developed. Some have presented interactive alternatives 
involving the user in the reconstruction [41, 42], leaning on the user’s decisions to deal with 
uncertainty. Other works have tackled automatic reconstruction from single [16, 22, 24, 72, 74, 75, 
83] or multi-view sketches [46, 25]. The following sections showcase these approaches. 
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2.1.1. Interactive approaches 

Interactive approaches take advantage of the user’s actions to solve the uncertainty. Even though 
many interactive 3D content generation systems have been developed over the years, we will focus 
in this section on two recent works closest to sketch reconstruction. 

 

Figure 1. Inflation of a curve [54]. 

On the one hand, the work by Li et al. [42] exemplified this. In their system, the reconstruction from 
a reference drawing was guided by the user, who progressively sketched out the regions of the 
picture to reconstruct, offering a constructive modeling approach. Each traced line was matched 
against the contours of the image, identifying which parts of the reference should be reconstructed. 
Additionally, the free form of the sketched line could be maintained if it did not match the 
reference, allowing for novel shapes. Once a spline was defined for each sketched line, a 3D shape 
was generated by inflation, as exemplified in Figure 1. In this way, the final 3D model was 
progressively constructed as a set of inflated splines. 

On the other hand, another interactive approach was SketchCNN, proposed in [41]. Through deep 
learning techniques, they introduced a system capable of generating surface depth and normal 
estimations from specially styled sketches. SketchCNN was divided into two modules, as seen in 
Figure 2. 

 

Figure 2. Interactive sketch reconstruction proposal by Li et al. [41]. 

Firstly, the input maps for the system were the sketch, mask identifying the target, and optional 
depth and curvature clues. The sketches were encoded following a specific style, in which contour 
lines were recorded as pure black while other surface lines, such as valleys and ridges, used lower 
grey levels. From them, a sub-network based on the U-Net architecture [64] was proposed to 
generate a flow field map, which characterized the curvature of the surface, aiming to help 
disambiguate the 3D shape. Secondly, all the previous inputs plus the flow field map were fed into a 
deeper sub-network, which regressed the confidence, normal, and depth maps as result. From them, 
the 3D surface could be estimated from the corresponding view.  

Given the specially annotated inputs, the described system worked automatically until this point. 
However, a multi-view interactive modeling system was implemented to generate complete shapes. 
This allowed users to sketch progressively in different views to create closed models by fusing 
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individual surfaces. Additionally, the interactive approach allowed for incremental sketching, being 
able to progressively adapt and modify the 3D model to resolve any ambiguities. 

2.1.2. Single-view automatic approaches 

Another set of works focused on reconstruction from a single view. Wang et al. [74] used a two-
module design to generate point clouds from single sketches. First, a standardization module 
converted sketches to a standard style, being trained to transform distorted synthetic sketches into 
their original counterparts. Later, the generation module took these standard sketches to obtain 
viewpoint estimations and generate a point cloud representing the sketched object. The 
standardization module aimed to solve generalization issues due to training based on synthetic 
samples, as hand-drawn sketches were able to be converted to a standard common style. 

Generating point clouds as well, Gao et al. [16] introduced 3D reconstruction based on sketch 
translation and a point cloud generator, as seen in Figure 3. The translator followed an encoder-
decoder architecture [1], generating spatial features that could extract the 3D information contained 
in the sketch. The maps generated were processed through convolutional layers to get a density 
probability map of the sketch, which allowed for sampling 2D points corresponding to the 
projections of the desired point cloud. Finally, the depth of the points was generated by using the 
features at the corresponding location. Synthetic samples were used to train the system. 

 

Figure 3. Reconstruction system proposed by Gao et al. [16]. 

Zhang et al. [83] worked with mesh representations by estimating the deformation of a template 
mesh through vertex displacements given a single sketch. This was done by explicitly encoding the 
viewpoint separately from the latent shape vector, allowing for view estimation. To ensure that the 
viewpoint was considered for the generation, a proposed random view reinforced training combined 
with adversarial training [21] was used. In contrast to Wang et al. [74], where the network was 
trained through a Chamfer distance loss [61], this system proposed a silhouette loss by applying 
differentiable rasterization, shape regularizations, a view prediction loss, and adversarial losses. To 
generalize to hand-drawn sketches, they proposed an encoder to generate indistinguishable features 
for synthetic and hand-drawn drawings. 

Following a different approach, the work of Wang et al. [75] was based on voxelated 
representations. To deal with the lack of paired data, they proposed an unsupervised method in 
which known parings between sketches and models were not required, shown in Figure 4. Instead, 
an autoencoder [3] was used to project the sketches and the rendered views into a common latent 
space to obtain similar representations. Then, given the encoding of a sketch, the  objects with the 
nearest render encodings were retrieved. Using another autoencoder for voxel representations,  
objects were used to generate a final single encoding, which allowed to obtain the final shape. L1 
distance with the  initial objects and adversarial loss was used to train the shape generator. 

N
N

N
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Figure 4. Unsupervised reconstruction system proposed by Wang et al. [75]. 

So far in this section, the enumerated methods relied on image sketches as input. However, another 
notable line of work exists aiming to regress 3D information from line sketches encoded as 
vectorized lines, keeping direct compatibility with tools such as drawing tablets. We will just briefly 
introduce this line of research as our work focuses on plain image representations. 

The approaches over vector strokes generally have a more algorithmic nature rather than using deep 
learning techniques. Gryaditskaya et al. [22] and Tian et al. [72] tackled the problem by proposing 
systems capable of obtaining the three-dimensional properties of the intersections found in the 2D 
sketches. This implied finding the 3D alignment most adequate for the given sketch, driving the 
reconstruction as the optimization of a score function measuring the quality of the solution. Given 
the vast range of possible solutions for the problem, both relied on restrictions to make it tractable, 
simplifying the process and reducing the solution space. 

On the one hand, Gryaditskaya et al. assumed that sketches were designed using reference strokes, 
imposing restrictions regarding connectivity. This allowed them to tackle the problem as a labeling 
task to classify 2D intersections as occlusions or true intersections, defining the 3D connectivity. 
The labeling was done progressively, optimizing a score function capable of measuring how well 
each possible connectivity fulfilled the established constraints.  

On the other hand, Tian et al. applied the parallelism constraint: parallel lines in 2D space must 
have the same angle with the XY plane. Even though this condition is necessary for 3D parallelism, 
it is not sufficient, allowing for inaccuracies. This made it possible to tackle the problem of 
estimating the intersection’s depth by grouping lines into classes based on parallelism. In this way, 
an optimization based on incremental updates of the depths maintaining the defined parallelism was 
used. This procedure was guided by an optimization function measuring the complexity of the 
geometry, aiming to minimize it. From the depths, the sketch was able to be converted into a mesh. 

Finally, Hähnlein et al. [24] also presented a system based on time-stamped polylines to reconstruct 
their 3D properties. In this case, a modular sketch design and symmetries were assumed. This 
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allowed them to divide the sketches into chronological blocks, locating their symmetry planes and 
determining the symmetry correspondences of each stroke. The method was based on an integer 
optimization [19] targeting to increase the degree of symmetry and connectivity of the 
reconstruction.  

2.1.3. Multi-view automatic approaches 

Despite the wide variety of works tackling reconstruction from single-view sketches, the number of 
works covering multi-view reconstruction in the same domain is lower. On the one hand, Han et al. 
[25] worked over a voxel representation and proposed extracting geometric features using a 
Conditional Generative Adversarial Network (CGAN) [50] to generate attenuation maps for each 
sketch. This allowed optimizing a voxel grid by a Direct Shape Optimization algorithm [26], 
obtaining the voxel representation of the target object that best fitted the attenuation maps.  

Besides the image sketches, this approach required the view poses too. Even though this system was 
automatic, they also proposed an interactive editing scheme based on shape retrieval [71] and 
progressive refining by adding new sketched views. Two alternatives were proposed for dealing 
with geometric inconsistencies: attributing higher weights to the last sketch or assigning higher 
weights to the voxels that could be directly inferred. For training, a synthetical dataset was used. 

On the other hand, Lun et al. [46] used a similar scheme with different ideas. Through a 
Convolutional Neural Network (CNN) [38], from sketches, they generated the depth, normal, and 
foreground probability maps from 12 fixed viewpoints. Using them, partial point clouds were 
obtained and later fused through optimization to reduce the noisiness and misalignments. Finally, 
the global cloud was converted into a mesh, which could be further refined through contour fitting.  

In this case, the proposed network had to be trained for a fixed set of input views. Therefore, it 
presented the drawback of assuming a selected set of viewpoints, being a new network retrained for 
each desired combination of views. As in [25], a synthetically generated dataset was used for 
training. 

2.1.4. Comparison between the approaches 

Until now, we have presented a summary of the recent techniques in reconstruction from sketches, 
introducing the main three approaches. In interactive reconstruction, the user manages ambiguities, 
allowing for a more precise and satisfactory solution from the user's point of view. Moreover, they 
offer iterative design, allowing the user to iterate over the reconstruction to improve it. However, 
this is at the cost of a higher requirement in user effort. 

In contrast, automatic approaches imply a lower effort for the user, as the reconstruction is done 
without their intervention. However, this is generally at the price of a lower capacity of 
disambiguation. To help solve the issue, automatic deep learning approaches usually rely on 
intermediate representations capable of extracting the 3D information of the sketches, easing the 
application of generative methods for point clouds, meshes, or voxels. These systems usually 
require training and, due to the limitations in paired training data, they use synthetic datasets to 
learn. This can difficult the generalization to hand-drawn sketches, making it necessary to consider 
techniques such as standardization or encoding into a shared latent space. Moreover, even when 
using these techniques, the system will still depend on the types of objects used for training, being 
difficult to generalize to any kind. 
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An important area of automatic reconstruction works over vector stroke data. These approaches are 
algorithmic, not requiring previous training, and being independent of the type of objects drawn. 
However, they impose restrictions and assumptions on the characteristics of the designs. This, 
together with the need for specialized inputs, limits their application to specific styles and use cases, 
more focused on industrial design and architecture.  

Finally, multi-view reconstruction has been less explored than single-view. This relates to the 
difficulty of generating multiple drawn samples for the same object and the inconsistencies that 
arise between multiple sketches. Despite this, the approaches followed are similar to the deep 
learning techniques used in single-view. They generate intermediate representations capable of 
capturing a higher degree of 3D information before generating a 3D shape representation. However, 
as seen with [46], depending on the approach used, these techniques can be difficult to adapt to a 
variable number of input views.  

Even though it presents a more challenging task, the presence of multiple views has benefits. By 
observing the target from different points of view, we can better understand the object, helping to 
disambiguate it. This implies a lower dependence on recognizing the object’s class to reconstruct it, 
being able to have a higher emphasis on understanding the shape rather than recognizing the shape. 

Even though these constitute the main types of approaches, they are not mutually exclusive. Single-
view reconstruction could be seen as a particular case of multi-view reconstruction with only one 
view. Furthermore, [25] and [72] showed that automatic approaches could also be used to build 
interactive systems, allowing the user to fix any mistakes. This offers a middle ground in which the 
effort required by the user is lower while offering higher flexibility to obtain the desired output.  

2.2. Reconstruction from realistic images 

In contrast to reconstruction from multi-view sketches, the generation of 3D representations from 
multiple realistic views has been broadly studied [10, 20, 27, 35, 48, 52, 67]. Fields such as scene 
reconstruction, novel view generation, and Structure-from-Motion fall under this category. 
Although single-view approaches also exist for realistic images, for brevity, this section focuses 
only on multi-view approaches, as they are the ones we will take as inspiration for our proposals. 

As in Section 2.1, we summarize the most recent techniques in 3D reconstruction from realistic 
multi-view images by presenting the taxonomy of approaches used in the area. First, we cover 
works using Multi-Layer Perceptrons [18] to represent scenes. Next, we describe works tackling the 
reconstruction of 3D shapes through explicit representations. Finally, we briefly present the related 
area of Structure-from-Motion. 

2.2.1. Implicit representation 

Before covering implicit representation approaches, reviewing the concept of Signed Distance 
Functions (SDF) –also known as Signed Distance Fields– is important. An SDF establishes the 
distance of a point in space to an object's surface [11]. Not only that, but the sign of the given 
distance indicates whether the point is found outside –positive– or inside –negative– of the object. 
Therefore, the object's surface is characterized by the points of the space whose SDF equals zero. 
Related to SDFs is the concept of occupancy. In this case, occupancy is a binary function that 
characterizes the space as full or empty, defining the inside and outside of an object and locating the 
surface in the frontier [56].  
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Implicit representations offer an alternative to explicit 3D shape representations such as point 
clouds, voxels, and meshes. They characterize the 3D properties of the scene through a function, 
usually modeled as a Multi-Layer Perceptron (MLP) [18] capable of regressing the properties of the 
space given the position and other factors. Therefore, implicit neural representations can 
approximate SDFs and occupancy functions to characterize 3D shapes [11, 56, 60, 70].  

One of the most notable works in 3D scene reconstruction through implicit representations was 
NeRF [48]. In this work, scenes were represented through an MLP that returned the emitted color 
and volume density, given the position in space and the viewing direction, following Figure 5. The 
position and direction were transformed using positional encodings, allowing for higher detail. 
Additionally, hierarchical sampling was used thanks to a coarse and a fine network. Initial samples 
were taken from the coarse network. Then, new samples were extracted from the resulting values 
near the points with more density, using the fine network to obtain the final values. 

 

Figure 5. Implicit scene representation for volume rendering proposed by NeRF [48].  

Given the position  and viewing direction  of a point in space, the color and 
density  of said point are returned. This allows the optimization of the MLP through 
volume rendering. 

To ensure consistency, the density was predicted using only the position, as the shape does not 
depend on the point of view. Once predicted, the viewing direction was appended to obtain the 
color. The dependency of the color with the viewing direction was necessary to simulate complex 
view-dependent material effects, such as specular reflections. 

With this approach, the reconstruction was modeled as an optimization process, having to train the 
weights of a new MLP for every new scene. Given the images from multiple points of view and 
their viewpoints, the scene was optimized through volume rendering, as depicted in Figure 5. 

NeRF established a simple but elegant approach that could recover any scene, capturing 3D spaces 
from their images to offer novel view synthesis and scene inspection. In fact, this approach inspired 
many subsequent works. Müller et al. [51] proposed an improvement on NeRF based on modifying 
the encoding used for the inputs. They proposed a trainable multi-level hash table by dividing the 
space into a multi-resolution voxel grid. In this way, the encodings were generated as a combination 
of the codes obtained from the voxels containing the point at different resolution levels, enabling 
efficient high-resolution reconstructions with smaller MLPs. 

Also inspired by NeRF, Wang et al. [77] presented NeuS. Focusing on shape estimation, they 
leveraged SDFs to represent the surface. Therefore, given the position and looking direction, their 
implicit representation returned the color and the distance of the point to the surface. To learn from 
images, they adapted the volume rendering equation to work with the SDF values. 

(x, y, z, θ, ϕ) (RGBσ)
σ

σ

Ray distance

Ray 1

Ray 2
g.t.

g.t.

2

2

2

2

(x , y, z) (θ, ϕ)
σ

21



Application of 3D reconstruction techniques for realistic images over drawings and sketches

Several works tackled the fact that the NeRF scenes could not be relighted as the lighting was baked 
inside the network. Firstly, Boss et al. [6] presented NeRD. Instead of only learning shape and color, 
they proposed to learn the shape, Bidirectional Reflectance Distribution Function (BRDF) 
parameters, and lighting. This way, it was also possible to use source images with different lighting 
conditions by learning the illumination locally for each image.  

The most significant differences of NeRD reside in the estimation of spherical Gaussians for the 
lighting and the modification of the fine network. While the coarse network estimated the density 
and a view-independent but illumination-dependent color to guide the sampling, the fine network 
generated the BRDF parameters and surface normal. By approximating the general rendering 
equation through a sum of spherical Gaussians, the scene could be rendered from the BRDF and 
normals. To avoid inconsistencies, the surface and normal estimations were coupled. Meanwhile, to 
ensure smoothness in the BRDF, its prediction used an autoencoder to map similar BRDFs to the 
same encoding, improving the surface consistency. Finally, the modifications proposed also allowed 
the extraction of consistent texture meshes in contrast to NeRF. 

 

Figure 6. Architecture for implicit reconstruction proposed by NeRFactor [84]. 

From the initial NeRF estimation, the surface position , normal , light visibility , 
albedo , and BRDF latent code  are obtained.  represents a point in space,  is 
the density, and  is the light direction,  represents the view direction, and  
are Rusinkiewicz coordinates [65]. 

Secondly, Zhang et al. [84] aimed to provide a re-lightable reconstruction, solving the noise 
problems derived from the NeRF optimization. This was accomplished through NeRFactor, which 
leveraged NeRF as an initial step to obtain a base volumetric representation and whose architecture 
is displayed in Figure 6. Once this representation was initialized, NeRFactor’s additional modules 
could be optimized to refine the estimations and obtain a re-lightable scene.  

Concretely, explicit surface points, normals, albedo, specular BRDF, and light visibility were 
refined from the NeRF scene. The noise was reduced using MLP modules, trained to induce 
smoothness while maintaining proximity with the direct estimations. A particularity of this system 
was using a frozen pre-trained decoder for predicting real BRDF values from estimated encodings. 
Moreover, lighting was optimized directly, learning the values of a High Dynamic Range (HDR) 
light probe. The optimization was guided by Physically Based Rendering (PBR) equations 
considering local lighting, optimizing NeRFactor until the initial estimation, excluding it. 
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Thirdly, PhySG [82] not only intended to obtain re-lightable scenes but also to allow editing 
materials. With this aim, Zhang et al. proposed encoding the shape through an MLP SDF, as in [77], 
while modeling environmental lighting with spherical Gaussians, as in [6]. To capture materials, an 
MLP was used to define a spatially varying albedo based on the surface point, and spherical 
Gaussians were used to capture the specular BRDF. By sphere tracing and approximating the 
rendering equation through the spherical Gaussians, the system could be optimized from images, 
not considering self-occlusion or indirect lighting. An image-based L1 loss and regularizations to 
enforce non-negative SDF values in the background and unitary normals were used to this end. 

Lastly, we close this section with a different type of approach also based on NeRF, proposed by 
Yang et al. [80]. As input, they used multi-view and multi-light images. Therefore, not only multiple 
views of the object were provided, but also multiple illuminations for each view. Multi-light images 
could be used to estimate normal maps, which helped to regularize an initial NeRF estimation. 
Later, similar to [84], this initialization was refined by optimizing MLPs to obtain refined normals, 
light visibility, and materials. BRDF materials were encoded through an albedo MLP and a specular 
MLP, characterizing the latter the weights of spherical Gaussians. Finally, the lighting for each 
image was determined by a light with a learnable intensity and direction. As in previous works, this 
system was optimized per scene based on image loss and regularizations. 

2.2.2. Explicit representation 

As we have seen, implicit representation methods use MLPs as functions to encode shape and 
material properties. This has advantages like a lower memory footprint, higher flexibility, and a 
theoretically infinite resolution. However, we have also seen how they present the caveat of difficult 
access to the optimized content. Many works try to soften this limitation by using SDFs to ease the 
generation of meshes from the implicit representation, as well as the direct estimation of BRDF 
materials and lighting maps to be able to edit the scene’s materials and illumination. 

In contrast, explicit approaches deal with these difficulties by directly optimizing a defined data 
structure for spatial representation, generally in the form of point clouds, meshes, or voxels. Even 
though this usually implies an increase in memory footprint with geometry resolution, the explicit 
representation of the shape and materials allows for easier recovery of the optimized contents. In 
turn, this facilitates the modification of scenes and their integration with standard systems for 3D 
content manipulation.  

In 2016, Kim et al. [35] proposed a refinement approach for reconstruction based on multi-view 
images. Like NeRF [48], an optimization scheme was also assumed, refining the shape for each 
scene given the source images. However, in this case, instead of optimizing a network, the 
displacement of the mesh's vertices was directly optimized. Starting from an initial Structure-from-
Motion estimation [67], the shape and the view poses for each source image were obtained. Once 
initialized, the mesh, its albedo, and per-camera lighting were optimized using a simple Lambertian 
without complex reflections as the rendering equation. The rendering error regarding the source 
images was used to guide the refinement, being normalized per vertex using the number of visible 
cameras, complemented with geometric and photometric regularizations. While the former aimed to 
minimize the surface curvature, the latter regularized the ambiguity between albedo and lighting by 
enforcing that vertices with similar albedo should have a similar color. 

This work describes the base approach for the explicit representation reconstruction techniques, 
which would be further defined in Hasselgren et al. [27]. They built upon the method, using 
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triangular meshes and PBR-based materials to represent the scene. Through optimization based on 
differentiable rendering using deferred shading –which will be detailed in Section 3.1.1– and an 
image loss, they were able to optimize textured shapes. However, they extended the method to also 
refine aggregated geometry, displacement maps, or skinning based on given animations. 

Additionally, they complemented the loss function with a Laplacian regularization, which is widely 
used in these approaches. As the optimization directly manages the vertices’ positions, they can be 
moved freely without geometry regularization, leading to potentially degenerated stages in which 
the mesh triangles may clip or overlap. The Laplacian regularization solves this by enforcing 
geometry smoothness and helping to maintain the relative positions inside vertex neighborhoods.  

However, pure mesh representations are not the only ones used in the reconstruction. Mixing ideas 
from explicit representations and the use of SDFs, Gao et al. [17] and Shen et al. [68] settled for 
reconstruction based on deformable tetrahedral grid representations that stored SDF or occupancy 
values at their vertices. In this representation, meshes were optimized explicitly but represented 
through a gridded space, reducing the problems related to degenerations. 

 

Figure 7. Deformable tetrahedral grid representation proposed by Gao et al. [17]. 

On the one hand, Gao et al. [17] initially proposed these representations thanks to a middle 
approach between voxels and meshes, shown in Figure 7. The base was a tetrahedral grid composed 
of vertices, triangular faces, and tetrahedrons. By characterizing the tetrahedrons with occupancy, 
the mesh was defined by the faces shared between empty and occupied tetrahedrons. Moreover, to 
avoid the problems of aliasing, a deformable grid was defined to better adapt to the desired shape. 

Gao et al. proposed two possible methods for reconstruction: using gradient-based optimization to 
refine displacements and occupancies, similarly to [48], or using trained networks to predict the 
occupancies and vertex displacements, as in Figure 7. This work computed the occupancy per 
vertex, defining the tetrahedron’s value as the maximum of its vertices. Even though this 
representation circumvented problems related to mesh degeneration, it had to avoid the tetrahedrons 
flipping. 

On the other hand, Shen et al. [68] built over the proposal in [17] to define a system capable of 
recovering high-resolution models from low-resolution 3D representations. Despite tackling a 
different task than us, their extension of [17] is relevant to our work. They proposed using SDFs 
instead of occupancy and a Differentiable Marching Tetrahedra (MT) layer to convert the SDF 
values into meshes. First, given the surface tetrahedrons identified by different SDF signs in their 
vertices, the MT algorithm located the topology inside them. Then, the SDF values  were used to 
compute the positions of the vertices of the resulting triangle faces, as depicted in Figure 8, 
obtaining the mesh. It is important to note that both [17] and [68] normalized the tetrahedral grid to 
a unit cube size. 

Building upon these ideas, Munkberg et al. [52] presented NVDiffRec. Even though this system 
will be described in further detail in Section 3.2, we provide a summary here. NVDiffRec proposed 

s
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a two-phase optimization over meshes intending to obtain exportable 3D reconstructions ensuring 
compatibility with standard tools. The deformable SDF tetrahedral grid was used as an internal 
representation to accomplish this. For recovering materials, an implicit MLP representation was 
used in the first training phase while converting them to learnable texture maps in the second phase. 
Finally, the environment light was also optimized thanks to learnable cube maps.  

This optimization was possible through differentiable rendering and an image loss, accompanied by 
regularizations. Therefore, the scene was reconstructed by providing the images, viewpoints, and 
masks, obtaining a full textured mesh and an HDR environment map. The relevance of NVDiffRec 
resides in its capability of generating complete scenes with promising results and maintaining 
compatibility, recovering formats usable by off-the-shelf tools. 

 

Figure 8. Possible unique topologies inside a tetrahedron following MT [68]. 

As we have seen so far, most approaches for reconstruction, wherever explicit or implicit, rely on 
rendering to obtain feedback and guide the optimization of the reconstruction. This rendering is 
usually tailored to the representation, approximating the general rendering equation in different 
ways. Nonetheless, looking to balance efficiency and realistic-looking results, these approaches 
apply simplifications, generally focusing on local lighting without shadows or complex reflections. 
Even though this allows faster refinements, it is usually a limiting factor in the quality of the 
reconstructions. 

Goel et al. [20] proposed a reconstruction method using differentiable path tracing to avoid the 
limitations of local lighting, as seen in Figure 9. Starting from an initial mesh estimation, they 
applied two alternating steps repeated cyclicly: a material refinement step focused on estimating 
BRDF parameters and a geometry refinement step updating the vertex's positions. After 
convergence on each cycle, face subdivision was used to increase the resolution of the mesh, 
followed by simplification to limit the number of parameters and remeshing to fix artifacts.  

Several initialization methods were used in [20], such as voxel carving and COLMAP estimations 
[67], reporting better performance with the second one. Multi-view images, viewpoints, 
environment maps, material masks, and object masks were given for the reconstruction. For 
representing the shape, triangle meshes were used, optimizing their vertex positions. A coarse-to-
fine approach was applied to avoid falling in local minimums, thanks to a low-res initial mesh and 
the progressive resolution increase through face subdivision.  

For encoding the materials, mesh colors were used [81]: a one-dimensional color vector accessed 
given the resolution level, triangle index, and barycentric coordinates. This allowed a more 
straightforward optimization when considering malleable shapes, as learnable image textures would 
require joint color and texture coordinates optimization. As with shape, the colors were also 
recovered in a coarse-to-fine fashion. Initially, constant diffuse and specular colors were optimized 
to avoid baking-in geometric details. After some cycles, spatially varying diffuse color and constant 
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specularity were refined. Finally, both spatially varying diffuse and specular materials were 
optimized. To avoid baking specularities into the diffuse color, specular glows were detected and 
masked. 

In this case, the optimization was driven thanks to the Mean Squared Error between renders and 
ground truth images, not reporting the use of any shape regularization (just a variance penalty for 
specular colors). As the lack of regularizations could lead to non-recoverable situations, Poisson 
remeshing after each cycle was used to fix possible issues. It is important to note that after 
remeshing, the materials were reset to a neutral grey color, effectively discarding the previous color 
estimations. 

 

Figure 9. Reconstruction scheme proposed by Goel et al. [20]. 

2.2.3. Comparison with reconstruction from sketches 

When comparing the presented techniques for realistic reconstruction to those from sketches, we 
can observe how the former often rely on an optimization approach guided by inverse rendering. 
Meanwhile, non-interactive sketch reconstruction approaches mostly rely on trained deep models to 
regress 3D information that can be used in the reconstruction. Moreover, while reconstruction from 
realistic images focuses on joint estimation of both shape and materials, reconstruction from 
sketches is limited to shape. Even though this is reasonable when considering pure line sketches, we 
argue that, when dealing with colored sketches or concept art, considering color becomes highly 
desirable as it is crucial to define the visual identity of an object.  

Therefore, when wishing to recover color from sketches for reconstruction, our nearest sources of 
inspiration lie in reconstruction from realistic images. One advantage of the optimization-based 
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approaches resides in their higher degree of generality. While deep learning systems are trained 
under specific object classes and styles, optimization approaches are designed to approximate the 
best reconstruction possible to the given inputs, reducing the bias.  

Nonetheless, optimization methods also present some limitations. They require time to refine a 
reconstruction for each case, and they are designed with a particular domain in mind. Consequently, 
the quality of results varies when applied to other fields, even though they are inherently more 
generic. 

2.2.4. Structure-from-Motion 

Before closing off the review of the state of the art, discussing the related task of Structure-from-
Motion (SfM) [58, 67] is relevant. While reconstruction from multi-view images tries to recover a 
target or a scene from a given number of images, it generally involves some restrictions or 
assumptions such as known viewpoints, constant illumination, shared camera parameters, or object 
masks. In contrast, SfM aims to process extensive image collections of a mutual landmark or scene 
from multiple sources, such as Internet image collections, to recover the underlying structure. 
Therefore, SfM deals with a broader task: images of unknown nature and bigger datasets. This more 
general nature of SfM implies not only recovering the scene structure but also estimating the 
camera poses. This makes the techniques in this area commonly used as preprocessing steps for 
reconstruction, whether for obtaining viewpoints or providing an initial shape estimation.  

 

Figure 10. General pipeline for incremental SfM [67]. 

One of the most notable works in SfM in recent years has been COLMAP [67]. This system, openly 
provided to the community, was developed as a result of the work of Schönberger et al. and has 
been widely used since then. Said work provided a general overview of the existing approach for 
incremental SfM and contributed improvements that helped increase its robustness and efficiency. 
COLMAP was the result of their improved algorithm. 
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Following [67], the general pipeline for incremental SfM systems consisted of four steps, shown in 
Figure 10. Firstly, images were processed to extract characteristic key points. Secondly, the 
correspondences between key points in different images were identified, forming a list of pairs of 
potentially overlapping images. Thirdly, the image pairs were geometrically validated to filter the 
true correspondences. This was done by finding the transformation that mapped a sufficient number 
of key points between images. Finally, the incremental reconstruction step was applied, 
progressively generating the view poses and the set of 3D points characterizing the scene. 

The incremental reconstruction started from a two-view reconstruction process. This first step was 
critical as a bad initialization could lead to unrecoverable states. Then, images were progressively 
added using the correspondences with triangulated points from already registered images, 
estimating their pose and intrinsic parameters. In turn, registering more images contributed to more 
points consistently viewed and their triangulation. Finally, bundle adjustment jointly refined both 
camera and point parameters. 

Building upon this basic pipeline, Schönberger et al. [67] introduced improvements to increase the 
accuracy and robustness of the reconstruction. Firstly, they augmented the image correspondences  
(also known as scene graph) with additional information to find a robust initialization more 
efficiently. Specifically, by computing the fundamental, homography, and essential matrices, the 
number of inlier key points complying with these matrices was added. Watermarks, timestamps, and 
frames were also detected and discarded as key points. 

Secondly, a next-best view selection scheme was proposed for efficiently dealing with extensive 
collections. In this scheme, images were scored considering the number of triangulated points seen 
–the higher, the better– and the uniformity of their distribution –the more uniform, the better–. The 
latter was measured by dividing the images into multi-resolution grids and adding the weight of the 
cells containing key points at each level, favoring a uniform distribution. 

Thirdly, a robust and efficient triangulation system for dealing with outlier contamination was 
proposed. With this aim, initially, a set of pairs of image observations and poses was said to contain 
an unknown number of inliers. Then, iteratively, the well-conditioned features were identified based 
on sufficient triangulation angle, positive depths, and reprojection error lower than a threshold. 

Fourthly, the bundle adjustment scheme was modified to mitigate accumulative errors. Local 
adjustment of the most connected images was applied after each registration. Conversely, global 
adjustment was only used after reaching a certain reconstruction size. Filtering was applied to delete 
observations with significant reprojection errors and degenerate cameras. Re-triangulation was also 
used both before and after the global bundle adjustments for better estimation. Lastly, these steps 
were applied iteratively until the number of filtered observations and points decreased. 

Finally, the number of views was reduced to alleviate the bottleneck caused by bundle adjustment. 
First, images and points were divided into two groups, depending on whether they were affected by 
the last incremental step. Considering that bundle adjustment naturally affects more the newly 
added parts, the images non-affected were grouped in  groups of highly overlapping cameras, 
fusing each group into a single camera. Meanwhile, the remaining images were maintained as 
individuals to allow a better refinement. 

Thanks to the improvements introduced in [67], the more efficient and robust reconstructions, and 
the easy-to-use access provided to its implementation, the use of COLMAP has been widespread, 
becoming a reference and staple in SfM. Nonetheless, other approaches have been proposed since 
then, such as the works of Cui et al. [10] and Kong et al. [37]. 

N

28



On the one hand, Cui et al. [10] proposed a hybrid approach to combine the advantages of both 
incremental and global SfM. In contrast to the incremental process of COLMAP, global techniques 
relied on a single bundle adjustment after estimating simultaneously all camera poses. This was 
possible thanks to a rotation and translation averaging step. While the former estimated all the 
camera rotations from relative orientations between overlapping images, the latter tried to estimate 
the camera positions. Compared to incremental approaches, global techniques avoided the need for 
a seed model and possible bad initializations, reducing the use of bundle adjustment.  

However, they also presented some drawbacks, as they were more sensitive to the errors and 
outliers in the initial scene graph estimation. Therefore, [10] proposed a hybrid approach to improve 
the cost of incremental methods and the robustness of global techniques, striking a good balance 
between quality and efficiency. 

The proposal of Cui et al. was divided into two stages. Firstly, an initial rotation estimation 
inherited from the global approaches was defined. Secondly, inheriting from incremental 
techniques, center estimation was used. The initial pair of cameras was chosen based on the higher 
number of matches, wider angle, and higher number of connections. From the initialization, camera 
registration, triangulation, and bundle adjustment were applied iteratively, keeping constant the 
intrinsic parameters and rotations in the latter. 

On the other hand, the work of Kong et al. [37] dealt with 3D shape and pose estimation given 2D 
images with annotated landmarks of a given object class. This was approached through Non-Rigid 
SfM, considering the objects of the same class as deformations of a representative class object. To 
model a sparse solution space characterizing deformations as combinations of smaller steps, an 
encoder-decoder was proposed to learn hierarchical dictionaries and sparse encodings. This allowed 
obtaining the viewpoint and 3D coordinates for the landmarks, recovering the object’s structure. 

As a summary to close this chapter, Tables 1 and 2 present an overview of Sections 2.1 and 2.2. 
Both tables follow the same structure. For each paper presented, the number of views required by 
their proposed system is indicated as 1 (single-view) or N (multi-view). Moreover, the “Automatic” 
and “Interactive” columns indicate if the described approach was capable of performing complete 
reconstruction automatically and if an interactive strategy involving the user was presented, 
respectively. Next, a brief compilation of the keywords describing the main technologies used on 
these systems is shown. Finally, the last columns indicate the inputs required by the systems to 
apply reconstruction (once trained, if needed) and their outputs by indicating in which form the 
shape, materials, and lighting of the target were recovered. 
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Table 1. Summary of the state of the art in sketch reconstruction. 
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Table 2. Summary of the state of the art in realistic reconstruction. 
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3. Specific technologies 

In this section, we will discuss specific technologies relevant to our work. Firstly, we will present 
the principles of differentiable rendering, a key component of inverse rendering. We will cover the 
fundamentals of both local lighting approaches in the form of deferred shading and global lighting 
techniques in the form of path tracing. Both rendering methods, on their differentiable framework, 
will be necessary for our work. 

Secondly, we will make a detailed presentation of NVDiffRec and its inner workings. This will give 
the reader a better understanding of the system as we will use it as a core component of our first 
proposal.  

3.1. Differentiable rendering 

Rendering techniques have been developed since the early days of computer graphics [12, 29, 31, 
32, 39]. When talking about rendering, we refer to the process of transforming data structures into 
graphic visualizations, usually displayed on a screen. The most common application and the one 
relevant to us corresponds to transforming data structures representing 3D geometry and visual 
appearance properties into 2D images depicting such described three-dimensional scenes. 

When considering the graphic representation of 3D scenes, we must refer to the foundation in this 
area: the rendering equation, seen in Equation 1. This equation characterizes the behavior of light in 
a scene, defining the light emitted on a surface point in a direction  based on the integral on the 
hemisphere  around it of the incident light , the characteristic function of the surface’s 
material , the surface’s normal , and the direction of the incident light . This equation 
must be solved to find the appropriate color for each scene point, conferring a realistic appearance 
to computer-generated three-dimensional scenes.  

However, estimating the equation’s integral is highly complex, as it usually does not have a closed 
form. To approximate it, it is generally divided into diffuse and specular components, having been 
proposed many models to approximate both, such as Lambert, Cook-Torrance, and Disney, among 
others [8, 39, 86]. Moreover, both global and local methods have been developed. While local 
lighting approaches compute the color of a point based only on its local properties, global methods 
compute it given both the local properties and how the rest of the scene affects them. Consequently, 
global approaches account for complex phenomena such as object inter-reflection, transparency, or 
translucency. 

While the process of rendering and the rendering equation have been widely studied and are well 
known, its inverse operation has received more attention in recent years. Often known as inverse 
rendering, this procedure aims to reverse the rendering operation: given the graphic 2D 
visualization generated, obtain information related to the underlying data structures that allow it. 
Inherently, inverse rendering represents a more complex task and often suffers from a higher 
uncertainty. 

The recent development of inverse rendering techniques has been closely linked to the development 
and growth of auto-differentiation systems, such as PyTorch [92] or TensorFlow [93]. Thanks to 
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Ω L (ωi)
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them, the most successful approaches have been found in developing differentiable rendering 
pipelines. By doing so, auto-differentiation allows reverting the rendering process and updating 
scene parameters from image metrics using gradient descent optimization techniques, as seen 
throughout Section 2.2. 

Nonetheless, the task of defining a differentiable rendering pipeline is a challenging one. On the one 
hand, discontinuities may appear, making it difficult to differentiate the process without bias. On the 
other hand, rendering can be a resource-intensive and time-consuming process, making its 
differentiation very costly and tradeoffs necessary for using it on iterative optimization. 

As seen in Section 2.2, there are many possible alternatives for differentiable rendering, depending 
on how the rendering equation is approximated. Some examples are volume rendering, used in 
models such as NeRF and NeRD, or spherical Gaussians, used in PhySG. However, these methods 
are tailored for the given task and representation, losing generality. In the following sections, we 
will detail the state-of-the-art main models for the generic differentiable rendering of explicit 3D 
representations. 

3.1.1. Deferred shading 

Deferred shading refers to the strategy in which all the spatially-varying attributes of the scene are 
stored in an image-space regular grid over which the shading function is later applied [40]. The base 
for the current lines of research for differentiable rendering using deferred shading is found in the 
work developed by Laine et al. [40].  

They conceived differentiable rendering as a means for using modern machine learning with 3D 
geometry. Therefore, a pipeline capable of computing the loss gradient with respect to arbitrary 
scene parameters was desired. Furthermore, they aimed to leverage the well-known developments 
in real-time graphics to use existing pipelines. By doing so, not only desirable features such as 
programmable shading, parallelization, and correct outputs could be preserved, but also current 
hardware pipelines could be used. 

 

Figure 11. Differentiable rendering pipeline built using Laine et al.’s proposal [40]. 

To reach these goals, some design choices were put up front. The critical primitive operations that 
required differentiation were identified. By providing custom implementations for them, a modular 
design was accomplished. Geometry and textures were modeled as tensors for compatibility with 
existing auto-differentiation systems. Furthermore, deferred shading was leveraged to define 
shaders externally using efficient tensor operations. Finally, triangular meshes were considered to 
use the optimized rasterization in modern pipelines for graphics. 

With these choices, four main primitive differentiable operations were defined, allowing for 
assembling differentiable rendering pipelines with them, as shown in Figure 11. The first was 
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rasterization, in charge of projecting the triangles to the image space. The forward of this module 
took as input the mesh’s triangles and vertices in homogeneous clip-space coordinates of the form 

. Therefore, the user was in charge of obtaining these coordinates by multiplying the 
vertices coordinates  by the world, view, and perspective transformation matrices. From 
them, a 2D sample grid storing at each position the triangle ID, barycentric coordinates  in the 
triangle, and depth was obtained. Additionally, the derivates of  with respect to the screen 
coordinates  were also provided. By using OpenGL fragment shaders to obtain every output, 
the hardware graphics pipeline was used for the rasterization, ensuring accuracy. 

Meanwhile, the backward of the rasterization received the gradient of the loss with respect to the 
barycentric coordinates and generated the gradient with respect to the vertices’ coordinates, 
effectively updating the geometry. Similarly, the gradient concerning the derivates of  was also 
computed. A scatter-add operation was used to implement the backward to accumulate the gradients 
of the pixels on the correct vertices by using the triangle IDs. 

The second primitive proposed was the interpolation. Given the grid of barycentric coordinates, this 
module’s forward computed the grid cells’ attributes by applying a weighted sum of the vertices’ 
attributes through the barycentric coordinates. Moreover, as these attributes generally involve 
texture coordinates, this module also generated the Jacobian of all the attributes to be able to 
determine the texture filter footprint later. The backward of the interpolation worked similarly to the 
one of the rasterizer, using scatter-add to accumulate the gradients of each attribute into the 
barycentric coordinates.  

The third defined module was the texture mapping module, which obtained texture values from the 
interpolated attributes. The implementation was similar to the interpolation module. First, a 
fractional mipmap level was selected, using the derivatives of the texture coordinate attributes to 
measure the major axis of the sample area. Then, trilinear interpolation from the four closest pixels 
of lower and upper resolution levels was applied. In this case, both gradients for the texture 
coordinate attributes and the screen-space derivatives of said coordinates were computed. Given the 
multi-scale nature of this module, the backward needed to revert the mipmap generation process, 
accumulating the gradients of all the levels into the finer one. 

Finally, the last module introduced was the antialiasing system. The use of this module was crucial 
for differentiable rendering. While texture filtering allowed smoothness in the interior of surfaces, 
point sampling produced aliasing at silhouette discontinuities, making it impossible to compute 
visibility gradients. Antialiasing after the shading process converted these discontinuities into 
smooth changes, allowing for the estimation of gradients. 

The forward step in the antialiasing module worked in two stages. Firstly, pixel pairs with visibility 
discontinuities were located by finding neighboring pixel pairs with different triangle IDs. Then, if 
the closest triangle to the camera contained a perpendicular edge to the pair crossing between their 
centers, said pair was considered to present a discontinuity. Secondly, for all pairs with 
discontinuity, blending was applied by considering the distances to the edge, as seen in Figure 12. 

For the backward step, the discontinuity analysis performed in the forward was stored, avoiding the 
need for recomputing it. Then, for the aliased pixels, the gradient of the color was transferred to the 
vertex positions by scatter-add operations. 

It is important to note that, although effective and efficient, this antialiasing method presents some 
limitations. Coverage is only estimated exactly with perfectly perpendicular edges, presenting 
coverage error for diagonal edges. Moreover, in the case of finely tessellated meshes, a higher error 
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could be potentially introduced as any arbitrarily shaped polyline could define the silhouette edge. 
Not only that but with finer enough levels, some triangles might be too small to get rasterized, 
causing some silhouette edges not to receive visibility gradient, slowing the optimization. 

 

Figure 12. Scheme of the antialiasing operation by Laine et al. [40]. 

As we have seen, Lain et al. settled the bases for a differentiable rendering pipeline highly 
compatible with modern hardware for graphics and auto-differentiable systems. This allows for 
efficiency, quality, and flexibility, enabling the use of the four key modules presented to build full 
pipelines using auto-differentiable operations. It is important to note that, due to the deferred nature 
of the design, the shaders must work over the grids of attributes to provide a grid of pixels. This 
limits the rendering to a local lighting model in which the resulting colors can only depend on the 
local surface attributes. However, as a trade-off, the system's differentiable nature allows 
propagation of the loss gradient to arbitrary scene parameters, making this framework powerful. 

3.1.2. Path tracing 

Path tracing and ray tracing algorithms were proposed to provide a global illumination model 
capable of computing the color of a point in the scene based on global influences [32]. These 
algorithms approximate the rendering equation integral based on the principles of Monte Carlo 
sampling: the integral of any function can be computed as the average of  samples of the function 
multiplied by its range. When  tends to be infinite, the integral estimation tends to be exact. 

Therefore, the ray tracing algorithm combines the principles of sampling and the behavior of light 
to compute the shading of the scene by shooting rays from the camera’s pixels. As it can be seen in 
Figure 13, for each ray, the closest intersection with the scene is computed, using it as the source for 
newly recursively generated rays. Once the hierarchy of rays reaches its maximum depth or the end 
of the scene, the color of the first point is computed by combining all the subsequently sampled 
points along the hierarchy. 

Following similar principles to ray tracing but aiming to reduce the variance, path tracing was 
proposed as a ray tracing algorithm in which the branching factor is reduced. Instead of tracing 
reflection and transmission rays at each intersection, only a single new ray is born from each 
intersection, as depicted in Figure 13. However, to keep the correct proportions between the 
different types of rays, the proper ray type to trace at each intersection has to be chosen based on the 
probabilities of the desired distribution. 

N
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Figure 13. Schematic representations of ray tracing and path tracing. 

Path tracing allows approximating the integration of the rendering equation through Monte Carlo 
sampling. However, when considering the differentiation of this process, the rendering integral 
presents discontinuities that make visibility parameters not differentiable at the object boundaries. 
These discontinuities in the screen space were already observed in Section 3.1.1, solved using 
antialiasing filtering. However, when considering the global illumination model, discontinuities also 
exist in the 3D space when computing the radiance, as objects may block the light received by the 
shading point. Li et al. [44] proposed a sampling technique for an unbiased differentiable path-
tracing renderer to solve this issue. 

Li et al. tackled the problem by locating the issue at the edges of the geometry. Even though Monte 
Carlo sampling could approximate the rendering equation integral and its derivative, the 
discontinuities made it impossible to capture changes caused by camera parameters or geometry 
translation. This was because, at the discontinuities, the derivatives were Dirac delta functions , 
depicted in Figure 14. Thus, traditional sampling techniques failed as they distribute the samples 
uniformly, being difficult to capture the changes in boundaries. 

 

Figure 14. Heaviside step function and Dirac delta function. 

Therefore, Li et al. proposed to model the edges causing discontinuities both in the screen space –
primary visibility– and in the scene space –secondary visibility– as Heaviside step functions , 
shown in Figure 14. Therefore, using the edges  to control the step function, the space was divided 
into two half-spaces (  and ) separated by a discontinuity. Formally, the Heaviside step function 
created by a triangle edge in screen space can be expressed as in Equation 2, where  and  are 2D 
coordinates in the screen space. 

δ

θ
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This formulation allowed transforming the integration of the pixel colors as the summation of the 
integrals of the Heaviside functions regulating arbitrary functions . Then, the objective of 
obtaining the gradient could be tackled by estimating the gradient of each Heaviside function. 

The analytic gradient of the step function gave the key result for the proposal. Using the product 
rule, the gradient of the integral of  by  could be expressed as a sum of two integrations, as seen 
in Equation 3. On the one hand, the first part presented the integral of the derivative of the step 
function , characterized as a Dirac delta function . On the other hand, the second part contained 
the integral of the gradient of the arbitrary function , whose content will be detailed later.  

Equation 3 revealed that the gradient could be estimated through two Monte Carlo estimators. The 
continuous spaces corresponding to the second term could be estimated by the traditional pixel 
integral using auto-differentiation. Meanwhile, the first term represented the discontinuities and 
could be estimated by explicitly sampling at the edges. Therefore, an explicit sampling strategy was 
proposed to compute the boundary gradients, recording the difference between both sides of the 
edge , following Equation 4. As in previous equations,  and  represent the half-spaces and  is 
the edge equation. Additionally,  and  represent the length and probability of selecting the 
edge , respectively. Both sampling strategies are depicted in Figure 15. 

Until this point, this formulation only covers the primary visibility. However, discontinuities can 
also appear in secondary visibility, caused by shading and shadows. Recalling Equation 3, 
Heaviside functions regulate arbitrary functions . These functions can also contain additional step 
functions, representing the operations needed to compute the color of the image’s pixels. In 
particular, they represent the integration of all the scene points  determining the shading of the 
evaluated point . 

When considering the shading integration, geometric silhouettes can block the influence of any 
point  over , introducing additional discontinuities. Therefore, the approach followed on primary 
visibility was generalized to secondary visibility, allowing a similar factorization as Equation 3 for 
the shading integration in three dimensions. Consequently, given  respect to , the shading 
gradient was computed by explicitly sampling the three-dimensional edges of potential blockers 
between them. However, sampling in secondary visibility is more involved than in screen space, as 
the shading point can be located anywhere. 
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To implement this specialized edge sampling, Li et al. proposed a scalable hierarchical sampling for 
an arbitrary viewpoint. Two volume hierarchies were generated: one containing all the edges 
belonging to a single triangle or to triangles non-smoothly shaded, and another containing the rest. 
Moreover, two traversals were applied. The first one aimed to detect the edges blocking the light as 
they had a more meaningful contribution, speeding up the process by excluding the non-intersecting 
volumes with the cone defined by the point and the light source. The second one sampled all the 
edges, computing their importance based on the length, distance, and response of the edge’s 
material. Finally, importance sampling was also applied internally for each edge based on the 
material, light sources, and perspective distortion. 

 

Figure 15. Sampling strategies proposed by Li et al. [44]. 

With this explicit Monte Carlo sampling of edges, the discontinuities could be explicitly captured, 
allowing for a differentiable pipeline concerning any arbitrary parameters in an unbiased way. Some 
restrictions were imposed, however, as triangle interpenetrations, point lights, and perfectly specular 
materials were not considered. Moreover, despite the implementation of importance sampling, the 
need for explicitly sampling the edges introduced a considerable bottleneck, increasing the 
differentiation's temporal costs. 

Striking to offer a new model improving the efficiency of the differentiable path tracing in [44] 
while producing unbiased results, Bangaru et al. [2] proposed a formulation based on area sampling 
to avoid explicit edge sampling. They also based their proposal on a partitioned definition of the 
integration domain , expressing the gradient over the image as the sum of the gradients of the 
integral for each subregion. In turn, similar to [44], they split the derivative of the integral for each 
subregion into a sum of two components: the interior derivative integral and the boundary 
derivative integral. 

Until this point, the result reached by [2] presented similarities with [44], finding the solution in the 
estimation of the continuous regions plus the estimation of the discontinuities. However, Bangaru et 
al. reached this solution by applying the Reynolds transport theorem [63] to measure the change in 
the boundary. This allowed them to model the boundary integral as the rate at which the domain 
expanded or contracted over the edge, which enabled the application of the divergence theorem. 

The divergence theorem relates the integral of a flux through a volume with the integral of the flux 
through the surface, making it possible to convert the boundary integral into an area integral using a 
warp field, avoiding explicit edge sampling as shown in Figure 16. Equation 5 shows the final 
formulation of the image gradient, where  is the domain minus the boundary ,  is the 
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warp field,  represents arbitrary scene parameters,  is the rendering function, and  is a 3D 
direction in the domain . 

However, the warp field had to be chosen appropriately to be continuous on  and closely match 
the true warp at the surface points. Therefore, Bangaru et al. proposed using the warp field obtained 
from the differentiated intersection function. Although this was consistent with the true values, it 
was not continuous. Therefore, a convolution over it was proposed using harmonic interpolation to 
generate inverse weights with the distance to the boundaries and make the warp continuous, as 
depicted in Figure 17. To avoid finding the closest boundary point, a simpler boundary test function 
tending to zero close to the boundary was used. 

 

Figure 16. Equivalence between the boundary and area integrals [2]. 

 

Figure 17. Graphic representation of the warp field proposed in [2]. 

Finally, with these ideas, a nested Monte Carlo estimator was established following the scheme in 
Figure 18. A secondary estimator was used for each sample generated through the primary estimator 
to compute the warp field. This Monte Carlo warp estimator fetched new samples, determining the 
boundary test and computing the convolution weights. Lastly, the warp estimation was obtained, 
making it possible to compute the gradient. To obtain an unbiased estimation, the warp field was 
determined with a high enough number of samples.  
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Figure 18. Nested sampling proposed by Bangaru et al. [2]. 

By converting the boundary integral into an area integral, Bangaru et al. provided a more efficient 
implementation unbiased inside some limitations, as the truncation in the number of samples used 
could lead to non-negligible bias depending on the memory constraints. Both the works of Li et al. 
[44] and Bangaru et al. [2] contributed to the development of the API pyredner [87]. Implemented 
in PyTorch, this library eases the use of differentiable rendering pipelines by providing the basic 
structures necessary for representing 3D scenes, such as meshes, materials, and cameras, as well as 
the required functions for rendering. Moreover, it is completely compatible with the auto-
differentiation provided by PyTorch, allowing its integration and ease of use in machine learning 
systems with tensors. 

3.2. NVDiffRec 

As introduced in Section 2.2.2, NVDiffRec [52] constitutes a system capable of reconstructing 
textured 3D objects from multi-view realistic images. In this section, we detail its principles and 
architecture, settling the bases for our first proposal, where we will apply this system over non-
realistic depictions. 

3.2.1. Description 

NVDiffRec's input comprises a set of images, masks isolating the target object, and the viewpoints 
associated with each image. The output is composed of a 3D triangular mesh, texture maps 
containing diffuse color, normals, and specular parameters, and an environment cube map. 
Therefore, shape, materials, and lighting are jointly recovered. 

The objective of NVDiffRec was to generate reconstructions compatible with standard 3D content 
tools. This extended not only its utility and applicability but also relegated tasks such as simulating 
and relighting to specialized external systems. These principles are reflected in the design of the 
various components of the system, summarized in Figure 19. 
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Figure 19. Summary of NVDiffRec [52]. 

First, the deformable tetrahedral grid from [17, 68] was used to represent the shape. Using 
Differentiable Marching Tetrahedra (MT) in each optimization step, the mesh was obtained and 
directly rendered. Therefore, explicit mesh optimization was performed. This compensated for the 
inherent discretization of the grid representation and its associated errors, allowing for a more 
closely refined shape. 

Second, to texturize the meshes, volume textures were chosen. This choice was due to the joint 
optimization nature of shapes and textures. 2D textures require a mapping from the 3D vertices to 
the 2D space, potentially introducing discontinuities during the optimization when the number of 
vertices and their position is not constant. Meanwhile, volume textures allow accessing them 
through space coordinates. This provides a smooth variation with positional or topological changes.  

The material model used for the textures was based on the PBR specification by Disney [8], 
continuing to look for compatibility. Therefore, materials with a diffuse term and a specular 
Trowbridge–Reitz (GGX) [73] lobe were considered. Three textures were used to characterize this 
material. Firstly, the diffuse texture contained the base colors. Secondly, the normal texture defined 
surface normals in tangent space. Finally, a specularity texture represented the roughness (green 
channel) and metalness (blue channel). 

An MLP was defined based on [82] to represent the volume textures, encoding the diffuse, normal, 
and specular values based on the spatial position. However, image textures needed to be generated 
to export the results in a standard format. To this aim, the optimization progress was divided into 
two phases. While the first jointly optimized shape and MLP materials, the second aimed to refine 
the materials, fixing the topology and allowing only minor surface refinements. In this second 
phase, learnable 2D textures were automatically mapped to the mesh and initialized based on the 
values provided by the MLP, further refining them progressively. 

2D feedback based on ground truth images and masks was used in the optimization. Key to this 
strategy was the use of differentiable rendering. For efficiency, deferred shading based on Lain et 
al.’s proposal was used [40], not considering reflections, refractions, or translucency. Moreover, the 
split sum approximation was used, dividing the rendering equation into two components: the 
integral of the Bidirectional Scattering Distribution Function (BSDF) under solid white lighting and 
the integral of the incoming radiance with the specular Normal Distribution Function (NDF). Both 
could be pre-integrated and stored, depending the first on the roughness and the cosine between the 
normal  and the incident light ray , while the second depended on the roughness and the 
direction of the outgoing ray . Equation 6 was obtained from the split, where  is the hemisphere 
around the desired point,  is the incident light in a direction,  is the characteristic function of the 
material, and  represents the surface’s microfacet distribution function. 
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The use of this approximation defined the representation of the environment map as a differentiable 
cube map. While the base level described the pre-integrated lighting on the lowest roughness, the 
lower mip levels accounted for increasing roughness. These were computed through differentiable 
filtering, allowing to learn the base map directly. Additionally, a single low-res cube map was used 
for the diffuse lighting, sharing learnable parameters with the environment map. To enable 
differentiability, the mipmap generation had to be applied after each optimization update. 
Nonetheless, the split-sum approach allowed for speed-up computation, thanks to requiring only 
two texture lookups when compared to other methods. 

Once rendering was applied over the mesh and materials given the view poses, feedback was 
generated to guide the optimization. NVDiffRec opted for an L1 loss for the images and a squared 
L2 loss for the masks. Additionally, multiple regularizations were applied. Firstly, light 
regularization was used to penalize the shift in environmental light color, as most of the real-world 
datasets contain neutral white light. Secondly, material regularization allowed for smooth material 
parameters. Thirdly, Laplacian regularization was only used on the second pass for maintaining the 
relative positions of the vertices and avoiding significant shifts. Finally, SDF regularization was 
only used in the first phase to avoid random structures in the models' interior, as they cannot be seen 
by the image or mask losses. 

3.2.2. Architecture 

The architecture used by NVDiffRec in its implementation is summarized in Figure 20. Throughout 
this section, we will provide a guided description of the different components detailed in this 
scheme. 

 

Figure 20. Architecture of NVDiffRec. 

NVDiffRec was implemented using Python and PyTorch. The system is built on the train.py file, in 
charge of the required initializations, running the optimization loop, and saving the results. By 
running this program, a new reconstruction can be obtained. A wide variety of arguments can be 
provided, either directly on the invocation or through a configuration file. The main ones are the 
following, being noted with dashes the direct command arguments and, without them, the 
configuration properties that can be defined on a JSON file: 
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• —config: configuration JSON file. 

• -i, —iter: number of iterations for the optimization of each one of the phases. 

• -b, —batch: batch size used for optimizing. 

• -r, —train-res: resolution of the images used for the optimization. 

• -tr, —texture-res: resolution for the generated image textures. 

• -lr, —learning-rate: learning rate used for the optimization. An individual learning rate for each 
phase can be specified. 

• -rm, —ref_mesh: path to the input. It can be either a mesh file or a data folder. 

• -bm, —base-mesh: path to a mesh file. If this argument is specified, this mesh will be used as the 
base for the optimization instead of the tetrahedral grid, skipping the first phase of the 
optimization. 

• envmap: path to the HDR environment texture. 

• learn_light: wherever the lighting should be optimized or not. 

• dmtet_grid: resolution of the tetrahedral grid to be used. It can be set to 32, 64, or 128 by default. 

• mesh_scale: scaling factor for the mesh. 

Once the arguments are processed, train.py proceeds to execute the corresponding initializations. 
Two main initializations are performed. Firstly, the input data is loaded. This is carried out in 
multiple ways depending on the properties of ref_mesh. On the one hand, if this argument points to 
a 3D mesh file, this object is used to render reference samples from random points of view, using 
them for optimization. 

On the other hand, if a folder is provided, the images and viewpoints are directly loaded. The 
loading process considers the folder's contents to keep compatibility with previous works, allowing 
training data from NeRF and NeRD. Independently of the input method, the images obtained 
integrate their masks on the alpha channel. At the same time, the viewpoints are specified through 
model-view and model-view-projection matrices for each image. 

Secondly, the environment map is either loaded if no lighting optimization is performed or 
randomly generated otherwise. In either case, a cube map is obtained, represented as a tensor of 6 
by 512 by 512 dimensions, and used to initialize an EnvironmentalLight object. Being a PyTorch 
module, this object presents a dual functionality.  

On the one hand, it is responsible for generating the specular and diffuse mipmaps from the base 
learnable one. This is performed by average-pooling progressively to generate the specular 
mipmaps, locating the diffuse cube map at the lowest resolution. Once generated, the maps are pre-
filtered with the GGX distribution using importance sampling.  

On the other hand, it also implements the shading function. Given the global position , normal , 
diffuse color , roughness , metalness , occlusion , diffuse lighting , specular lighting , view 
vector , reflection vector , and precomputed BSDF integration, the shaded color  is obtained 
following Equation 7. 
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Next, the reconstruction is executed. A new tetrahedral grid DMTetGeometry is constructed if no 
base mesh is provided, and a random MLP material is initialized. Then, after the first optimization 
loop, the estimated mesh is extracted, generating its texture coordinates through xatlas [89] and 
converting the MLP material to 2D textures. Finally, the second optimization loop is applied. If a 
base mesh was provided, the reconstruction jumps directly to the second phase with random 2D 
material textures. Once the optimization finishes, the reconstruction is exported as an OBJ file for 
the mesh, PNG textures for the material, and an HDR image for the cube map. 

The optimization loop applied in all instances follows the same structure. First, the learning rate, 
learning rate scheduler following Equation 8, image loss function –being the default the log L1–, 
Adam optimizer, data loaders, and Trainer object are set up. Note that warmup in Equation 8 is a 
variable that takes a value of zero in the first phase and a value of 100 in the second phase. Then, 
for every training batch of the set repeatedly for the number of iterations, a training step is applied 
to the Trainer. From it, image losses and regularizations are obtained, being able to backpropagate 
the gradient to the geometry, material, and lighting parameters. 

The Trainer object is responsible for obtaining the losses to optimize the reconstruction. Internally, 
the construction of this object is simple, being a derivation of the PyTorch nn.Module class. 
Basically, it stores all the needed attributes for the optimization, setting up its parameters to all the 
learnable parameters in the scene. Then, for each forward pass, it generates the environment light 
mipmaps by calling the function in EnvironmentalLight and runs the function tick inside the 
geometry object to perform the rendering and compute the loss. Therefore, the Trainer object can be 
considered as a wrapper for these functions. 

The tick function is critical to the process, as it calls the rendering function, allowing it to compute 
the losses and regularizations. Depending on the optimization stage, this function can be called in 
two different classes. 

On the first pass, optimization is performed over the tetrahedral grid, represented by the class 
DMTetGeometry. This PyTorch module stores the vertices of the grid, the vertex indices of each 
tetrahedron, the SDF values of each vertex, and the displacement of each vertex, making the last 
two optimizable. This object presents a method for mesh generation, encapsulating the class DMTet, 
which implements the MT algorithm. 

DMTet constitutes a functional class that transforms the tetrahedral grid representation into 
triangular meshes. The algorithm starts by identifying all the tetrahedrons located on the defined 
geometry's surface. In other words, the tetrahedrons whose number of vertices with positive SDF 
value is in the range  are selected. Then, all the unique edges are obtained, filtering out those 
whose vertex SDF values present the same sign. From the remaining, the position of the intersection 
of the edge with the mesh surface is computed as in Figure 8. Once the intersections are calculated, 
triangles joining them are defined using a look-up table containing all possible intersection cases. A 
total of 16 exist, being the different possible orientations and sign permutations of the non-empty 
cases in Figure 8. With the faces of the mesh defined, the algorithm performs a last step to generate 
texture coordinates for the vertices by evenly placing the triangles in a 2D space based on their ID. 

(8)lr (iteration) =
iteration
warmup if iteration < warmup

max (0,10−0.0002(iteration − warmup)) otherwise

]0,4[
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Finally, DMTetGeometry also contains the classes required for rendering the geometry and the tick 
method. While the former runs DMTet to obtain the explicit mesh and calls the render function over 
it, the latter obtains the rendered images to compute the Mean Squared Error (MSE) of the alpha 
channels, the image loss over the remaining channels, and the regularizations. As this class 
corresponds to the first pass, SDF, albedo, visibility, and white balance regularizations are 
computed. The first penalizes the change of sign between the vertices of unique edges. The albedo 
and visibility regularizations penalize the difference between the values and the jittered values for 
smoother variation. Finally, the white balance regularization computes the average per-channel 
difference with the average intensity. 

On the second pass, the optimization is performed over DLMesh. This class works directly over 
triangular meshes, making its vertex positions trainable. Its structure is very similar to 
DMTetGeometry, presenting mostly the same functions. In this case, the normals and tangents of the 
mesh are computed automatically before rendering. Moreover, as it is linked to the second pass, the 
used regularizations change, replacing the SDF regularization with a Laplace regularization for 
penalizing the vertices’ change in relative neighboring positions. 

Two main components remain to be detailed. First, the file render.py settles the differentiable 
renderer through hierarchically related functions. The function render_mesh corresponds to the head 
of the hierarchy, performing the full render and being the one used by DLMesh and 
DMTetGeometry. This function gathers the viewpoint matrices and converts the mesh vertices into 
clip space. Once in clip space, the scene is rasterized, interpolating vertex attributes such as the 
world positions, world normals, world tangents, texture coordinates, and texture coordinates 
derivatives, similarly to Section 3.1.1. Finally, from this raster, shading is performed using the 
shading function defined in the EnvironmentalLight map, generating the rendered image on a single 
pass. Composing operations can be performed afterward by using the alpha channel, as well as 
rendering other properties instead of shading, such as normals or specular parameters. 

However, to apply shading, an important intermediate step is required. The material properties need 
to be obtained from the attributes in the raster. Depending on the pass, the materials, represented by 
the Material PyTorch module, can be accessed in two different ways. For the first past, the property 
kd_ks_normal can be sampled directly using the global position of the vertices, obtaining all the 
material properties at once. For the second pass, the texture coordinates are used to sample the 
individual diffuse, specular, and normal properties. 

This behavior of Material is because it is designed like a dictionary, offering properties that the 
renderer can access. The key feature is that these properties represent textures as PyTorch module 
parameters that can be sampled using the appropriate coordinates.  

During the first pass, the kd_ks_normal property stores an MLPTexture3D object. In turn, this object 
defines a hash grid positional encoding module in 16 levels connected to a sequential network of 
two hidden layers of width 32 with ReLu activation and a final layer of nine channels. Meanwhile, 
in the second pass, each material property is linked to a Texture2D. This PyTorch module represents 
a learnable image texture stored as a tensor and its associated mipmaps. For accessing the textures, 
both the texture coordinates and their derivatives are used. 

Lastly, as shown in Figure 20, validation is applied after each training phase. If desired, this 
operation takes a validation set of images, masks, and viewpoints to generate renders of the current 
reconstruction and compare them with the ground truth. The MSE and the Peak Signal-to-Noise 
Ratio (PSNR) are used as metrics for the comparison, not contributing to the reconstruction while 
constituting a good reference to study its performance and progress. 
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4. Development 

Once the relevant technologies and previous research have been presented, we proceed to detail our 
proposals. We aim to tackle the problem of 3D reconstruction from multi-view drawings. To this 
end, we make two proposals inspired by the use of inverse rendering techniques. Firstly, we will 
propose using NVDiffRec over the domain of non-realistic images. We will present a pipeline for 
using this existing system, highlighting the challenges for its use and how they can be approached. 
Secondly, we will leverage the architecture and principles proposed by Goel et al. [20] and 
introduce modifications for using it over the domain of sketches. 

Therefore, this section will first define the problem we will be considering throughout this work and 
the justification for our approach. Then, we will detail both of our proposals. It is worth mentioning 
that both of them correspond with papers developed as part of our research. The first proposal 
corresponds with the work we presented at the 14th Asian-Pacific Workshop on Mixed and 
Augmented Reality [9]. Meanwhile, a second paper was elaborated from the development of our 
second proposal, having been sent to the 31st International Conference in Central Europe 
on Computer Graphics, Visualization, and Computer Vision. However, at the time of writing, the 
acceptance result of our second paper has yet to be published. 

4.1. Problem statement and justification 

We desire to obtain a system capable of automatically processing sketches to obtain 3D 
representations. In our work, we will only consider sketches represented as plain 2D RGB(A) 
images. Moreover, we will be working on the multi-view setup of this problem. This means that  
sketches will be considered, depicting the sketched object from different points of view. To properly 
consider the multi-view framework, we assume the number of images to be . Additionally, in 
contrast to previous reconstruction efforts over sketches, we will also consider the color in them as 
a relevant property. This extends our potential scope, ranging from simple line sketches to more 
complete levels of colored drawn illustrations. 

Given the multi-view references of a drawn target object, we desire to obtain a three-dimensional 
geometric representation resembling said object. However, drawings and sketches present 
inconsistencies due to the artist's skill and the subjectivity involved in the process, especially in the 
multi-view context. In most cases, this will make it impossible to find a single object capable of 
exactly matching and representing all the views. Therefore, rather than a perfect reconstruction of 
the target object, we will aim to obtain a reasonable approximation that contains the same visual 
essence and meaning as the desired object.  

Similarly to [52], we will aim for compatibility with standard 3D content tools. Consequently, we 
will look for the generation of triangular texture meshes whose materials will be characterized 
through 2D RGB textures. 

With this problem statement, we draw inspiration from the inverse rendering approaches developed 
for reconstruction over realistic images to build our proposals. The reasons behind this choice, 
striking a difference from the previous methods for automatic sketch reconstruction, are multiple.  

Firstly, previous works on the same domain do not consider color, proposing techniques focused on 
obtaining untextured shapes. When considering the recovery of both geometry and materials, the 
closest references are found in the realistic domain.  

N

N ≥ 3
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Secondly, previous methods rely on deep generative modules to extract enough three-dimensional 
information to build the reconstructions. This implies that training is required to set up these 
modules, which can be troublesome as the amount of available paired data of hand-drawn sketches 
and 3D shapes is limited. This can lead to generalization issues as synthetic datasets are used for 
training. Moreover, these approaches tend to be trained for particular object classes, making the 
generalization to any class difficult. By leveraging the optimization techniques based on inverse 
rendering, we can tackle the problem through optimization, allowing for a generic system capable 
of working over differently styled sketches and potentially any object class. 

Finally, the works in realistic reconstruction have shown that inverse rendering optimization is a 
powerful framework capable of delivering promising and good-quality results. However, as far as 
we know, this technique has never been applied to sketches directly. By approaching the problem 
through inverse rendering, we aim to determine if this technique is suitable for drawings, providing 
a new point of view for the domain of sketch 3D reconstruction. 

Due to the nature of the techniques used in our proposal, some additional information will be 
needed to be able to perform the reconstruction. In particular, it will be required to augment the 
available sketches with information regarding the segmentation masks for the target object and the 
viewpoints corresponding to each drawing. We will propose generic alternatives for computing this 
information from images, aiming to apply them over sketches and drawings to see their viability. 
However, we will primarily focus on the reconstruction tasks, especially on our second proposal, 
leaving the deeper study of mask and view pose estimation from sketches for future work. 

4.2. First proposal: using NVDiffRec 

As we have presented in Sections 2.2.3 and 4.1, optimization-based approaches have a higher 
generality by nature when compared to deep learning methods. The limitations on their applicability 
for any domain reside in the assumptions taken during their design. Nonetheless, in general, as their 
operation is not limited by the number of cases seen in any training, they present a broader scope.  

With these ideas in mind and given the promising results of NVDiffRec and their higher external 
compatibility, we aim to apply this system to non-realistic images. To do so, it was first necessary to 
determine the characteristics that the input images needed. As seen in Section 3.2, for being able to 
apply a reconstruction with NVDiffRec, it is required: 

• A set of multi-view images of an object. In our case, the collection of plain 2D sketch images 
depicting a target from multiple points of view. 

• A set of masks, one for each image, preserving the target object and hiding the rest. These will be 
provided as the alpha channel of the drawings in our case.  

• A set of view matrices, one for each image, describing the position and orientation of the camera 
used to capture the image. In our case, the fictional viewpoint from which the sketch was drawn. 

Given a collection of multi-view images without masks and viewpoints, such as is the case with 
illustrations, obtaining this information can be challenging. While the masks can be easily included 
in the design if we consider digital art, generating them for drawings already rendered or made 
traditionally is more complicated. Moreover, the need for camera information can be limiting. 
Given an illustration drawn from an arbitrary viewpoint by an artist, defining the exact 
mathematical point of view of the object is an even more challenging problem to overcome.  
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In this section, we present a workflow for using NVDiffRec with illustrations. As we consider a 
broad range of possible completeness levels and styles for the illustrations, we include two 
pathways in our workflow. On the one hand, we will present an automatic approach for mask and 
viewpoint generation using state-of-the-art techniques. On the other hand, we will also cover the 
manual methods. Figure 21 shows a summary of this workflow. 

  

Figure 21. Summary of the proposed workflow.  

Dashed arrows are conditional paths. Multi-view drawings and sketches represented as 
images are taken. First, mask generation is applied, either manually or automatically. 
Then view poses are generated either with prior information or automatically using 
COLMAP and adapting the results. Finally, images, masks, and views are used in 
NVDiffRec to obtain a textured model. 

4.2.1. Generating masks 

For identifying the target object that we want to reconstruct, it is required that we provide 
NVDiffRec with masks indicating which pixels belong to the target in each image. Given a set of 
2D images that are not masked, we can follow two possible approaches to mask them:  

• Process all images manually with an edition software such as Gimp or Photoshop to alpha mask 
everything except the target. This can allow more accurate results, with the tradeoff of being 
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much more costly from a user standpoint. For considerable amounts of data, it becomes 
unfeasible. 

• Automatically analyze the images to identify the target object and mask it. This is also known as 
object segmentation. Image segmentation constitutes an open problem for which broad research 
exists with many good solutions, although none is perfect. This kind of automatic generation can 
be prone to error depending on the target object and can easily introduce faulty masks that can 
mislead the reconstruction. However, it allows the generation of masks for big volumes of images 
at a much lower cost.  

The election of the method for generating masks will depend on the application, the complexity of 
the target object, and the number of images. When considering reconstructions from sketches or 
drawings, potentially created as concept art for designing characters or objects in the entertainment 
industry, the number of images available for a single reconstruction will be low. However, their 
complexity could be potentially high. In this case, manual mask generation may be effective, 
especially for artists already working with digital drawing tools, requiring less effort. Despite it, 
when a high number of reconstructions need to be generated and, therefore, many objects are 
illustrated, it may still be convenient to rely on automatic mask generation. 

When considering automatic mask generation for our experiments, we opted for using Detectron2’s 
API [78] and the PointRend model [36] to identify recognizable objects and their segmentation 
masks. By joining all the segmentations, we generated the mask of the image. This approach has the 
inconvenience of occasionally introducing outlier objects in the masks or masking out the target. 
Therefore, we removed from the set those images that, after masking, were empty.  

4.2.2. Generating view information  

NVDiffRec uses rendering to generate images comparable with the given samples to obtain 
feedback and guide the optimization. Therefore, knowing the view matrix associated with each 
sample is necessary to render it correctly from the same viewpoint relative to the object.  

Given that we have a set of multi-view images with no camera information, we need to generate the 
view matrices in a way that is consistent with the target object, keeping the transformations between 
views compatible with the images. In this case, we can also identify two different approaches:  

• If the images follow a known uniform transformation relationship between them, we can 
programmatically simulate this transformation for each image and generate the corresponding 
view matrices.  

• When the images do not follow a known uniform distribution, estimating the view matrices can 
be a challenging problem. Indeed, this falls under the umbrella of research areas such as 
Structure-from-Motion (SfM) [67] and camera pose regression [66]. Therefore, to automatically 
generate image pose information, we must face an open problem and recur to the developed tools 
in these areas.  

Again, choosing the approach to follow depends on the use case we face. Throughout Section 5.1, 
we will present three use cases that will exemplify the application of the different strategies we have 
described. However, before that, we consider it appropriate to give a more detailed insight into how 
camera views can be obtained.  
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When considering the first case, a clear example we will be facing in Section 5.1 is when the 
provided sketches depict the turn-around of an object. Turn-around animations are a common way 
of clearly presenting objects. By displaying the target through multiple views, turning the camera 
around the vertical axis of the object and tracing a circle of a given radius  around it, we can show 
all its geometric and color features. Especially when looking at character design, it is common to 
find turn-around depictions of such characters using a few views around them. This special case of 
multi-view setup allows for an easier camera pose estimation. Assuming that the angle turned 
around the vertical axis is constant between images, we can compute the view matrix by 
progressively turning the camera around the scene's center at a fixed radius and incrementally for 
each image. In this way, the turning angle in each step will be computed as  radians divided by 
the number of images. 

In contrast, when the source images available do not follow a known uniform transformation, 
computing the camera for each image following the previous approach seems unfeasible. Therefore, 
the second approach needs to be used. For our experiments, we decided to use COLMAP to 
automatically generate viewpoints, given its widely available documentation, good performance, 
and ease of use. 

As seen in Section 2.2.4, this system allows processing large amounts of images and using their key 
points to find the spatial relations between them, generating a point cloud representation of the 
scene. As a result, from multi-view images, COLMAP estimates the camera pose of each image. 
However, the compatibility between COLMAP and NVDiffRec is not direct.  

 

Figure 22. COLMAP center estimations for different view distributions. 

Left, COLMAP estimation of a uniformly distributed scene view. The origin falls at the 
center of the object. Right, estimation of a non-uniformly distributed view in a different 
scene. The origin does not fall in the object. 

Firstly, COLMAP and NVDiffRec have different coordinate systems, being the Z and Y axis 
inversed in one respect to the other. Secondly, COLMAP also estimates the origin of the coordinates 
of the scene. Given that this point depends on the camera distribution, as shown in Figure 22, the 
center generally does not match the target's center unless a uniform view distribution is given. This 
causes a disparity between the render and the ground truth because NVDiffRec places the mesh at 
the origin, but in the estimated view by COLMAP, the target is not at the origin. Therefore, to 
properly use the views estimated by COLMAP in NVDiffRec, we must determine the object's 
center in the coordinate system estimated and use it as a new origin. We explored two solutions to 
accomplish this. 

On the one hand, if we do not know the nature of the object and its location in the different views, 
we can only consider the view poses to estimate the real origin. To do so, we can assume that, as the 
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samples capture a single object from different viewpoints, the camera positions are approximately 
distributed on the surface of a sphere of radius  around the target.  

Given these considerations, we can locate the new origin by finding the sphere that most closely 
explains the camera positions. Moreover, we can also guide our decision by considering the 
cameras' looking directions. To solve this problem, we designed a Greedy Randomized Adaptive 
Search Procedure (GRASP) algorithm that, given camera positions and looking directions, tries to 
approximate the desired sphere by heuristically generating solutions and saving the best one. 
Section 4.2.3 details this algorithm. 

On the other hand, we can use additional information to get a better estimation. In some cases, such 
as the one we will present in Section 5.1, we know that the target will always be located in a 
concrete region of the screen. Therefore, we can assume a known bounding box inside the images 
that always contains it. This is a reasonable assumption as, when taking multi-view samples of an 
object, it is usually kept in the same area of the image. Moreover, a single bounding box could be 
easily defined by a user. 

With this bounding box (BB), we can use the information generated by COLMAP to filter the point 
cloud of the scene and then compute the center of this filtered version. Filtering is archived by 
applying a voting scheme such that each key point inside the BB in an image receives one vote. 
After analyzing all the samples, we can preserve the  most voted key points. Therefore, the center 
can be computed as the weighted average, using the votes as weights.  

This approach is intuitive as key points of the target should be more commonly seen. However, it 
can be limited by the requirement of specifying a bounding box depending on the use case.  

Finally, we can obtain a new averaged center using both estimation methods. For this alternative, 
we proposed applying a weighted average between the centers of each estimation, computing the 
required weights using Equation 9. In this equation, given  as the set of all cameras with look-at 
vector  and position , the cosine of the angle between the view and the direction to the point  is 
measured for each camera. Then, this measure is inverted and accumulated, decreasing the weight 
with the increase of accumulated value. Therefore, we compute the weights by giving higher 
importance to the points better aligned with the views and presenting a smaller angle with the view 
directions. 

4.2.3. GRASP algorithm for sphere estimation 

Finding the sphere that best describes the view distribution of a set of cameras constitutes an 
optimization problem for which exact methods would be unfeasible in big datasets. Therefore, we 
try to find an approximation in a reasonable time using a Greedy Randomized Adaptive Search 
Procedure (GRASP) algorithm.  

Our implementation reduces the sphere estimation problem to the task of finding four cameras 
whose positions describe a sphere that approximates the distribution of all the views. Consequently, 
our GRASP can focus on generating solutions formed by a sequence of four camera positions. After 
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obtaining these points, the center and radius of the sphere can be obtained by applying the general 
equation of the sphere.  

Algorithm 1 presents our GRASP proposal for sphere estimation. Following the general scheme of 
this type of algorithm, every iteration has two phases:  

• A constructive phase in which  solutions are generated. Each solution is built step by step, 
adding progressively new elements (camera positions). The first element is picked randomly 
among all the points. Then, every subsequent element is added semi-randomly, considering the 
cost of every remaining option as the inverse of the sum of the distances to each point in the 
current solution. In this way, we favor a more dispersed set of points. The best solution of the  
generations is stored if it improves the current best solution.  

N

N
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Algorithm 1. GRASP Sphere Estimation.

1: function sphereEstimation(points, dirs)
2:     distances ← distanceMatrix(points)

3:     max_r ← 2 · max(distances)

4:

5:     for _ ← 1 to max_iterations:

6:         for _ ← 1 to N:

7:             sol ← { random(points) }

8:             for _  ← 1 to 3:

9:

10:                 costs ← dists(cands, points)-1

11:                 cmin ← min(costs)

12:                 cmax ← max(costs)

13:

14:

15:                 if cost(sol) < best_cost and radius(sol) < max_r: 

16:                     best_sol ← sol 

17:                     best_cost ← cost(sol) 

18:         for _ ← 1 to max_depth:

19:             neighs ← getNeighbors(best_sol) 

20:             for sol in neighs: 

21:                 if cost(sol) < best_cost and radius(sol) < max_r: 

22:                     best_sol ← sol 

23:                     best_cost ← cost(sol) 

24:                 else:

25:                     break

26:     return sphere(best_sol)

                sol ← sol  { random(cands) } ∪

                cands ← points  sol∉

                cands ← { c  cands | costs[c]  cmin +  · (cmax – cmin) }∈ ≤ α

    best_sol ← , best_cost ← ∅ ∞
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• A local search phase in which the algorithm tries to improve the current best solution by exploring 
its neighborhood. For generating the neighborhood, we take the indices of each point in the 
current solution and displace them randomly and circularly, one value up, down, or maintaining 
the value. With the new indices, we can find a neighboring set of points. In all iterations,  local 
solutions are generated. If none is better than the current solution, the search stops. Else, the best 
replaces the current, and the exploration continues up to the maximum depth.  

Once the algorithm reaches the maximum number of iterations, the center and radius of the sphere 
described by the best solution can be obtained. Note that we define the best solution as the one that 
allows obtaining a sphere that minimizes Equation 10, where  is the sphere's center,  is the radius, 

 is the set of all cameras described by a look at vector  and a position , and  is defined in 
Equation 9. As it can be seen, this function measures how well-aligned the center of the current 
solution sphere is with the viewing directions and how consistently placed at a distance  it is. It is 
important to point out that, to avoid the sphere growing excessively, the radius of any solution is 
limited for it to be considered a valid solution. In our experiments, we used a fixed number of 
iterations of 1000, N of 20, M of 60, max depth of 50,  of 0.6, and the maximum allowed radius to 
double the maximum distance between cameras.  

4.2.4. Implementation 

For implementing the automatic paths of the workflow proposed in Figure 21, we extended the 
publicly available implementation of NVDiffRec with two additional dataset managers inheriting 
from the NVDiffRec class Dataset. Firstly, we integrated a newly DatasetSketchTurnAround class 
for loading the datasets involving the turn-around multi-view case. Secondly, a class 
DatasetColmap was added, integrating the automatic mask generation and view pose estimation of 
the images. 

The class DatasetSketchTurnAround presents a basic behavior similar to the rest of the dataset 
managers in NVDiffRec. After loading  image sketches as reference samples, the corresponding 
model-view matrix for each image is generated. This is possible by a fixed translation of the camera 
of two units in the Z axis towards the viewer, and a rotation of the said camera around the vertical 
axis (Y), following an angle of  multiplied by the ID of the image in the sequence, being the 
first one the ID zero. Finally, an orthographic camera is used to generate the model-view-projection 
matrix due to the common nature of sketches. As far as we know, NVDiffRec has not been tested 
under orthographic views before our work. 

The class DatasetColmap involves a longer process in its preprocessing step. We extended the 
program’s flags to apply additional operations after loading the images in this class: 

• —use-bb: this corresponds to the second alternative to the scene center estimation. When this 
option is true, the flag bounding_box is read as it is supposed to store the bounding box inside the 
images. The bounding boxes are defined through the upper-left and lower-right corner pixel 
positions. 

• —center_estimation: this argument allows the choice of the center estimation technique. The 
GRASP Sphere Estimation algorithm is used if “grasp” is provided as a value or a BB was not 
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provided through —use-bb. If “averaged” is used, then the average center between the GRASP 
and the BB estimation is utilized. Finally, the BB estimation is used otherwise. 

Once loaded the images, DatasetColmap processes them to generate automatic masks by using the 
detectron2 API [78] and the pertained PointRend model provided by it, as described in Section 
4.2.1. Optionally, this estimation can be improved using the bounding box by directly masking out 
all the content outside it, as well as by deleting the samples completely masked inside the bounding 
box region after the segmentation.  

From all the images without masks, COLMAP is executed over them using the pycolmap API [88] 
to extract features, match them, and generate the view poses and the scene point cloud from them. 
After properly transforming the points and views to NVDiffRec’s coordinate system, the GRASP or 
the BB center estimations are applied and optionally averaged. While the first works only over the 
estimated cameras, the second uses the point cloud and its corresponding protections over each 
image provided by COLMAP. Once the new center is found, all the camera views are remapped to 
the new coordinate system origin, being able to use them for the reconstruction. 

4.3. Second proposal: modifying the SFT architecture 

Our first proposal aims to study whether the state-of-the-art reconstruction techniques over realistic 
multi-view images can be applied directly over illustrations. As seen in Section 4.2, we propose 
using NVDiffRec due to its promising reported results, compatibility, and generality of use. 

 

Figure 23. Summary of our second proposal.  

Given multi-view sketches, masks, and view poses, an initial mesh is estimated using 
projections into a voxelated space. The initial mesh and random colors are refined 
through differentiable path tracing until obtaining the reconstruction. 

However, even though the nature of this kind of optimization-based approach allows for applying it 
over any kind of image by providing the required inputs, it is important to keep in mind that we are 
working outside the intended domain. Even though the system may allow enough generality to be 
used outside its original target domain, its core components will always be better tailored and tuned 
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to work on it. This implies that, over other domains, the expected performance will be generally 
lower than the original one, being equal in the best possible scenario.  

Moreover, some features may not be required for the new domain. In the particular case of drawings 
and sketches, NVDiffRec includes components such as the reconstruction of specular and 
environment maps, which are not really required in our case. Illustrations, especially when made as 
design references, generally present a constant illumination and do not realistically reproduce 
specularities. Including the estimation of these parameters in the optimization raises the level of 
uncertainty and the number of variables, increasing the difficulty of the task and wasting resources. 

With these ideas in mind, it may be convenient to use the principles of inverse rendering 
optimization to build a more tailored solution for the domain we are tackling. As seen throughout 
Chapter 2, this scheme has not been previously used directly over drawings as far as we know. 
Therefore, we propose developing an inverse rendering optimization system for 3D reconstruction 
over multi-view illustrations by modifying the proposal of Goel et al. [20]. Even though we will 
focus mostly on sketches and flat-closed drawings in this proposal, it is important to note that the 
introduced system could also be used with higher-level illustrations. 

As mentioned in Section 2.2.2, Goel et al. proposed a system for optimizing meshes from multi-
view realistic images, which we will refer to as SFT. In this section, we detail the modifications we 
propose to apply over SFT to make it suitable for the domain of sketches and colored drawings, also 
gathering inspiration from some aspects of NVDiffRec. Our modifications fall into four areas: 

• Sketches do not generally require realistic materials or complex lighting, as we will further see in 
Section 5.1. Therefore, we replace the BRDF materials with a single purely diffuse material and 
fix the environment map to completely white. Consequently, the system's input is reduced to 
multi-view plain image drawings, masks isolating the target –assumed to be represented by the 
alpha channel of the provided images–, and the view poses of each image, similarly to 
NVDiffRec. Even though requiring the view poses keeps being a limiting factor when working 
with sketches, the need for camera information is inherent to inverse rendering approaches. To be 
able to focus on the reconstruction, in this instance, we will assume them as known, being already 
provided to the system. 

• Simultaneous optimization of mesh and materials is possible, as shown by [27, 35, 52]. We 
replace the alternating scheme proposed by Goel et al. with joint optimization, followed by a 
long-tail refinement of the colors inspired by the double-phase setup of NVDiffRec. Even though 
disjoint optimization can allow finer geometric detail [20], the detail requirement in sketch 
reconstruction is generally lower, given that inconsistencies difficult the correct capture of finer 
details. Therefore, simultaneous optimization can lead to good results with fewer steps. 

• Goel et al. reset the material to a neutral grey after remeshing, discarding the estimated color in 
the previous material phases. This was done to avoid the propagation of any possible error during 
the optimization. However, we argue that completely discarding the color reduces the system's 
efficiency and increases the required optimization steps. In contrast, we propose a resampling 
scheme to recover the color partially, allowing the following steps to build upon the previous base 
color while still reducing the impact of possible previous errors.  

• While Goel et al. used a single Mean Squared Error loss over the images to optimize either 
geometry or color, we guide the refinement process using split losses for shape and color, as well 
as regularizations. The use of split losses is motivated by our joint estimation of shape and color. 
By splitting the loss, we can tailor the function guiding each component, reducing the impact of 
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inconsistencies and joint uncertainty. Moreover, the use of regularization is motivated by the 
higher inconsistency of our task, requiring further guidance toward reasonable solutions.  

Nonetheless, our system also presents common elements with Goel et al.’s work. These are the 
refinement over an initial mesh, using the mesh colors data structure proposed in [81], and using 
remeshing for solving potential artifacts and degenerations. The following sections present the 
solution in more detail, and Figure 23 summarizes it. 

4.3.1. Optimization scheme 

Given the sketches, masks, and viewpoints, an initial mesh is optimized to represent the sketched 
object. Goel et al. experimented with several mesh initialization techniques, such as voxel carving 
or using COLMAP to generate an initial mesh from the estimated point cloud structure, reporting 
the best performance with the latter. However, sketches and flat-colored drawings usually contain 
few key points, rendering COLMAP generally inadequate to obtain meshes from them, as further 
discussed in Section 5.1 and Chapter 6. Instead, we use a simple visual hull estimation based on 
parallel projections from a given subset of sketches into a voxelated occupancy space.  

Given a subset of reference views the user provides, we project their footprint orthogonally into a 
voxelated space following the viewing direction. Therefore, the total shape can be computed as the 
intersection of all the voxelated projections. Then, a mesh is obtained through marching cubes, 
remeshing, and simplification. It is important to note that, to keep the resolution of the mesh low, 
the images are scaled down before projecting their silhouette. 

To encode the colors linked to the mesh, a mesh colors data structure is used instead of textures 
[81]. With this representation, colored samples can be associated with a triangular mesh by storing 
them in a single vector. The number of samples per triangle depends on the mesh colors resolution 

, which defines the level of simulated subdivision inside the triangle. The lowest resolution is 
, used when there is only one sample at each vertex. Augmenting  behaves like imaginarily 

tessellating the triangles adding more color samples, increasing the colors per edge to  and the 
colors per face to . We fixed  to three in our system. 

Therefore, given the triangle ID , the resolution , and the barycentric coordinates  of a 
sample with  and , the index  of the sample in the color vector is computed 
with Equation 11. 

As we can see, this representation allows us to directly link the triangles to their colors, making it 
possible to perform sampling with barycentric coordinates. By using this representation, we can 
directly optimize the color vector as the mapping is coherent and direct to the mesh, independently 
of the geometry. Therefore, like in NVDiffRec and SFT, we avoid the need to optimize both colors 
and mappings between mesh vertices and image textures. 

With this setting, the refinement involves optimizing the mesh vertex positions and the color vector. 
These parameters compose a 3D scene containing a single object in the origin that, when rendered 
from the viewpoints provided, is converted into 2D images. These images can be, in turn, compared 
with the references using loss functions. Finally, the differentiable rendering allows using gradient 
descent optimization to update the parameters jointly.  

R
R = 1 R

R − 1
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4.3.2. Losses 

Losses are essential for our system, as they will be in charge of guiding the optimization toward a 
desirable reconstruction. Therefore, they must account for the properties of the task and the 
desirable features of the result. Our objective is to obtain a colored 3D triangular mesh that 
resembles the sketched object. However, sketches are not consistent descriptions but interpretations 
of the world. Consequently, we do not aim to find a replica but a reasonable approximation. In this 
way, the losses should be designed to allow enough flexibility to tolerate inconsistencies inside the 
range of reasonability while still capturing the features of the target object. 

The main losses must inform the characteristic shape and colors of the sketched target. Instead of 
capturing both with one loss [20, 35], we establish dedicated losses. This not only allows better 
tailoring but also helps to reduce uncertainty in joint optimization as the changes in color and shape 
are explicitly separated, easing the process. Our proposed losses are: 

• Color loss. Color details in sketches are inconsistent when considering the multi-view case. 
Sketch lines have two uses: conveying the surface color detail and representing geometric 
features. Both produce color feedback when applying image metrics, but only the former 
corresponds to true color information. Moreover, the second type is inconsistent between views. 
This can be visualized when considering outline lines, as they change with the silhouette of the 
target throughout different views, always tangent to the camera. We use a Laplacian pyramid loss 
[4] for comparison at different resolution levels to deal with these issues. Coarser levels inform 
the general color. Meanwhile, finer levels reinforce consistent lines, while inconsistent lines are 
overtaken by coarse color feedback. In this way, we can capture the general surface colors while 
ignoring the geometry-related lines. Equation 12 presents the formulation for our color loss where 

 and  are the rendered and reference images;  is the number of levels (which we fixed to 
three);  is the Gaussian filter function;  and  are the number of pixels and channels of 
the image; and  represents the image scaled down by a factor of . 

• Silhouette loss. Due to the inconsistency in color and general lack of shading in sketches, the 
silhouette defined by the masks is the primary source of shape information. We can capture this 
information using the Mean Squared Error between the reference and rendered masks. Even 
though the outline can also present inconsistencies, this loss balances the feedback among the 
references, averaging them. This is our intended behavior as, when considering multi-view 
sketches, especially when dealing with character design, it is possible that some parts of the target 
present a slightly different pose. Choosing which one should be the right one is highly difficult 
and ambiguous, as any of them would correspond with the desired object. Therefore, we consider 
it appropriate to strike a balance by averaging the solution so the result tends to be the most 
consistent shape between different views. Equation 13 models this loss, being  and  the 
rendered and ground truth masks.  
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With these losses, we can capture the desired shape and color, guiding the solution toward them. 
However, the solution must also present some desirable features, such as non-degeneration and 
smoothness. Therefore, to guide the reconstructions toward these desirable properties and to help 
narrow down the solution space, we define additional regularizations: 

• Shape regularization. It favors a smooth mesh and avoids degeneration, being its use inspired by 
NVDiffRec. Equation 14 formulates it, where  is the set of vertices;  obtains the set of pairs of 
vertices that form a face with the input; and  is the angle at a vertex  in a given triangle. This 
regularization was designed by adapting the curvature flow smoothing presented in [57] because 
it allows a more uniform smoothing under uneven mesh distributions –as the mesh is optimized, 
we cannot grant a priori an even distribution–. 

• Normal regularization. In our case, we estimate the normals automatically from the optimized 
vertices. Therefore, this loss favors meshes that induce automatic smooth normals. Equation 15 
defines it based on Laplacian regularization defined in [52] and [57], which we apply over the 
normal vectors instead of vertices to penalize high differences between normals inside a 
neighborhood. In this equation,  and  are the one-ring neighborhood and normal of a vertex.  

• Color smoothness regularization. This loss favors color uniformity inside the same triangle. We 
accomplish this by choosing  samples at random each time we compute the function, estimating 
the average difference between the first and the rest of the samples. Through the optimization 
steps, this function favors uniformity between samples without prioritizing any given sample. 
Equation 16 defines it, where  is the set of triangles,  is the color vector, and  is the color 
of a randomly chosen sample in . We set  to five in our system. 

• Spring regularization. Inspired by [30], it aims for a minimum solution by disfavoring 
overgrowing and balancing triangle sizes. Equation 17 defines this function, which measures the 
total edge length of the mesh. 

Finally, during our experimentations, we observed that shape and normal regularizations can still 
lead to overgrowing of the shape. However, shape regularization is crucial to avoid extreme 
degenerations as it controls the relative positions of the vertices, avoiding triangle interpenetrations. 
Therefore, we settled on balancing both regularizations by, on the one hand, applying decay to the 
normal regularization and a general low weight to the shape regularization to reduce the tendency to 
overgrow. In contrast, on the other hand, to keep control, avoid degenerations, and maintain higher 
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topology stability, especially in later stages, a progressive weight increase is applied to the shape 
regularization. We settled for a smooth linear increase in the shape weight while a fast logarithmic 
decrease for the normal, the latter to avoid falling into the overgrowing tendency. The total loss is 
expressed by Equations 18, 19, and 20, where  is the maximum number of iterations and  is the 
current one.  

4.3.3. Remeshing and resampling 

With the aim of avoiding overgrowing of the reconstruction, we proposed the decay of the normal 
regularization while keeping the weight of the shape regularization generally low. Despite the 
increase in shape regularization weight during the process, this still leaves room for the appearance 
of slight shape degenerations. Taking inspiration from SFT, we apply periodic screened Poisson 
reconstruction to fix any possible shape artifact, followed by simplification to keep the number of 
faces constant.  

However, this has the disadvantage of interfering with color estimation, as mesh colors are linked to 
triangle IDs, which are their respective index positions in the internal tensor. When remeshing, a 
new mesh is generated, redefining the vertices and the faces. As a result, triangles in the same 
spatial position generally have different IDs, shuffling colors along the surface. Therefore, part of 
the progress is lost, and colors must be refined again.  

Instead of reinitializing the color as in [20], we propose a sampling method to recover lost progress. 
By storing a copy of the mesh before the remeshing, the colors of the new mesh can be updated by 
sampling it. From now on, we will refer to the input and output meshes of the remeshing as  and 

, respectively. Similarly, the color vectors of the input and resulting meshes will be named  and 
. With this notation, the resampling procedure performs the following steps:  

• For each triangle  in , it computes the world coordinates  of every color sample inside  by 
using the barycentric coordinates to interpolate the triangle’s vertex coordinates [81]. 

• For each triangle  in , it computes the center  by averaging the positions of its vertices. 

• The distance matrix from every color sample in  to each triangle center in  is computed. This 
allows finding the closest triangle of  to each sample in , obtaining the set: 

• For every pair in , the barycentric coordinates of the projection of  into  can be obtained, 
following the proposal in [28]. With them, the index  in  of the projection is computed [81]. By 
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also obtaining the index  of  in , the color value  of the original mesh can be copied into  
for the new mesh. 

In summary, this approach finds the closest color in  for each sample in . By assuming 
topological similarity between a mesh and its remeshed version, the colors for the new mesh are 
expected to be the same as the closest points in the original mesh. This is reasonable, as Poisson 
remeshing tends to generate a smoother version of the original mesh, preserving the initial topology 
unless very degenerated meshes are provided. 

Our algorithm finds the closest triangle using the distance to its center. Even though this can fail in 
some cases, such as with very stretched triangles and samples near their extremes, it is generally a 
good approximation, allowing an efficient implementation with matrix operations. Additionally, it 
can be compensated by finding the  nearest triangles in  for each , averaging the colors 
obtained for the  projections. This has a blurring effect, recovering a less detailed version of the 
original colors. However, this same effect also has the advantage of diminishing any possible error 
of the previous mesh, allowing for an easier correction by the optimization process. Nonetheless, 
the general colors are still restored, being able to take advantage of the previous progress to 
complete the color estimation further. We fixed the number of nearest triangles sampled to three. 

4.3.4. Implementation 

We implemented the system described so far by using Python and PyTorch. Therefore, all our 
internal data structures supporting the system are based on tensors. We leveraged the pyredner API 
as a differentiable rendering pipeline for our system, providing us with the required components and 
data structures to manage 3D scenes. This rendering pipeline was chosen because a differentiable 
ray tracing renderer can reveal artifacts hidden by local lighting, which helps to reduce ambiguity.  

By default, the materials defined by pyredner are based on color constants or image textures as 
tensors. To use mesh colors on pyredner, Goel et al. modified the API to extend the materials to 
work correctly with one-dimensional tensors representing mesh colors. However, this was 
performed two years before our work and was never included in the official pyredner distribution. 

Consequently, for using mesh colors in the current distribution of pyredner, we decided to modify 
the currently available source code distribution to include mesh colors, following the modifications 
performed by Goel et al. on the older version. We accomplished this through manual inspection and 
comparison between pyredner’s source files and the modified files available at Goel et al.’s 
repository, making the proper changes to add mesh color support. Most changes fell onto materials, 
their underlying texture structures, and their sampling, extending textures to support one-
dimensional tensors accessed through the triangle IDs and barycentric coordinates. Once the 
pyredner’s source code modifications were performed, the library was compiled and installed using 
its default installation script setup.py. 

Building upon these bases, our system follows design conventions inspired by NVDiffRec. The 
code train.py presents the optimization system, which parses the input, loads the proper resources, 
runs the optimization, and saves the result. The main arguments of the system are: 

• -i, —iterations: total number of iterations for the optimization. In each iteration, all the reference 
images are used to optimize the mesh. 
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• —mesh: path to the initial mesh we wish to optimize, which is expected to be formatted as an 
OBJ file. 

• —texture-samples: number of samples used to generate image textures from the optimized mesh 
colors. 

• —texture-refinement-steps: number of iterations used to refine the image textures. 

• —batch-size: we apply batch optimization. Therefore, in each iteration, the provided image set is 
divided into mutually exclusive subsets of size equal to the batch size, being the parameters 
updated once per subset.   

• —remeshing-interval: it indicates the remeshing period. Given a value , the remeshing operation 
will be applied every  iterations. 

• —longtail: it defines the number of iterations dedicated to joint geometry and material 
optimization. Once this number of iterations is reached, the rest of the process focuses on color 
refinement. 

• —views: path to the JSON file containing matrices defining the camera rotation around the origin 
of coordinates for each view.  

• —cameras: path to the JSON file containing the camera positions and up vectors for each image. 

Once processed the arguments, the reference images and cameras are loaded as tensors. The images 
are expected to be RGBA, defining their mask on the alpha channel. For the cameras, it is always 
assumed that their looking direction is toward the origin of the scene. When the —views argument is 
used, the position and up vector of each camera are computed from the matrix, fixing the camera at 
a distance of two units from the origin. When —cameras is used, the positions and up vectors are 
directly employed to set up the pyredner.Camera objects for each image. Cameras in the former 
case are assumed to be orthographic, while cameras in the second case can be either perspective or 
orthographic, determined by their JSON configuration. 

Next, the initial mesh is loaded using utils provided by pyredner. The result is a pyredner.Shape 
object whose vertices tensor property is prepared to be optimized. Additionally, a new 
pyredner.Material object for the mesh is created, using only a diffuse component defined from a 
uni-dimensional mesh colors texture, initialized randomly. The underlying tensor for the material is 
also prepared to be optimized. With the required components, a list of pyredner.Scene objects can be 
built for each reference image, containing the reference to the proper camera, shape, material, and a 
fixed common white environment, also previously loaded.  

While train.py manages the optimization loop, running it for the number of specified iterations, our 
defined class Optimizer executes the optimization. Given the shapes, materials, target images, and 
configurations, Optimizer sets up the Adam optimizer and our Remesher class. Then, an 
optimization iteration can be applied by running its step function. Internally, this method performs 
an optimization step for each batch, computing the losses depending on the training status and 
properly updating the parameters. Additionally, once finished the iteration, it manages the use of 
remeshing to repair the mesh if appropriate. 

Remeshing is performed through our Remesher class. This class encapsulates the remeshing process 
by using the screened Poisson and simplification operations provided by pymeshlab [53], applying 
our proposed resampling over the result. Therefore, after every remeshing step, the optimized mesh 
is replaced by the newly generated mesh. 

n
n
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As stated at the beginning of Section 4.3, we employ a long-tail optimization approach inspired by 
NVDiffRec. This consists of optimizing the shape and colors jointly until a given iteration later in 
the process, when the geometry is fixed, and only the color continues to be optimized. This aims to 
compensate for the interference of the remeshing step in the detail of the color estimation and to 
allow a better color refinement once all vertices remain still. Given the initial configuration, 
Optimizer automatically applies this scheme. If the remeshing interval is not zero, remeshing is also 
used right before fixing the geometry. 

Once the optimization is complete, the results are exported. To keep compatibility with external 
tools, the estimated color for the mesh needs to be converted into a 2D texture format. To do this, 
we rely on a second optimization phase inspired by NVDiffRec. This phase is targeted to generate 
image textures from the current optimization. Therefore, high-quality renders from random 
viewpoints around the mesh are generated as reference samples from the reconstructed mesh. Then, 
based on these samples, a random image texture is linked to the fixed mesh and optimized to 
reproduce the same appearance as the mesh colors. This optimization uses a simplified operation of 
Optimizer without remeshing or long-tail, using as loss functions the color loss in Equation 12 and 
the texture smoothness regularization in [52], being their weights 10 and 0.002 respectively. The 
number of optimization steps for the image texture is given by —texture-refinement-steps. 

Before closing the section, making some final remarks about the implementation is important. Early 
in the development phase, we considered optimizing a tetrahedral grid by using the Differentiable 
Marching Tetrahedra similarly to NVDiffRec, leveraging their DMTet implementation. However, it 
was observed that this kind of representation tends to generate holed meshes, being difficult to 
obtain a uniform shape, as it will be further shown in Section 5.1. Therefore, we discarded this 
alternative to use triangular meshes (as Goel et al. [20] did) and regularizations. 

Additionally, it was observed that the automatic generation of normals for the mesh after each 
update using the tools provided by pyredner could lead to undesired cases of inverted normals. This 
situation blocked the color optimization, as the surfaces were rendered as purely black. To detect 
this situation and reverse the generated normals, a naive approach of generating a low-resolution 
render of the mesh with purely white material and measuring the level of black was used. 

As we have seen, our system requires the initial mesh to be optimized. This was done to increase 
modularity and make the optimization procedure independent from the initial mesh estimation. 
Given a subset of reference samples and viewpoints, the initial mesh can be generated following our 
proposed strategy through our script build_initial_mesh_v3.py. This script takes as inputs the JSON 
file describing the images and view rotations (—cameras), the desired result filename (—output), 
and the scale-down factor for the source images (—reduction). From them, numpy vectors are used 
to define the voxel projection for each image and obtain the final voxel representation, which is 
converted into a mesh using the mcubes API [91]. Post-processing is applied to scale down the 
model using the images as references, as well as to remesh and simplify the mesh using pymeshlab. 

Lastly, to increase the robustness of the system, we implemented a custom checkpoint mechanism. 
Said system, encapsulated by the classes CheckpointManager and TrainingStatus, saves the 
optimized mesh and color vector at fixed intervals during the optimization, as well as a status file. 
Then, based on this file, automatic recovery of the last checkpoint is enabled when relaunching the 
optimization, helping to recover the progress in case of any failure. 

When considering our proposal, some configurations are fixed in our experiments unless otherwise 
stated. A batch size of four samples is used, and the initial mesh is estimated from a frontal and a 
side sample. Additionally, optimization renders use one bounce and four samples. Finally, ten 
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reference views, 100 steps, and a texture resolution of 2048 by 2048 pixels are used for image 
texture generation. We use a learning rate of 0.005 for the reconstruction and 0.05 for the texture 
generation. 
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5. Results 

Given our two proposals, this section will be structured into two main subsections. Firstly, we will 
present the experimentation carried out with NVDiffRec over the domain of non-realistic 
depictions. The objective of this section will be to help determine the viability of this system and 
our suggested workflow for the task, studying the degree of generality of NVDiffRec. For this, we 
will present several use cases over which we will observe NVDiffRec’s performance.  

Secondly, we will present the results obtained with our proposed system. We will introduce the 
datasets used for its evaluation, perform the ablation study of our contributions, and compare the 
system with NVDiffRec and SFT. This later comparison will aim to determine if our proposal 
adapts better to sketches compared to more generic approaches designed for realistic images. 
Additionally, this section will also perform a controlled study on how different quality factors in 
sketches affect the reconstruction, which will be key for determining our system’s weaknesses and 
where future research efforts should be led. 

5.1. First proposal 

Our first proposal had a dual intent. On the one hand, by using the state of the art in inverse 
rendering reconstruction, we aimed to determine the adequacy of this method for its application 
over illustrations. On the other hand, we wanted to determine if the promising NVDiffRec was 
general enough to be applied to our domain successfully. Therefore, the experiments in this section 
were designed to this extent. We experimented with NVDiffRec over three use cases.  

5.1.1. Use cases 

Our use cases represent three situations of interest that allowed us to apply NVDiffRec under 
different conditions. In essence, these studies accomplished the purpose of using the system and the 
proposed workflow, allowing us to better determine their usability and appropriateness for our 
intended task. These experiments were performed before our second proposal as an initial proof of 
concept, and their results helped us to know how to guide and continue with our research. 
Therefore, these use cases do not aim to test NVDiffRec over drawings exhaustively but instead 
allow a general idea of its capabilities and usability. A more formal evaluation will be carried out in 
our comparison segment in Section 5.2. 

Sphere. As our first use case, we introduce a simpler instance to observe NVDiffRec’s base results 
under the sketches domain. We present a digitally drawn circle, already masked and shown in 
Figure 24. By repeatedly providing this image from multiple views around the scene's center at a 
fixed distance, we aimed to simulate the multi-view samples of a sphere. Two approaches were used 
to generate the view matrices: 

• Simulating a turn-around of 28 frames around the vertical axis. 

• Generating completely random rotations around the scene's center at a fixed distance. This 
method implies that samples are generated dynamically during the optimization, providing a new 
random viewpoint each time. 

This use case is inherently simple by nature. However, it has the advantage of presenting highly 
consistent samples, allowing a custom number of reference samples, and being the black outline 
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line the major inconsistency between views. Therefore, this allows observing the results obtained 
under a reasonable base case. 

 

Figure 24. Reconstruction results for the drawn sphere. 

Left to right, ground truth, estimation by NVDiffRec with turn-around, estimation with 
random rotations, and estimation with Visual Hull [34, 94] with turn-around. 

 

Figure 25. Sketches depicting the partial turn-around of a fictional dog.  

The complete set of frames, created by Anja Regnery, can be found in [62], containing 28 
reference views. 

Dog sketches. In this use case, sketches of a dog like the ones in Figure 25 are available, 
corresponding with the 28 frames of a complete turn-around animation. This use case was kindly 
provided by Anja Regnery [62], and it represents a real hand-drawn set of sketches depicting a 
fictional dog character from multiple views. Therefore, the benefit of this example is that it fully 
represents our task, having the advantage of presenting a wide set of samples to use reconstruction.  

To use the dog sketches with NVDiffRec, we generated their masks and the camera poses for each 
frame. Due to the reduced number of images, we opted for generating the masks manually using 
Gimp, alpha masking outside the black outline, and erasing the ground line. This provided us with 
higher precision masks. In contrast, the view matrices for each frame were estimated thanks to the 
turn-around nature of the source, following the strategy we have detailed in Sections 4.2.2 and 
4.2.4. As black-and-white lined sketches are simple in nature, they contain a limited number of key 
points. This heavily limits the applicability of COLMAP to this kind of sketch, usually failing in 
this case. Consequently, automatic viewpoint generation has to be reserved for more detailed cases. 
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Game character. The last use case we propose consists of reconstructing the character of a third-
person view game in which the camera can freely move around it. However, some remarks must be 
made about the election of this use case. 

The reason for this example resides in the non-realistic-looking nature of the content –like a 
painting– and the ease of generating samples. As previously mentioned in Section 4.1, by 
considering the color of the drawings, we extend our scope to more completed and detailed types of 
illustrations. This use case helps us simulate a more complete scenario than sketches, allowing us to 
explore our automatic workflow better. Nonetheless, its similarity to actual drawings is only partly 
due to its high geometric consistency through views given its synthetic origin. Additionally, it 
allowed us to obtain many samples, which, even though it enables dataset sizes closer to what was 
initially intended in NVDiffRec, is unfeasible with real drawings. Despite these issues, we still 
consider it a practical example as it allowed us to deal with challenging automatic mask generation 
and view estimation, studying their effects on the reconstruction.  

For this use case, we took a screen recording of a game as a sample source, depicting the camera 
moving around the standing character. By extracting all the video frames, we obtained a total of 921 
multi-view images of said character.  

 

Figure 26. Samples corresponding to the game character use case.  

From top to bottom, the original samples, the samples masked automatically with 
PointRend, and the samples with improved masks using a bounding box. 

Given the nature of the capture method used to generate the samples, there is high variability in 
their contents. Moreover, as the camera was controlled manually during the recording, we cannot 
assume uniformity in its movements. Furthermore, the camera’s movement is random and cannot be 
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either assumed. Therefore, for obtaining the masks and camera poses of these samples, we relied on 
the automatic approaches through Detectron2 and COLMAP, respectively detailed in Sections 4.2.1 
and 4.2.2. Figure 26 shows some examples of the resulting samples. 

5.1.2. Results  

In this section, we report the reconstruction results for each one of the use cases presented in 
Section 5.1.1. Our evaluation of these results will be mainly visual, relying on image metrics and 
manual inspection. While the most challenging cases are the dog sketches and the game character 
use cases, a reference 3D shape does not exist for the former, and the character model for the latter 
is not openly available. 

It is important to note that, for all the experiments detailed with NVDiffRec, we used 5000 
iterations, random initial textures, texture resolution of 1024 by 1024 pixels, batch size of four, grid 
resolution of 128, and reconstruction in two phases with learning rates of 0.03 and 0.003. When 
COLMAP estimation was needed, we used all the full-resolution images available without masking. 
Shared parameters were used for the cameras and default configuration for the remaining attributes. 

Sphere. In this case, we used orthographic cameras, matching the nature of the reference sample. 
Figure 24 shows the meshes obtained with NVDiffRec when estimating the simulated sphere. For 
the sake of comparison, the same estimation obtained through a more classic approach, the Visual 
Hull algorithm, is also provided. The Visual Hull reconstruction was generated thanks to the 
algorithm implementation in [34, 94] by providing the masks of the 28 images of the turn-around 
setup and their associated camera views, obtaining the intersection hull of all projections. 

The results obtained with this toy example already reveal a tendency that will be recurring 
throughout this work when dealing with NVDiffRec. As can be seen, the reconstructions generated 
by NVDiffRec closely match the sphere silhouette given the reference viewpoints. However, 
especially in the turn-around case, we observe many holes and strange topologies for the surface, 
being the 28 segments “engraved” into the shape. This is because the lack of shading on the 
sketches relegates all the geometry information to the silhouette. Additionally, as NVDiffRec uses 
local lighting, there is no self-shadowing when rendering the mesh, not revealing the holes in the 
renders. Consequently, as holes do not generate feedback, the only feedback regarding shape is the 
silhouette. This can also be seen in the improvement with random views compared to the turn-
around. As the number of silhouettes seen from different viewpoints is higher and more varied, the 
shape is more closely approximated. Nonetheless, in this simple case, Visual Hull offers a far better 
reconstruction alternative as it does not produce holes and closely approximates a perfect sphere. 

Dog sketches. Several tests were performed with this use case. The first experiment was executed 
using a perspective camera projection, environment light optimization, and a training resolution of 
550 by 550 pixels. All 28 sketches were used for training. The progress result saved by NVDiffRec 
during the last iteration can be seen in Figure 27.  

The same tendencies as with the sphere can be observed in this case. NVDiffRec tries to 
approximate the silhouette of the dog and the general shape obtained when rendering from the given 
viewpoints. However, the lower parts of the body, such as the tail and paws, are not recovered. This 
can be attributed to the inconsistency between the projection in the sketches and the perspective 
camera, as the extremities –further from the center– are the most affected areas by the perspective 
deformation. As reference sketches tend to avoid perspective deformation, they are usually more 
closely explained by an orthographic projection. Furthermore, we can also appreciate how the grey 
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lines are reproduced using the lighting instead of the textures. Effectively, this is also caused by the 
lack of shading in the sketches, which increases the ambiguity regarding the effects of illumination 
and materials. 

  

Figure 27. Results saved on the last training iteration in NVDiffRec (initial experiment). 

From top to bottom, left to right, rendered mesh, ground truth, environment map, diffuse 
texture, specular texture, and normal map. A grey background has been added to the 
diffuse map to increase its visibility. 

 

Figure 28. Results saved on the last training iteration in NVDiffRec (second experiment).  

From top to bottom, left to right, rendered mesh, ground truth, environment map, diffuse 
texture, specular texture, and normal map. The environment map is a fixed pure white 
color, while a grey background has been added to the diffuse map to increase its visibility. 

Therefore, we repeated the same training using an orthographic projection and fixed white 
environment light to improve the reconstruction. The result can be found in Figure 28. It can be 
observed that orthographic projection allows for a closer matching of silhouettes and outlines 
between reconstruction and sketches. Moreover, the tail and paws are now recovered thanks to the 
lack of perspective distortion.  

However, we can still observe how the reconstruction presents very sharp surface features and 
holes, having a similar defect to the sphere turn-around where the segments are integrated as surface 

69



Application of 3D reconstruction techniques for realistic images over drawings and sketches

features. Even though the silhouettes are detailed from the reference viewpoints, the general 
topology and views from other angles do not match the expected shape when considering a dog. 
This phenomenon has two main causes. On the one hand, the SDF-based representation discretizes 
the appearance of geometry, only generating new faces when the values change sign, easing the 
modeling of holes. On the other hand, as discussed previously, the source's lack of shading and the 
use of local lighting hide these holes from the optimization, avoiding their refinement. We will refer 
to this reconstruction phenomenon as the “shadow puzzle” effect. We can also see that the sketch 
lines were integrated into the material this time but on the specular map. This shows that there is 
still ambiguity regarding material behavior due to the lack of shading. 

Finally, we increased the number of samples trying to add additional silhouettes to improve the 
reconstruction inspired by the results over the sphere. We accomplished this by generating two 
additional frames between the existing ones thanks to AnimeInterp [43], a frame interpolation 
system specially designed to work over cartoon animations. With this technique, the number of 
samples was increased to 84, and the experiment was repeated using all of them. Figure 29 shows a 
comparison of the meshes obtained with each experiment. Again, the reconstruction obtained via 
Visual Hull [34, 94] with the set of 28 samples has also been added for reference. 

 

Figure 29. Reconstructed meshes for the dog from the front and top.  

Left to right, perspective, orthographic, orthographic interpolated, and Visual Hull 
estimations. 

As we can see from the comparison of the results, the shadow puzzle effect is still significantly 
present despite increasing the number of available samples. However, we can see a slight increase 
in silhouette definition and quality. We argue that this points to the fact that more side views are not 
necessarily required. Instead, top and bottom silhouettes would be necessary to further reduce the 
appearance of holes, reproducing the results seen in the sphere. Unfortunately, these cases cannot be 
explored as top and bottom sketches for the dog are not available. 

However, it is relevant to note that, in this case, the silhouettes of the reconstructions provided by 
NVDiffRec are more detailed and recognizable than the reconstruction provided by Visual Hull. 
This shows that the flexibility offered by NVDiffRec due to its optimization nature can surpass the 
fitting capability of the more rigid nature of Visual Hull under challenging scenarios with 
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inconsistencies. Therefore, the application of inverse rendering optimization approaches is still 
relevant. 

Game character. A total of 921 images of 1920 by 1342 pixels were obtained by extracting all the 
frames from the source video. While all of them were used for the COLAMP estimation, 737 were 
employed to build the training split, and 184 formed the validation split. These splits were 
automatically masked, removing from the resulting sets the empty images and resizing every 
sample to half size.  

We divided the experiments into two groups to study the effects of the center estimation and the 
masks. On the one hand, we performed experiments in which the different strategies for center 
estimation were applied with automatic masks. On the other hand, experiments with improved 
masks were carried out for comparison. In all cases, perspective cameras were used to match the 
ground truth images, the training resolution was 960 by 671 pixels, and the lighting was learned.  

Table 3. Validation metrics for the game character reconstruction (initial experiments). 

The average MSE and PSNR were obtained from 132 validation samples with 
reconstructions of the game character for different center estimations with automatic 
masks. 

 

Figure 30. Game character reconstructions with maps (initial experiments).  

The reconstructions for different center estimations on the game character are compared 
with the first validation sample. In each set, left to right, GRASP, BB, and averaged. 
Images have been cropped for visibility.  

Estimation MSE ↓ PSNR ↑

GRASP 0.008 23.77

Bounding box 0.008 23.90

Averaged 0.008 23.93
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Application of 3D reconstruction techniques for realistic images over drawings and sketches

Firstly, we applied independent NVDiffRec optimizations with the same images for views estimated 
with different center estimations, namely GRAPS, BB projection, and averaging both. Table 3 
presents the numeric results provided by NVDiffRec in validation, reporting the image metrics of 
the reconstruction renders compared with the ground truth. Figures 30 and 31 visually show the 
obtained reconstruction. It is important to note that, after the masking and filtering, the dataset for 
these experiments was reduced to 517 samples for training and 132 for validation. 

 

Figure 31. Generated 3D models for the game character (initial experiments). 

Both frontal and back views are displayed. Left to right in each set, GRASP, BB, and 
averaged estimations. 

We can see that the results are similar for all center estimation techniques. Looking at Table 3, the 
averaged and BB estimations obtain slightly better PSNR, although the MSE is similar in all cases. 
Figures 30 and 31 show that the differences are found in details like the hair shaping and the surface 
texture. This is reasonable as the center difference is relatively small and mostly displaced in the 
vertical axis. Therefore, given that the camera estimation by COLMAP is consistent enough, the 
reconstructions are robust to this vertical displacement of the center as we are still located around 
the tetrahedral grid. However, the difference in the estimation can be clearly seen in Figure 31, as 
the center of the resulting meshes is different. 

It is worth noting that all cases fail to recover the hands, and the feet are very roughly reconstructed.  
On the one hand, the former is because the hands are usually not correctly included in the automatic 
masks, being mainly classified as not part of the target. On the other hand, the feet are generally 
well captured, but they are small, being rounded off and merging with the thicker part of the boots 
during reconstruction. We can also observe that the models have an implicit rotation. This is due to 
the COLAMP estimation of the system of coordinates. Even though we displaced it, we did not 
modify its imposed orientation, causing the whole scene to be rotated. However, this is not a critical 
issue as it only affects the result's rotation and does not interfere with its reconstruction, being easily 
rectifiable over the obtained mesh. 

Secondly, we used the best center estimation techniques to evaluate the effects of the masks on the 
result. Given that we had assumed the availability of the BB containing the target, we used this 
information to improve the masks. As reported in Section 4.2.4, we did this by automatically 
masking anything located outside the bounding box and filtering out those samples whose bounding 
box interior was empty. This method allowed for more refined masks, obtaining 501 training and 
124 evaluation samples.  

We again tested the reconstruction for the BB and the averaged origin estimations but this time with 
the improved masks. Table 4 shows the metrics obtained in validation for all models over the 
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validation set with improved masks. Note that the enhanced masks only help reduce the noise but 
do not improve the character's silhouette. Figure 32 shows a visual comparison of the estimated 3D 
models. 

Table 4. Validation metrics for the game character reconstruction (mask experiments).  

The average MSE and PSNR were obtained from 124 improved validation samples with 
reconstructions of the game character with automatic and improved masks. 

 

Figure 32. Models obtained for the game character without and with improved masks.  

Both frontal and back views are shown. In each set, left to right, estimation with normal 
and improved masks, top to bottom, average, and BB estimations. All models have been 
rotated for the comparison; the original orientations were as in Figure 31. 

The reconstructions with the improved masks are visually similar to the initially obtained ones. 
Looking at Figure 32, we can see a slight increase in the sharpness of the textures. Regarding the 
3D shape, we can observe small improvements in the shaping of the hair. In Table 4, we can see that 
the models trained with improved masks perform numerically better than those trained with fully 
automatic masks.  

These results are reasonable because, as we said previously, the masks improved by the bounding 
box only help reduce the noisy parts outside it and better detect the samples where the character is 
erroneously masked out. Given that the amount of filtered images is low, reducing the set from 517 

Estimation MSE ↓ PSNR ↑

Bounding box 0.004 25.03

Averaged 0.006 23.85

Bounding box+ 0.003 27.73

Averaged+ 0.003 27.77
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training images to 501, the improvement on the reconstruction can only be minor in this particular 
case. Moreover, filtering noise outside the bounding box mainly helps at a geometric level as the 
generation of far-floating geometry is avoided, which is reflected in the results with averaged 
estimation. However, given the simplicity of the approach, we still consider that its improvements 
are beneficial as they help reduce the geometric and color noises in the reconstruction. 

5.2. Second proposal 

Our second proposal aimed to adapt existing inverse rendering techniques for reconstruction over 
realistic images to increase their suitability for sketches and flat-colored drawings. Therefore, our 
objective through this section will be double. First, we will evaluate our system to determine the 
effect and relevance of our proposed modifications, analyzing how the system reacts under different 
challenges commonly present in sketches. Second, we will study how the results of our tailored 
proposal compare to those obtainable with standard approaches not adapted to the domain, 
exploring the relevancy and effectiveness of our proposal. 

5.2.1. Datasets 

With the aim of higher control over the datasets, allowing us to perform a detailed study of our 
proposal, we opted to test our system over two synthetic examples. Even though synthetic sketches 
overlook the subjectivity of hand-drawn samples, not fully representing our task, they are a 
baseline. When working with samples without subjectivity interference, we work under the best 
case possible for our system, and the results obtained should be evaluated accordingly. Additionally, 
using synthetic sketches allowed us to alter their quality freely, enabling the study of different input 
factors. 

We gathered two existing 3D models to generate sketch-like reference samples: Axolotl [13] and 
Vasque [14], processing them to fit a cube of two units. These models present different desirable 
features for our evaluations, being both of medium complexity. While Axolotl presents multiple 
colors, roundness, and asymmetries, Vasque presents sharp edges, concaveness, and symmetry 
around the vertical axis. Therefore, these models are representative of different frequent features in 
common objects. 

 

Figure 33. Models used and synthetic sketches in three styles. 

For generating synthetic renders reproducing a sketched appearance, we used Blender and its 
Freestyle module as rendering pipelines due to their flexibility, familiarity of use, and powerful 
automatization through Python scripting. We generated synthetic samples for each model in three 
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styles representative of the most common use cases: lined sketches without color, flat-colored lined 
sketches, and flat-colored sketches without lines, shown in Figure 33. Each generated set contained 
128 training and 128 validation random view samples of 512 by 512 pixels. The views were 
distributed on the surface of a sphere of radius five around the center of the scene, always looking at 
it. From now on, we will refer to the flat-colored lined sketches as the reference set.  

We also generated modifications of the initial datasets to study different quality factors. This was 
done in all cases by modifying the generation pipeline to alter the quality attributes of the multi-
view samples. In each modified dataset, only the property under study was changed, keeping the 
rest of the generation parameters as the reference set for comparison. However, it should be noted 
that the views between different datasets may differ due to the random nature of the view 
generation. This is compensated by the fact that we will be using a completely random generation, 
and a high number of views is mainly considered, being able to assume a uniform distribution of 
viewpoints and, therefore, negligible effects over the reconstruction. 

Finally, to complete the evaluation of our system, we applied it to real hand-drawn sketches. 
However, as mentioned in Section 2.1, the available paired datasets containing both sketches and 
3D models are very limited, even more when considering the multi-view case. During this work's 
development, we found two publicly available datasets providing hand-drawn sketches and 3D 
models.  

On the one hand, Xiao et al. [79] proposed a dataset of multi-view sketches corresponding to 3D 
models of different categories drawn by people with varying skill levels, containing 3620 sketches. 
Through their work, they presented a quantitative analysis of the difference between professional 
and novice sketches and how the proposed dataset enabled synthesis and reconstruction-related 
tasks. Despite the desirable features of this dataset, such as the explicit multi-view of the sketches, 
their hand-drawn nature, and the availability of models, it lacked relevant information required for 
our system. Even though a multi-view setup was provided, the camera poses used for the views 
were not included in the set. Moreover, given the simplicity of the renders and sketches, it was not 
feasible to use COLMAP for their estimation. Therefore, using [79] in our system was not viable. 

On the other hand, Gryaditskaya et al. [23] presented a work analyzing the properties and features 
of technical sketches and the taxonomy of the lines involved in their design. As part of their 
research, they generated a dataset of hand-drawn technical sketches from 3D models called 
OpenSketch. Even though this dataset was not explicitly multi-view, each participant designed the 
given object sketches from a different view, allowing to obtain multi-view samples by collecting the 
drawings made by various participants. Furthermore, this dataset, although smaller than [79] with 
180 sketches, included information such as the camera estimation for each view, vectorial 
representations of the sketches, time stamps, and labels for the lines of a subset of 107 drawings. 
Despite all the available information in OpenSketch, its use in our system proved challenging.  

Firstly, as far as we could study, the camera poses provided did not allow for a direct 
correspondence between sketches and 3D models, as the drawings were not centered. This made the 
matching between renders and illustrations inappropriate for reconstruction through our system by 
default. Moreover, the sketches lacked masks, and the more abstract nature of the depicted objects, 
joined with the disconnectedness between sketch lines, made it difficult to obtain them 
automatically. This showcases the high requirements that the inverse rendering approach imposes 
on the input data, which we will discuss in Chapter 6. Given the considerable amount of difficulties 
that the use of OpenSketch presented and the high deviation of focus that would have implied 
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overcoming them, we decided to discard the use of this dataset to concentrate our efforts on the 
evaluation of our system. 

Therefore, to study the system over real scenarios, we designed a custom dataset. In particular, we 
manually drew four canonical views for four different imaginary objects, namely Plane, Shrimp, 
Vase, and Abstract, scanning and masking them. The viewpoints were manually defined thanks to 
the canonical nature, meaning we used views related to the object's elevation, plant, and profile. To 
compare the results against a 3D model, we manually created low poly 3D objects from those 
sketches. This will allow us to measure the system reconstruction against the human-made 3D 
interpretation of the sketches.  

5.2.2. Baseline results 

As our first experiment, we performed two reconstructions for each initial training set: one using 
remeshing and one without it. This allowed us to obtain the base metrics for our system that will be 
the point of comparison throughout the ablation and quality factors study. In all cases, 30+3 
iterations were used, meaning the last three only refined color following our long-tail scheme. 
When remeshing was used, it was applied every two iterations. We will refer to this configuration as 
the reference configuration from now on.  

 

Figure 34. Baseline results on different styles. 

We evaluated the reconstructions in the model and image spaces using the generated validation 
images and the original models. For the image domain, we measured the Mean Squared Error 
(MSE), Peak Signal-to-Noise Ratio (PSNR), Structural similarity (SSIM), and Learned Perceptual 
Image Patch Similarity (LPIPS). The latter was measured based on Visual Geometry Group (VGG), 
using the function provided by torchmetrics [90]. Meanwhile, the Chamfer distance was measured 
to evaluate the similarity between models in 3D space. To compensate for possible scale 
mismatches between the compared objects, we measured the pure Chamfer distance and the 
distance after scaling the reconstruction to fit the largest dimension of the reference model. In this 
way, cases with different scales but similar topologies are not penalized. 
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Figure 34 and Table 5 show that the results present an acceptable quality. Even though sharpness in 
silhouettes and colors has been lost, the figures are easily recognizable. We can see how our color 
loss effectively preserves consistent lines between views while discarding the rest. Nonetheless, 
better color estimation is still observed for the style without lines, as it is the most consistent. We 
can see how the concaveness in Vasque is lost, presenting a flat top. This is reasonable considering 
the lack of volume shading in the reference samples and the regularizations we defined for shape 
and normals, guiding the optimization towards smoother and uniform solutions. Finally, we can 
observe how remeshing works best for Axololt due to its more rounded nature than Vasque. This 
tendency will be consistent throughout our experiments, pointing to the fact that the use of 
remeshing should be decided on a case-per-case basis. While it can correct mesh artifacts, it also 
makes it challenging to recover sharper shapes, being more appropriate for highly inconsistent cases 
or rounder objects. 

Table 5. Validation metrics of the reconstructions from different styles.  

The metrics were obtained from 128 validation samples with reconstructions over 128  
training samples in each style. The best and worst values are depicted in green and red, 
respectively. 

5.2.3. Quality factors study 

Drawings contain noise and inconsistencies. Even for highly skilled artists, keeping an object's 
geometry and appearance constant between multiple views is challenging. These aspects need to be 
considered when designing a reconstruction system from sketches. Aiming to study how our system 
performs under less ideal conditions, we simulated the most frequent quality factors regarding 
drawings to see how they affect the results compared to the baseline. 

When considering reconstruction from images in any domain, the most common factors are the 
number of available samples, their resolution, and the precision of their masks when required. 
However, more specific to the sketched domain, we also must consider the consistency between 
viewpoints and views, and the consistency of the geometry between views. While the former relates 
to the possible discrepancies between the “real” viewpoints of the images and the ones provided to 
the system, the latter refers to potential shape inconsistencies between views due to either precision 

Model Axolotl Vasque

Style Color + lines Only color Only lines Color + lines Only color Only lines

Remesh. No Yes No Yes No Yes No Yes No Yes No Yes

MSE ↓ 0.007 0.007 0.005 0.004 0.007 0.006 0.026 0.027 0.009 0.010 0.033 0.031

PSNR ↑ 21.62 21.79 23.30 23.99 21.76 22.23 15.91 15.69 20.57 20.06 14.91 15.11

SSIM ↑ 0.923 0.926 0.934 0.939 0.925 0.929 0.792 0.789 0.871 0.870 0.790 0.789

LPIPS ↓ 0.109 0.107 0.140 0.139 0.147 0.149 0.185 0.197 0.191 0.190 0.246 0.247

Chamfer ↓ 0.057 0.083 0.056 0.082 0.057 0.081 0.079 0.113 0.076 0.108 0.074 0.119

Scaled 
Chamfer ↓ 0.014 0.008 0.013 0.008 0.013 0.008 0.025 0.034 0.023 0.030 0.020 0.037
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errors or stylistic choices. To study these factors, we present modifications of the initial sets whose 
reconstruction will allow us to observe their effects on the result. 

 

Figure 35. Reconstruction results over Axolotl with an increasing number of samples. 

Firstly, we evaluated the effect of the number of reference images in the reconstruction. We 
generated a training set of flat-colored lined sketches with 512 random view samples with the same 
characteristics as the reference set. Then, we obtained reconstructions from the first 4, 8, 16, 32, 64, 
128, 256, and 512 samples, respectively. Each data size was reconstructed with remeshing and 
without it, as well as in 30+3 iterations and a custom number of iterations. In the second case, the 
number of iterations was computed considering the number of samples and the batch size to keep 
the number of parameter updates constant. Equation 22 was used to determine the number of 
iterations given the number of samples  and the desired number of updates , which 
we computed from the reference configuration. 

Therefore, we used 960+96, 480+48, 240+24, 120+12, 60+6, 30+3, 15+2, and 7+1 iterations, 
respectively, in the second case, applying remeshing every 64, 32, 16, 8, 4, 2, 1, and 1 iterations 
when used. The remeshing period was computed to keep the ratio with the number of iterations 
constant. We evaluated the obtained reconstructions over the validation reference set. 

For brevity, only the reconstructions for Axolotl are shown in Figure 35. Nonetheless, the ones for 
Vasque follow the same trend. Similarly, Table 6 shows the metrics obtained for Axolotl when using 
remeshing and a fixed number of iterations for reference. As expected, we observe how the quality 
increases with the number of samples and iterations. This is sensible as, with more iterations, the 
results can be further refined, and with a higher number of diverse samples, the ambiguity regarding 
its shape and appearance is reduced. Good results are obtained with 32 samples and enough 
iterations, not improving significantly for more than 256 samples. The fact that the improvement in 
quality reaches a limit is also reasonable, as once enough references are available, new samples do 
not provide any meaningful novel viewpoints. 

ns Nu = 960 + 96

(22)f (ns) = 4Nu

ns
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Table 6. Validation metrics of the Axolotl reconstructions from different dataset sizes. 

The results were obtained from the Axolotl reference validation set for reconstructions 
generated with increasing numbers of reference samples.

Table 7. Validation results of reconstructions with increasing camera inconsistencies. 

The results were obtained from the reference validation sets using models reconstructed 
with increasing levels of camera displacement without remeshing. The best and worst 
values are depicted in green and red, respectively. 

The camera inconsistency was simulated by disturbing camera positions randomly. This was done 
by generating a random unitary vector to define the direction of the displacement for each camera 
individually. Then, a given displacement value was used to set the magnitude of this vector before 
adding it to the camera position. In this way, the resulting cameras were not looking at the center, 
while our system always expects the look-at point to be at the origin. This effectively introduces a 
discrepancy between the real view and the view used in the optimization, reproducing camera 
inconsistencies.

We experimented with displacements of 0.2, 0.5, and 0.8. The datasets generated for each value 
featured the same statistics as the reference set: 128 training samples of 512 by 512 pixels in a flat-
colored lined sketch style. Additionally, the reconstructions were also evaluated using the reference 
validation set. The results can be seen in Figure 36, while Table 7 presents the metrics after 30+3 
iterations without remeshing. 

Model Axolotl

Iterations 30+3

Samples 4 8 16 32 64 128 256 512

MSE ↓ 0.017 0.012 0.009 0.008 0.007 0.007 0.007 0.007

PSNR ↑ 17.79 19.38 20.71 21.36 21.64 21.79 21.96 21.98

SSIM ↑ 0.904 0.910 0.917 0.921 0.922 0.923 0.923 0.923

LPIPS ↓ 0.125 0.121 0.118 0.113 0.112 0.108 0.108 0.107

Chamfer ↓ 0.053 0.067 0.084 0.084 0.085 0.083 0.084 0.084

Scaled 
Chamfer ↓ 0.036 0.026 0.012 0.008 0.008 0.008 0.008 0.008

Model Axolotl Vasque

Displacement 0.2 0.5 0.8 0.2 0.5 0.8

MSE ↓ 0.013 0.024 0.032 0.039 0.067 0.104

PSNR ↑ 18.85 16.37 15.01 14.13 11.77 9.86

SSIM ↑ 0.916 0.915 0.914 0.773 0.757 0.751

LPIPS ↓ 0.125 0.131 0.130 0.222 0.259 0.263

Chamfer ↓ 0.051 0.023 0.037 0.085 0.138 0.085

Scaled Chamfer ↓ 0.020 0.032 0.044 0.045 0.111 0.150
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Through these results, we can observe how the reconstructions quickly degrade with the increase of 
camera discrepancy. This is caused by the fact that color positions and silhouette positions inside 
the ground truth images are not consistent between shots relative to the optimization cameras due to 
inconsistency. Therefore, the results are averaged in the view space, meaning that the resulting 
reconstruction is the shape and color portion commonly seen by all views. In other words, the 
“consistent” part of the target in relation to the camera. This explains the fast degradation, as small 
shifts of the camera translate into significant shifts of the target relative to its position in the view. 

Figure 36. Results without remeshing of increasing levels of camera inconsistency. 

 

Figure 37. Examples of samples simulating geometry inconsistency. 

  

Figure 38. Results without remeshing of increasing levels of geometric inconsistency. 

Next, random scaling factors were applied to the meshes of the models before rendering each 
sample to simulate the geometric inconsistencies. Similarly to the camera inconsistency, this scaling 
was based on adding a random unitary vector multiplied by the scaling value to the object’s scale. 
Figure 37 shows examples of the samples generated. 
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Magnitudes of scaling of 0.05, 0.1, 0.2, and 0.3 were evaluated while the datasets generated for 
each value followed the reference set's statistics, presenting the same number of samples, 
resolution, and style. The metrics for their reconstructions evaluated over the reference validation 
set after 30+3 iterations and without remeshing are presented in Table 8, while Figure 38 shows the 
reconstructions visually. 

Table 8. Validation results of reconstructions with increasing geometric inconsistencies.

The results were obtained from the reference validation using reconstructions from 
samples with increasing levels of geometric distortion without remeshing. The best and 
worst values are depicted in green and red, respectively.

We can observe how the increase in geometric inconsistency between frames reduces the quality of 
the result. However, this degradation is lower when compared to the camera inconsistency. This is 
because, in this case, the degradation results from averaging all the different shapes in the world 
space. This is consistent with the intended averaging behavior of the silhouette loss under 
inconsistencies, as presented in Section 4.3.2. 

Next, we studied the effects of the image resolution in the reconstruction by generating datasets 
with the same properties as the initial colored without lines dataset but with different resolutions.  
This was done to avoid the interference of the line thickness in the samples as for lower resolutions 
the lines generated obscured the target. 

Therefore, we produced sets of samples in the flat-colored style without lines of resolutions of 16 
by 16, 32 by 32, 128 by 128, and 1024 by 1024 pixels, comparing them to the initial baseline results 
from 512 by 512 pixels in the same style. The reconstructions were generated from 128 samples in 
30+3 iterations, shown in Figure 39. Additionally, the metrics for Vasque are shown in Table 9, 
based on the baseline validation set for flat-colored sketches without lines. 

As usually happens with image-based methods, the quality of the results decreases with the 
decrement in resolution, as the amount of information contained in the images is reduced. Despite 
this tendency, good results are already obtained from a resolution of 128 by 128 pixels. This means 
that high resolutions are not necessarily required, placing our system in a competitive range as 
reference sketches are usually of much higher resolution than our required minimum. However, it is 
also important to note that high resolutions increase the quality mildly, mainly improving color. 
This is reasonable as we optimize low-resolution meshes and, therefore, the sampling frequency 

Model Axolotl Vasque

Distortion 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3

MSE ↓ 0.008 0.009 0.011 0.013 0.024 0.026 0.030 0.039

PSNR ↑ 21.31 20.57 19.56 18.91 16.29 15.88 15.22 14.21

SSIM ↑ 0.920 0.918 0.917 0.917 0.785 0.776 0.769 0.756

LPIPS ↓ 0.108 0.114 0.119 0.121 0.191 0.203 0.213 0.242

Chamfer ↓ 0.056 0.055 0.052 0.049 0.079 0.080 0.094 0.133

Scaled 
Chamfer ↓ 0.015 0.015 0.019 0.022 0.025 0.028 0.038 0.063
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required to locate a single vertex per pixel and allow a finer optimization is lower. Thus, shape 
estimation can only take advantage of higher resolutions if a more detailed mesh is used. 

Figure 39. Results from different resolutions. 

Table 9. Validation metrics of Vasque reconstructions from different image resolutions.  

The results were obtained from the Vasque flat-colored without lines validation set with 
reconstructions from sketches of increasing squared pixel resolution. The best and worst 
values are depicted in green and red, respectively. 

Finally, the mask precision was studied by generating a set whose samples presented randomly 
eroded and dilated masks, as in Figure 40. This sample set also followed the reference set statistics, 
using 30+3 iterations for the reconstruction. Figure 41 visually shows the results.

It can be seen that the effects caused by the noise in the masks are minor in this case. This is 
because the mask effects get averaged, mainly canceling each other out due to the random presence 
of bigger and smaller masks than the target. However, we can see their impact on the loss of detail 
on the sides of Axolotl’s head and the loss of roundness in the central section of Vasque.

Model Vasque

Remeshing No Yes

Resolution 16 32 128 512 1024 16 32 128 512 1024

MSE ↓ 0.017 0.015 0.010 0.009 0.011 0.015 0.013 0.010 0.010 0.011

PSNR ↑ 17.67 18.37 20.17 20.57 19.73 18.21 19.01 19.92 20.06 19.75

SSIM ↑ 0.830 0.824 0.819 0.871 0.888 0.815 0.819 0.823 0.870 0.889

LPIPS ↓ 0.261 0.246 0.218 0.191 0.190 0.250 0.244 0.218 0.190 0.190

Chamfer ↓ 0.069 0.065 0.076 0.076 0.070 0.136 0.114 0.116 0.108 0.109

Scaled 
Chamfer ↓ 0.039 0.026 0.024 0.023 0.024 0.058 0.037 0.030 0.030 0.033
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Figure 40. Examples of references with respectively eroded and dilated masks. 

Figure 41. Results from altered masks. 

Therefore, after studying different quality factors, we can conclude that the most influencing 
components are the number of samples used and the camera inconsistencies, followed by the 
geometric inconsistencies. The former imposes a challenge that is difficult to solve for our 
approach. Given the optimization-based nature of the system, enough meaningful samples are 
required for proper optimization. However, this is a limitation of the system, as providing 32 multi-
view samples of a given hand-drawn target is unviable in real scenarios. 

Meanwhile, the latter factor is related to the need for our rendering-based system for consistent 
viewpoint definitions. Consequently, the fact that the system is highly dependent and sensitive to 
errors in the viewpoints is understandable. Still, it imposes a considerable limitation as camera 
poses for arbitrary drawings are extremely difficult to specify. 

5.2.4. Ablation study 

To evaluate the design choices of our proposal, we performed an ablation study. We analyzed the 
contribution to the reconstruction of our proposed resampling, the global illumination, and the 
defined losses. In these experiments, we used the reference configuration and dataset, taking their 
results as points of comparison. The reconstructions obtained from the study are presented in Figure 
42, while Table 10 complements them with the detailed metrics for spring regularization, 
smoothness regularization, and global lighting ablations. The metrics of the remaining losses are 
omitted for brevity, as the results are more clearly portrayed in Figure 42. 

For performing the ablation study of the losses, we observed the consequences of removing each 
one in isolation. Additionally, we checked the effects of not splitting the silhouette and color losses. 
In our implementation, the shape information is omitted in the color loss by premultiplying both 
input images with the ground truth mask, hiding the currently optimized silhouette, and obtaining 
color feedback only from the relevant area. This allows for a further split between the color and 
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shape losses. Therefore, we studied the unsplit version by removing the shape loss and multiplying 
each image with its mask for the color loss, introducing the silhouette information together with the 
color information. 

 

Figure 42. Reconstructions of the reference set under different ablations. 

Table 10. Validation results for reconstruction with different ablations.

The results were obtained from the reference validation with the ablated reconstructions 
without the spring regularization, smoothness regularization, and global lighting. The 
colors compare the values with the ones in the “Color + lines” columns for each object in 
Table 5. Green represents an improvement, while red represents a deterioration. 

We also compared the results obtained from optimization using albedo rendering with the initial 
reconstructions using path tracing. This was done to determine if path tracing was genuinely 
beneficial for our task, complementing the results seen in Section 5.1. Given the entirely white 
environment, we chose albedo rendering as it is the closest local rendering available without using 
light sources in pyredner. Finally, we analyzed the effects of our proposed sampling method for 
color recovery by replacing it with the restarting strategy in [20] and by not applying any explicit 
operation to repair the colors.  

The results clearly show how the silhouette loss captures the shape while the color loss captures the 
colors, being the joint loss not enough to register the shape properly. Therefore, the split loss design 
is effective. It can also be seen how geometry-related regularizations do not significantly contribute 

Model Axolotl Vasque

Style Spring Smoothness Lighting Spring Smoothness Lighting

Remesh. No Yes No Yes No Yes No Yes No Yes No Yes

MSE ↓ 0.009 0.007 0.007 0.007 0.008 0.007 0.025 0.026 0.030 0.027 0.024 0.026

PSNR ↑ 20.64 21.98 21.46 21.86 21.31 21.84 16.16 15.92 15.21 15.74 16.17 15.86

SSIM ↑ 0.916 0.922 0.921 0.923 0.928 0.934 0.793 0.789 0.783 0.787 0.796 0.792

LPIPS ↓ 0.116 0.107 0.109 0.109 0.108 0.103 0.189 0.195 0.208 0.196 0.184 0.192

Chamfer ↓ 0.048 0.083 0.053 0.082 0.055 0.080 0.091 0.113 0.063 0.114 0.077 0.127

Scaled 
Chamfer ↓ 0.016 0.008 0.016 0.008 0.013 0.008 0.024 0.031 0.026 0.032 0.024 0.044

84



when using remeshing in this case, as this process already fixes artifacts and produces smooth 
shaping. However, with less frequent remeshing intervals or more inconsistent samples, we 
observed that these regularizations might be needed to avoid exaggerated degenerations that are 
difficult to solve in remeshing.  

The normal and shape regularizations help control the mesh and are complementary to each other, 
explaining why the results do not strongly degenerate when one is still present. However, both are 
needed as artifacts start appearing when removing any of them. The lack of spring regularization 
can concentrate more triangles where detail is required but also can cause a higher stretching in 
them, improving the color in some areas but blurring others. Therefore, the trade-off is not always 
worthwhile, as Table 10 shows. Lastly, the color smoothness regularization has minimal effects, but 
they are generally positive, and it induces a better geometry distribution by forcing homogeneity in 
the triangle’s color, as shown by the scaled Chamfer distance metrics. Even though this was an 
unexpected effect, it is reasonable as limiting the color variation inside the triangle tends to reduce 
its flexibility for color detail representation, forcing the optimization to place the triangles more 
smartly. 

 

Figure 43. Close-ups of the results obtained with different color repair methods.  

The first corresponds to the restart method proposed by Goel et al., the second method 
does not apply any operation to repair the color, and the last corresponds with our 
proposal. 

Comparing the grey restart [20] with our color sampling proposal, the former washes out colors, 
being the grey tone still noticeable. Meanwhile, not repairing the colors and leaving the system to 
refine them again automatically gives a close result to our approach. This is explained when 
considering that most shuffled triangles will have a similar color to the original ones, reducing the 
amount of color refinement required in most cases. However, mismatched color patches and higher 
bleeding still appear, corresponding to the most discrepant instances resulting from shuffling, while 
our approach significantly reduces these effects. Figure 43 shows a closer look at this comparison. 

Finally, with albedo rendering, a higher contrast is obtained for the estimated color improving the 
image metrics –especially for Vasque– although the results are similar. However, as seen with the 
remeshed Vasque, it can lead to open surface holes, coinciding with the results seen in Section 5.1. 
Therefore, we consider it worth using global lighting to identify geometric artifacts better and 
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reduce visual ambiguity. Nonetheless, albedo rendering can be a good alternative if lower 
optimization times are required, allowing reconstruction in about 80 minutes compared with about 
120 min with path tracing for the reference configuration.  

5.2.5. Comparison with inverse rendering techniques 

This section compares our proposed system’s performance against SFT [20] and NVDiffRec [52]. 
The reason for this comparison is that our system presents an adaptation of inverse rendering 
optimization methods for realistic images to the domain of sketches. Therefore, to determine if our 
efforts were successful, we need to compare how our proposal performs over drawings in relation to 
standard systems not adapted to the domain.  

Table 11. Validation results for reconstructions with our system, [52], and [20]. 

The metrics were obtained from the reference validation set with reconstructions from the 
reference set (B), the lined set without color (NC), a set with six canonical views (C6), 
and the set with a camera displacement of 0.5 (CM). 

Model Axolotl

Style B NC C6 CM

System Ours NVDR Ours NVDR Ours NVDR SFT Ours NVDR

MSE ↓ 0.006 0.004 0.006 0.007 0.008 0.007 0.033 0.020 0.017

PSNR ↑ 22.41 23.70 22.61 21.58 21.08 21.67 14.82 17.00 17.83

SSIM ↑ 0.924 0.947 0.925 0.926 0.917 0.929 0.907 0.912 0.896

LPIPS ↓ 0.104 0.086 0.142 0.141 0.107 0.099 0.128 0.133 0.125

Chamfer ↓ 0.068 0.049 0.065 0.032 0.058 0.047 0.048 0.033 0.025

Scaled 
Chamfer ↓ 0.005 0.003 0.005 0.016 0.006 0.010 0.064 0.021 0.022

Model Vasque

Style B NC C6 CM

System Ours NVDR Ours NVDR Ours NVDR SFT Ours NVDR

MSE ↓ 0.026 0.033 0.030 0.026 0.037 0.043 0.095 0.067 0.041

PSNR ↑ 15.96 14.85 15.35 15.88 14.41 13.81 10.28 11.77 13.87

SSIM ↑ 0.791 0.817 0.793 0.821 0.779 0.783 0.746 0.757 0.773

LPIPS ↓ 0.185 0.195 0.239 0.214 0.202 0.214 0.251 0.260 0.244

Chamfer ↓ 0.073 0.063 0.077 0.065 0.056 0.086 0.044 0.136 0.072

Scaled 
Chamfer ↓ 0.024 0.017 0.024 0.018 0.024 0.031 0.086 0.110 0.023
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It is important to note that, in the present work, we will not compare our approach against other 
multi-view reconstruction systems for sketches. This is because we are not limiting ourselves to 
plain-lined sketches. Instead, we also consider color and samples in a potentially higher 
completeness state, not having exactly the same objective as previous works. This difference in 
focus made us not directly compete with other multi-view reconstruction methods inside the sketch 
domain but rather to compete for adapting better in comparison to other inverse rendering 
approaches.  

Furthermore, the comparison should be done against the works reported in Section 2.1.3, which 
entails some problems. These works depend on generative models, requiring previous training to 
work. Meanwhile, our approach is fully optimization-based, not needing prior training. Establishing 
a fair comparison between generative and optimization-based methods is a challenging task, as it is 
difficult to isolate the effects of the training data in the results of the former. This study would have 
required the generation of a custom training dataset for these systems that helped accomplish the 
fairness of the comparison. Even though this is a highly interesting task, it seemed to exceed the 
scope and time available for our development. Consequently, we decided to focus on the 
comparison we present now. 

The synthetic datasets were used to compare how the systems react to different simulated conditions 
common in hand-drawn sketches. In particular, we evaluated the reconstructions for the reference 
set, the lined sketches without color, the set with a camera displacement of 0.5, and a set with only 
six canonical views located at the sides of a cube centered in the origin. 

The configurations were the following. Our system used 30+10 iterations, applying remeshing for 
Axolotl every two iterations and no remeshing for Vasque. The normal, shape, spring, and smooth 
regularizations were removed when using remeshing following the observations in Section 5.2.4. 
For NVDiffRec, we used 5000 iterations, a fixed white environment, a grid of resolution 128, and 
the remaining default parameters. Lastly, for SFT, we used our initial meshes, a limit of 2048 
triangles, and 12 cycles. For the first ten cycles, the iterations for material –diffuse color and 
roughness– and geometry were limited to five and 150, respectively. From that point on, the limits 
were set to 75 and 300. Learning rates of 0.01 and  were used for material and geometry, 
respectively. 

 

Figure 44. Reconstructions with SFT from the sets with six canonical views. 

The reconstructions were evaluated using the reference validation set –except for the case with no 
color where the validation lined set without color was used–, considering only diffuse colors. Table 
11 displays the results. Due to time constraints, SFT was only assessed for the case with six 
canonical views, as its execution times were higher than expected. Nonetheless, the available 
results, seen in Figure 44, show how our system adapts better to sketches than SFT, as it can be seen 

5 ⋅ 10−4

87



Application of 3D reconstruction techniques for realistic images over drawings and sketches

how SFT tends to collapse the optimized geometry, not recovering the shape properly. Therefore, 
this reflects that our split loss captures better geometry and color than SFT’s single MSE loss, while 
our regularizations help guide the optimization. 

 

Figure 45. Comparison of the reconstructions obtained by our system and NVDiffRec. 

From top to bottom, the reconstructions for different datasets were generated with each 
system, namely the reference set, the dataset with lined sketches without color, a set with 
only six canonical views, and the set with a camera displacement of 0.5. 

When comparing with NVDiffRec, we observe mixed results, as Figure 45 shows. It is important to 
note for the comparison that we work with a lower triangle count, presenting our reconstructions 
807 triangles on average against 35037 for NVDiffRec. In the base case, we can see that 
NVDiffRec presents more accurate results thanks to a sharper shape and color estimation. However, 
in the case of Vasque, we also see how the image metrics are penalized. This is because NVDiffRec 
estimates specular properties, which interfere with the diffuse color in case of an optimized non-
zero specularity. This coincides with the results in Section 5.1 with the dog sketches, where there 
was ambiguity involving the effects of the material and the environmental light. Therefore, this 
results further back the use of entirely diffuse materials to avoid this ambiguity.  

In the other cases, we observe better performance for our approach under a lack of color and a 
closer shape estimation under just canonical views. This showcases that, through our method and 
taking into account the possible inconsistencies in our loss design, we have sacrificed precision in 
the best possible case while increasing the flexibility of the system. However, it is interesting to 
observe that the high concentration of lines in Vasque without color guides NVDiffRec towards the 
proper shape, behaving almost like the presence of color. This reveals the high structural 
information contained in these lines.  

With camera inconsistency, both our proposal and NVDiffRec fail. Even though NVDiffRec 
presents mostly the best metrics in this case, the reconstructions have higher noise –roughness and 
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holes– being also notably degraded. This reflects how the high dependence on viewpoints is 
inherent in the inverse rendering approach.  

Finally, thanks to the joint estimation, our proposal presents a temporal cost similar to NVDiffRec 
under the given configurations, taking two to three hours. Meanwhile, our experiments with SFT on 
the same hardware have shown times ranging from 10 hours in the canonical case to several days 
for the remaining cases. 

5.2.6. Results from hand-drawn sketches 

Finally, to conclude the experimentation over our proposal, we used hand-draw samples to test the 
system over real scenarios. In particular, we used the manually drawn samples reported in Section 
5.2.1. However, before showcasing the results, it should be noted that the 3D models manually 
designed from the sketches also make compromises regarding the inconsistencies between views to 
define a coherent shape. Table 12 presents the metrics for each model when comparing their 
rendered views using our lined and colored sketch pipeline in Blender with the source sketches to 
quantify this compromise. 

Table 12. Comparison between the sketches and the associated models. 

The results were computed as the average among the four views when comparing the 
rendered human-made models and the sketches. 

We reconstructed each object from four canonical samples in 1500+200 iterations, using 20 
references for the exportable texture generation, and both without and with remeshing every 100 
iterations. Moreover, all regularizations were used in all cases.  

In particular, Plane was defined through the top, front, left, and right views; Vase and Shrimp were 
described through the front, back, top, and side views -right and left respectively-; and Abstract was 
represented through the top, front, bottom, and right views. It is important to note that the initial 
mesh for Abstract was estimated using the front, side, and top views as this shape presents relevant 
hidden features when seen from only two views. Figure 46 shows the reconstruction results. 

Once we obtained the reconstructions, we compared them to the human-generated models. We 
generated 128 renders of the reconstructions and the references from the same random points of 
view, comparing them to obtain image metrics. Additionally, we also measured the Chamfer 
distances between reconstructions and models. Table 13 presents these results.  

We can see how remeshing generally allows for slightly better reconstructions, as the higher 
inconsistencies in real sketches can lead the optimization more quickly towards the generation of 
artifacts. However, when sharper shapes are needed, such as in the Vase’s top, not using remeshing 
allows results better fitting with the silhouettes, with the caveat of some minor degenerations. The 
results also further show how the reconstructions for Plane and Vase are closer to the references 

Model Plane Shrimp Vase Abstract

MSE ↓ 0.095 0.061 0.058 0.078

PSNR ↑ 10.43 12.75 12.56 11.13

SSIM ↑ 0.434 0.543 0.579 0.391

LPIPS ↓ 0.546 0.554 0.532 0.445
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than the ones for Shrimp and Abstract, which present higher distortion due to the more complex 
nature of their target shapes. Additionally, Vase showcases how our system can work with shapes of 
a genus higher than zero. 

Finally, we note that areas not seen in the views present random colors, as their color remains 
unknown to the system. Moreover, when using remeshing, integrated holes, such as in the Plane’s 
wing, can appear. This is caused by degenerations on two near surfaces that lead the remeshing to 
open a hole increasing the shape’s genus. This phenomenon cannot be fixed by only moving the 
vertices, and it would require redefining the faces around them to remove the hole. Our system is 
not prepared to apply this kind of face optimization, which is a system limitation. 

Table 13. Comparison of the reconstructions and the human-made models. 

The results were obtained from 128 validation images generated by rendering from 
random points of view both the reference models and the reconstructions from hand-
drawn sketches. 

 

Figure 46. Reconstructions from hand-drawn sketches. 

Model Plane Shrimp Vase Abstract

Remeshing No Yes No Yes No Yes No Yes

MSE ↓ 0.017 0.016 0.067 0.066 0.014 0.015 0.063 0.062

PSNR ↑ 18.18 18.48 12.00 12.06 18.53 18.31 12.06 12.14

SSIM ↑ 0.921 0.923 0.837 0.838 0.927 0.931 0.834 0.841

LPIPS ↓ 0.085 0.089 0.178 0.183 0.110 0.115 0.190 0.204

Chamfer ↓ 0.008 0.008 0.037 0.035 0.010 0.011 0.064 0.052
Scaled 

Chamfer ↓ 0.008 0.008 0.017 0.017 0.010 0.011 0.049 0.033
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6. Conclusions 

Throughout the development of this work, we have studied and practically applied a wide range of 
state-of-the-art technologies. We have focused mainly on studying the field of reconstruction, both 
from multi-view sketches and realistic images, analyzing how inverse rendering optimization 
techniques can be used for drawings. However, this research has allowed us to study and use 
techniques outside the field to aid our development, such as view pose estimation [67], automatic 
mask generation [36], and frame interpolation [43]. Additionally, various tools and libraries for 
mesh manipulation, rendering, image manipulation, and machine learning have been used. 

With our first proposal, we have deeply studied one of the most recent technologies in multi-view 
reconstruction, NVDiffRec [52]. This has allowed us to analyze its principles and architectural 
designs, obtaining familiarity with the system. From these studies, we have been able to apply 
NVDiffRec outside the domain initially intended in its creation, using it for reconstruction from 
illustrations. This had a double objective: studying the capacity for generalization of the system and 
determining the viability of inverse rendering techniques for sketch reconstruction. 

Our qualitative results have shown that NVDiffRec can be used over drawings and allows for 
promising results, with the strength of recovering detailed silhouettes that maintain the target's 
essence. However, its use is not ready for real users in our domain, as the meshes obtained from 
sketches tend to present holes and very abrupt surface topologies. This is related to the kind of 
internal representation used by NVDiffRec (based on SDFs), the lack of shading in non-colored 
sketches, and the use of local lighting, which hides the holes and avoids further refinement. 

Moreover, because NVDiffRec was designed for realistic images, it presents design choices and 
components that are not suitable or necessary for drawings. These components are: 

• Lighting estimation. In most concept art, objects are depicted without strong shadows, with soft 
shading, or with no lighting. As we observed in Section 5.1.2 with the dog sketches, using fixed 
lighting may be more beneficial as it reduces visual ambiguities, such as the origin of the sketch 
lines. 

• Specular texture estimation. In drawings and sketches, specularities are rare and primarily 
depicted in a non-realistic way. Therefore, the texture details are more desirable to be wholly 
integrated into the diffuse map, avoiding results such as Figure 28, where the sketch lines are 
baked into the specular map. Again, removing unnecessary components helps reduce ambiguity 
and the scope of the problem. 

• Perspective camera. As we have shown, an orthographic camera can be more suitable when 
dealing with non-realistic cases as it can better fit drawings that avoid perspective deformation. 

• Local lighting. The rendering pipeline used in NVDiffRec is susceptible to the lack of shading 
and color, as seen in Sections 5.1.2 and 5.2.5. 

Another limiting design choice affecting both NVDiffRec and our second proposal resides in the 
requirement of camera pose specification. This constraint is caused by the inverse rendering 
approach, as cameras are essential for the rendering process. However, their sensitivity to mistakes 
and deviations in the cameras defined compared to the real ones –as hinted through the game 
character experiments and showcased by the study of quality factors– is highly restrictive when 
working with illustrations. Unless multi-view sketches are designed following canonical views or 
turn-around animations, it is highly difficult to specify the viewpoint for an arbitrary drawing. 
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Despite all this, there are still suitable components in NVDiffRec for drawing reconstruction. The 
explicit optimization of the mesh, the normal map, and the diffuse map estimations based on 
rendering are relevant. These are aspects we took into consideration when developing our second 
proposal.  

However, applying our proposed workflow for using NVDiffRec when lacking masks and 
viewpoints is difficult when working with sketches. COLMAP requires a significant amount of key 
points for automatic view estimation, which makes its application to actual drawings challenging or 
even unviable, especially in the absence of any background in the depiction. Similarly, the 
sometimes abstract nature of sketches can difficult their automatic masking based on segmentation. 
Therefore, this limits the applicability of our automatic workflow path to highly detailed and 
completed artworks, which are rare for multi-view setups. The manual workflow will be the most 
effective solution for typical sketches and flat-colored drawings, increasing user effort. 

The results observed with NVDiffRec and its capability to close silhouette matching with the caveat 
of abnormal surface generation drove us to propose a more tailored solution. Aiming to use global 
lighting to help avoid the appearance of holes, we built upon the proposal of Goel et al. [20], 
proposing modifications to the optimization loop, loss functions, and color management after 
remeshing. These design choices allowed us to be more flexible to the inherent subjective 
interference in drawings and the uncertainty it causes, showing better behavior than NVDiffRec 
under limited canonical views and a significant lack of color. Moreover, thanks to an internal mesh 
representation and global lighting, we can more easily avoid generating open holes in the surface, 
providing smoother surfaces compared to NVDiffRec. However, under the best conditions with 
colored sketches, NVDiffRec still allows more detailed and precise reconstructions than our system. 

Our results point to the convenience of a split loss to help reduce the mutual ambiguity regarding 
the effects of color and shape when optimizing from a single loss. This also allows us to capture 
these properties better and tailor the system to deal with their inconsistencies. Additionally, we have 
seen how remeshing can solve degenerations but tends to round the shape, which is not always 
beneficial. Therefore, its use should be considered case by case, being most helpful when working 
with significant inconsistencies or few samples. 

We consider that the results shown by our system are closer to being ready for actual user 
applications than the ones observed in our first proposal, providing a potential base mesh that artists 
could use as a reference for testing or building finer models. However, its use is not viable as there 
are still issues to cover. On the one hand, as Section 5.2.6 has shown, the results over real sketches 
can still be improved, presenting frequent deformations and not being consistent enough. On the 
other hand, the large number of samples required to obtain good results is also a limiting factor 
when considering real use cases. This limitation applies not only to our proposal but to NVDiffRec 
as well, being a consequence of the optimization nature of the method and the high level of 
uncertainty that the task involves.  

The number of samples and the dependency on camera views are inherent limitations of using 
inverse rendering optimization techniques over multi-view drawings in real scenarios. However,  
they are also the most difficult aspects to comply with when working with sketches due to their 
handmade nature. As seen in Section 5.2.3, other aspects such as the resolution, geometric 
consistency, or masks’ precision have a lower impact on the quality of the reconstruction, being also 
easier to tackle or avoid. Meanwhile, the set size and the precision of the views have a critical 
impact, being the most limiting factors of the approach. Therefore, even though these methods show 
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promising results, overcoming these latter caveats will be a crucial step for effectively applying 
them to real use cases of the industry.  

93



Application of 3D reconstruction techniques for realistic images over drawings and sketches

94



7. Future work 

As presented in Chapter 6, we need to tackle the dependency on camera views and many samples to 
improve the usability of inverse rendering techniques for reconstruction from sketches. Therefore, 
ideally, a reconstruction system for drawings should be able to work over a few samples and 
without explicit viewpoint specification from the user. 

With these ideas in mind, we propose leading future research efforts toward designing a 
preprocessing module capable of transforming the given limited input into an improved input 
suitable for inverse rendering systems. This would imply the design of a generative module capable 
of, given the provided input sketches as images, increasing the number of samples by 
“hallucinating” novel views and consistently regressing their viewpoints. 

When considering these ideas, we can find inspiration in the field of novel view synthesis, which 
tackles generating novel views of an object given its source image. In particular, the works of Zhou 
et al. [85] and Park et al. [59] present a promising approach. By using novel flow networks, given 
an image of an object and a desired transformation, they were able to generate a new image of the 
object from the transformed viewpoint. Moreover, by using the concept of appearance flow, they 
estimated how to move the pixels in the source image to build the resulting image, forcing 
consistency of colors and features between them and reducing the degree of hallucination. 

By modifying the proposal in [59] to work over the multi-view domain, we could use pixel 
information from all available views to generate more precise novel views, reducing the need for 
hallucinating new pixels. In this way, obtaining new views would increase the number of samples 
available for the reconstruction. 

Even though this proposal would require the original viewpoints to work correctly, we envision that 
a similar model could also be used to regress the image viewpoint. Given that the proposed design 
can generate a novel view from a reference and a transformation, we theorize that if we could 
adequately inverse its architecture, obtaining the transformation relating a reference image to a new 
view would be possible. This concept would allow recovering the relative positions of all the given 
views by choosing one as the reference, enabling the estimation of the viewpoints. Furthermore, the 
generative model for novel perspectives could be extended to use the latent representations 
regarding all the given views and the new view to regress a correction factor for the input 
transformation, aiming to improve consistency with the generated image.  

Of course, this approach should be thoroughly studied to be able to determine its actual viability. 
Moreover, using a generative module introduces additional considerations. It would require enough 
precision to avoid introducing further inconsistencies for the reconstruction, and it would raise 
concerns about generality outside the training domain for the module. 

Finally, throughout this work, we have used default rendering pipelines in the optimization. 
However, the rendering pipeline could be tailored to a non-realistic shading model, trying to 
reproduce drawing or sketch styles. For this to be viable, a differentiable non-realistic rendering 
pipeline adapted to our domain should be designed, which can be challenging, as seen in Section 
3.1. Alternatively, a deep generative styling module could transform a standard rendered image into 
a sketch style, avoiding the need for a custom rendering pipeline.  

Even though these methods could potentially introduce concerns regarding generality for different 
illustration styles, they would allow further tailoring to the domain. Therefore, we also consider 
these alternatives are worth exploring in the future. 
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