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Abstract: Solar photovoltaic self-consumption is an attractive approach to increase autarky and
reduce emissions in the building sector. However, a successful deployment in urban rooftops requires
both accurate and low-computational-cost methods to estimate the self-consumption potential and
economic feasibility, which is especially scarce in the literature on net billing schemes. In the first
part of this study, a bottom-up GIS-based techno-economic model has helped compare the self-
consumption potential with net metering and net billing in a Mediterranean municipality of Spain,
with 3734 buildings in total. The capacity was optimized according to load profiles obtained from
aggregated real measurements. Multiple load profile scenarios were assessed, revealing that the
potential self-sufficiency of the municipality ranges between 21.9% and 42.5%. In the second part
of the study, simplified regression-based models were developed to estimate the self-sufficiency,
self-consumption, economic payback and internal rate of return at a building scale, providing nRMSE
values of 3.9%, 3.1%, 10.0% and 1.5%, respectively. One of the predictors with a high correlation in
the regressions is a novel coefficient that measures the alignment between the load and the hours
with higher irradiance. The developed correlations can be employed for any other economic or
demand scenario.

Keywords: photovoltaics; urban rooftop photovoltaic economic potential; self-consumption;
self-sufficiency; net billing; regression modelling

1. Introduction

In recent years, photovoltaic (PV) energy has experienced a massive deployment. The
European Union’s (EU) total PV capacity increased from 167.5 GW in 2021 to 208.9 GW in
2022 and is expected to reach 600 GW by 2030 [1]. This rapid growth has been fostered
by the consolidation of competitive manufacturing costs [2] as well as the favorable legal
frameworks, policies and funds that promote the implementation of renewable systems [3].
The latter have been promoted to reduce emissions by at least 55% by 2050 in the EU [4].

Buildings in the EU are responsible for around 40% of the energy consumption and 36%
of the CO2 emissions in the zone [5]. PV self-consumption (PVSC) is a strategic approach
to reach the emissions reduction target using unexploited rooftops [6]. Moreover, PVSC
reduces sensitivity towards the volatility of electricity prices [7], increases independence
from the grid [8] and involves citizens and other productive agents involved in the energy
transition [9]. In this context, public and private agents and researchers need tools to
quantify and prioritize which potential facilities on rooftops would have more impact.

For this purpose, a wide range of PV models and methodologies have been developed
to assess the PV potential in urban areas [10]. Depending on the scope of the study, PV
models can be classified according to their physical, geographical, technical and economic
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potential [11]. Most of the literature related to the urban PV potential is circumscribed
within the energy production constraints (technical potential), from the irradiance and
shadow assessment to the available rooftop space or module array configurations [12,13]. In
these studies, the economic dimension of the problem is out of scope due to the complexity
or uncertainty of the cost scenarios [14].

As a consequence, there is scarce literature on the economic potential [14–17]. Fur-
thermore, the applied billing scheme has a crucial influence on the feasibility results. As
a relevant study in this area, Karoline Faith et al. developed a detailed GIS-based model
to assess 2 km2 of urban area in Karlsruhe (Germany) considering the economic feasibil-
ity of facilities on rooftops and façades under a net metering (NM) scheme [18]. Wider
economic potential assessments with NM were applied to 55,887 buildings in Lethbridge
(Canada) [19] and to the old residential buildings of five districts of Nanjing (China) [20].
Nevertheless, economic potential studies contemplating a net billing (NB) scheme are
even scarcer and very few analyze nonresidential uses. To the authors’ knowledge, only
Jordi Olivella et al. provided a large-scale NB assessment. The latter studied 5567 real
residential load profiles with a sensitivity analysis depending on the surplus reward price
in London (United Kingdom) [21]. NB in contrast with NM requires the use of electricity
demand curves to estimate accurately the economic savings and they vary depending
on the assumptions taken on the demand profiles, as studied in the literature for specific
study cases but not on a large urban scale [22,23]. In this field, the present work provides
a large-scale economic PV potential sensitivity analysis by fluctuating the load profiles
under an NB scheme with a bottom-up techno-economic model at a building scale. This
study covers residential, industrial, and tertiary buildings, analyzing for the PV impact in a
representative Mediterranean town of Spain.

In parallel, there are few proposals for agile models to reduce the computational cost in
urban planning assessment. The latter would be of special interest in NB models. Simplified
models based on regressions are generally employed to estimate PV production [24,25].
Some cases require complex machine-learning models [26,27]. In addition to an economic
payback (PB) regression model proposed by the authors [28], a study case was found in
which the payback and NPV model are estimated, based on installation design parameters
such as power, tilt and azimuth angles, inclinations, electricity prices, among others [29].
However, both models are not very flexible to other scenarios of electricity consumption
and costs. Taking advantage of the results of the PV economic potential, in the second
part of this work, a methodology is proposed to develop regression-based and versatile
models for different consumption and economic scenarios. For this purpose, a novel
dimensionless predictor is defined to improve the correlation results. The regressions are
capable of estimating energy metrics, such as self-sufficiency (SS) and self-consumption
rate (SC), and economic metrics, such as PB and internal rate of return (IRR), denominated
as target variables.

As a result of the previous research in the literature, the main novelties of the present
work can be summarized as follows:

• NB has been compared for the first time with NM in a complete municipality. This
helps to extend the impact of the results given that the regulation is different depending
on the country.

• The impact of the demand profile has been studied for the first time at a municipality
level under NB and NM scenarios to assess the global SS potential.

• Regressions have been developed for the first time to estimate SS, SC, PB, and IRR,
including all the necessary parameters to implement them in a wide range of demand,
costs, or price scenarios.

• A new dimensionless predictor has been introduced to address the alignment between
the load and the hours with higher irradiance.

• A new optimization sizing criteria for NB has been included to guarantee high SS
rates and low PB.
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The article is structured as follows. Section 2 describes the techno-economic model and
the scenarios, as well as the methodology to build the simplified regressions. In Section 3,
the global potential results of the municipality are given, together with the impact of
different load profiles on the global potential. Then, the simplified regression results are
discussed, and their error metrics are calculated. Finally, in Section 3, the main conclusions
are drawn.

2. Materials and Methods

Figure 1 describes the methodology that has been adopted to assess the economic
potential of the municipality under an NB scheme, as well as the regressions developed to
provide an agile estimation method for PV assessment in urban areas.
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Figure 1. Methodology workflow.

First, the urban area as well as its building stock are described. Next, the techno-
economic model is presented. In this section, the main assumptions, and inputs for the
base case of each submodule are described with an emphasis on the demand model, which
is based on real measurements. The third step presents the methodology to train and test
the regressions as well as the novel predictors. Different scenarios are presented, regarding
the demand, investment costs and electricity prices, as well as the different combinations
of scenarios employed to train the regression-based model.

2.1. Analysis Area

The present study has been applied to the complete municipality of Catarroja, Spain
(39.4028◦ N, 0.4044◦ W), which has a total extension of 13.16 km2, and a population of
28,509 inhabitants [30]. According to the Köpen climate classification, the climate of this
region is classified as Csa (hot-summer Mediterranean), with an annual global horizontal
irradiation of 1782 kWh/year and an average temperature of 17.9 ◦C in 2021 [31] The
weather conditions are similar to other European cities such as Rome (Italy), Nice (France),
Athens (Greece), or Split (Croatia) [32]. The total building stock comprises 3840 independent
buildings [33] that are spatially distributed according to Figure 2. The western part is an
industrial park, while the eastern part is mainly the residential town center. For a more
detailed PV potential analysis among buildings, the residential sector has been classified
into four typologies according to the Tabula project [34], namely, single-family houses
(SFHs), terrace houses (THs), multi-family houses (MFHs) and apartment blocks (ABs).
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The most abundant typologies are THs. However, the largest cumulative rooftop
areas are found in industrial, tertiary and ABs, as summarized in Table 1. The buildings
described as others do not meet the Tabula classification criteria and are out of the scope of
the present study given their wide range of patterns and uses.

Table 1. Building stock of the municipality of Catarroja (Spain).

Typology Absolute
Frequency

Relative
Frequency

Number of
Properties Built Area Rooftop

Area

- - % - m2 m2

Residential
SFH 132 3.44 578 23,904 14,091

Residential
TH 1842 48.00 6331 451,411 206,908

Residential
MFH 270 7.03 3588 345,254 76,444

Residential
AB 216 5.62 13,517 1,125,487 214,148

Industrial 734 19.10 1283 504,124 462,607
Tertiary 160 4.17 794 348,652 179,230
Others 486 12.7 1564 171,407 119,613

Total 3840 100.00 27,655 2,970,239 1,273,042

For the regression modeling, a representative sample of 600 buildings Figure 2 was
selected due to the high computational cost of simulating the complete municipality under
the wide range of scenarios explained in Section 2.4. Six simple random samples of one
hundred buildings were selected for each typology. Finally, the nonparametric Mann–
Whitney U-Test [35] concluded that the difference in medians of rooftops and built areas
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between the samples and the total building stock is not statistically significant for each
typology, providing p-values above 0.25 and 0.15, respectively.

2.2. Techno-Economic Model

The bottom-up techno-economic model is composed of several submodels that allow
the energy and economic performance of each rooftop facility on any building of the
municipality to be obtained with the specifications provided in the present section.

The 3D GIS-based, irradiance and production model foundations are detailed in
previous research by the authors. The main model hypotheses are summarized below. As
a first step, a 3D GIS-based model obtains a 3D model using as main inputs the vectorial
geometry of the buildings from cadaster [33] and the height of the rooftops from LiDAR
data with a density of 0.5 points/m2 [36]. The combination of GIS-based methods and
LiDAR is a common and robust approach found in the literature when estimating the PV
technical potential since the shadows cast by surrounding buildings reduce significantly
the direct and diffuse irradiance received by the modules [10]. The model, by means of
clustering techniques, helps obtain the tilt and azimuth of each surface on any rooftop, with
a level of detail 2 (LoD2) in 3D models according to the CityGML standard [37]. A filter
is also applied to consider a minimum rooftop area and width and to remove the small
rooftop spaces [38]. For the centroid of each of the remaining surfaces, the global irradiance
is applied for all combinations of azimuth and tilt using the Liu and Jordan isotropic
irradiance model [39], which is widely employed in urban areas due to its accuracy and
simplicity [40,41]. The shadows cast by nearby obstacles and buildings are considered to
calculate the skyline of surrounding obstacles, as detailed in a previous work [28,42,43].
The irradiance hourly time-series components and ambient temperatures are obtained
from PVGIS for the year 2021 [31]. The PV production is obtained through time series
and the module efficiency varies with the temperature through the equation defined in
reference [44]. For each surface, optimization is conducted for the tilt and azimuth angles in
order to maximize the annual PV production. Specific tilt and azimuth limit angles are also
considered to avoid low global efficiencies, as well as a minimum distance between panel
rows. The dimensions of a commercial module are also considered in this optimization
of possible configurations to avoid shadows between rows. Next, specific performance
ratios and other factors are considered for the conversion from DC to AC, in agreement
with experimental data [44]. As a result, the maximum AC hourly time series production
and installation capacity are calculated for each facility.

Parallel to the production model, a demand model was developed to estimate the
hourly electricity load curves of each dwelling or property of the municipality. One of
the limitations in large-scale urban PVSC studies is the availability of real load curves
to provide realistic results [45]. To reduce this gap, this model is based on measured
consumption data provided by the public API of Datadis [46], as also employed in other
research areas [47]. Datadis supplies the aggregated hourly electricity consumption by
economic sectors (residential, industrial and services) and postal code, considering all the
distributor system operators in the municipality, as well as other characteristics such as
the number of contracts per sector in the postal code. This study employs the aggregated
load profiles of the complete postal code (PC46470) of Catarroja. Next, the aggregated load
profile of the postal code is decomposed in the following terms: (i) a dimensionless hourly
time series for each economic sector normalized by its aggregated annual consumption,
denominated load profile (LP). (ii) A demand scale factor (DSF) or relationship between
the annual consumption and built area, calculated through Equation (1). The subscript s,
PC refers to the economic sector s and postal code PC for each variable.

DSFs,PC =
Dannual,s,PC

ncontracts,s,PC
· 1
ORs,PC

· 1
As,PC

(1)

The variables in Equation (1) are:
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• DSF: demand scale factor.
• Dannual : annual demand.
• ncontracts: number of contracts. Equation (1) assumes that each dwelling or property

has a single electric contract.
• OR: Occupancy rate, defined as the ratio between the inhabited properties and the

total number of properties. For industrial and tertiary sectors this rate was considered 1
(full occupancy), while for the residential sector, a value of 0.81 was assumed according
to the 2011 building stock census [48].

• A: average built area of each building typology, as estimated from the cadaster.

Table 2 shows the DSF obtained with Equation (1) for each economic sector in the PC studied.

Table 2. DSF values obtained through Equation (1) for each economic sector.

Economic
Sector

Annual
Demand ncontracts OR A DSF

- MWh/year - - m2 kWh/m2·year

Residential 65,839.6 24,009 0.8119 107.22 31.51

Industrial 52,247.8 760 1.0000 416.81 164.88

Tertiary 72,357.9 4401 1.0000 246.64 66.65

Unspecified 57.1 25.1 1.0000 53.54 42.52

With both variables, and the area of each dwelling (Adwelling), which is also provided
by the cadaster together with its economic sector or use, the hourly load profile of each
dwelling (Dh,dwelling) of the municipality is calculated as follows in Equation (2):

Dh,dwelling = LP·DSFs,PC·Adwelling (2)

The matching of the hourly load and production curves is performed at a dwelling
level. In buildings with several independent properties that share the same PV installation,
each user has been assigned a production curve proportional to the relationship between
their annual demand and the aggregated annual demand of all the dwellings in the building.
Even if the regulation contemplates the possibility of hourly dynamic coefficients per user
to improve the energy and economic performance of facilities [49], they have been assumed
to be constant throughout the year for this planning context with estimated load profiles.

The economic balance was implemented following an NB scheme, as established in
the Spanish regulation (RD244/2019) [50]. The surpluses are remunerated with a lower
price level than the average price of the energy term of the electricity tariff. A peculiarity
of this billing scheme in Spain is that, in a given billing period (typically one month), the
sum of the economic surplus remuneration cannot be higher than the economic value of
the energy consumed from the grid. Thus, the user cannot perceive a negative energy
term in the electricity bill at the end of the billing period. A three-period tariff scheme
(2.0TD) was adopted in residential properties and a six-period scheme (3.0TD) for tertiary
and industrial users, with hourly distributions found in the Spanish regulation [51]. The
electricity prices shown in Table 3 are based on the average prices obtained from the
operator of the Spanish electricity system [52] and an electricity supplier [53] for the 2.0TD
and 3.0TD tariff, respectively, for the period between June 2021 (start of the legal application
of the current tariffs schemes) and May 2022. The same period was also adopted for the
price of surpluses.
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Table 3. Electricity prices (€/kWh) for each tariff period.

Tariff Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

2.0TD 0.2170 0.2570 0.3221 - - -

3.0TD 0.2900 0.2900 0.2275 0.2035 0.1867 0.1728

To estimate the investment costs of each facility, following the method of a previous
study in the same region [54], a polynomial regression (Equation (3)) was introduced to
account for the economy of scale of installation costs (IC) of 2022 according to IVACE [55],
which does not consider any subsidy.

IC(€) = 4.816·103 + 1.084·103·PPV + 9.801·10−2·P2
PV + 2.071·10−3·P3

PV + 3.051·10−6·P4
PV − 1.692·10−9·P5

PV (3)

where PPV is the peak installed capacity of the facility in kWp.
Finally, the capacity of the facility is sized according to its respective load profiles, max-

imizing the ratio between the global SS and the economic payback (PB) of the facility. The
optimization is performed by means of the optimize function in the R package stats [56,57].
The model performs multiple matching iterations for different PV capacities until conver-
gence. The maximization of the ratio SS/PB ensures high SS values without oversizing the
facilities while keeping high profitability. The optimization of this ratio, which is novel
to the best of the authors’ knowledge, performs similar results as the optimization of SC
and SS [58]. In addition, the proposed method represents a simplified alternative to the
optimization method of technical and economic potential found in the literature [11].

As a last step, the saved emissions are obtained using an average of the national grid
emission factor between 2019 and 2021.

The simulations were conducted for a lifetime period of 25 years with an hourly resolu-
tion, which is the regular standard when modeling PVSC systems in urban areas [59,60] and is
sufficient to size these systems [61]. A yearly degradation in the PV modules and constant
inflation and interest rates were assumed. No storage systems were considered due to their
high costs [62]. The main parameters of the techno-economic model are gathered in Table 4.

Table 4. Summary of input in the base case scenario.

Parameter Value Units Reference

Minimum area 5 m2 The present study

Minimum width of the area 2 m The present study

Minimum distance between
modules 0.2 m The present study

Maximum azimuth angle ±45 ◦ The present study

Maximum tilt angle 40 ◦ The present study

Albedo coefficient 0.2 - [63]

Dirtiness losses 2 % [64]

Module rated maximum power 390 kWp [65]

Module efficiency 20.9 % [65]

Module width 1.052 m [65]

Module length 1.776 m [65]

NOCT 45 ◦C [65]

Temperature coefficient of Pmax −0.350 %/◦C [65]
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Table 4. Cont.

Parameter Value Units Reference

Module degradation 0.816 %/year [44]

PR 79.24 % [44]

Surplus remuneration 0.1776 €/kWh [52]

O&M costs 9.35 €/kWp [66]

Inflation rate 2 % [67]

Interest rate 5 % [68]

VAT 21 % [69]

Electricity tax 5.113 % [69]

Emissions factor 0.1593 kgCO2/kWh [70]

Facility lifetime 25 years [71]

2.3. Regression Modeling

The target variables selected (SS, SC, PB and IRR) are those that best describe the
performance of a facility in relative terms since they can be compared with other facil-
ities regardless of their PV capacity [60]. These variables are calculated as defined in
Equations (4)–(7):

SS(%) = 100·SCannual
Dannual

(4)

SS(%) = 100·SCannual
Dannual

(5)

PB(years) =
IC

∑
li f etime
n=1 CFn· (1+i)n−1

(1+d)n

(6)

IRR→ NPV = 0 =
li f etime

∑
n=1

CFn

(1 + IRR)n (7)

where SCannual represents the annual self-consumed production, Dannual the annual demand,
EPV,annual the annual PV production, i the inflation rate, d the interest rate, and CFn the
cash flows during the year n. The IRR is obtained by solving Equation (7) when Net Present
Value (NPV) is 0.

As one of the aims of this article is to provide a low-cost method to estimate the
economic potential in buildings with scarce information available, three potential predictor
variables have been introduced, based on their correlation with the target variables:

• The load profile factor (LPF) is a dimensionless coefficient between 0 and 1 that
measures the alignment between the load and the sun hours with more irradiance.
This novel parameter is defined in Equation (8) as the cumulative sum of the product
of two dimensionless time series. LPF is specific for each PV facility.

LPF =
8760

∑
1

Dh

∑8760
1 Dh

·
IPOA,h

max(IPOA,h)
∣∣
each day

(8)

where:

# Dh represents the hourly demand curve result of the aggregation of all the
individual load curves of all the properties that are connected to the PV facility.

# IPOA,h represents the hourly global irradiance in the plane of the array.

The first term in Equation (8) is the Dh curve normalized with respect to the annual
demand and the second term is the hourly IPOA curve normalized with the maximum
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IPOA of each day. With this approach, the hour of maximum production in sun hours
weighs the maximum (1), and the hours of consumption in which there is no radiation
weigh the minimum (0). The rest of the demands in daytime hours are weighted with
a normalized production between 0 and 1. The annual cumulative sum of this product
is the annual fraction of total demand consumed in conditions of the hour of peak
production. This concept is similar to the capacity utilization factor of a PV installation
(fraction of hours per year in which energy is produced under nominal conditions)
and represents the fraction of hours per year in which electricity consumption took
place under maximum production conditions. This variable could partially explain
the SS as well as the PB and IRR under an NB scheme.

• The sizing ratio (SR), defined as the relationship between the peak of the load curve
of the building and the peak of PV installed power, quantifies the oversizing or
undersizing degree of the facility compared with the demand. Low values imply a
high SC and a low SS and vice versa. Quantifying this rate is crucial in an NB scheme.

• The cost ratio (CR), defined as the relationship between the installation costs and the
installation capacity, implicitly measures the size and economy of scale of the facility.

Additionally, to increase the flexibility and robustness towards price and costs fluc-
tuations and other demand scenarios, three extrinsic variables were also incorporated
as predictors:

• The demand level (DL), a rate that measures the variation in the annual demand per
unit area compared with the base case scenario.

• The investment level (IL), a rate that quantifies the variation in the installation unit
costs compared with the base case scenario.

• The price level (PL), a rate that measures the variation in the electricity prices of each
tariff period and the surplus remuneration compared with the base case scenario.

The Ordinary Least Squares (OLS) regression constitutes a typical first approach in
regression modeling [72]. However, a low degree of compliance with the OLS assumptions
of linearity, normality, homoscedasticity and independent residuals and an absence of
multicollinearity may lead to low confidence in the intervals inferred for the regression
coefficients [73]. Due to the non-parametric nature of the distributions of the target vari-
ables obtained in the preliminary global PV potential results presented in Section 3, a
quantile regression (QR) approach is proposed in this paper as an alternative to train robust
models and provide more simple expressions than other nonparametric approaches such
as multiadaptive regression splines. QR neither assumes normality nor homoscedasticity
and is robust to outliers since the estimation is based on conditional quantile functions as a
linear combination of predictors instead of mean models from OLS [74,75]. The quantreg R
package was used to train the models [76].

Prior to the model training, the Pearson correlation coefficients are obtained to validate
and select the above-defined predictors among other constructive characteristics with
higher correlation with the target variables. Next, the absence of multicollinearity is
checked through the variance inflation factor (VIF). As a last step in the definition of the
regression formulas, multiple Box–Cox transformations [77] were applied to overcome the
nonlinearity [78]. In most of the cases, the suggested exponents provided by the boxcox
function of the MASS R package [79] were cubic and square roots. Additionally, the squared
root transformation for the PB target variable was applied to reduce the skewness of the
PB distribution and its linearity with the IRR. Finally, the building typology was included
as a categorical predictor, according to the statistical differences in distributions among
building typologies for the target variables detected in Section 3. As a result, six regression
fits for each target variable are defined in Equations (9)–(12), where i represents a specific
building typology

SSi(%) = f (SR, CR, LPF, DL) =
= k0 + k0,i + k1,i·

√
SR + k2,i·CR + k3,i·LPF + k4,i·

√
LPF + k5,i·DL

(9)
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SCi(%) = f (SR, CR, LPF, CR, DL, SS) =
= k0 + k0,i + k1,i·SR + k2,i·

√
SR + k3,i·LPF + k4,i·

√
LPF + k5,i·

√
DL

+k6,i·SS + k7,i·
√

SS
(10)

IRRi(%) = f (SR, CR, LPF, DL, IL, PL, SC) =
= k0 + k0,i + k1,i·SR + k2,i·

√
SR + k3,i·CR + k4,i·

√
CR + k5,i· 3

√
CR + k6,i

·LPF + k7,i·
√

LPF + k8,i· 3
√

LPF + k9,i·DL + k10,i·IL + k11,i·PL + k12,i·SC
+k13,i·

√
SC + k14,i· 3

√
SC

(11)

1√
PBi

(years0.5) = f (IRR) = k1,i·IRR + k2,i·IRR2+k3,i·IRR3 (12)

These novel regressions constitute an improvement in the PB regression defined by
the authors in a previous work [28], since the latter only covered facilities that occupied all
the rooftop area without considering their sizing according to the load profiles.

For the training process, the results dataset obtained with the techno-economic model
for each scenario defined in Table 5 was randomly split 80% into a training set and the
remaining 20% into a testing set, commonly employed in the literature [72]. With the
first split, a 10-fold cross-validation [44] was conducted to model each QR for each target
variable. The quantile selected to predict each target variable minimizes the RMSE by
performing a parametric calculation using quantiles between 0.05 and 0.95 with steps
of 0.05.

Table 5. Simulation scenarios for the development of correlations.

Variables Municipality Global Analysis Regression Modeling

Sample size Complete municipality 600 buildings

Load profile LPA, LPB, LP0 *, LPC, LPD LPA, LPB, LP0 *, LPC, LPD

Demand level 1.0 * 0.6, 0.8, 1.0 *, 1.2, 1.4, 1.6, 1.8

Investment level 1.0 * 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 *, 1.1,
1.2

Price level 1.0 * 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 *,
1.1, 1.2

Billing scheme NB *, NM NB *
* Base scenario.

Finally, the testing dataset is employed to calculate the error metrics of mean absolute error
(MAE), root mean squared error (RMSE), normalized root mean squared error (nRMSE) and the
coefficient of determination (R2), through their respective Equations (13)–(16).

RMSE =

√
∑N

i=1(yi − ŷi)
2

N
(13)

nRMSE =

√
1
N ∑N

i=1(yi − ŷi)
2

−
yi

(14)

MAE =
1
N ∑N

i=1|yi − ŷi| (15)

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1

(
yi −

−
yi

)2 (16)
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where yi, ŷ,
−
yi and N are the measured, predicted and mean measured values, respectively,

and N is the number of samples.

2.4. Assessed Scenarios

The PV potential of the municipality has been performed under different values of
DL, CL, PL, load profiles and billing schemes. In addition to the base load profile obtained
from Datadis for each economic sector (named henceforth as LP0), four different hourly
profiles were considered for each sector (LPA, LPB, LPC and LPD), using measured profiles
from several consumers in the municipality, as shown in Figure 3. The choice is based on
finding different consumption patterns with the help of the values obtained for the load
profile factor (LPF) for the global horizontal irradiance of the municipality. As a result, and
according to the LPF values, two scenarios (LPA and LPB) have demands more aligned
with high irradiance hours compared with LP0, while the other two (LPC, LPD) present
more consumption during the extreme hours of the day.
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In sum, five load profile scenarios have been studied for NB and NM schemes, respec-
tively, as summarized in Table 5.

For the regression modeling to predict the target variables, in addition to including the
above-mentioned load profiles scenarios, the variables of DL, IL and PL were modulated
with the multiplication factors shown in Table 5. When modulating a variable, the other
variables remain constant in the base scenario values.

3. Results and Discussion

This section is structured in two parts. The first part, Section 3.1, presents the results
of the individual PVSC of the different building typologies, and also on an overall scale for
the entire municipality. The second part, Section 3.2, shows the regression modeling results
of SS, SC, PB and IRR for a representative sample of buildings in the municipality.
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3.1. Municipality Self-Consumption Potential
3.1.1. Individual Results for the Different Building Typologies

For the NB base scenario, which meets the current regulatory framework in Spain,
Figure 4 shows the spatial distribution of the optimized PV capacity and PB of each
building of the municipality. While the buildings in the town center, mostly THs, require
low PV capacities with higher PB, the opposite trend is detected in the buildings on the
outskirts, which are generally industrial and MFHs. This is reflected in the bimodality of
the histograms. A total of 358 buildings were not suitable for installing PV systems due to
a lack of rooftop space without shadows.

Figure 5a and Table 6 show the impact of the billing scheme on the optimal sizing
of PV facilities. Since surplus remuneration in NB represents approximately one-third
of the regular price in the electricity tariff, the sizing optimization tends to minimize the
surpluses to guarantee the profitability of each facility. In an NM scheme, the sizing tends
to maximize the PV production, reaching peak powers near the maximum available on
the rooftops. Despite this increase, SS and SC remain similar to the values obtained with
the NB scheme. However, SS and SC of facilities with a smaller number of consumers,
normally located in residential SFH and TH, are more sensitive to an increase in PV
capacity, experiencing increments of 5.0%/kWp for SS and 3.1%/kWp for SC in contrast
with the 0.9%/kWp for SC and 1.0%/kWp for SS of the residential AB according to their
median values.

For the base case scenario, SS are similar among building typologies, presenting the
SFHs and THs average values over 43% since the optimization tends to oversize facilities to
reduce power unit costs and maximize SS, as seen in their low SC levels. This rate is similar
in tertiary buildings thanks to the high LPF of the load profile, and higher consumers
present SS values below 40%, mainly because of their high demand density.

The SC results for small residential consumers, such as TH, present an average value
of 28.2%, which contrasts with the 60.1% from the residential AB. The aggregation of
consumers and the rooftop space limitation allow higher SC rates to be obtained.

The most significant differences between NB and NM schemes are identified in the PB
values. The highest drop in paybacks adopting an NM scenario is perceived by SFH and
TH consumers. Their PB is reduced from 9.1 years to 5.9 and from 10.8 years to 7.1 years,
respectively. The high payback values in the NB scheme are caused by higher power unit
costs and a greater surpluses rate, with lower remuneration than the electricity tariff. In
contrast, installations on ABs and industrial buildings, with greater economies of scale and
SC, present average PBs of 3.8 and 4.2 years, respectively.

The effect of the load profile alignment with the sun hours is also gathered in
Figure 5b–d and Table 7. As defined in the methodology section, the lowest SS rates
match with the profiles with the lowest LPF, in this case, residential AB. In residential MFH
and TH, with few dwellings and electricity consumption in the central sun hours, SS rates
above 50% can be obtained in some cases. In MFH and AB buildings with multiple uses,
the load profile aggregation tends to flatten the global demand resulting in an asymptotic
growth of up to 44.2% for average SS with higher LPF. The highest SS rates are found in the
tertiary and industrial sectors with averages of 52.5% and 56.8%, respectively. Regarding
the lower limits, the average SS is over 20% for all the load profiles assessed.
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Table 6. Main statistical values of PV capacity, SS, SC and PB by building typologies and billing
scheme for the base load profile scenario.

Billing Scheme Building
Typology Capacity * SS * SC * PB *

- - kWp % % %

NB

Residential SFH 4.68/9.20 42.77/43.34 41.75/40.43 6.75/9.07
Residential TH 4.29/5.23 44.06/43.66 35.71/38.24 9.96/10.77

Residential MFH 20.70/23.30 40.58/38.66 54.69/59.58 4.77/5.02
Residential AB 66.50/78.60 40.48/39.12 54.58/60.05 3.69/3.80

Industrial 37.10/54.90 41.57/40.82 52.94/54.01 4.01/4.18
Tertiary 17.90/48.80 46.27/43.60 56.32/58.79 4.60/5.45

NM

Residential SFH 16.80/28.60 50.36/48.83 12.24/19.31 5.31/5.85
Residential TH 8.97/10.30 48.42/47.23 19.87/24.65 6.65/7.05

Residential MFH 23.80/28.00 41.15/39.88 54.18/54.76 4.62/4.85
Residential AB 77.60/95.70 41.49/40.57 51.61/54.26 3.72/3.79

Industrial 63.60/88.60 46.39/44.83 35.30/39.70 3.96/4.11
Tertiary 28.50/76.90 50.14/47.26 39.29/44.86 4.57/5.02

* Median/Mean.

Table 7. Main statistical values of LPA, LPB, LPC and LPD by building typologies and billing scheme
for the base load profile scenario.

Variable Building
Typology LPA * LPB * LP0 * LPC * LPD *

SS (%)

Residential SFH 48.65/48.51 52.18/51.94 46.56/46.48 40.62/40.87 27.35/27.73
Residential TH 51.65/51.40 48.16/48.05 46.00/46.02 40.22/40.12 27.04/27.01

Residential
MFH 44.00/42.15 43.91/42.42 41.28/40.11 34.59/33.58 23.69/23.18

Residential AB 44.00/42.15 43.91/42.42 41.06/40.42 34.59/33.58 23.69/23.18
Industrial 54.50/52.52 51.17/52.06 42.64/42.98 37.09/36.98 27.08/27.53
Tertiary 60.31/56.84 56.23/53.52 47.13/46.14 43.01/42.13 36.08/35.42

PB (years)

Residential SFH 5.62/5.78 5.66/5.79 5.69/5.82 5.72/5.89 5.81/6.07
Residential TH 6.64/6.93 6.65/6.93 6.70/6.99 6.82/7.12 7.05/7.41

Residential
MFH 4.78/4.95 4.67/4.87 4.76/4.94 4.95/5.14 5.30/5.53

Residential AB 3.76/3.85 3.73/3.81 3.79/3.86 3.92/4.02 4.20/4.32
Industrial 3.86/4.02 3.85/3.99 3.97/4.12 4.04/4.21 4.12/4.32
Tertiary 4.49/4.91 4.51/4.93 4.60/5.05 4.64/5.11 4.73/5.24

* Median/Mean.

For the NB scenario, the average profitability of PV facilities in all building typologies
is not sensitive to the studied load profiles, especially in scenarios with equal or higher
LPF than the base scenario. Nevertheless, residential buildings with few consumers are
more sensitive to load profiles with low LPF. The load in these cases is mostly during the
early morning, evening hours and at midnight, increasing the PB 38.4% for SFH (from 11.2
to 15.5 years) and 48.9% for TH (from 9.4 to 14.0 years). The other building typologies
experience averaged increases in PBs and IRR below 0.5 years and −3.0%, respectively,
mainly due to the concentration of consumption in the daytime hours. The fluctuations
detected in the NM are mainly caused by fluctuations in the optimal PV sizing capacity
compared to the NB scenario and by the different tariff periods defined in Section 2.2.

3.1.2. Aggregated Results by Building Typologies

The aggregated results for each building typology and the complete municipality and
for each billing scheme are gathered in Table 8.
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Table 8. Overall PV potential of the municipality.

Billing
Scheme

Building
Typology

PV Peak
Capacity

Annual PV
Production

Self-
Consumption Surpluses Self-

Sufficiency
Production-

Demand
ratio

Investment
Costs

Economic
Savings

Emission
Savings

MWp GWh % % % % M€ M€/year tCO2/year

NB

SFH 0.25 0.34 48.53 51.47 42.02 86.58 0.43 0.08 54.11
TH 9.96 13.45 41.32 58.68 42.01 101.66 22.41 2.99 2141.88

MFH 6.29 8.48 57.73 42.27 37.82 65.50 9.77 2.30 1350.99
AB 16.98 22.97 58.39 41.61 39.04 66.86 21.32 6.30 3658.92

Industrial 40.97 56.52 53.96 46.04 40.60 75.24 49.00 13.94 9001.71
Tertiary 7.86 10.62 67.85 32.15 23.58 34.75 9.95 2.77 1691.49
Others 2.52 3.43 56.46 43.54 39.88 70.63 3.60 0.82 546.27

All 84.83 115.82 54.98 45.02 37.14 67.54 116.49 29.20 18,445.36

NM

SFH 0.77 1.05 17.18 82.82 46.16 268.65 1.08 0.24 167.90
TH 19.58 26.44 22.38 77.62 44.74 199.85 36.15 6.34 4210.84

MFH 7.57 10.20 49.29 50.71 38.83 78.78 11.35 2.75 1624.75
AB 20.68 27.97 49.64 50.36 40.42 81.41 25.38 7.52 4455.11

Industrial 66.09 89.30 37.52 62.48 44.60 118.88 76.11 21.62 14,221.83
Tertiary 12.38 16.75 45.53 54.47 24.96 54.82 14.80 4.16 2668.27
Others 4.47 6.06 33.38 66.62 41.66 124.80 6.12 1.47 965.26

All 131.54 177.78 38.35 61.65 39.76 103.68 171.00 44.10 28,313.97

In an ideal scenario considering all the rooftop areas of the municipality occupied
by PV facilities, the maximum PV peak power installed is 145.98 MWp, providing an
annual production of 196.48 GWh, which represents 114.59% of the annual demand of
the municipality. The potential annual emissions savings are 31,292 tCO2. However, only
35.38% of the production is self-consumed and the global SS reaches 40.54%.

The NM scenario provides slightly lower installed capacities than the maximum power
scenario. The maximum is 131.54 MWp and the main results are shown in Table 8. The
main difference is that the economic savings in this scenario yield an increase of 26.97%
owing to higher surplus remuneration.

The above-mentioned values contrast significantly when considering the technical
and economical limitations of an NB scenario, which is the most feasible with the cur-
rent regulation. For this billing scheme, the aggregated optimal peak capacity reaches
84.33 MWp and an annual production that represents 67.54% of the total annual demand.
Despite a reduction in the maximum capacity of 57.08%, the SS rate only decreases an
8.38% and the SC rises to 54.98%, thereby increasing the economic profitability. With these
higher rates of on-site production use, the annual economic savings would only decrease
by 16.92% compared with the maximum power scenario.

Figure 6 shows the aggregated monthly municipality demand and PV production, in
which the limitation of non-remunerated surpluses established by Spanish regulation is
appreciated during the months with high insolation. The latter represent up to 34.3% of the
total surpluses in August for the base scenario and 72.2% for the maximum power scenario.
The most affected typologies by this limitation are SFHs and THs, in which up to 32.2%
and 40.7% of the annual surpluses are non-remunerated, respectively. In industrial and
tertiary buildings, this rate is below 10%, and for facilities shared by several consumers,
the latter could be minimized with more variable sharing coefficients.

Another regulatory limiting factor to increase the production potential is the maximum
allowed capacity for each facility, which is up to 100 kWn under the regime for domestic
prosumers. This is the most feasible scenario since the administrative and technical proce-
dures are simplified. Applying this limitation and assuming a scale factor of 1.2 [64], the
total capacity, SS and SC drop to 73.63 MWp, 32.90% and 57.17%, respectively. Industrial
and tertiary buildings are most affected by this limitation, with cumulative capacities falling
to 34.60 MWp, and 5.90 MWp, respectively.
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Figure 6. Monthly electricity demand and PV production for the base scenario.

If the non-profitable facilities (IRR < 0) for the later scenario were not installed, the
final potential would drop to 73.39 MWp. The facilities with paybacks higher than their
lifetime are 24.1% of the SFHs and 21.3%.

Figure 7 reveals that high-capacity scenarios provide higher annual production than
the annual demand, thereby contributing to the reduction in the emission factor from the
grid. However, the global self-sufficiency barely increases compared with the NB scenarios,
which require approximately half the maximum capacity.
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Figure 7. Comparison of aggregated capacities, self-sufficiencies and production-demand ratio for
the complete municipality.

From the strategic point of view of reducing emissions, industrial building typologies
provide the highest impact, followed by ABs. Both can reduce the potential emissions by
46.36% s. Figure 8 (top) shows the cumulative potential emission savings if PV facilities
were installed according to different prioritization criteria. The first actions should be
focused on buildings with greater demands and rooftop areas such as ABs, and industrial
and tertiary buildings. Similar to the Pareto rule, by acting on 1067 buildings (90.74% AB,
87.83% industrial, 0.39% tertiary, 28.6% of the building stock municipality), 80% of the
potential emission savings are reached.
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IRR, SC and SS.

Regarding the global SS of the municipality, the scenarios evaluated with the different
demand profiles show an asymptotic growth for the best scenario of up to 42.49%, as shown
in Figure 9. This limitation is mainly caused by the presence of nighttime consumptions in
all the assessed hourly profiles. Figure 9 provides a magnitude order of the error that may
exist when using a given consumption profile. For the LPD scenario, which presents more
nighttime consumption than the others, the SS is 21.93%.
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3.2. Regression Results

In addition to the variations assessed with the demand profiles, the global results are
also conditioned by the situation of electricity prices, installation costs, and the demand
level. A sensitivity analysis was performed to quantify these variations in relation to the NB
base scenario and to provide a broader view of the economic feasibility of the deployment
of PV systems in the municipality.

According to Figure 10 an increase in the buildings’ electrification would especially
benefit SFHs and THs, increasing their SC up to 45% and a PB reduction of 2.5 years with
respect to the base scenario. The profitability of installations of several users of high annual
demands remains practically insensitive towards these fluctuations since their SC rates
remain high for any scenario.
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The variations in the results in the economic scenarios mainly affect the profitability
of the facilities, as shown in Figure 11. Investment cost variations are practically linear
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with PB, with increments for the payback for each percentual cost variation of 0.117 years
for SFH and TH reaching some cases up to 20 years, while industrial or tertiary present
rates around 0.05 years. Unlike investment costs, electricity price fluctuations cause similar
variations in PB. A price scenario of 0.4 times lower than the base case scenario, which
is representative of the first half of 2021 in Spain, would increase the average PBs up to
26.5 years for SFHs, 12.0 years for ABs and 14.4 years for industrial buildings.
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With the results of the sample of buildings, the Pearson correlation matrix in Figure 12
helps identify the most explanatory variables to predict the SS, SC, PB and IRR using QR
models. Among the preliminary predictors, the constructive characteristics of buildings
such as height, rooftop area and dwellings area were discarded due to their low correlation
values with the target variables. Furthermore, their information is partially included in the
other predictors. As mentioned in Section 2.3, the predictors selected for the final models
are the following: SR, CR, LPF, DL, IL and PL.
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The correlation matrix values provide an intuitive idea about the workflow proposed in
the training of the regressions. As a first step, SS is predicted thanks to the high correlation
with the SR and the LPF, which are less correlated with the other target variables. Next,
the predicted SS is used as a reinforcement predictor of SC. Lastly, the economic target
variables (PB and IRR) present a low correlation with the two intrinsic predictors (SR
and LPF), which potentially leads to mispredictions due to scarce differentiation among
individuals. To reduce the errors in the economic regressions, the SC variable is also
employed as a predictor with a moderate correlation. The multicollinearity, measured
with the VIF, is lower than 2 for all of them, except for a VIF of 7.1 between cost ratio and
investment level to predict the IRR.

The relationship between the two main predictors for SS is shown in Figure 13. Each
point represents a result for a specific building. The LPF provides a clear positive correlation
with SS, however, this variable only considers the alignment of consumption with sun
hours and no other effects such as how a facility is undersized compared with its load. The
latter aspect is expressed with the sizing factor (relationship between the peak demand and
peak PV capacity).
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The QR expressions are defined in Section 2.3 and the values of the fitted coefficients
for each variable and building typology are described in Appendix A.

Figure 14 compares the calculated target variables through the techno-economic model
and the prediction from each regression model. The greater relative errors are found in the
overpredictions in the economic variables with less profitable facilities. This is partially
caused by an overprediction of the SS regression model for big consumers, for which the
optimal capacity is limited by the available rooftop space. This non-linearity, for instance,
causes differences in accuracy between ABs (84.00%) or Tertiary (90.53%) and SFHs (98.44%)
or THs (96.83%).
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Finally, the main error metrics of each model are gathered in Table 9. The nRMSEs of SS
and SC are below 4%, and of PB is below 2%, which are reasonable for planning purposes.

Table 9. Error metrics of the predicted SS, SC, IRR and PB by the QR models.

Target Variable MAE RMSE nRMSE R2

SC 0.805% 1.627% 3.866% 0.911
SS 0.831% 1.536% 3.097% 0.992

IRR 0.012% 0.018% 10.020% 0.974
PB 0.015 years 0.023 years 1.479% 0.997

4. Conclusions

Currently, there are few studies in the literature on the economic assessment of PVSC
facilities on an urban scale for NB schemes. In the present work, a bottom-up techno-
economic model was developed to estimate hourly load profiles at a property level. In
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the first part of this paper, the techno-economic potential was evaluated for the complete
building stock of 3840 buildings in the Mediterranean municipality of Catarroja, Spain.
Different hourly load profiles were analyzed and compared within the NM scenario.

According to the electricity prices between 2021 and 2022, and based on the present
legal framework in Spain, the average payback is 9–10 years for SFHs and THs, while
MFHs, Industrial and Tertiary building typologies yield paybacks of 4–5 years. The most
feasible facilities are placed on ABs owing to their high number of consumers and scarce
surpluses. Except for SFHs and THs, the other building typologies yield nevertheless very
similar paybacks with the NM scheme.

Regarding the variation in load profiles, for the scenarios with the lowest LPF, the
PB of facilities on SFHs and THs experiences on average an increase of around 5 years,
while buildings with higher demands are not sensitive to these fluctuations. The highest
SS are found in facilities on Tertiary buildings for the highest LPF, reaching on average up
to 67.6%, while residential typologies barely surpass the SS values of 50%.

For the aggregated balance of the municipality, there is a wide difference between the
total capacity under NM and NB schemes, with 131.54 MWp and 84.83 MWp, respectively.
This reduction shows the importance of considering the economic constraints when esti-
mating the urban PV potential of any city under the NB regulation. Under the NB scheme,
the total SS of the municipality fluctuates between 42.5% for the highest LPF scenario and
21.9% for the lowest. However, the total PV energy produced would represent 67.5% of
the total electricity consumption of the municipality. This rate could rise to 103.7% with an
NM scheme. For the municipality energy strategy, prioritizing PV facilities on 28.6% of the
most economically feasible rooftops would deliver 80% of the potential emission savings
due to electricity consumption. The most relevant typologies in this process are those with
high consumption and high rooftops such as ABs and industrial buildings.

As a second part of this work, four QR models were developed to predict SS, SC, PB
and IRR through the intrinsic characteristics of the installations as well as other conjunctural
characteristics such as demand, prices, or cost variations. One of the predictors defined
is the LPF, a novel coefficient that addresses the alignment of the building consumption
and the PV production, which is one of the main explanatory variables to predict the
SS. The cost ratio, which measures the economy of scale of the facility, is a significant
predictor to estimate the economic target variables. The models provide estimations for the
above-mentioned variables with nRMSE values of 3.9%, 3.1%, 10.0% and 1.5%, respectively,
compared with the techno-economic model.

The most relevant outcomes are:

• The sizing of the facilities according to the load curves in the NB modality, opti-
mizing SS and profitability, is crucial to obtain competitive economic returns while
maintaining similar levels of SS with those obtained in NM.

• SFHs and THs are the most sensitive to the shape of the hourly load profile. More
detailed approaches are required in residential areas to estimate load profiles of SFHs
and THs.

• Considering the profitability constraints under the current NB scheme, the total neu-
trality of emissions of municipal electricity consumption would not be achieved by
the deployment of rooftop PVSC systems, in contrast to the NM scheme.

• The best economic and environmental results are achieved with ABs, industrial and
tertiary buildings.

• The LPF is a crucial predictor to estimate SS and SC through regression-based models
for the NB in which there is not a direct relationship between these variables and other
constructive aspects of the building.
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Nomenclature

€ Euro
3D Three-dimensional
A Area
AB Apartment block
CO2 Carbon dioxide
CF Cash flow
CR Cost ratio
d Interest rate
Dannual Annual demand
Dh Hourly demand
DL Demand level
DSF Demand scale factor
EPV Annual photovoltaic production
Eq Equation
GIS Geographic Information System
GWh Gigawatt hour
I Inflation rate
IC Installation costs
IL Investment level
IPOA Global irradiance in the plane of array
IRR Internal rate of return
kg kilogram
kWh Kilowatt-hour
kWn Nominal kilowatt
kWp kilowatt peak
LiDAR Light Detection and Ranging
LoD Level of detail
LP Load profile
m Linear meter
M€ Millions of Euros
m2 Square meter
MAE Mean absolute error
MFH Multi-family house
MWp Megawatt peak
ncontracts Number of contracts
NB Net billing
NM Net metering
NPV Net present value
nRMSE Normalized root mean squared error
◦C Degrees Celsius
OLS Ordinary Least Squares
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OR Occupation rate
PPV PV peak capacity
PB Economic payback
PC Postal code
PL Price level
PV Photovoltaic
QR Quantile regression
R2 Coefficient of determination
RD Royal decree
RMSE Root mean squared error
SC Percentage of Self-consumption
SCannual Annual self-consumed energy
SFH Single-family house
SR Sizing ratio
SS Self-sufficiency
t Tonne
TH Terrace house
VIF Variance inflation factor

Appendix A

Table A1. QR coefficients to estimate SS for each building typology.

Building Typology Coefficient Value 95% CI p-Value

- k0 (Intercept) −13.46 −246.1; 219.2 >0.910

Residential SFH

k0 (Intercept) - - -
k1 (SR0.5) −17.69 −19.01; −16.37 0.000
k2 (LPF) −114.11 −877.9; 649.7 0.770

k3 (LPF0.5) 194.00 −648.2; 1036 0.652
k4 (DL0.5) −0.41 −0.809; −0.004 0.048

Residential TH

k0 (Intercept) −280.88 −513.9; −47.84 0.018
k1 (SR0.5) −19.15 −19.18; −19.12 <0.001
k2 (LPF) −1092.27 −1139; −1046 <0.001

k3 (LPF0.5) 1243.85 1193; 1294 <0.001
k4 (DL0.5) −0.06 −0.149; 0.021 0.139

Residential MFH

k0 (Intercept) −930.61 −1271; −590.6 <0.001
k1 (SR0.5) −23.24 −23.57; −22.91 <0.001
k2 (LPF) −3391.60 −4198; −2586 <0.001

k3 (LPF0.5) 3696.59 2802; 4591 <0.001
k4 (DL0.5) −0.22 −0.652; 0.203 0.304

Residential AB

k0 (Intercept) 2540.30 2235; 2846 <0.001
k1 (SR0.5) −21.47 −21.79; −21.15 <0.001
k2 (LPF) 7839.67 7204; 8476 <0.001

k3 (LPF0.5) −8793.75 −9504; −8084 <0.001
k4 (DL0.5) −0.51 −0.822; −0.197 0.001

Industrial

k0 (Intercept) 198.66 −182.0; 579.3 0.306
k1 (SR0.5) −28.85 −28.99; −28.72 <0.001
k2 (LPF) 563.56 −416.1; 1543 0.260

k3 (LPF0.5) −533.48 −1620; 553.1 0.336
k4 (DL0.5) −0.66 −0.732; −0.580 <0.001

Tertiary

k0 (Intercept) −7.95 −525.0; 509.1 0.976
k1 (SR0.5) −28.75 −29.30; −28.20 <0.001
k2 (LPF) −16.96 −1389; 1355 0.981

k3 (LPF0.5) 162.53 −1430; 1755 0.841
k4 (DL0.5) −0.37 −0.628; −0.119 0.004
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Table A2. QR coefficients to estimate SC for each building typology.

Building Typology Coefficient Value 95% CI p-Value

- k0 (Intercept) −564.71 −1599.58; 470.15 0.285

Residential SFH

k0 (Intercept) - - -
k0 (SR) 39.68 14.08; 65.27 0.002

k2 (SR0.5) −3.87 −35.46; 27.71 0.810
k3 (LPF) 860.61 −3992.07; 5713.29 0.728

k4 (LPF0.5) −842.09 −6153.69; 4469.51 0.756
k5 (DL0.5) 0.02 −0.39; 0.43 0.925

k6 (SS) −19.25 −37.08; −1.41 0.034
k7 (SS0.5) 245.64 2.63; 488.65 0.048

Residential TH

k0 (Intercept) 2490.66 1441.75; 3539.57 <0.001
k0 (SR) 4.58 0.02; 9.14 0.049

k2 (SR0.5) 22.39 14.59; 30.18 <0.001
k3 (LPF) 6521.00 6046.98; 6995.01 <0.001

k4 (LPF0.5) −6832.29 −7343.48; −6321.11 <0.001
k5 (DL0.5) 0.12 0.03; 0.21 0.012

k6 (SS) −1.72 −4.36; 0.91 0.200
k7 (SS0.5) −7.29 −41.59; 27 0.677

Residential MFH

k0 (Intercept) 3593.36 2551.86; 4634.86 <0.001
k0 (SR) 10.71 9.5; 11.92 <0.001

k2 (SR0.5) −7.80 −10.39; −5.21 <0.001
k3 (LPF) 11,761.48 11,367.87; 12,155.1 <0.001

k4 (LPF0.5) −12,320.11 −12,749.3; −11,890.93 <0.001
k5 (DL0.5) −0.25 −0.35; −0.14 <0.001

k6 (SS) −12.35 −12.57; −12.13 <0.001
k7 (SS0.5) 116.26 113.61; 118.9 <0.001

Residential AB

k0 (Intercept) 6224.83 4405.08; 8044.57 <0.001
k0 (SR) 8.18 5.07; 11.28 <0.001

k2 (SR0.5) −3.81 −9.61; 2 0.198
k3 (LPF) 20,214.43 15,382.25; 25,046.61 <0.001

k4 (LPF0.5) −21,747.05 −27,132.16; −16,361.93 <0.001
k5 (DL0.5) −0.27 −0.35; −0.18 <0.001

k6 (SS) −12.40 −13.15; −11.65 <0.001
k7 (SS0.5) 115.80 106.5; 125.1 <0.001

Industrial

k0 (Intercept) 3008.01 1956.49; 4059.53 <0.001
k0 (SR) −8.29 −10.44; −6.14 <0.001

k2 (SR0.5) 48.38 45.11; 51.65 <0.001
k3 (LPF) 9127.51 8520.73; 9734.29 <0.001

k4 (LPF0.5) −9758.73 −10,442.43; −9075.04 <0.001
k5 (DL0.5) 0.15 0.1; 0.2 <0.001

k6 (SS) −8.76 −8.99; −8.52 <0.001
k7 (SS0.5) 84.59 81.63; 87.56 <0.001

Tertiary

k0 (Intercept) −2930.08 −4111.86; −1748.29 <0.001
k1 (SR) 5.75 −5.55; 17.05 0.319

k2 (SR0.5) 45.51 34.17; 56.84 <0.001
k3 (LPF) −8977.73 −10,751.11; −7204.36 <0.001

k4 (LPF0.5) 10,741.19 8664.91; 12,817.48 <0.001
k5 (DL0.5) −0.06 −0.19; 0.08 0.396

k6 (SS) −10.24 −11.31; −9.17 <0.001
k7 (SS0.5) 114.37 97.94; 130.8 <0.001
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Table A3. QR coefficients to estimate IRR for each building typology.

Building Typology Coefficient Value 95% CI p-Value

- k0 (Intercept) −2.94 −16.14; 10.27 0.663

Residential SFH

k0 (Intercept) 0.01 −0.16; 0.19 0.891
k1 (SR) 0.00 −0.38; 0.37 0.981

k2 (SR0.5) 0.00 0; 0 <0.001
k3 (CR) 0.34 0.19; 0.49 <0.001

k4 (CR0.5) −1.50 −2.12; −0.88 <0.001
k5 (CR1/3) 11.62 −15.78; 39.03 0.406
k6 (LPF) −57.63 −165.6; 50.34 0.295

k7 (LPF0.5) 54.73 −40.9; 150.37 0.262
k8 (LPF1/3) 0.00 −0.01; 0 0.889

k9 (DL) 0.02 0.01; 0.04 0.001
k10 (IL) 0.17 0.16; 0.17 <0.001
k11 (PL) −0.01 −0.02; 0 0.135
k12 (SC) 0.43 0.09; 0.77 0.012

k13 (SC0.5) −0.87 −1.45; −0.28 0.004
k14 (SC1/3) 0.01 −0.16; 0.19 0.891

Residential TH

k0 (Intercept) 15.71 0.49; 30.93 0.043
k1 (SR) −0.01 −0.02; −0.01 0.001

k2 (SR0.5) 0.05 0.03; 0.07 <0.001
k3 (CR) 0.00 0; 0 <0.001

k4 (CR0.5) 0.24 0.19; 0.29 <0.001
k5 (CR1/3) −1.08 −1.29; −0.87 <0.001
k6 (LPF) −19.43 −35.27; −3.59 0.016

k7 (LPF0.5) 72.46 10.33; 134.58 0.022
k8 (LPF1/3) −62.69 −117.65; −7.73 0.025

k9 (DL) 0.00 0; 0.01 0.008
k10 (IL) 0.04 0.03; 0.05 <0.001
k11 (PL) 0.14 0.14; 0.14 <0.001
k12 (SC) −0.01 −0.01; −0.01 <0.001

k13 (SC0.5) 0.59 0.46; 0.73 <0.001
k14 (SC1/3) −1.21 −1.49; −0.94 <0.001

Residential MFH

k0 (Intercept) 4.67 −8.7; 18.04 0.494
k1 (SR) 0.01 0.01; 0.01 <0.001

k2 (SR0.5) −0.03 −0.04; −0.02 <0.001
k3 (CR) 0.00 0; 0 <0.001

k4 (CR0.5) 0.45 0.39; 0.51 <0.001
k5 (CR1/3) −1.91 −2.12; −1.7 <0.001
k6 (LPF) 10.36 6.75; 13.97 <0.001

k7 (LPF0.5) −46.98 −62.27; −31.7 <0.001
k8 (LPF1/3) 43.57 29.69; 57.45 <0.001

k9 (DL) 0.00 0; 0 <0.001
k10 (IL) 0.01 0; 0.01 0.028
k11 (PL) 0.23 0.23; 0.24 <0.001
k12 (SC) −0.03 −0.03; −0.02 <0.001

k13 (SC0.5) 1.43 1.29; 1.57 <0.001
k14 (SC1/3) −2.99 −3.28; −2.71 <0.001

Residential AB

k0 (Intercept) 10.68 −2.72; 24.08 0.118
k1 (SR) 0.01 0; 0.02 0.035

k2 (SR0.5) −0.03 −0.05; −0.01 0.011
k3 (CR) 0.00 0; 0 <0.001

k4 (CR0.5) 0.61 0.54; 0.68 <0.001
k5 (CR1/3) −2.50 −2.75; −2.24 <0.001
k6 (LPF) 4.81 0.56; 9.05 0.027

k7 (LPF0.5) −23.85 −41.75; −5.96 0.009
k8 (LPF1/3) 22.74 6.51; 38.96 0.006

k9 (DL) 0.00 0; 0 0.106
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Table A3. Cont.

Building Typology Coefficient Value 95% CI p-Value

k10 (IL) 0.00 −0.01; 0 0.164
k11 (PL) 0.30 0.3; 0.3 <0.001
k12 (SC) −0.04 −0.04; −0.03 <0.001

k13 (SC0.5) 2.24 1.88; 2.6 <0.001
k14 (SC1/3) −4.88 −5.67; −4.09 <0.001

Industrial

k0 (Intercept) 17.96 4.47; 31.46 0.009
k1 (SR) 0.03 0.02; 0.05 <0.001

k2 (SR0.5) −0.06 −0.09; −0.03 <0.001
k3 (CR) 0.00 0; 0 <0.001

k4 (CR0.5) 0.51 0.45; 0.58 <0.001
k5 (CR1/3) −2.12 −2.38; −1.87 <0.001
k6 (LPF) −15.37 −19.02; −11.73 <0.001

k7 (LPF0.5) 66.58 48.73; 84.44 <0.001
k8 (LPF1/3) −60.91 −77.94; −43.87 <0.001

k9 (DL) −0.01 −0.01; −0.01 <0.001
k10 (IL) −0.01 −0.02; 0 0.010
k11 (PL) 0.27 0.27; 0.27 <0.001
k12 (SC) 0.01 0.01; 0.01 <0.001

k13 (SC0.5) −0.31 −0.39; −0.24 <0.001
k14 (SC1/3) 0.54 0.4; 0.67 <0.001

Tertiary

k0 (Intercept) 3.37 −10.24; 16.97 0.628
k1 (SR) 0.00 0; 0 0.737

k2 (SR0.5) 0.00 −0.01; 0.01 0.935
k3 (CR) 0.00 0; 0 <0.001

k4 (CR0.5) 0.42 0.38; 0.46 <0.001
k5 (CR1/3) −1.78 −1.94; −1.62 <0.001
k6 (LPF) 7.28 2.73; 11.82 0.002

k7 (LPF0.5) −37.45 −59.16; −15.75 0.001
k8 (LPF1/3) 36.17 15.63; 56.71 0.001

k9 (DL) 0.00 0; 0 0.261
k10 (IL) −0.02 −0.03; −0.02 <0.001
k11 (PL) 0.25 0.25; 0.25 <0.001
k12 (SC) −0.01 −0.01; −0.01 <0.001

k13 (SC0.5) 0.45 0.34; 0.57 <0.001
k14 (SC1/3) −0.96 −1.21; −0.71 <0.001

Table A4. QR coefficients to estimate PB for each building typology.

Building Typology Coefficient Value 95% CI p-Value

- k0 (Intercept) 0.22 0.21; 0.22 <0.001

Residential SFH
k1 (IRR) 1.60 1.49; 1.7 <0.001
k2 (IRR3) −1.80 −2.74; −0.86 <0.001
k3 (IRR3) 1.46 −0.63; 3.54 0.171

Residential TH
k1 (IRR) 1.56 1.54; 1.59 <0.001
k2 (IRR3) −1.40 −1.57; −1.23 <0.001
k3 (IRR3) 0.74 0.43; 1.06 <0.001

Residential MFH
k1 (IRR) 1.55 1.53; 1.57 <0.001
k2 (IRR3) −1.47 −1.57; −1.37 <0.001
k3 (IRR3) 0.90 0.74; 1.06 <0.001

Residential AB
k1 (IRR) 1.55 1.53; 1.57 <0.001
k2 (IRR3) −1.49 −1.58; −1.39 <0.001
k3 (IRR3) 0.88 0.75; 1 <0.001
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Table A4. Cont.

Building Typology Coefficient Value 95% CI p-Value

Industrial
k1 (IRR) 1.54 1.53; 1.56 <0.001
k2 (IRR3) −1.40 −1.47; −1.34 <0.001
k3 (IRR3) 0.76 0.67; 0.85 <0.001

Tertiary
k1 (IRR) 1.56 1.55; 1.58 <0.001
k2 (IRR3) −1.48 −1.54; −1.43 <0.001
k3 (IRR3) 0.84 0.77; 0.91 <0.001
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9. Hamann, K.R.S.; Bertel, M.P.; Ryszawska, B.; Lurger, B.; Szymański, P.; Rozwadowska, M.; Goedkoop, F.; Jans, L.; Perlaviciute, G.;
Masson, T.; et al. An Interdisciplinary Understanding of Energy Citizenship: Integrating Psychological, Legal, and Economic
Perspectives on a Citizen-Centred Sustainable Energy Transition. Energy Res. Soc. Sci. 2023, 97, 102959. [CrossRef]

10. Gassar, A.A.A.; Cha, S.H. Review of Geographic Information Systems-Based Rooftop Solar Photovoltaic Potential Estimation
Approaches at Urban Scales. Appl. Energy 2021, 291, 116817. [CrossRef]
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