
Citation: Fe, J.; Gadea-Gironés, R.;

Monzo, J.M.; Tebar-Ruiz, Á.;

Colom-Palero, R. Improving FPGA

Based Impedance Spectroscopy

Measurement Equipment by Means

of HLS Described Neural Networks

to Apply Edge AI. Electronics 2022, 11,

2064. https://doi.org/10.3390/

electronics11132064

Academic Editor: Akash Kumar

Received: 20 May 2022

Accepted: 27 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Improving FPGA Based Impedance Spectroscopy Measurement
Equipment by Means of HLS Described Neural Networks to
Apply Edge AI
Jorge Fe † , Rafael Gadea-Gironés *,† , Jose M. Monzo † , Ángel Tebar-Ruiz † and Ricardo Colom-Palero †

Institute for Molecular Imaging Technologies (I3M), Universitat Politècnica de València, 46022 Valencia, Spain;
jorfe@posgrado.upv.es (J.F.); jmonfer@upvnet.upv.es (J.M.M.); atebar@upvnet.upv.es (Á.T.-R.);
rcolom@eln.upv.es (R.C.-P.)
* Correspondence: rgadea@eln.upv.es
† These authors contributed equally to this work.

Abstract: The artificial intelligence (AI) application in instruments such as impedance spectroscopy
highlights the difficulty to choose an electronic technology that correctly solves the basic performance
problems, adaptation to the context, flexibility, precision, autonomy, and speed of design. Present
work demonstrates that FPGAs, in conjunction with an optimized high-level synthesis (HLS), allow
us to have an efficient connection between the signals sensed by the instrument and the artificial
neural network-based AI computing block that will analyze them. State-of-the-art comparisons
and experimental results also demonstrate that our designed and developed architectures offer the
best compromise between performance, efficiency, and system costs in terms of artificial neural
networks implementation. In the present work, computational efficiency above 21 Mps/DSP and
power efficiency below 1.24 mW/Mps are achieved. It is important to remark that these results are
more relevant because the system can be implemented on a low-cost FPGA.

Keywords: FPGA; impedance spectroscopy; artificial neural networks; high-level synthesis; AI edge
computing

1. Introduction

Impedance Spectroscopy is an instrumentation technique that measures the electrical
complex impedance of a biological system when it is excited with different frequency
voltage signals. Due to its electrical nature, the physiological behavior and state of a
biological component directly affect its impedance. For this reason, a precise impedance
measurement on a biological system gives us information on the internal physiological
processes variations.

Impedance spectroscopy is a non-invasive, fast, low cost and portable technology. Due
to these properties, it is a perfect technique to be applied in the industry to measure food
quality and in healthcare and biomedical applications. The technique has been successfully
applied in different studies. At food industry, it has been used for quality inspection
on fruit [1,2], fish and meat [3,4], and beverages [5,6]. In healthcare and biomedical
applications, it has been used in cardiography, cancer diagnosis, tissue analysis, and
biosensing [7,8].

Adapting the technique to industrial environments is one of the current impedance
spectroscopy challenges. To perform this, the technique should be fast, low-power, reliable,
adaptable to detect different quality parameters on various foods, and easily upgradable to
improve detection with new algorithms.

To achieve the above objectives, the present paper proposes using an FPGA as the
main signal processor on the impedance spectroscopy instrumentation and AI algorithms
at the edge to improve quality detection.

Electronics 2022, 11, 2064. https://doi.org/10.3390/electronics11132064 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11132064
https://doi.org/10.3390/electronics11132064
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0987-2860
https://orcid.org/0000-0003-2857-8667
https://orcid.org/0000-0001-6554-3231
https://orcid.org/0000-0002-7779-502X
https://orcid.org/0000-0003-0704-4906
https://doi.org/10.3390/electronics11132064
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11132064?type=check_update&version=2


Electronics 2022, 11, 2064 2 of 14

FPGA-based instrumentations have several notable properties. They are compact
and portable, cross-platform compatible, have low latency, are reconfigurable, and allow
edge processing and machine learning hardware acceleration. Therefore, FPGAs have
been integrated into different research areas’ instrumentation equipment [9]. Regarding
Impedance Spectroscopy, FPGA-based systems can be found in different studies [10–13].

The typical FPGA-based impedance spectroscope is composed of an FPGA, one Data
Acquisition Converter (DAC), an analog front-end, sensor probes, and two analog to digital
converters (ADCs). The measurement process requires two stages: sample excitation and
measurement. At the excitation process, the FPGA generates a signal that is converted into
a voltage or current through the DAC and the analog front-end. This signal is applied to
the sample through the sensor. In the measurement process, the sensor and the analog
front-end measure a voltage and the current on the excited sample. These two measures
are digitalized using the two ADCs. FPGA processes these signals to obtain the impedance
phase and modulus. This process can be repeated several times using different frequency
excitation signals. In the end, the system has impedance modulus and phase at the sample
for different excitation frequencies.

Several FPGA-based impedance spectrometers are based in commercial data acquisi-
tion boards [10,14]. These boards are composed of one FPGA and several high-speed ADCs
and DACs. FPGA configuration can be modified with custom-made hardware adapted to
achieve the designed system performance specifications. These spectrometers are made up
of the commercial board, together with a custom-made analog front-end and the sensor.
The presented paper system is based on a commercial data acquisition board Red Pitaya
STEMlab 125-14 [15].

It is important to remark that a third process should be performed over the measured
information, data analysis. Usually, data analysis is complex and performed outside of
the instrumentation system [16]. Several statistical methods such as principal component
analysis, linear discriminant analysis, ANOVA, least-squares analysis, and several machine
learning methods such as logistic regression, support vector machine, and K-nearest neigh-
bors have been applied successfully to extract information from the measured data [16].
Also, there are some works that have successfully applied data analysis based on Artificial
Intelligence (AI) techniques [13,17].

Artificial Neural Networks (ANN) are efficient algorithms to classify and perform
estimations over impedance spectrum measured data. It is a methodology that can be
implemented in industrial FPGA-based instrumentation systems that require automated
analysis [18].

Applying data analysis and performing estimations and classification inside the mea-
surement instrument without or reducing access to cloud services is known as edge com-
puting. Using FPGA-based systems to perform AI edge computing has several advantages
over other AI edge computing architectures such as the GPU based. These advantages
include providing a throughput independent of the workload, achieving high performance
for complex concurrent AI structures, and obtaining better energy efficiency than other
non-FPGA-based architectures. On the other hand, developing hardware on FPGA-based
edge AI systems is complex for most programmers [19].

FPGA, traditionally, has been programmed using low-level “Hardware Description
Languages” (HDL) such as VHDL or SystemVerilog. However, in the last few years, “High-
Level Synthesis“ (HLS) tools have been developed and popularised. HLS tools convert
behavioral C/C++ algorithms descriptions into low-level descriptions.

HLS tools infer parallelism from the sequential C/C++ described algorithms and
exploit it to achieve higher throughput and low latency. Although you can directly convert
any C/C++ program or software function into a synthesizable RTL code, this is not optimal.
HLS tools provide different options and pragmas to drive the C/C++ code conversion into
RTL description. Proper use of these HLS options and pragmas is essential to achieve an
optimal hardware implementation in speed and area.



Electronics 2022, 11, 2064 3 of 14

HLS tools focus designers on what they need to do instead of specifying how to
implement it for a given reconfigurable hardware [20]. These tools reduce the FPGA
hardware developing time. Consequently, HLS described systems could be upgraded
easily, improving their adaptability.

Using HLS descriptions to design the impedance FPGA-based spectrometer data
analysis block is a proper solution to develop a system that can be easily upgraded with
new algorithms to improve parameter detection over measured data. Considering ANN,
these algorithms require several iterations to process the data. The operations applied to
process the data are matrix multiplication or matrix-vector multiplication. The performed
calculations involve applying several nested loops to the data.

The HLS compiler will only infer task-level parallelism from function calls. The se-
quential code blocks (such as loops) which need to be run concurrently in hardware should
be put into dedicated functions. One of the desired objectives is to implement data process-
ing algorithms, minimizing the FPGA used resources. To do this, a proper HLS description
that divides operations into small functions simplifies path control and improves paral-
lelism. Then, to achieve functions high performance, pipe techniques should be applied
to the data loops. For this, using stream-based communication between functions allows
consumers to start data processing as soon as producers start data generation, allowing
overlapping the execution, which increases parallelism and throughput.

Therefore, using properly HLS as a description language reduces the time needed to
implement a time and resource-efficient new ANN topology.

This paper presents an FPGA-based impedance spectrometer with edge AI data
analysis using HLS described ANN. The system is based on a 7010 Zynq FPGA Red
Pitaya board with custom FPGA firmware. The spectrometer has been developed to be
used in the food industry to detect poultry breast anomalies using edge AI computing.
The system is fast, low-power, reliable, and adaptable to detect different poultry breast
anomalies. Authors have previous experience developing impedance spectrometer systems
for poultry breast anomalies detection [3,21]. The presented system architecture is flexible
and adaptable, allowing it to perform AI data analysis over impedance measured data on
other food or healthcare applications. The developed system is a prototype that allows us
to verify the feasibility of the technique in an industrial environment. In order to design
a definitive system for an industrial environment, the security of the system should be
improved to protect the system from potential threats. Using a zynq-based system allows
us to perform these security tasks [22].

The paper is organized as follows: This first section introduces the impedance spec-
troscopy technique and the drawbacks of adapting and improving the technique for indus-
trial environments. The second section describes the FPGA system architecture. The section
is divided into several subsections: Generation and acquisition system, FPGA data analysis,
and processing engine ANN. The third section talks about the HLS code optimization
applied to improve the system. The fourth section presents the obtained results and
their comparison with other edge-AI FPGA-based systems. The last section presents our
conclusions.

2. FPGA System Architecture

The system implemented on zynq 7010 red pitaya is presented in Figure 1. The de-
veloped hardware is described in the PL (Programmable Logic) section, which is divided
into two large blocks: the acquisition, processing, and generation section, with the module
called GAP, and the analysis section that is performed by the module ANN PE. Two possi-
ble architectures to implement the system are presented. The architecture for solution A
uses fewer resources compared to the architecture for the other solutions (B, C, D). This is a
tradeoff between resources and processing speed.

It is important to remark that the ANN PE module allows us to carry out this type of
configuration to gain processing speed.

GAP and ANN PE are described in more detail in the following sections.



Electronics 2022, 11, 2064 4 of 14

2.1. FPGA Generation, Acquisition and Preprocessing GAP

The application latency is a fundamental factor when AI at the edge is evaluated.
In impedance spectroscopy, input signals have a marked sequential character that condi-
tions the rest of the system (including the AI block) and determines much of the overall
application latency.

Another remarkable feature of this type of application is that the acquisition trigger
is generated by the application itself, either as a result of a user’s action or through the
response of a pressure sensor that will indicate the right contact with the object of study.
In any case, it derives in a start signal that will mark the beginning of the process that
generates and acquires the ANN inputs.

The ANN inputs number can be obtained as the number of impedance spectra taken
(in our application 4 spectra) times the number of frequencies in each spectrum sweep (in
our case, 225 frequencies obtained performing a logarithmic interpolation between 40 Hz
and 1 MHz) times the two obtained data for each frequency (impedance modulus and
phase). Therefore, our neural network that must classify the studied object has an input
layer of 1800 inputs (4 × 225 × 2). In our acquisition system, each frequency sweep lasts
exactly 1130 ms so the two last ANN inputs from the 1800 total needed will be available
4.52 s after the acquisition begins.

Custom bus

ARM
CORTEX-A9

SDIO

UART

SDIOSDIOSDIO

DDR3
memory
controller

Analog
z

IN-A

IN-B

shunt

HP0

AXI Interconnect

GAP

AXI
to custom bus

GP0

ANN 
PE

GPIO

SensorPLPS

Xilinx
HDL
HLS

Smart 
connect

ARM
CORTEX-A9

SDIO

UART

SDIOSDIOSDIO

DDR3
memory
controller

HP0

AXI Interconnect

GAP

AXI
to custom bus

GP0

ANN 
PE

GPIO

PLPS

HP1

Smart 
connect

Smart 
connect

For solutions A

For solutions B C D

Figure 1. SoC system.

As can be seen in Figure 2, the ANN inputs generation, acquisition, and data prepro-
cessing of block systems have been described at the hardware register transfer logic (RTL)
level with HDL. The method used to calculate the impedance modulus and phase in the
preprocessing block is the correlation method. The block is controlled by a Finite State
Machine to decrease its latency below 5 s. Attempts to perform the generation, acquisition



Electronics 2022, 11, 2064 5 of 14

control, and preprocessing tasks using the FPGA embedded ARM microprocessor increased
the signal acquisition times by an order of magnitude.

offset
removal

offset
removal

x

x

x

x

x

x

x

ʃ

ʃ

ʃ

ʃ

control path
main FSM

DDS

cycles
counter

RAM
INCREMENTS

|

+
+

SQRT

SQRT

÷

|

÷ arctan

arctan÷

x

PL

write 
address

read
 address

z

phase

ADC-A

ADC-B

14

14

GAP

DAC

14

Custom busPreprocessingAcquisition Generation

Figure 2. Generation, acquisition and preprocessing implemented GAP details.

2.2. FPGA Data Analysis

In this section, the HLS developed ANN processing block components implemented
in the FPGA are described. The presented architecture supports different ANN topologies
(with a different number of layers and neurons per layer).

Type of Neural Networks

Different ANN topologies are available depending on the type of function they per-
form. The best known or used topologies are built by connecting different numbers of
layers, with one input layer, N hidden layers, and one output layer. In the present work,
Feed-Forward Neural Networks topology is used. Equation (1) describes the computation
for each neuron in different layers where l = 0, 1, . . . , L is the ANN number of layers m0, m1,
m2 ,mL indicates the number of inputs for each layer, the input layer, the first hidden layer,
the second hidden layer, and the output layer respectively. Indices i, j refer to different
ANN neurons. Forwarding the data from left to the right, the neuron j is located to the
right of the neuron i. The index i represents the numbers of entries, where i = 0, 1, . . . , ml

beginning with zero because it includes bias as input. The index j represents the number
of neurons in the layer l, where j = 1, 2,. . . , N. The n index represents the nth ANN input
measured samples.

vl
j(n) =

ml−1

∑
i=0

W l
ij.y

l−1
i (n), (1)

2.3. ANN Processing Engine

Based on the previous section’s described topology, our component is named “ANN
Processing Engine” (ANN PE). Figure 3 shows the integrated ANN PE with all the compo-
nents needed to communicate with the microprocessor and DDR memory. The developed



Electronics 2022, 11, 2064 6 of 14

system uses the “Advanced Microcontroller Bus Architecture” (AMBA) protocols to inter-
connect the different system blocks: AXI-Lite protocol is used to configure each function,
AXI-Memory Mapped Full protocol (AXI-MM Full) is used to transfer data between ANN
PE and DDR memory, and AXI-STREAM is used to transfer data between internal functions
in the ANN PE.

The ANN PE block has been divided into four HLS-developed blocks: DMA WRITE,
DMA READ, Matrix-Vector Multiplication (MVM), and Activation Function (AF). DMA
READ and DMA WRITE blocks have been developed to perform “Direct Memory Access”
(DMA) to the DDR memory. DMA READ is for data reading, and DMA WRITE is for data
writing. The reading DMA block uses the AXI-MM Full protocol to read from DDR the raw
samples that the GAP section has previously stored in it and to read the ANN weights that
are also stored in the DDR. The writing DMA block uses the AXI-MM Full to store ANN
PE obtained results in the DDR memory.

The output data from the DMA read function is a stream in fixed-point or floating-
point format, depending on the implemented solution.

The read samples and the ANN weights are received by the “Matrix-Vector Multiplica-
tion” (MVM) block through the AXI-MM protocol. MVM block should be configured with
the number of neurons to be processed before starting the calculation. After MVM configu-
ration, the calculation process begins when there is valid data in the AXI-STREAM input.
When a neuron computation is completed, the result is propagated using an AXI-STREAM
protocol to be processed by the “Activation Function” (AF). AF block is implemented using
a look-up table. Finally, the DMA WRITE block writes the results of the current layer in
DDR memory.

This process is repeated for each layer using the previous layer’s results as input.
The last layer DDR stored results are the ANN analyzed impedance spectra measured data.

The following section presents the different HLS optimizations carried out in the
present work. These optimizations allow us to have a fast, efficient, and reconfigurable
data analysis system.

DMA
READ MVM AF DMA

WRITE

GP0

AXI
interconnect

 PL

HP0

smart
interconnect

HLS
Xilinx

ANN
PE

IP CORE AMBA AXI
 PROTOCOL

AXI Lite
AXI Stream
AXI MM

32

32 32

32

32 32

32 32

32

32

DMA
READ MVM AF DMA

WRITE

GP0

AXI
interconnect

 PL

HP0

smart
interconnect

64

64 32

32

32 32

32 32

32

64

smart
interconnect

HP1

32 32

For solutions A For solutions B C D

Figure 3. Artificial neural network processing element (ANN PE) in programable logic (PL) section.

3. Optimization and Improvements

Working with FPGA, different levels of hardware optimizations are possible. HLS
allows optimizations through its pragmas for performance, latency, area, throughput
and interfaces.

The first ANN PE IP Core performed optimization level has been applied at the AXI-
STREAM protocol communication between blocks. This optimization allows having a
Producer-Consumer architecture. That is, when the producer function delivers an output



Electronics 2022, 11, 2064 7 of 14

result, immediately, the consumer function starts to operate with it. “First Input First
Output” (FIFO) is applied between each function. The advantage of applying FIFO queues
when AXI-STREAM is used is that each function’s control path is reduced in complexity.

Another optimization level applied is to select the right word size for the matrix-vector
multiplication operations. 32-bit fixed-point words <W, I> with I = 8 and W = 32 have
been selected. This word size allows us to perform a DMA memory word read in each clock
cycle. With this fixed-point word configuration in the MVM operation, it is possible to have
a 10−5 error compared to performing the same operations using a 32-bit floating point.

The developed read and write DMA functions have been optimized for high through-
put and low initialization latency. As is described at the read DMA Algorithm 1 pseudocode,
the implementation has been separated into two functions. The main function contains
the AXI-MM and AXI-STREAM interfaces. The secondary function is responsible for
converting from AXI-MM to AXI-STREAM at the read DMA function and for converting
AXI-STREAM to AXI-MM at the write DMA function. If the pragma HLS DATAFLOW
(that optimizes throughput and latency) is not applied, the secondary function generates an
“Interval Latency” (IL) greater than 2. On the other hand, when the DATAFLOW pragma
is applied, it is possible to reduce the IL to 2 clock cycles. In addition, as it is described in
previous paragraphs, DMAs can read or write one 32-bit word per clock cycle respectively
for solution A or 64-bit for solutions B, C, and D.

Considering the MVM function, different optimizations have been applied. The first
decision was to store the weights in FPGA embedded memory. This allows for faster
data processing, although it has the drawback that, due to the reduced memory space in
FPGA, only ANN structures with small layers can be implemented. The other drawback is
the time consumed sending and saving the weights to the Block-RAM (BRAM) memory.
Consequently, a second optimization was implemented: remove the BRAM memories and
add AXI-MM Full port to read the weights in a similar way to how the read DMA function
executes reads from DDR memory. Although, in this optimization, the ANN weights
reading begins when the first valid data is present at the input of the MVM AXI-STREAM
interface, the cycles latency before the beginning of multiplications and sums calculation is
increased, reducing the performance of the MVM function.

The last implemented MVM optimization starts reading the memory weights just
before having the first Tvalid signal activation in the AXI-STREAM input data interface.
In addition, a single for loop is used together with three pragmas that are applied to this
loop. The first implemented pragma is PIPELINE with “Initialization Interval” I I = 1.
This allows the execution of the operation concurrently. Also, the ARRAY PARTITION
pragma is applied to divide the samples vector and store it in individual registers without
using BRAM. This improves the IP Core throughput. HLS has different pragmas to allocate
resources for the executed operations. The low-resource FPGA device used has DSP
cores that can perform multiplication and accumulation in one clock cycle. Applying the
BIND_OP impl = DSP pragma forces DSP blocks to be used. The MVM implementation has
been performed in a function, as described in the Algorithm 2 pseudocode. The sigmoid
“Activation Function” (AF) has been implemented with a look-up table which generates
one clock cycle latency.

HLS allows defining the IP Core control via hardware or software. By default, Vitis
HLS generates several control signals to perform a Hardware IP Core control. To control
via software the IP Cores, pragma HLS INTERFACE AXI-LITE port = return is applied to
the ports grouped into s_axilite interface. The reason for using a software control is that the
processing unit could be reusable to process different neural network layers. This allows us
to control via software each of the functions individually.

The sequence of how the data flows from each function is shown in Figure 4, where
an example of a 3 inputs layer and 5 neurons is shown. The diagram shows how the
AXI-STREAM and AXI-MM signals interact between the functions. It also shows the MVM
function latency when a vector multiplied by a column of the weight matrix is computed.



Electronics 2022, 11, 2064 8 of 14

Algorithm 1 READ DMA

1: MMToStream(NWords,

2: ∗dataIn,

3: strmOut)

4: #pragma DATAFLOW

5: temp

6: for i = 0 to NWords − 1 do

7: temp = ∗dataIn ++

8: strmOut << temp

9: end for

10: dmaRead(length,

11: ∗dataInDDR,

12: strmOut)

13: #pragma INTERFACE AXI-Stream strmOut

14: #pragma INTERFACE AXI-Lite dataIn

15: #pragma INTERFACE AXI-Lite NWords

16: #pragma INTERFACE AXI-Lite control

17: MMToStream(NWords,

18: ∗dataIn,

19: strmOut)

Figure 4. Waveform clock for a ANN PE layer, example of 3 input layer and 5 neurons.



Electronics 2022, 11, 2064 9 of 14

Algorithm 2 Multiplication Vector Matrix

1: MVM(strmIn,

2: strmOut,

3: ∗WInDDR,

4: rowsW,

5: NWords)

6: #pragma INTERFACE AXI-Stream strmOut

7: #pragma INTERFACE AXI-Stream strmIn

8: #pragma INTERFACE AXI-MM WInDDR

9: #pragma INTERFACE AXI-Lite rowsW

10: #pragma INTERFACE AXI-Lite control

11: inA, outC

12: P, Weight, tmp

13: IndexRW, IndexCP

14: inputBuf[]

15: Weight = ∗WInDDR ++

16: for i = 0 to NWords − 1 do

17: #pragma PIPELINE II = 1

18: #pragma ARRAY PARTITION inputBuf //Solutions A, B, C

19: #pragma ARRAY PARTITION inputBuf factor=2 cyclic//Solution D

20: inA = StreamIn

21: if IndexRW < rowsW then

22: inputBu f [IndexRW] = inA

23: P = inA.data

24: IndexRW ++

25: else

26: inA = inputBu f [IndexCP]

27: P = inA.data

28: end if

29: tmp+ = P ∗ Weight

30: #pragma BIND_OP impl=dsp

31: outC.data = tmp

32: if IndexCP == rowsW − 1 then

33: IndexCP = 0

34: tmp = 0

35: IndexRW ++

36: strmOut << outC

37: else

38: IndexCP ++

39: end if

40: end for



Electronics 2022, 11, 2064 10 of 14

4. Results
Performance Evaluation

In AI at the edge applications, system latency and, derivatively, application throughput
are often some of the most requested performance metrics.

Since most of the works are focused on computer vision applications, it is not surpris-
ing that frames per second (FPS) are widely used in different publications as the throughput
measurement. This measure has been used in the present work to compare our results with
other works; but it is essential to keep in mind that it is a measurement parameter very
dependent on the network topology, which includes the input layer that would have the
size of the starting image.

It is more interesting and independent of the topology to calculate the throughput as a
function of the number of network parameters (mega parameters) calculated per second
(Mps), remarking that it is generally understood that each synaptic connection involves
one parameter (one Multiply-Accumulate operation which we refer to as MAC).

However, it should be noted that results using these throughput metrics are often
masked by the programmable device architecture characteristics (granularity, number of
variables per LUTs, and DSPs characteristics) and, fundamentally, by resources available
and used in the chosen FPGA. To avoid this drawback, in the present paper, our solution’s
computational efficiency goodness is measured as network parameters per second per DSP
(which corresponds to a MAC operation in almost all manufacturer’s FPGA families).

Energy efficiency is also very important when AI at the edge processing is performed
in limited battery capacity embedded devices [23]. Energy efficiency is often reported as
the number of operations per joule; but, in this work, mW/Mps, which means energy per
operation, is used.

Finally, it is necessary to include two last aspects that our implementation perfectly
fulfills and that cannot be ignored: flexibility and architectural adaptation. Some other
implementations are unbeatable at the previous metrics, but at the cost of hardware time
compilation for these specifically implemented topologies. This means that any topology
change requires time-consuming hardware recompilation. And some implementations with
dependency on group size (such as the NDrange kernel-based OpenCL implementations),
even if they do not require recompilation, have an efficiency very dependent on the exact
size of the layers.

The results are summarized in four tables. Tables 1 and 2 show the different iter-
ations performed to reduce FPGA resources and processing time to the ones needed in
our application.

Table 1. ANN PE FPGA Resources.

Resources Solutions

1A 2A 3A 4A 5B 6B 7C 8D 9C

LUT 8132 7972 5753 7359 5708 7318 14243 7254 15,264

LUTRAM 364 364 295 297 299 301 889 889 890

FF 11,327 1104 9575 12,479 9669 12,573 35,192 10,309 36,333

BRAM 105 15 15 15 15 15 19 21 21

DSP 6 6 6 5 6 5 10 10 5

BUFG 1 1 1 1 1 1 1 1 1
Different HLS optimizations in the Matrix Vector Multiplication unit for a ZYNQ 7010.



Electronics 2022, 11, 2064 11 of 14

Table 2. Comparison.

Reference Topology Clock
MHz

Data
Types

Thp1
Mps

Thp2
FPS

Energy
mW/Mps

CE
Mps/DSP

Countinho et al. [24] 784-100-50-10 100 12-bit
Fixed 105.062 1250 2.855 0.96

Belabed et al. [25] 784-100-50-10 100 32-bit
Float 97.948 1160 3.89 2.129

Our A 784-100-50-10 100 32-bit
Fixed 45.84 545.4 3.03 7.64

Our B 784-100-50-10 100 32-bit
Fixed 98.49 1173.9 2.43 16.41

Our B 784-100-50-10 100 32-bit
Float 19.94 237.7 12.98 3.98

Our C 784-100-50-10 100 32-bit
Fixed 213.01 2538.9 2.37 21.30

Our D 784-100-50-10 100 32-bit
Fixed 213.14 2540.5 1.24 21.31

Our C 784-100-50-10 100 32-bit
Float 48.19 574.4 9.69 9.63

Wang et al. [26] 784-256-256-10 200 32-bit
Float 3.346 12.45 69.93 0.104

Our A 784-256-256-10 100 32-bit
Fixed 46.98 174.8 2.95 7.83

Our A 784-256-256-10 100 32-bit
Float 12.44 46.3 20.08 2.48

Our B 784-256-256-10 100 32-bit
Fixed 99.5 370.2 2.41 16.58

Our C 784-256-256-10 100 32-bit
Fixed 265.6 988.1 1.9 26.56

Our D 784-256-256-10 100 32-bit
Fixed 266.16 990.2 0.99 26.61

Our C 784-256-256-10 100 32-bit
Float 50.55 188.07 9.23 10.11

Comparison of the ANN PE with state-of-the-art. CE: Computational Efficiency. Thp1: Throughput in Frames per
second. Thp2: Throughput in Mega Parameters per second.

In the first solution, weights are loaded through the AXI-LITE protocol in BRAM
memory instantiated in the MVM function. This implementation took up a large number
of resources, and it was not feasible to add the other GAP section components. This
implementation would be possible for small ANN topology sizes but is not reusable for
bigger ANN topologies. Also, this solution has a latency due to the BRAM memory weights
load process.

In the second solution, the MVM function reduced the BRAM memory needed because
the weights were read from the DDR memory. However, the FPS that are processed is
reduced, compared with the previous implementation. Here, at the same time that the
DMA begins to read the sample vector and has a latency cycle to start pulling through
its axi-stream output, the MVM function reads the weights from memory one by one
generating a block with the input data.

The third iteration has been described in detail in the previous sections. It is important
to emphasize that this solution can be integrated into the 7010 Zynq FPGA devices (see
Table 3), which are the lowest cost Zynq solutions (less than 400 euros). For example, our
first iteration, which is the one that has the best results from a speed point of view (550 fps),
requires a 7020 Zynq FPGA family device, the cost of which is twice the previous one. Also,
a floating-point version, which uses more FPGA resources than the fixed-point version, can
be integrated into the 7010 devices, as can been seen in Table 4.



Electronics 2022, 11, 2064 12 of 14

Table 3. FPGA resources.

PL
GAP,
GPIO,
BUS

ANN
PE

PS

Combinational
Logic

LUTS
5847
33%

7933
44%

Sequential
Logic

FF
5251
15%

9575
28%

Memory BRAM
6

10%
9

15%

Memory LUTRAM
48
1%

361
8%

DSP Blocks
39

49%
6

8%
Dynamic

Power
W 0.522 0.085 1.292

Static
Device Power

W 0.132

Red pitaya 7010 version.

Although in the third solution the speed performance is slightly lower than the first
one, it has better energy and computational efficiencies than those shown in the most recent
publications (see Table 2).

The scalable accelerator for large-scale DL networks DALU by Wang et al. [26] ref-
erences 3 topologies (784-64-64-10, 784-128-128-10, and 784-256-256-10) on a 7020 ZYNQ
FPGA. Their work presents a poor energy efficiency (69.93 mW/Mps) but, comparatively,
it can be considered a low power (234 mW) solution.

The work detailed in [24] proposes an SSAE optimized at the RTL level to achieve the
best system performance in terms of throughput and energy efficiency. However, to achieve
this performance, they use 12-bit fixed data types that provide lower accuracy (93.3%).
The low computational efficiency achieved is the problem with this solution.

Undoubtedly, Belabed et al. [25] is the best solution for the referenced studies in the
present paper. Their solution achieves a throughput that stands out above all. A very high
number of DSPs have been used to obtain these results. That makes its computational
efficiency inferior to our third implemented solution. Their solution cannot be implemented
on a 7010 Zynq device, as can be seen in Table 4.

Table 4. FPGA resources for MVM

Reference Topology Clock[MHz] LUT LUTRAM BRAM DSP FF

[25] 7020 784-100-50-10 100 55% 10% 20% 21% 32%

[25] 7010 784-100-50-10 100 166% 20% 47% 58% 96%

Our 7020 Fixed A 784-100-50-10 100 11% 2% 7% 3% 9%

Our 7020 Float A 784-100-50-10 100 13% 1.71% 11% 2.2% 11.73%

Our 7020 Fixed B 784-100-50-10 100 10.73% 1.72% 11.07% 2.73% 9.09%

Our 7020 Float B 784-100-50-10 100 13.78% 1.73% 11.07% 2.27% 11.82%

Our 7020 Fixed C 784-100-50-10 100 26.77% 5.11% 13.57% 4.55% 33.08%

Our 7020 Float C 784-100-50-10 100 28.69% 5.11% 11.07% 2.27% 34.15%

Our 7020 Fixed D 784-100-50-10 100 13.64% 5.11% 15% 4.55 9.69%

Our 7010 Fixed A 784-100-50-10 100 32% 4% 15% 7% 27%

Our 7010 Float A 784-100-50-10 100 42% 5% 26% 6% 35%

In comparison with Belabed et al. [25].



Electronics 2022, 11, 2064 13 of 14

5. Conclusions and Future Directions

AI at the edge applications must be low power, portable and low cost with high
performance and low latency. This paper presents a functional impedance spectroscopy
system for the industry. The works demonstrate it is possible to use a low-cost FPGA device
to implement a system with the data acquisition, generation, and complex ANN-based
data analysis blocks. The ANN PE component has been developed in C++ and can be
quickly implemented and optimized using Vivado HLS. According to the results shown
in the tables, high computational efficiency and low consumption have been achieved on
the system.

In future directions, new AI algorithms will be adapted. To speed up system changes,
the acquisition, and generation system will also be migrated to HLS. To modify the system’s
accuracy, the possibility of generating the components with HLS with other data types such
as fp16 will be incorporated.

Also, it is possible to migrate the project to a higher-resource FPGA to work with differ-
ent ANN implementations in parallel. This would increment the data analysis capabilities
having a system cost increment.

Author Contributions: Conceptualization, J.F.; methodology, J.F., R.G.-G. and J.M.M.; software,
R.G.-G. and J.F.; validation, R.G.-G. and J.M.M.; investigation, J.F.; resources, R.C.-P. and Á.T.-R.;
writing original draft preparation, J.F.; writing review and editing, J.F., R.G.-G. and J.M.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article.

Acknowledgments: This work was supported in part by the Spanish MCIU under Project PID2020-
116816RB-I00 (MCIU/FEDER) and in part by GVA under Project INNEST/2020/248.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ochandio Fernández, A.; Olguín Pinatti, C.A.; Masot Peris, R.; Laguarda-Miró, N. Freeze-damage detection in lemons using

electrochemical impedance spectroscopy. Sensors 2019, 19, 4051. [CrossRef] [PubMed]
2. Islam, M.; Wahid, K.; Dinh, A. Assessment of ripening degree of avocado by electrical impedance spectroscopy and support

vector machine. J. Food Qual. 2018, 2018. [CrossRef]
3. Traffano-Schiffo, M.V.; Castro-Giraldez, M.; Herrero, V.; Colom, R.J.; Fito, P.J. Development of a non-destructive detection system

of Deep Pectoral Myopathy in poultry by dielectric spectroscopy. J. Food Eng. 2018, 237, 137–145. [CrossRef]
4. Zhao, X.; Zhuang, H.; Yoon, S.C.; Dong, Y.; Wang, W.; Zhao, W. Electrical impedance spectroscopy for quality assessment of meat

and fish: A review on basic principles, measurement methods, and recent advances. J. Food Qual. 2017, 2017, 6370739 [CrossRef]
5. Durante, G.; Becari, W.; Lima, F.A.; Peres, H.E. Electrical impedance sensor for real-time detection of bovine milk adulteration.

IEEE Sens. J. 2015, 16, 861–865. [CrossRef]
6. Zhu, H.; Liu, F.; Ye, Y.; Chen, L.; Liu, J.; Gui, A.; Zhang, J.; Dong, C. Application of machine learning algorithms in quality

assurance of fermentation process of black tea–based on electrical properties. J. Food Eng. 2019, 263, 165–172. [CrossRef]
7. Stupin, D.D.; Kuzina, E.A.; Abelit, A.A.; Emelyanov, A.K.; Nikolaev, D.M.; Ryazantsev, M.N.; Koniakhin, S.V.; Dubina, M.V.

Bioimpedance spectroscopy: Basics and applications. ACS Biomater. Sci. Eng. 2021, 7, 1962–1986. [CrossRef]
8. Naranjo-Hernández, D.; Reina-Tosina, J.; Min, M. Fundamentals, recent advances, and future challenges in bioimpedance devices

for healthcare applications. J. Sens. 2019, 2019, 9210258. [CrossRef]
9. Carminati, M.; Scandurra, G. Impact and trends in embedding field programmable gate arrays and microcontrollers in scientific

instrumentation. Rev. Sci. Instrum. 2021, 92, 091501. [CrossRef] [PubMed]
10. Ruiz-Vargas, A.; Arkwright, J.; Ivorra, A. A portable bioimpedance measurement system based on Red Pitaya for monitoring

and detecting abnormalities in the gastrointestinal tract. In Proceedings of the 2016 IEEE EMBS Conference on Biomedical
Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 4–8 December 2016; pp. 150–154.

11. Yang, Y.; Zhang, F.; Tao, K.; Wang, L.; Wen, H.; Teng, Z. Multi-frequency simultaneous measurement of bioimpedance spectroscopy
based on a low crest factor multisine excitation. Physiol. Meas. 2015, 36, 489. [CrossRef] [PubMed]

12. Jiang, Z.; Yao, J.; Wang, L.; Wu, H.; Huang, J.; Zhao, T.; Takei, M. Development of a portable electrochemical impedance
spectroscopy system for bio-detection. IEEE Sens. J. 2019, 19, 5979–5987. [CrossRef]

13. Luna, J.M.M.; Luna, A.M.; Fernández, R.E.H. Characterization and Differentiation between Olive Varieties through Electrical
Impedance Spectroscopy, Neural Networks and IoT. Sensors 2020, 20, 5932. [CrossRef] [PubMed]

http://doi.org/10.3390/s19184051
http://www.ncbi.nlm.nih.gov/pubmed/31546932
http://dx.doi.org/10.1155/2018/4706147
http://dx.doi.org/10.1016/j.jfoodeng.2018.05.023
http://dx.doi.org/10.1155/2017/6370739
http://dx.doi.org/10.1109/JSEN.2015.2494624
http://dx.doi.org/10.1016/j.jfoodeng.2019.06.009
http://dx.doi.org/10.1021/acsbiomaterials.0c01570
http://dx.doi.org/10.1155/2019/9210258
http://dx.doi.org/10.1063/5.0050999
http://www.ncbi.nlm.nih.gov/pubmed/34598486
http://dx.doi.org/10.1088/0967-3334/36/3/489
http://www.ncbi.nlm.nih.gov/pubmed/25679488
http://dx.doi.org/10.1109/JSEN.2019.2911718
http://dx.doi.org/10.3390/s20205932
http://www.ncbi.nlm.nih.gov/pubmed/33092289


Electronics 2022, 11, 2064 14 of 14

14. Vela, L.M.; Kwon, H.; Rutkove, S.B.; Sanchez, B. Standalone IoT bioimpedance device supporting real-time online data access.
IEEE Internet Things J. 2019, 6, 9545–9554. [CrossRef]

15. RedPitaya Product Comparison Table. Available online: https://redpitaya.readthedocs.io/en/latest/developerGuide/hardware/
compares/vs.html (accessed on 18 February 2022).

16. Rivola, M.; Ibba, P.; Lugli, P.; Petti, L. Bioimpedance data statistical modelling for food quality classification and prediction. In
Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 22–28 May 2021; pp. 1–5.

17. Chowdhury, D.; Chattopadhyay, M. Study and Classification of Cell Bio-Impedance Signature for Identification of Malignancy
Using Artificial Neural Network. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [CrossRef]

18. Paterno, A.; Negri, L.H.; Bertemes-Filho, P. Efficient computational techniques in bioimpedance spectroscopy. Applied Biological
Engineering-Principles and Practice; InTech-Open Access Publisher: Rijeka, Croatia, 2012, pp. 1–26.

19. Wang, X.; Han, Y.; Leung, V.; Niyato, D.; Yan, X.; Chen, X. Edge Computing for Artificial Intelligence. In Edge AI; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 97–115.

20. VITIS Hls. Available online: https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf
(accessed on 18 February 2022).

21. Traffano-Schiffo, M.V.; Castro-Giraldez, M.; Colom, R.J.; Fito, P.J. Development of a spectrophotometric system to detect white
striping physiopathy in whole chicken carcasses. Sensors 2017, 17, 1024. [CrossRef] [PubMed]

22. Trimberger, S.M.; Moore, J.J. FPGA security: Motivations, features, and applications. Proc. IEEE 2014, 102, 1248–1265. [CrossRef]
23. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. How to Evaluate Deep Neural Network Processors: TOPS/W (Alone) Considered

Harmful. IEEE Solid-State Circuits Mag. 2020, 12, 28–41. [CrossRef]
24. Coutinho, M.G.; Torquato, M.F.; Fernandes, M.A. Deep neural network hardware implementation based on stacked sparse

autoencoder. IEEE Access 2019, 7, 40674–40694. [CrossRef]
25. Belabed, T.; Coutinho, M.G.F.; Fernandes, M.A.; Sakuyama, C.V.; Souani, C. User Driven FPGA-Based Design Automated

Framework of Deep Neural Networks for Low-Power Low-Cost Edge Computing. IEEE Access 2021, 9, 89162–89180. [CrossRef]
26. Wang, C.; Gong, L.; Yu, Q.; Li, X.; Xie, Y.; Zhou, X. DLAU: A scalable deep learning accelerator unit on FPGA. IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst. 2016, 36, 513–517. [CrossRef]

http://dx.doi.org/10.1109/JIOT.2019.2929459
https://redpitaya.readthedocs.io/en/latest/developerGuide/hardware/compares/vs.html
https://redpitaya.readthedocs.io/en/latest/developerGuide/hardware/compares/vs.html
http://dx.doi.org/10.1109/TIM.2020.3046928
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf
http://dx.doi.org/10.3390/s17051024
http://www.ncbi.nlm.nih.gov/pubmed/28471378
http://dx.doi.org/10.1109/JPROC.2014.2331672
http://dx.doi.org/10.1109/MSSC.2020.3002140
http://dx.doi.org/10.1109/ACCESS.2019.2907261
http://dx.doi.org/10.1109/ACCESS.2021.3090196
http://dx.doi.org/10.1109/TCAD.2016.2587683

	Introduction
	FPGA System Architecture
	FPGA Generation, Acquisition and Preprocessing GAP
	FPGA Data Analysis
	ANN Processing Engine

	Optimization and Improvements
	Results
	Conclusions and Future Directions
	References

