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Abstract: The development of methodologies to support decision-making in municipal solid waste
(MSW) management processes is of great interest for municipal administrations. Artificial intelligence
(AI) techniques provide multiple tools for designing algorithms to objectively analyze data while
creating highly precise models. Support vector machines and neuronal networks are formed by AI
applications offering optimization solutions at different managing stages. In this paper, an imple-
mentation and comparison of the results obtained by two AI methods on a solid waste management
problem is shown. Support vector machine (SVM) and long short-term memory (LSTM) network
techniques have been used. The implementation of LSTM took into account different configurations,
temporal filtering and annual calculations of solid waste collection periods. Results show that the
SVM method properly fits selected data and yields consistent regression curves, even with very
limited training data, leading to more accurate results than those obtained by the LSTM method.

Keywords: artificial neural networks; municipal solid waste; support vector machines; solid waste
management; waste disposal

1. Introduction

The increasing generation of municipal solid waste (MSW) and the need for its proper
management is one of the main environmental problems that must be addressed in large
urban areas [1]. Municipal solid waste management (MSWM) requires alternatives that
optimize every stage within the process. A critical concern is the lack of control and
poor management of waste generated in urban centers, which hinders its sustainable
management, treatment, collection and final disposal [2]. Adequate and sustainable waste
management infrastructure planning depends on the ability to reliably estimate future
MSW generation. This task requires the consideration of expected demographic, social and
economic factor changes. Therefore, performing accurate MSW forecasting is complex and
challenging [3,4].

Currently, efforts have been made to transform the waste management industry to-
ward sustainability and profitability through the implementation of advanced technologies
and smart systems [5]. Recent developments in new software and internet technologies,
together with a gradual introduction of more compact and reliable hardware products,
have demonstrated the ability to precisely manage MSW procedures with greater ease than
costly and tedious field experiments [6]. Artificial intelligence (AI) effectively provides
these systems with alternatives to minimize problems associated with decision making and
data management for such specific activities and processes.

Int. J. Environ. Res. Public Health 2023, 20, 4256. https://doi.org/10.3390/ijerph20054256 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph20054256
https://doi.org/10.3390/ijerph20054256
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0003-4376-5938
https://orcid.org/0000-0001-8380-7376
https://orcid.org/0000-0002-8611-0504
https://doi.org/10.3390/ijerph20054256
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph20054256?type=check_update&version=2


Int. J. Environ. Res. Public Health 2023, 20, 4256 2 of 20

AI has been widely implemented in the environmental engineering field to solve
problems related to air pollution, water and waste-water treatments, soil remediation,
groundwater contamination and planning MSW strategies [7], among other activities. These
tools are necessary in order to optimize MSW activities, analyzing all the available data and
leading to environmental, social and economic benefits. Modeling and simulation tools
must be implemented to establish relationships between the different variables involved.

AI is widely used to forecast MSW generation, classification, properties and collection
patterns, situate facilities and simulate waste conversion processes, among other activ-
ities [8]. MSW generation analysis is a crucial stage when designing an efficient MSW
management system. Accurately forecasting MSW generation depends on the existence
and availability of accurate data [9]. When these data are not available, modeling methods
are needed to predict MSW generation. The success of these modeling techniques largely
depends on the selection of waste flows [3]. Traditional prediction of MSW generation
has been supported with the application of different forecasting tools such as descriptive
statistical analysis, regression analysis, principal component analysis, time series analysis
and material flow analysis [8,10,11].

The AI systems most frequently used for modeling and optimizing MSW processes
include artificial neural networks (ANNs), support vector machines (SVMs), linear regres-
sion (LR), decision trees (DTs) and genetic algorithms (GAs) [5,12,13]. Neural network
tools are the most widely used methods in this field, including radial basis function (RBF),
multilayer perceptron (MLP), back propagation (BP) and feedforward, autoregressive and
recurrent ANNs [5,12,13]. Other less frequently used models are adaptive neuro-fuzzy
inference systems (ANFISs), random forests (RFs), wavelet transform (WT), K-means, data
mining, Naïve Bayes, rough sets, logistic model trees, Q-type clustering, ant colony op-
timization, non-inferior set estimation (NISE), goal programming and artificial immune
systems (AISs) [5].

ANNs are effective in modeling processes with sets of incomplete or uncertain data,
as well as in addressing complex or imprecise problems that require human intuition [14].
They have been successfully applied in waste prediction and generation problems, waste
classification, biogas generation, leachate formation, energy recovery, waste heating value,
determination of the melting temperature of waste and the design of optimal waste col-
lection routes [3,5]. ANNs are one of the most popular non-linear models and have been
successfully applied in predicting the production of municipal solid waste [15,16].

ANNs have been widely used to model various MSW processes due to their robustness,
fault tolerance and suitability for representing complex relationships among variables in
multivariate systems. Furthermore, the calibration process of ANN systems usually requires
fewer parameters than those required by deterministic models [17,18]. On the other hand,
ANNs are ill-suited for handling logical and arithmetic problems that need a high degree of
precision, as they are prone to overfitting [5]. Moreover, they are incapable of determining
the relative importance of several factors involved in an analysis [5].

There are a wide range of ANNs with different purposes and diverse architectures
based on their established prediction tasks. Regarding time series, LSTM recurrent neural
networks have led to favorable results and the design of their architecture is useful in
exploring temporal correlations among data. In general, algorithms based on neural
networks learn non-linear and non-parametric functions based on a set of training data.

Support vector machines (SVMs) are supervised machine learning algorithms that
are useful in data analysis [19,20]. These tools are binary linear classification techniques,
which separate classes with the largest gaps between border line instances. For non-linearly
separable data problems, SVMs have been extended using kernels, mathematical functions
that transform the data from a given space to a new high-dimensional space where data
can be separated with a linear surface [21].

Despite being initially applied to address classification problems, SVMs have been
used to solve regression problems as well, outperforming several classical regression
techniques [5]. These algorithms are less susceptible to overfitting and perform at an expert
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level in reducing error estimates and model dimensions, unlike statistical procedures such
as principal component analysis (PCA), which only address the dimensionality of the
model [22]. This tool has been used in several areas of environmental engineering, such as
air pollution modelling [23], the design of systems used to identify plastic solid waste (PSW)
based on near-infrared reflectance (NIR) spectroscopy in combination with SVMs [24],
forecasting the generation of photovoltaic energy [25], analyzing daily global solar radiation
models and their respective comparison [26], and predicting the biodegradability of organic
chemicals [27].

Some applications of SVM tools to MSW management problems show that they have
been widely used to forecast container filling levels, waste generation, waste classification,
energy recovery, and waste heating value [5,8,13]. SVMs are often improved to develop
models in combination with a principal component analysis (PCA) technique to forecast
waste production [28].

Therefore, the application of AI techniques in the design of MSWM systems, especially
in the evaluation of waste production, is a topic of special interest. In this work, the results
obtained when using SVM and LSTM techniques are compared. This paper is organized in
six sections. Section 1 includes relevant references about the use of AI techniques in MSWM
systems. Section 2 summarizes the basic concepts of the SVM and LSTM algorithms, the
description of the study area and the characteristics of the methodological modeling process.
Section 3 shows the results obtained when applying SVM and LSTM techniques to the
available data. Section 4 presents a discussion of the results and chapter 5 includes the
main conclusions.

2. Materials and Methods

ANNs and SVMs are appropriate AI tools to model processes related to solid waste
management. This work shows a comparative analysis of the performance of these tools
on an MSW management model including socio-economic variables. The case study is of
the megacity of Bogotá (Colombia). MSW management in Bogotá is a complex problem
due to the large amount of waste generated by the megacity’s population, which is finally
disposed of at the Doña Juana landfill site.

Several AI software platforms and libraries have been used to solve MSW management
problems. MATLAB was used in the training and testing of neural networks and MLP
algorithms [29–35]. SPSS was used to correlate model attributes such as population density
and waste generation [17,36–38]. R software was used to remove outliers from data sets,
particularly in waste generation simulations [39,40]. C++ and Python languages were used
to simulate the AI models in the same way [41–43]. C++ provides different AI libraries that
include OpenNN, OpenCV, BOOST, gflags, glog and Tensor Flow. Similarly, Python has
Tensor Flow along with other libraries such as Spyder, Matplotlib and Utils [5].

To perform a comparative analysis, the same variables in the two models were used:
population, solid waste production, socio-economic stratification, transportation service
expenses and MSW disposal costs using different technologies. Nine analysis scenarios
were integrated into each model, simulating the behavior of each scenario in a given year
with both LSTM and SVMs. The simulation process was designed to study the behavior of
highly complex cities such as the megacity of Bogotá. Smaller areas can be considered in
order to carry out specific analysis according to the particularity of each zone. The results
explained below provide an analysis of alternatives to support objective decision making
in MSW management, showing the outcomes of implementing AI tools based on ANN and
SVM techniques.

2.1. Basic Concepts of the Algorithms Used in this Study
2.1.1. Artificial Neural Network (ANN) and Long Short-Term Memory Network (LSTM)

ANN theory was first proposed by McCulloch and Pitts in 1943 [44]. ANN uses
mathematical modelling to simulate some structures and functions found in the neuronal
system of the human brain [45]. The principle of ANNs provides them with a good
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nonlinear mapping capability and makes them suitable for solving a mapping problem
from one data set to another [12]. In accordance with signal transmission modes, ANNs
can be classified into feedforward and feedback neural networks. Feedforward neural
networks are relatively simpler and widely used in MSW management studies [7].

In a multilayer feedforward neural network, neurons in each layer connect to neurons
in the next layer through links of different weights (Figure 1). Neuron layers can be
classified into three types: input layer, hidden layers and output layer. The neurons in the
input layer form a system that receives external information, such as sensory receptors; the
hidden layer neurons simulate a biological neural network to transmit information; and
neurons in the output layer present decision output [12].
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Figure 1. Structure of a multilayer feedforward ANN.

The mathematical description of an ANN can be understood by Equation (1) [46].

Y(t) = F (∑i=1
n(Xi(t) Wij(t) + bij)) (1)

where:

Xi(t) is the input value at time t
Wij(t) is the weight of neural input at time t
bij is the bias
F is a transfer function
y(t) is the output value at time t

Recurrent neural networks (RNNs) are variants of neural networks that are good
at dealing with sequential data processing [47]. The structure of the ANN is organized
iteratively, such that output data are converted to input data taking into account the stored
output of the previous time step t − 1, which is added to the inputs of the current time
step t. This configuration means that a change in the state of an individual neuron can
be transferred via feedback to the other neurons, invoking transient states and generally
leading to another state of the network [48].

LSTM is meant to solve the challenges faced by RNNs with the help of gates that
manage the flow of sequences at the current state and output of the current sequence [49].
The idea of LSTM is that it maintains the state of the memory for a long time due to the
presence of the memory cell. The memory state consists of gates that regulate data flow
in the memory. The memory state is present in all LSTM cells to modify the information
values of the previous states based on the importance of the gate units [50].

LSTM networks are composed of a sigmoid neural network layer and a point multipli-
cation operation. To avoid having to concatenate vectors at the output of a step only to later
separate them at the beginning of the next step, LSTM cells are usually represented with
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three inputs [51]. Figure 2 shows a representation of the LSTM model and its mathematical
formulation can be found in [52].
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LSTM has advantages over other deep learning algorithms: it learns data behavior
better than RNNs from any predetermined value [49] and generally requires a minimum
number of hyperparameters for fine tuning [53].

2.1.2. Support Vector Machines (SVMs)

In the 1990s, Vanik systematically introduced statistical learning theory and proposed
the SVM algorithm [54]. Due to its excellent performance in the field of text mining and
error diagnosis, SVM gradually became the mainstream technology of machine learning
methods [55]. It is used in solving classification and regression problems, being a linear
model that provides solutions for both linear and non-linear problems [56].

SVM is a probabilistic-based technique that performs binary classification and aims
to find the dividing hyperplane that separates both classes of the training set with the
maximum margin [57]. Any training samples that fall on hyperplanes H1 or H2, the sides
defining the margin, are support vectors, as shown in Figure 3. The equations that solve
the LSTM model can be found in [58].
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The SVM algorithm has many advantages: it works skillfully even with semi-structured
and unstructured data, it can handle any complex problem with the proper function, it
can work well with high-dimensional data and due to generalization, it has less risk of
overfitting. The main disadvantage is that it requires more time to train the model for a
large data set and that it does not work well with noisy data [56].

2.2. Description of the Study Area

According to 2020 projections, Bogotá’s population is 8,380,801 inhabitants [59], and
196,138 tons of solid waste were collected in March 2020 [60], which were disposed at the
Doña Juana MSW landfill. This huge MSW production underscores the capacity required
by the waste treatment systems of the city. Bogotá is administratively subdivided in the
following 20 localities: Usaquén, Chapinero, Santa Fe, San Cristóbal, Usme, Tunjuelito, Bosa,
Kennedy, Fontibón, Engativá, Suba, Barrios Unidos, Teusaquillo, Los Mártires, Antonio
Nariño, Puente Aranda, La Candelaria, Rafael Uribe, Ciudad Bolívar and Sumapaz [61].
The megacity has a waste collection system divided into five ESAs (exclusive service areas).
Currently, each ESA is operated by a specific company that provides waste collection
services [62] (Figure 4, Table 1).
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Table 1. Structure of the ESAs for the collection of solid waste in Bogotá [62].

ESA Service Operator Number in
Each ESA Locality by ESA

ESA 1 PROMOAMBIENTAL Usme, San Cristóbal, Santa Fé, La Candelaria,
Chapinero, Usaquén, Sumapaz

ESA 2 LIME S.A E.S.P.
Ciudad Bolívar, Bosa, Tunjuelito, Rafael
Uribe, Antonio Nariño, Puente Aranda,

Teusaquillo, Los Mártires
ESA 3 CIUDAD LIMPIA Fontibón, Kennedy
ESA 4 BOGOTÁ LIMPIA Engativá, Barrios Unidos
ESA 5 ÁREA LIMPIA Suba

Doña Juana landfill is Bogotá’s primary site for the final disposal of waste. Its presence
is vital for the city’s development and it is located in Ciudad Bolívar [64]. Given the quantity
of waste collected in the city and finally disposed of at this landfill site, health emergencies
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are common there, demonstrating the need to propose alternatives that minimize the
amount of waste stored at the landfill.

2.3. Methodological Model

As stated above, the main objective of this work was to carry out a comparative
analysis of the performance of the LSTM and SVM models to examine the precision of
predictive learning models and estimate the related costs of each. The development stages
of this research were as follows:

1. Data review and standardization;
2. Forecast of urban solid waste generation performed by LSTM and SVM;
3. Proposal of scenarios for methodological development: E1–E9;
4. Inclusion of transportation and treatment costs of solid waste for each scenario;
5. Modeling the developed methodology integrated into LSTM and SVM;
6. Results analysis.

As a first stage of this study the values of the following model parameters were
collected to estimate the waste production:

• the city’s population;
• solid waste generation by collection area;
• the city’s socio-economic stratification;
• transportation expenses;
• possible waste treatment costs.

Population data were obtained from information provided by the National Admin-
istrative Department of Statistics (DANE) and the District Planning Secretariat [65]. The
values of the MSW per capita production in 2016 were based on data provided by the
Special Administrative Unit for Public Services [66]. In this work, socio-economic stratifica-
tion is understood as “the classification of residential buildings in a municipality, which is
performed based on the Regime of Public Home Services in Colombia” (Law 142 of 1994).
Strata 1, 2 and 3 correspond to the lowest strata areas (fewer economic resources), while
strata 5 and 6 correspond to highest strata areas (more financial resources). The location
of these areas and the strata distribution data were provided by DANE [67]. Once these
data were collected, projections in time were carried out by implementing LSTM for each
collection area while simultaneously carrying out the same process for the SVM models.

A set of scenarios to be evaluated were then determined (Table 2). To this end, the
same scenarios proposed in the “Study of Alternative Techniques for the Treatment, Final
Disposal and/or Use of Solid Wastes—Proposed Adjustment to Decree 838 of 2005 (Com-
piled in Decree 1077 of 2015)” by the Inter-American Development Bank were used [68].
This study analyzed the treatment and disposal costs of a city’s solid waste under different
alternatives. The possible revenue obtained from byproducts in each scenario was also
calculated, considering the existence of three differently sized waste treatment facilities in
each scenario.

Waste transportation costs were included within the model, following the requirements
established by Resolution CRA 853 of 2018 of the Commission on the Regulation of Drinking
Water and Basic Sanitation [69]. This resolution determines the maximum costs established
for 2018, which depend on:

- the monthly average of tons collected and transported in the immediately preceding
year (tons/month), as well as

- the distance to the final disposal site, transfer station or treatment plant (km).

To update costs, [69] also establishes an increase factor from the Consumer Price Index
(CPI) in the month selected by the provider to be used as the basis for the update in addition
to the corresponding factor for the last month in which the CPI was updated [69].
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Table 2. Proposed scenarios as defined by the Inter-American Development Bank study [67].

Scenario MSW Technology (%)

E1
Incineration 78%
Landfilling 22%

E2
Gasification 78%
Landfilling 22%

E3
Mechanical treatment + anaerobic

digestion 68%

Landfilling 32%

E4
Mechanical treatment+ open-air

composting 52%

Landfill 48%

E5
Mechanical treatment + closed

composting 68%

Landfilling 32%

E6
Source classification + composting 60%

Landfilling 40%

E7 Landfilling + biogas burning 100%

E8 Landfilling + biogas energy generation 100%

E9 Landfill + biogas capture and direct sale 100%

Given the relationship between distance and transportation costs, the distances from
the ESAs’ geographic mass centers to the most likely treatment sites were used as the
basis for the corresponding calculations, taking into account areas in the city that have the
possibility of obtaining environmental licensing for this type of process. These geographic
mass centers are included in Decree 652 of 2018 of the Office of the Mayor of Bogotá [70].
Adjustments were made for the final calculation of all the costs in the same manner as those
associated with waste treatment, using the updating factor from 2015 to 2020 and applying
the present value concept to 2020 in the predictive model.

Therefore, both LSTM and SVM models were used to simulate the same set of data
and to obtain results for the same set of scenarios. This research allows us to identify which
is the best scenario for the megacity of Bogotá while evaluating the performance of the two
AI tools used.

In both models, Python was used as the programming language via Jupyter Notebook
in the Google Colab environment.

3. Results

Results of the analyzed models for each of the city’s solid waste collection areas
(ESAs) are presented below. SVM results were obtained using radial basis kernel functions.
The SVM model provides good adjustment to the training data and replication of their
variability pattern with time while LSTM learns a more general pattern and results in
noticeable periodic predictions. Figure 5 shows results obtained for ESA 1 for both methods.

The network architecture was structured with one input neuron, ten hidden neurons
and one output neuron. A hyperbolic tangent function was used as the activation function
and a linear function was used for the dense layer.

It is important to note that SVMs capture the growth pattern in the training data as
the predominant behavior in the data for its subsequent replication in the forecasts. These
effects were clearly seen in ESA 2 (Figure 6).
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Figure 5. Performance comparison in the training and prediction for ESA Zone 1 using (a) LSTM and
(b) SVMs.

A similar behavior to that observed for ESA 1 was seen for ESA 3. In this zone SVMs
adjust more accurately to the training data, generating more variable predictions than those
simulated by LSTM (Figure 7).

Figures 8 and 9 show the predictive behavior of ESAs 4 and 5, respectively. For these
ESAs, the best predictions are obtained through SVM implementation, maintaining the
trend of the results obtained for the prior ESAs.
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To quantify the error associated with each prediction made by these methods, the
mean squared error (MSE) and the mean absolute error (MAE) were used. Table 3 shows
the results obtained for each ESA by both modeling techniques.

Table 3. MSE and MAE obtained by each simulation method on every ESA.

Zone ESA 1 ESA 2 ESA 3 ESA 4 ESA 5

Method MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

SVM 0.0108 0.0820 0.0419 0.1341 0.0110 0.0845 0.0946 0.1996 0.0300 0.1204
LSTM 0.0383 0.1524 0.0530 0.1800 0.0893 0.2436 0.0886 0.2204 0.0448 0.1716
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Figure 7. Performance comparison in the training and prediction for ESA Zone 3 using (a) LSTM and
(b) SVMs.

The results shown in Table 3 highlight that the SVM method provides simulations
with fewer training errors. Moreover, ESAs 2, 4 and 5 show the highest absolute errors
in the training using the SVM method. For LSTM, the highest absolute error values were
obtained in ESAs 3 and 4. The lowest value for the MAE is for ESA 1, both for SVM and
LSTM simulation methods.
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Figure 8. Performance comparison in the training and prediction for ESA Zone 4 using (a) LSTM and
(b) SVMs.

From an economic perspective, treatment and transportation costs for 2030 within
the models were given in present 2020 values. As mentioned above, for cost and revenue
projections, this study used scenarios proposed in the “Study of Alternative Techniques
for the Treatment, Final Disposal and/or Use of Solid Wastes—Proposed Adjustment to
Decree 838 of 2005 (Compiled in Decree 1077 of 2015)” by the Inter-American Development
Bank [67].

Two different scenarios were considered in the modeling process.

• Scenario 1—The waste is disposed of at the Doña Juana landfill as is currently carried
out (Distance 1). This scenario considers the potential revenue obtained from the sale
of byproducts from the primary treatment process;

• Scenario 2—The waste is disposed of at a second landfill (Nuevo Mondoñedo), located
at Distance 2. This landfill site is still not licensed and depends on the results of
feasibility and environmental studies (Figure 10).
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Figure 9. Performance comparison in the training and prediction for ESA Zone 5 using (a) LSTM and
(b) SVMs.

Scenario 2 was used to carry out a comparative cost analysis between ESAs and
the models, based on the change in distances (Table 4). In addition, the comparison of
results between both scenarios also demonstrates the model’s flexibility, which allows for
future adjustments as more data are obtained and different MSW treatment techniques are
considered in each ESA.

Figure 11 shows the comparative results in terms of ESA-related costs, models
and distances.

ESA 2 shows the highest values in the cost analysis as it is the location that generates
the highest production of MSW in the city. This production is proportional to the population
density in that area. The lowest values were found in ESAs 4 and 5, as they correspond to
the zones with the lowest population densities in the city.

Scenario E6 shows the lowest costs for every area, using either SVMs or LSTM. This
scenario considers treating 60% of the waste for composting, while 40% is disposed of at
the landfill.
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Figure 10. Location map of work distance 1 (Doña Juana landfill) and work distance 2 (Nuevo
Mondoñedo landfill location zone) [71].

ESA 4 shows the lowest costs. The monthly average cost was lower for scenario E7
(USD 2,326,874). However, if the possible revenue generated in the process is considered,
the best scenario would be E6 (source classification + composting + landfilling), with a
monthly average value of USD 16,435,044. These results were obtained by modeling with
SVMs and considering the Doña Juana landfill as a final disposal site.

As ESA 2 shows the highest costs, its most favorable scenario is E7, with costs equal to
only USD 6,446,908 as a reference. If the projected revenues for the scenarios are included
in the calculations, scenario E6 is the best, with a monthly average value of USD 4,628,449.
This pattern is consistent for all the ESAs.
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Table 4. Working distances considered in the modeling.

Scenario
Final Disposal Distance 1 (km) Final Disposal Distance 2 (km)

ESA 4 ESA 5 ESA 4 ESA 5

E1
Incineration 27.3 36.9 27.3 36.9
Landfilling 21.5 32.6 35.8 51.6

E2
Gasification 27.3 36.9 27.3 36.9
Landfilling 21.5 32.6 35.8 51.6

E3

Mechanical
treatment + anaerobic

digestion
35.6 45.1 35.6 45.1

Landfilling 21.5 32.6 35.8 51.6

E4

Mechanical
treatment + open-air

composting
35.6 45.1 35.6 45.1

Landfill 21.5 32.6 35.8 51.6

E5

Mechanical
treatment + closed

composting
35.6 45.1 35.6 45.1

Landfilling 21.5 31 35.8 51.6

E6
Source classifica-

tion + composting 35.6 45.1 35.6 45.1

Landfilling 21.5 32.6 35.8 51.6

E7 Landfilling + biogas
burning 21.5 32.6 35.8 51.6

E8 Landfilling + biogas
energy generation 21.5 32.6 35.8 51.6

E9 Landfill + biogas
capture and direct sale 21.5 32.6 35.8 51.6
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4. Discussion

Results obtained in this study demonstrate the applicability of implementing models
that use LSTM and SVMs to forecast the generation of urban solid waste, as well as to
calculate potential long-term costs. Taking into account the characteristics of the processes
associated with MSW management, the chances of managing large volumes of data are
scarce. This limitation constrains the possibilities of modeling with these types of tools
over the medium and long term. Insufficient data is a major obstacle that affects the
implementation of AI systems.

AI models are primarily based on large data sets for training and calibration purposes.
Lack of data often occurs with MSW due to missing or incomplete residual data; this is
partly the result of the majority of MSW industries being outdated, with limited reliable
records and scarce sensory data, especially in developing countries [5]. However, the
models presented in this work are flexible and allow for data to be continuously updated,
which makes it possible to minimize errors and obtain better results for a given period
of time.

The numerous AI models and their rapid evolution distract from efforts to incorporate
AI in MSW. There are a great deal of models, each one reporting successful results when
compared to conventional methods. However, the overall progress does not seem to be as
significant as expected, given the number of studies [5,8,12]. That said, studies often set out
to perform comparative analyses between tools such as behavior analyses between ANNs
and decision trees, which include socio-economic variables, with the ANNs obtaining better
results [72]. Similar results were obtained for MSW predictive analyses by comparing the
two tools and including support vector machines in the analysis. SVMs showed better
results, followed by the ANNs and, lastly, decision tree algorithms [73]. In-depth studies
have compared a greater number of algorithms, such as smart systems that include SVMs,
adaptive neuro-fuzzy inference systems (ANFISs), ANNs and k-nearest neighbors (kNNs),
to determine their ability in forecasting monthly waste generation. Results show that AI
models have sound predictive performance and could be successfully applied to establish
municipal solid waste projections. In this case, the ANFIS and kNN models showed the
best performance [74].

Following the trends in this line of research, a comparative analysis of two models
to carry out predictive analyses and projections on treatment cost calculations has been
shown above. The first model used an ANN, while the second used SVMs. The decision to
use LSTM in this work was based on its direct application to time series prediction. One of
the main advantages of these networks is their ability to adjust non-linear data behavior
and maintain memory and forget states which take into account past time information.
Moreover, the primary advantage of SVMs is how they properly adjust to the data despite
its variable nature, or when faced with problems with a small amount of training data.
Moreover, using different kernels is a possibility, as they are better-suited for interpreting
training data for improved forecasting.

The analysis carried out in this study included the estimation of the economic costs
for every scenario and every year over the first 3 years of forecasts for ESA 2, ESA 4 and
ESA 5, in which the costs vary according to the patterns learned in prior years. However,
when trying to consider predictions for the distant future (more than 5 years), costs tend
to average out historically. This observation may be explained by the fact that weak
patterns learned in these areas are likely to disappear due to errors propagated in distant
future forecasts.

5. Conclusions

Results obtained in this study show that SVMs provided the best adjustment to
observation data. SVM simulations properly adjust to the data and achieve coherent
regression curves, despite having very limited training data. However, their behavior
was not suitable in every zone. In ESA 1 and ESA 3, SVMs apparently showed prediction
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patterns based on the series seen in the training, but in ESA 2, ESA 4 and ESA 5, results
were not close to the actual observation data.

LSTM’s best predictions were obtained for ESA 1 and ESA 3. However, LSTM’s per-
formance was generally overshadowed by results obtained using SVMs. SVM simulations
show the lowest training error values. ESA 2, ESA 4 and ESA 5 had the highest absolute
error values in training, which may suggest that the data for these series do not follow
patterns that are easy to model, and require more sophisticated pre-processing strategies,
in addition to more comprehensive model parameter adjustments.

Scenario E7 (landfill + biogas capture and burning) showed the lowest costs for MSW
treatment. However, if the possible revenue from the sale of byproducts is considered, the
most convenient scenario is E6 (source classification + composting + landfilling), using
either SVMs or LSTM. Scenario E6 allocates 60% of the waste for composting, while leaving
40% to be disposed of at the landfill.

Results show the relevance of implementing selective source classification systems at
the source by having specific containers for each byproduct that is part of the mixture of
municipal waste.
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