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Abstract

Natural language processing (NLP) is a set of fundamental computing prob-
lems with immense applicability, as language is the natural communication
vehicle for people. NLP, along with many other computer technologies, has
been revolutionized in recent years by the impact of deep learning. This thesis
is centered around two keystone problems for NLP: machine translation (MT)
and automatic speech recognition (ASR); and a common deep neural architec-
ture, the Transformer, that is leveraged to improve the technical solutions for
some MT and ASR applications.

ASR and MT can be utilized to produce cost-effective, high-quality multilin-
gual texts for a wide array of media. Particular applications pursued in this
thesis are that of news translation or that of automatic live captioning of tele-
vision broadcasts. ASR and MT can also be combined with each other, for
instance generating automatic translated subtitles from audio, or augmented
with other NLP solutions: text summarization to produce a summary of a
speech, or speech synthesis to create an automatic translated dubbing, for in-
stance. These other applications fall out of the scope of this thesis, but can
profit from the contributions that it contains, as they help to improve the
performance of the automatic systems on which they depend.

This thesis contains an application of the Transformer architecture to MT as it
was originally conceived, achieving state-of-the-art results in similar language
translation. In successive chapters, this thesis covers the adaptation of the
Transformer as a language model for streaming hybrid ASR systems. After-
wards, it describes how we applied the developed technology for a specific use
case in television captioning by participating in a competitive challenge and
achieving the first position by a large margin. We also show that the gains
came mostly from the improvement in technology capabilities over two years
including that of the Transformer language model adapted for streaming, and
the data component was minor.
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Resum

El processament del llenguage natural (NLP) és un conjunt de problemes com-
putacionals amb aplicacions de màxima rellevància, que juntament amb al-
tres tecnologies informàtiques s’ha beneficiat de la revolució que ha significat
l’impacte de l’aprenentatge profund. Aquesta tesi se centra en dos problemes
fonamentals per al NLP: la traducció automàtica (MT) i el reconeixement
automàtic de la parla o transcripció automàtica (ASR); així com en una ar-
quitectura neuronal profunda, el Transformer, que posarem en pràctica per a
millorar les solucions de MT i ASR en algunes de les seues aplicacions.

l’ASR i MT poden servir per obtindre textos multilingües d’alta qualitat a un
cost raonable per a un gran ventall de continguts audiovisuals. Concretament,
aquesta tesi aborda problemes com el de traducció de notícies o el de subtitu-
lació automàtica de televisió. l’ASR i MT també es poden combinar entre ells,
generant automàticament subtítols traduïts, o amb altres solucions de NLP:
amb resum de textos per produir resums de discursos, o amb síntesi de la parla
per crear doblatges automàtics. Aquestes altres aplicacions es troben fora de
l’abast d’aquesta tesi però poden aprofitar les contribucions que conté, en la
mesura que ajuden a millorar els resultats dels sistemes automàtics dels quals
depenen.

Aquesta tesi conté una aplicació de l’arquitectura Transformer al MT tal com
va ser concebuda, mitjançant la qual obtenim resultats de primer nivell en
traducció de llengües semblants. En capítols subseqüents, aquesta tesi aborda
l’adaptació del Transformer com a model de llenguatge per a sistemes híbrids
d’ASR en viu. Posteriorment, descriu l’aplicació d’aquest tipus de sistemes al
cas d’ús de subtitulació de continguts televisius, participant en una competició
pública de RTVE on obtenim la primera posició amb un marge significant.
També demostrem que la millora es deu principalment a la tecnologia desen-
volupada i no tant a la part de les dades.
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Resumen

El procesamiento del lenguage natural (NLP) es un conjunto de problemas
computacionales con aplicaciones de máxima relevancia, que junto con otras
tecnologías informáticas se ha beneficiado de la revolución que ha significado
el aprendizaje profundo. Esta tesis se centra en dos problemas fundamentales
para el NLP: la traducción automática (MT) y el reconocimiento automático
del habla o transcripción automática (ASR); así como en una arquitectura
neuronal profunda, el Transformer, que pondremos en práctica para mejorar
las soluciones de MT y ASR en algunas de sus aplicaciones.

El ASR y MT pueden servir para obtener textos multilingües de alta calidad a
un coste razonable para una diversidad de contenidos audiovisuales. Concre-
tamente, esta tesis aborda problemas como el de traducción de noticias o el de
subtitulación automática de televisión. El ASR y MT también se pueden com-
binar entre sí, generando automáticamente subtítulos traducidos, o con otras
soluciones de NLP: resumen de textos para producir resúmenes de discursos, o
síntesis del habla para crear doblajes automáticos. Estas aplicaciones quedan
fuera del alcance de esta tesis pero pueden aprovechar las contribuciones que
contiene, en la meduda que ayudan a mejorar el rendimiento de los sistemas
automáticos de los que dependen.

Esta tesis contiene una aplicación de la arquitectura Transformer al MT tal y
como fue concebida, mediante la que obtenemos resultados de primer nivel en
traducción de lenguas semejantes. En capítulos subsecuentes, esta tesis aborda
la adaptación del Transformer como modelo de lenguaje para sistemas híbri-
dos de ASR en vivo. Posteriormente, describe la aplicación de este tipus de
sistemas al caso de uso de subtitulación de televisión, participando en una com-
petición pública de RTVE donde obtenemos la primera posición con un marge
importante. También demostramos que la mejora se debe principalmenta a la
tecnología desarrollada y no tanto a la parte de los datos.
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Chapter 1

Introduction

1.1 Framework and motivation

Technologies working with human language have immense applicability, as
language is the natural way in which people communicate: from automatic
captioning to a device answering to voice commands, going through machine
translation, text summarization, voice synthesis, and more. These technolo-
gies have accrued importance over time ever since the inception of computers,
and have exploded in terms of both commercial and academic interest in the
last decade, when the combination of machine learning approaches, neural net-
works, large amounts of data, and a higher raw computational power availabil-
ity seems to have breached a barrier in terms of performance and capabilities
of these automatic systems. This thesis is focused on problems that are fun-
damental to many speech and human language technologies, namely Machine
Translation (MT) and Automatic Speech Recognition (ASR).

This work was done with the Machine Learning and Language Processing re-
search group (MLLP), part of the Valencian Research Institute for Artificial
Intelligence (VRAIN) inside the Universitat Politècnica de València (UPV).
This research group has managed a series of EU and Spanish Government
funded research and innovation projects related to the development of state-
of-the-art speech and language computer technologies and their application
into different types of online learning environments such as Open Educational
Resources (OER) repositories, MOOC platforms, etc.

We will present some of these projects for a clear image of the context of
this thesis. Some of the projects predate this work, while some others are
contemporaneous with it. The work for this thesis was funded by a predoc-
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Chapter 1. Introduction

toral research grant from the autonomic government Generalitat Valenciana
(ACIF/2017/055), and started in December 2017. Other projects are here
presented to provide the research context both preceding and concurrent with
this work.

The first of these projects was the Europaen Union’s FP7 transLectures project
(2011-2014), which goal was to apply state-of-the-art automatic speech recog-
nition and machine translation for transcribing and translating educational
resources with automatic help, and developing a platform integrating these
technologies with large repositories of video lectures. This project wanted to
help break the language barrier for the consumption of online educational ma-
terials by providing automatic subtitles in different languages.

After transLectures ended in 2014, other research projects followed with sim-
ilar alignments: EU’s CIP European Multiple MOOC Aggregator (EMMA,
2014–2016), the Spanish Economy Ministry’s Multilingual Open Resources
for Education (MORE, 2016–2018), EU’s Horizon 2020 Cross Modal, Cross
Cultural, Cross Lingual, Cross Domain and Cross Site Global OER Network
(X5GON, 2017–2020), the Spanish Ministry of Science and Education spon-
sored Multilingual Subtitling of Classrooms and Plenary Sessions (Multisub,
2019–2021), and finally the project EXPERT (2022, ongoing) supported by the
Erasmus+ Education program. All in all, the MLLP-VRAIN research group
has maintained an ongoing line of research around speech and human language
technologies for more than 10 years, covering both the basic technologies and
their application to particular use cases.

Machine Translation and Automatic Speech Recognition, the two research top-
ics that are discussed within this thesis, are core to human language technolo-
gies, and improving the performance of MT and ASR systems has a great
impact on not only their direct applications but also of other systems down
the line. For instance, the results achieved in transLectures and EMMA were
very successful, and after 2016 it became clear that ASR and MT technologies
were entering the state were they could be used to produce accurate enough
multilingual subtitles of video lectures. In fact, since 2014 they are in active
use in UPV[MEDIA], the university’s institutional video lecture repository, to
automatically generate multilingual subtitles for the digital content created
by UPV lecturers. A pipeline was defined integrating ASR and MT to build
speech translation capabilities: from audio in one language to its text transla-
tion in another language. Even more, text-to-speech technologies have started
to be used by other members of the same research group to pursue a complete
speech-to-speech system, capable of enabling automatic dubbing of audiovisual
material. All these possibilities depend on the performance of the fundamental
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1.2 Scientific and technological goals

ASR and MT systems, both in terms of their quality in their output and in
terms of their speed and computational demand. The primary contribution
from this thesis is to ASR, but it contains some work in MT.

In fact, the work on this thesis started with machine translation. Applying
the latest neural Transformer architecture, we were able to reach excellent
results in MT tasks such as news translation and related languages transla-
tion. The effectiveness of the Transformer architecture being confirmed, we
identified a clear way to transfer the gains to other sequence-related tasks
from Automatic Speech Recognition and integrated that new architecture into
streaming-capable ASR systems that outperformed all previous published re-
sults. By doing so, this work strengthened the core technologies that serve as
a foundation to technologies working with human language, both in research
and in a multitude of potential applications.

1.2 Scientific and technological goals

This section describes the scientific and technological goals pursued in this
work.

1. Reach state-of-the-art MT results with the newest neural architectures
with a focus on related languages, as the two official languages of the
UPV university, Catalan and Spanish, both share an origin in Latin and
have potentially exploitable similarities as Romance languages.

2. Introduce new neural models in streaming ASR systems to improve the
state-of-the-art of this technology while complying with stringent latency
requirements.

3. Apply the reached streaming ASR technical capabilities to a relevant use
case by constructing ASR systems that demonstrate the applicability of
the technology in competitive and relevant public challenges.

1.3 Document structure

This document is structured in five sequential chapters that cover the different
topics and scientific and technological goals proposed in this thesis. Chap-
ter 2 offers preliminary foundational concepts and knowledge relevant for the
rest of the thesis. The first scientific goal as presented in this introduction
is addressed in Chapter 3, which contains a proposal for neural MT architec-
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Chapter 1. Introduction

ture and results with the Transformer architecture achieving excellent results
on News translation and a task focused on related languages (Spanish and
Portuguese). Chapter 4 addresses the second scientific goal of improving the
state-of-the-art in streaming ASR technology. By transferring the Transformer
architecture from MT to serve as a language model and adapting it to fit into a
streaming-capable ASR hybrid decoder, we were able to achieve improvements
on ASR system performance while maintaining compliance of strict latency
requirements on long-duration audios. Chapter 5 tackles the third and last
goal of this thesis, by taking part in a competitive challenge issued by the
main public TV broadcaster of Spain, the Radio Televisión Española (Radio
Televisión Española), and achieving the best results of all participants by a
wide margin, by employing the technology advances described in Chapter 4 to
build specific streaming ASR systems for the Spanish language.

As previously mentioned, this work is made inside the MLLP-VRAIN research
group from UPV. The scientific and technical developments, experimentation
and evaluations here described have been carried out primarily by the author
of this thesis except when explicitly it is otherwise stated. Contributions by
others are listed a the end of each chapter when the work described was done
in collaboration with others.

The experienced reader can skip the preliminary concepts given in Chapter 2,
introducing fundamental machine learning knowledge and basic concepts of
human language and speech computer technology such as language models,
machine translation, and automatic speech recognition.
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Chapter 2

Preliminaries

This chapter serves as a broad foundation to the basic concepts and terminol-
ogy needed for this work. We will approach some of the problems presented
by natural language processing with machine learning models and algorithms
designed for sequences, as we will need to work with both sequences of sounds
and words, as well as their correspondence to each other.

The Machine Learning field is introduced in Section 2.1. Section 2.2 presents
optimization techniques for neural networks. Language models are introduced
in Section 2.3. Section 2.4 introduces the principal neural topologies for se-
quences: the Recurrent Neural Network (RNN), the attention mechanism, and
the Transformer model. Finally, the problems of machine translation and au-
tomatic speech recognition are presented in Sections 2.5 and 2.6, respectively.

2.1 Machine Learning

Machine Learning or ML is a field of study devoted to computer programs
that can learn to perform tasks from examples or experience [Mur22]. We
will approach these challenges from a probabilistic perspective, treating all
unknown values as random variables following a probability distribution. The
two problems approached in this work will serve as examples, namely Machine
Translation (MT) and Automatic Speech Recognition (ASR). When translat-
ing from one language to another, the whole output sentence will be considered
a random variable following a probability distribution conditioned on the in-
put sentence. When transcribing audio into words, the output sentence will
be viewed as a random variable with its probability distribution conditioned
on the audio.
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Chapter 2. Preliminaries

Depending on the nature of the output variable, we can fit most machine
learning problems in one of these two sets:

• Classification: in these problems, the output variable y can take a value
from a discrete set Y of labels known as classes: y ∈ Y = {0, 1, ..., C}.
A clear example of this is the classification of an image into predefined
categories.

• Regression: in these problems, the output variable y takes continuous
values: y ∈ R. An example of regression is the prediction of the maximum
temperature in a given day.

ML algorithms can be split into three main groups according to the qualities
of the data they feed on:

• Supervised learning: perhaps the most common form of ML, in these
tasks both the input x and the output y are already known in the training
data, and we want the model to learn the mapping from the pairs of (x, y).
From a probabilistic standpoint, the resulting model fits the distribution
p(y|x).

• Unsupervised learning: these algorithms are designed to work only
with the input data x. As learning some mapping without knowledge
about the corresponding output is a really hard problem, these tasks usu-
ally revolve around fitting the data. From the probabilistic perspective,
we can view most of these tasks as fitting the distribution p(x). A few
exceptions to this general rule have been produced, like learning a ma-
chine translation system using only monolingual data [ALA19]. This fits
partially into a variant of unsupervised learning called self-supervised
learning, where an originally unsupervised problem is turned into a more
approachable supervised learning by auto-generating the labels.

• Reinforcement learning: in this class of problems, the system interacts
with its environment over time taking actions. The system is not told
which action is correct, but has to learn from its consequences via a reward
or punishment signal that is programmed to depend on the outcome. A
potential difficulty these algorithms face is that the reward or punishment
is often delayed in time and it is not directly clear which action in the
past is responsible for the outcome.

Although perhaps not immediately evident, MT and ASR are classification
tasks. In both kinds of systems, the output is a discrete variable: the sentence.

6



2.2 Optimization

The fact that the output is a sequence of symbols is an added complication
that does not alter the nature of the classification task. In both cases, the
end result of the training is a model defining a distribution p(y|x), where y
is a sequence of labels and x is the input. In this work, we only make use of
supervised learning algorithms. For ASR, we use manually transcribed audio;
and for MT, pairs of human translations with their original.

2.2 Optimization

Parameter estimation is at the core of all machine learning algorithms. Models
are fit to data by solving an optimization problem for the set of parameters θ
minimizing an objective function L, also called loss function. The parameter
space Θ ⊆ RD represents all the possible values the parameters can take, where
D is the number of parameters. The problem is to find the optimal set of values
θ∗ for the parameters:

θ∗ = arg min
θ∈Θ

L(θ) (2.1)

For instance, take the objective function L(y, x, θ) = − log pθ(y|x) for a model
with parameters θ and data pairs x, y where y is the correct class or label for
the input x. This is one one of the most common objective functions used to
fit probabilistic machine learning models to data. Minimizing the negative log
class posterior probability is equivalent to maximizing the true class posterior
probability, in other words performing a maximum likelihood estimate for the
class posterior probability distribution. In this work, all of our models were
trained according to this objective function.

In general, finding global optima for high-dimensional continuous functions is
computationally intractable, and we must retreat our aspirations into finding
a good local optimum. In this section, we will give a brief overview of the
optimization techniques applicable to neural networks. For other types of
probabilistic models used in this work, their optimization will be reviewed in
their own sections.

For neural networks, we will define our model and loss function as continuously
differentiable functions and apply iterative optimization methods based on the
gradient of the loss function with respect to the parameters. The simplest
of these is gradient descent, where we move our parameters a step ηt in the
direction of the maximum descent as given by the gradient:

7



Chapter 2. Preliminaries

θt+1 = θt − ηt∇L(θ) = θt − ηtg (2.2)

The gradient ∇L(θ) is extremely expensive to compute over the full training
dataset. In practice, we compute the gradient over small batches of it as we
iterate over the data. Thus, this gradient does not only depend on the value of
the parameters but also on the particular data in the batch zt. This is known
as stochastic gradient descent or SGD:

θt+1 = θt − ηt∇L(θ, zt) = θt − ηtgt (2.3)

The shape of L on a high-dimensional parameter space Θ can be extremely
complicated, with irregular or sloping regions and flat regions. In this condi-
tions, finding a good local optimum with gradient descent is a problem in its
own right. To tackle this problem, several methods have been produced.

Firstly, note that the step size ηt has been defined to depend on the step t. This
is intentional, as it allows us to define a learning rate schedule, adjusting the
step size over time to reach a better optimum in less time. Typical schedules
include:

• piecewise constant: ηt = ηi if ti ≤ t < ti+1

• exponential decay: ηt = η0e
−λt

• polynomial decay: ηt = η0(βt+ 1)−α

It is also common to quickly increase the learning rate at the beginning, also
known as learning rate warmup, and afterwards apply one of the aforemen-
tioned schedules. The motivation for this is that usually the random initializa-
tion will put θ0 in a ridged region of L, where the high slope of the gradient will
cause changes in θt even with a modest ηt. The purpose of initially limiting the
learning rate is to find a flat region in the parameter space, and then exploit
that flatness with a larger learning rate. Later on, to ensure convergence, the
learning rate must be decreased again.

Even with advanced learning rate schedules, SGD can still move too slowly
when in flat regions of L. A typical heuristic to help the algorithm is known
as momentum. The concept is to accelerate along directions that were good in
the past, and slow down if the gradient changes direction:
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2.3 Language Models

mt = βmt−1 + (1− β)gt (2.4)
θt = θt−1 + ηtmt (2.5)

Inspired by these ideas, many more methods to explore the landscape of the
loss function and find good local optima have been produced. The purpose of
this work is not to do an extensive review of optimization techniques for neural
networks. This section merely serves as an introduction to the core concepts
of the field. For the interested reader, we will cite a few of the most popular
ones, such as AdaGrad [DHS11], RMSProp [Hin14], and Adam [KB15].

2.3 Language Models

An essential notion for ML systems that output sentences is the Language
Model (LM). LMs estimate the a priori probability distribution for sentences.
They assign a probability for a sentence w to be produced: p(w). In order to
compute its probability, the sentence is naturally subdivided into a sequence
of words wT1 and the joint probability for the sequence is obtained via chain
rule decomposition:

p(w) = p(wT1 ) = p(wT |wT−1
0 )p(wT−1

0 ) = · · · =

= p(wT |wT−1
0 )p(wT−1|wT−2

0 ) . . . p(w2|w1
0)p(w1|w0) =

T∏
t=1

p(wt|wt−1
0 )

(2.6)

Where wba designates a sequence of symbols wt where t goes from a to b and
w0 is always the same special symbol designating the start of a sentence. This
way, the model is reduced to finding the probability of a particular word wt
given its history or preceding words wt−1

0 . There are several approaches to the
language modelling task. In this section, we will introduce the most relevant
to this work, namely unigrams, n-grams, and neural LMs.

Unigrams are the simplest kind of LM. They assign a probability to each word
fully disregarding its history and position in the sentence. It is easy to show
that a global optimum for the maximum likelihood estimate of this kind of
probability distribution can be found over a closed vocabulary by straightfor-
wardly counting the occurrences of each word in the data and dividing by the
total number of words. Unigrams have poor predicting power for sentences but

9
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can serve other purposes related to establishing how common or rare a given
word is. With an unigram model, the probability for the sentence would follow
the equation:

p(w) =
T∏
t=1

p(wt) = p(wT )p(wT−1) . . . p(w2)p(w1) (2.7)

A bit more sophisticated than unigrams, n-grams take into account the last
n − 1 words in the history to predict the current word. They are a type of
Markov model, which assume that future only depends on the current state (in
this case, represented by the n−1 last words) and not on events further in the
past. With this assumption, equation equation 2.6 is simplified into a Markov
chain of order n− 1:

p(wT1 ) =
T∏
t=1

p(wt|wt−1
t−n+1) (2.8)

For illustration purposes, let’s take a bigram model. For each bigram wt−1wt
the probability p(wt|wt−1) would be defined by the model in a lookup table.
The probability for a sentence wT1 would be computed as the following Markov
chain of order 1:

p(wT1 ) =
T∏
t=1

p(wt|wt−1) = p(wT |wT−1)p(wT−1|wT−2) . . . p(w2|w1)p(w1|w0)

(2.9)

Where w0 is a special symbol designating the start of the sentence. With
these kinds of models, it can also be shown that there is a closed-form global
optimum for the maximum likelihood estimate of the probability distribution.
It consists in counting the occurrences of the n-gram and dividing by the counts
of the n− 1-gram consisting of all its words except the last:

p(wn|wn−1
0 ) =

c(wn0 )

c(wn−1
0 )

(2.10)

Where c represents a function counting the number of occurrences in the train-
ing data. This estimate, however, assigns zero probability to the n-grams that
are absent from the data, which is an unwanted outcome (if the n − 1-gram
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in the denominator is also missing, both counts are zero and the probability
would technically become undefined, though it is also treated as zero). There
are so-called discount methods that smoothen the distribution by taking some
probability mass from the observed n-grams and redistributing it to the un-
observed n-grams. This can be done uniformly or taking into account the
distribution of lower order n-grams, in what is known as Kneser-Ney discount
[NEK94].

The last kind of LM, the neural LM, is based on a completely different phi-
losophy where p(wt|wt−1

1 ) is determined by a neural network. These neural
models convert each word in the vocabulary to its own learned continuous rep-
resentation in a vector space, operation that is called word embedding. They
use the sequence of word embedding vectors as the input to a neural network,
which outputs the probability distribution for the next word, taken as a soft-
max over the vocabulary. The neural network model needs to have a topology
appropriate to process sequences. We will later review some neural topologies
for sequences used in this work, like the recurrent neural networks and the
Transformer networks. Although for this work we use relatively small LMs apt
to be integrated as a component in a system to solve another problem such
as MT or ASR, LMs present a problem to solve on their own. In particular,
large neural LMs have acquired a huge attention after the impact of large pre-
trained models such as BERT [Dev+18] and GPT [Bro+20] had both on the
research community and the industry.

The performance of LMs is assessed with a metric called perplexity. Perplexity
PP can be defined as the inverse of the probability of a given test sentence,
normalising for length T via a T th root so that the number is expressed in
terms of words instead of the whole sentence:

PP (wT1 ) = T

√
1

p(wT1 )
(2.11)

An equivalent definition can be made in terms of entropy, where H(wT1 ) indi-
cates the average number of bits needed to encode each word:

PP (wT1 ) = 2H(wT
1 ) = 2−1/T log2 p(w

T
1 ) = T

√
1

p(wT1 )
(2.12)
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A popular intuition of perplexity is how many words equally probable to those
in the sentence would the model be doubting to chose among. A perplexity of
100 means the average word wt in the sentence is, according to the model, as
probable as one in a hundred. The best and lowest possible perplexity for any
sentence is 1, true only in the trivial case that it is the only possible sentence.
In practice, perplexity is often evaluated not on the sentence level, but over a
full test set.

2.4 Neural Model Topologies for Sequences

Before tackling the main problems of machine translation and automatic speech
recognition, we will outline the principal neural topologies for sequences that
were used in this work. The reader is assumed with a basic understanding of
what a neural network consists of, and is referred to [Mur22, Chapter 13] for
more details.

2.4.1 Recurrent Neural Network

Recurrent Neural Networks or RNNs define a hidden state ht for each position
t in the sequence. This hidden state depends on the input xt and the previous
state ht−1. The output yt depends on the hidden state ht. The weights are
shared for all positions.

Figure 2.1: Graphical representation of a standard, non-autoregressive RNN

The RNN is said to be autoregressive if the output yt−1 is fed back into the
hidden state ht either in replacement or in addition to xt. Autoregressive RNNs
can be straightforwardly used as language models. They represent a clear break
from the Markovian limitations, as ht depends on all previous hidden states
all the way to h1. Thus, yt depends on the full history yt−1

1 .
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In theory, RNNs are capable of modelling long-term dependencies between the
sequence. In practice, not only there is a limited amount of information from
the past that can fit into a ht vector, but they also struggle to successfully learn
the parameters to do it effectively. One of the most popular RNNs, the Long
Short-Term Memory or LSTM [HS97], was one of the first recurrent neural
topologies to achieve good capabilities to recall information from several steps
back in the sequence, by carefully designing a computation graph that allowed
the gradient to flow through the back-propagation algorithm with a minimal
amount of activation functions in the middle that caused the gradient either
to explode or to vanish. The compact forms of the equations for an LSTM cell
are:

ft = σ(Wfxt + Ufht−1 + bf ) (2.13)
it = σ(Wixt + Uiht−1 + bi) (2.14)
ot = σ(Woxt + Uoht−1 + bo) (2.15)
c̃t = tanh(Wcxt + Ucht−1 + bc) (2.16)
ct = ft ◦ ct−1 + it ◦ c̃t (2.17)
ht = ot ◦ tanh(ct) (2.18)

Where σ is the sigmoid activation function σ(x) = (1 + e−x)−1 and ◦ repre-
sents the pointwise multiplication of two vectors. Note that the vector ct is
undisturbed by activation functions. Figure 2.2 depicts the above equations in
a graphical way.

Figure 2.2: Representation of a LSTM unit. Blocks with σ or tanh represent a feed-forward
followed by the corresponding activation function.
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Although LSTMs remain in wide application and are the RNNs that were used
for this work, the principle on which they work has been applied to generate
a multitude of variants, ranging from minor modifications like the LSTM with
peephole connections [GS00] to more extreme restructurings like the Gated
Recurrent Unit or GRU [Cho+14].

2.4.2 Attention Mechanism

RNNs can perform an ample assortment of tasks with sequences, but struggle
with problems where both the input and output are variable-length problems,
also known as Sequence-to-Sequence (Seq2Seq) problems. Neural end-to-end
approaches to MT or ASR are clear examples of these problems. The early
approaches to these tasks used Encoder-Decoder models [SVL14] where an
Encoder RNN would compress all the information in the source sequence into
a fixed-length vector, and then a Decoder RNN would generate the output
sequence conditioned on that vector:

Figure 2.3: Sequential Encoder-Decoder architecture

Although this architecture can work on small problems, it is not well suited to
long sentences with a very large vocabulary, as it becomes increasingly harder
to fit all the relevant information about the source sentence in a single fixed-
length vector representation. The attention mechanism was devised specifically
to address this issue [Bah+15]. Instead of using a single vector condensing
the whole input, such a vector is dynamically obtained at each decoder step
representing certain parts of the input sequence. Specifically, it retains all
outputs from the Encoder RNN and computes a weighted average of them to
obtain a context vector ct for the decoding step t. This allows the model to focus
on particular source positions for the relevant information; a differentiable
focus of attention so that a gradient-based optimization algorithm remains
applicable.
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Figure 2.4: Attention mechanism with an autoregressive Encoder-Decoder architecture

We can proceed to write down the set of equations that define these models.
We have:

• RNN on the source side (encoder)

hN1 = RNNencoder
(
xN1
)

(2.19)

Here, xN1 represent the sequence of input vectors, which can be word
embeddings or other kinds of input, and hN1 represent the outputs from
the encoder RNN for each position.

• Context vector

ct =
N∑
n=1

α(n|t) · zn (2.20)

This is the aforementioned weighted average of the source encodings. The
α(i|t) is the set of weights. It is represented as a conditional probability
distribution to show that all the values should add up to one and be non-
negative. There are many ways to define such a function, we will review
some of them later in this section.

• RNN on the target side (decoder)
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st = RNNdecoder
(
yt−1

1 , ct−1
1

)
(2.21)

The decoder RNN takes as its input the previous outputs just like a
normal autoregressive RNN, but also the history of context vectors so
that the decoder has access to the information attended from the input.

• Output vector

yt = softmax (FF(st, ct)) (2.22)

A feed-forward network with a softmax activation function is the final
component that computes the output for the network at each decoding
position.

Coming back to the attention weights α(n|t), they are computed using softmax
function to ensure their differentiability, non-negativity and that

∑
n α(n|t) =

1:

α(n|t) =
exp (e(n, t))∑N
k=1 exp (e(k, t))

(2.23)

Where e(n, t) is the output of some scoring function. This score is expected to
reflect the relevance of the encoded representation hn to decide the final output
yt. There are several alternatives for the scoring function, most of which fit
into two categories:

• Additive attention. It consists of a single-layer feed-forward network.
It is called additive because the projections of both hn and st are added
together before the activation function, according to the regular workings
of feed-forward nets. This kind of attention can be represented by the
equation:

e(n, t) = vT · tanh(Uhn +Wst) (2.24)

Where U , W , and v are the parameters of the function.

• Multiplicative attention. This variant computes the scores as a dot
product of linear projections of hn and st:

e(n, t) = (U1hn)
T · (U2st) = hTnWst (2.25)
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Where U1 and U2 are the parameters. Alternatively, a single matrix W
can serve that role, as it can easily be seen thatW = UT

1 U2 in this case. In
multiplicative attention, the e(n, t) function can include a division by

√
d

where d is the dimension of the vectors, which is only there to normalize
the variance of the result, facilitating gradient stabilization.

A minor variant of attention used in Transformer models [Vas+17] also in-
cludes a linear projection of the hn vectors before the weighted average. In
other words, it defines two distinct projections of hn to so-called key and value
vectors: the former for computing the attention scores, and the latter which
will add up to the context vector.

2.4.3 Transformer

The Transformer is a neural architecture for sequences alternative to the RNNs
[Vas+17]. They have revolutionized the field of Natural Language Processing
(NLP), becoming the state-of-the-art over the last few years in many tasks
such as language modeling or machine translation. Transformers are also being
increasingly adopted in other fields like image recognition due to their highly
parallelizable architecture leading to fast computation and their outstanding
performance in sequential tasks.

Compared to RNNs, the Transformer model is based in a radically different
principle. The dependency between elements of the sequence is not modelized
by a recurrence, but by the attention mechanism. This way, the Transformer
introduces the idea of self-attention, or attention over the elements of the same
sequence. It also enhances the power of the attention mechanism, with the
proposals of multi-head attention and positional encodings. We will briefly
review each of these ideas and afterwards present the complete architecture of
the Transfomer model.

• Self-attention. This proposal intends to replace the recurrency with the
attention mechanism to handle sequences. There are two arguments for
this replacement. The first relates to the speed of the operation. The self-
attention mechanism is fully parallelizable, while the recurrency needs to
be computed sequentially: the state for position n − 1 is needed before
the state for position n can be computed. The second refers to the long-
term dependencies that the data in a sequence can have. For example,
information about words far apart can still be relevant when determining
singular or plural, or even semantic information. The recurrency has
a harder time modeling long-term dependencies, while the self-attention
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mechanism can attend to every position directly and without intermediate
states degrading the information.

• Multi-head attention. Instead of computing a single attention func-
tion, a set of attention heads is defined and the attention mechanism is
run separately on each head. It is expected that the model can learn to
attend to different information from each subspace. The proposal projects
the original vectors hn and st to heads of lower dimensionality which di-
mensions add up to that of the original vector. This way, the mechanism
becomes richer in terms of possibilities with the minimum sacrifice in
terms of a higher computational cost.

• Positional encodings. The position and order of each vector is often
of critical importance. The attention mechanism as previously defined is
completely agnostic to the positions in the sequence: it scores each vector
according to its contents, and does a weighted average. To be able to fully
dispose of the recurrency, positional information must be included in the
input vectors themselves. Information about the position can be incor-
porated in a similar way to information about the word. Similar to word
embeddings, each position can be encoded by its own high-dimensional
vector representation. Both representations can be combined into a single
vector space by a simple sum if they are of the same dimensionality.

Positional encodings can be learned by gradient descent much like word
embeddings. [Vas+17] also proposes positional encodings can be fixed
with an arrangement that lets a neural net based in linear projections
extract all the relevant information. Based in sines and cosines, it exploits
the property that a couple (sin(x), cos(x)) can be turned into (sin(x +
k), cos(x + k)) via a linear projection — in this case, a rotation by k.
Fixed positional encodings include several such pairs in a wide range of
periods to be able to represent all possible dependency lengths. The exact
definition for the proposed fixed positional encodings is:

PEt,2i = sin

(
t

C2i/d

)
, PEt,2i+1 = cos

(
t

C2i/d

)
(2.26)

Where t is the position being encoded, i is the array index where the
value is stored, and C is the maximum sequence length, typically high
(e.g. 10000) so that the highest periods never come again close to the
t = 0 disposition of (sin 0, cos 0) = (0, 1). The fixed representation has the
advantage that can better generalize to sequences of rarely seen lengths,
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Figure 2.5: The full Transformer architecture. From [Mar22], adapted from [Vas+17]
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or even can be uses with sequences of unseen lengths, which learned
encodings are incapable of representing altogether.

The full Transformer architecture, depicted in Figure 2.5, has an encoder-
decoder structure. It uses several stacked blocks comprising self-attention lay-
ers and feed-forward layers, including a residual connection after each layer.

2.5 Machine Translation

Machine Translation (MT) comprises the problem of automatically translating
from a source sentence x in the original language into a target sentence y in
the desired language. The probabilistic approach involves defining a model
providing p(y|x) and searching for the best possible y. In the traditional sta-
tistical approach to MT (SMT), the Bayes theorem is applied to decompose
this formula into two separate sub-models:

ŷ = arg max
y

p(y|x) = arg max
y

p(x|y)p(y) (2.27)

Where p(x|y) represents the translation model, while p(y) is an already familiar
language model for the target language. The translation model, derived from
tabulated counts of co-occurrences for sub-sentence units or phrases, is trained
on parallel text data: collections of sentences coupled with their corresponding
translations. This is called Phrase-Based Machine Translation (PBMT).

A more recent approach, Neural Machine Translation (NMT), has been lever-
aged to excellent results. Based on an array of encoder-decoder architectures,
it now consistently outperforms traditional SMT methods and has become the
state-of-the-art in MT. NMTarchitectures compute p(y|x) directly, working as
an autoregressive neural LM that is conditioned on the input sequence x:

p(y|x) =
T∏
t=1

p(yt|yt−1
0 , x) (2.28)

Where y0 is always a special symbol designating the start of a sequence. To find
the best possible sentence as defined by its probability, beam search algorithms
are often used, as greedy decoding usually leads to suboptimal outcomes. In
these algorithms, a set of active hypotheses is maintained at each position t.
Each timestep, the next possible word for each of them is explored by consulting
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the probabilities defined by the model over the whole vocabulary, and there
is some heuristic pruning based on their probability to avoid an exponentially
growing number of active hypotheses.

A problem with NMT models compared to PBMT is how to make use of the
monolingual data. Given that most of the data is monolingual text, disregard-
ing this resource is a recipe for suboptimal models. PBMT systems include
a language model trained on monolingual texts, but NMT models are usually
monolithic. To tackle this problem, a still unbeaten approach is to employ a
MT system in the opposite direction to synthetically generate backtranslations
from monolingual data in the target language [SHB16a].

Translation is inherently an open-vocabulary problem, but NMT models op-
erate with a fixed vocabulary: the probability distribution at each step comes
out of a softmax operation, each position of the output vector representing one
particular word in that fixed vocabulary. Some approaches have been made
to build NMT systems capable of open-vocabulary translation, most of them
around the idea of breaking up the vocabulary into sub-word units that can
be combined to form new words. Byte Pair Encoding or BPE [SHB16b] was a
pioneer work in this direction and is also used in this work, but there are other
alternatives based on similar fundamentals [Kud18; PEV20].

A metric to objectively and automatically assess the performance of an MT
system is hard to obtain, as a single source sentence usually has multiple valid
translations. One of the most popular automatic metrics is the BLEU, or
bilingual evaluation understudy, based in similarity with a reference transcrip-
tion [Pap+02] (higher is better). Another metric that was used in this work
it the TER, or translation edit rate, measuring the minimum edit distance to
transform the output hypothesis into the human-translated reference, includ-
ing insertions, substitutions, deletions, and phrasal shifts as edit operations
[Sno+06] (lower is better).

Transformers have now become the standard choice in NMT, after consistent
and solid performance increases over previous NMT models such as attention-
based RNN encoder-decoder models like the one described in section 2.4.2.

21



Chapter 2. Preliminaries

2.6 Automatic Speech Recognition

The problem of Automatic Speech Recognition (ASR) is to automatically ob-
tain the transcription from an acoustic signal. As in MT, the problem can
be formally described as a classification problem, defining a model p(y|x) and
searching the space of possible ys for the one with highest probability. In this
case, y is a sequence of words and x a sequence of vectors characterizing the
acoustic signal. Like MT, this problem has also been traditionally approached
by decomposition following the Bayes theorem:

ŷ = arg max
y

p(y|x) = arg max
y

p(x|y)p(y) (2.29)

Where p(y) is modelled by a language model and p(x|y) by an acoustic model
(AM). The language model is trained and serves a role similar to those we
have already seen. The AM p(x|y) estimates the probability that the observed
acoustic sequence x has been generated by the sentence y. As such, it serves
a double role: it needs to provide not only information about how the words
can be pronounced, but also about their alignment to the observed signal.

To handle the acoustic signal, it is converted into a sequence of acoustic feature
vectors. These vectors should include all the needed information to characterize
the signal and discriminate between the spoken words. Typically, a feature
vector is obtained every e.g. 10 milliseconds. A widely employed method to
extract these acoustic vectors is the Mel-Frequency Cepstral Coefficients.

Habitually, AMs are modelled via Hidden Markov Models (HMM) [Lee88;
Hun90] together with a pronunciation lexicon. The pronunciation lexicon con-
tains the transcription of each word into phonemes. A particular HMM is
defined for every hypothesis, concatenating the finite state representation of
its phonemes. This construction is represented in figure 2.6. When computing
p(x|y), we transit from one state to the next following its transition proba-
bilities. Each state emits an acoustic vector according to its own emission
probability.

Transition probabilities are scalar values in a transition matrix. Tradition-
ally, emission probabilities were modelled as gaussian mixture models (GMM).
These GMMs define, for each state q, a continuous probability distribution
over the acoustic vector space p(x|q. Both transition and emission probabili-
ties can be estimated with the well-known Baum-Welch algorithm for HMMs,

22



2.6 Automatic Speech Recognition

Figure 2.6: Acoustic HMM model for a hypothesis containing “the cat is” as part of the
sentence. The HMM states are on the top of the diagram.

an instance of the more general Estimation-Maximization (EM) algorithm; or
they can be estimated following the Viterbi approximation.

More recently, GMM emission probabilities have been successfully replaced
with the better-performing neural models. These models do not directly model
p(x|q) but rather take the acoustic vector x as their input and output the
distribution over the states p(q|x). To be able to integrate these neural models
with HMM-based ASR systems, the Bayes rule is applied to recover the usable
p(x|q):

p(x|q) =
p(q|x)p(x)

p(q)
(2.30)

HMM-based ASR systems using neural nets for this role are known as hybrid
systems, as they use a combination of both neural nets and more traditional
HMMs for acoustic modelling [BM94]. In contrast to HMM-GMM and hy-
brid systems, we find the end-to-end systems, which are monolithic neural
models directly modelling p(y|x), the probabilities over the output space given
the acoustic sequence. Lately, Transformer-based end-to-end systems are be-
ginning to achieve levels of performance comparable to hybrid systems, even
surpassing them in some specific tasks [Mia+20b; Wan+20; Gul+20; VA21].
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The work on ASR that is presented in this thesis focuses on streaming-enabled
systems. Most published work on streaming-capable ASR systems is done
with end-to-end systems, which are more easily adapted to this setup [Lu+20;
Che+21; Xie+22; Xue+22; Yu+21; TKW21]. In contrast, in this thesis we
work not with end-to-end but with hybrid systems for the streaming setup.
This serves as a different line of inquiry to what is primarily being pursued in
the field and also has promising prospects: as of the time this work is being
done, the state-of-the-art ASR results are still obtained using hybrid systems,
which wil be reflected throughout the international competitions presented
during this thesis.

ASR performance is assessed using the word error rate or WER. This metric is
derived from the minimum edit distance from the system output, or hypothesis,
to a reference human transcription:

WER =
I +D + S

N
(2.31)

Where I, D, and S correspond respectively to insertions, deletions, and sub-
stitutions; while N indicates the total number of words in the reference. A
WER of 23% means that 23% of the words have been wrongly recognized,
be it because they are missing, don’t belong, or have been transcribed as a
different word.
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Chapter 3

Machine Translation Systems
for News and Related

Languages (WMT)

3.1 Introduction

The first goal of this thesis is to build state-of-the-art MT systems. For this,
we participated in the WMT18 German→English news translation shared task
and in the WMT19 Portuguese↔Spanish news translation shared task, specif-
ically designed for related languages.

Neural Machine Translation (NMT) has made great advances over the last
decade, and in particular it came to consistently outperform Phrase-Based
Machine Translation (PBMT) and PBMT-NMT combinations since the 2016
WMT shared news translation task [Boy+16]. In this chapter, we introduce a
NMT model architecture that was being explored in our research group, which
we compared to the novel and better-performing Transformer architecture,
which has been shown to provide the state-of-the-art performance in MT while
requiring relatively short times to train.

We also describe our work on parallel-corpus preprocessing and filtering, as
well as data augmentation, aspects that have gained importance with the
ever-increasing amount of available data of varying quality crawled from the
Internet. In particular, WMT18 presented the challenge of the addition of
the mugh larger and noisier parallel corpus ParaCrawl. For the WMT19 Re-
lated Languages task Portuguese↔Spanish, we achieved the best results of all
participants on both directions with a domain-adapted Transformer model.
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3.2 2D Alternating RNN

In this section, we describe the general architecture of the 2D alternating RNN
model. This architecture was being explored by our research group in the
framework of 2D translation models [Kal+15; BBN18; EBV18]. These archi-
tectures are based on the premise that translation is a fundamentally two-
dimensional problem, where each word of the target sentence is liable to be
explained by every word in the source sentence in some way. Two-dimensaional
NMT models define the distribution p(yt|xN0 , yt−1

0 ) by jointly encoding the
source sentence xN0 and the output history yt−1

0 , whereas the usual encoder-
decoder architectures encode them separately.

Typical 2D RNN architectures employ a custom LSTM cell with two previous
states instead of one, each coming from its own dimension. This introduces
dependencies in the computation graph which force the computation to be
done in quadratic time with respect to the input, both for the training as
well as the recognition process. We proposed an architecture, depicted in Fig-
ure 3.1, defining a two-dimensional RNN translation model leveraging regular
1D recurrent cells, such as LSTM or GRUs without any modification. This
makes the computation time linear instead of quadratic, assuming maximum
parallelization is applied.

Similarly to encoder-decoder NMT models, the 2D Alternating RNN MT ar-
chitecture obtains a context vector ct for each output position t. This context
vector is linearly projected to the vocabulary size and a softmax function is
applied to obtain the probability distribution for the next word p(yt|XN

0 , y
t−1
0 .

The method to obtain this context vector, however, is different.

Firstly, a two-dimensional grid is defined with one dimension for the source
sentence and the other dimension for the target sentence. Each cell stn in
the grid corresponds to the pair (yt, xn). From this grid, we define a layer-
like structure or block, where the ith block has such a grid si−1

tn as its input,
and another one as its output sitn. The input to 2D model is obtained by
concatenating the word embeddings from the source and target sentences:

s0
tn =

[
yt
xn

]
(3.1)

Inside a block there are two layers containing recurrent cells. The first, a
bidirectional RNN, goes along the source dimension; while the second, a uni-
directional RNN, goes along the target dimension. They process each row, or
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3.2 2D Alternating RNN

Figure 3.1: The 2D alternating RNN architecture. White grids on the top and bottom
represent the input/output of a block. Arrows inside grey grids represent the directions of
the RNNs, while the vertical arrows on the left depict how the layers are interconnected.
Arrows on the bottom indicate the source and target dimensions.
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column, independently of one another. As depicted in Figure 3.1, the grid is
an input to both layers. The first layer is also connected to the second layer,
while both output to the next grid sitn.

The context vector is obtained from the last block leveraging a form of atten-
tion mechanism. This scores the vectors according to a learned linear scoring
function followed by a softmax to extract the weights. These weights are used
to perform a weighted sum and recover the context vector:

ct = Attention([sIt0, . . . , s
I
tN ]) (3.2)

This model was evaluated in the Related News translation task, and the ex-
perimentation is described in section 3.4.

3.3 German→English news translation (WMT18)

In this section we describe the MT system built by the MLLP for the news
translation shared task of the EMNLP 2018 Third Conference on Machine
Translation (WMT18) in the German→English direction. We also describe
our work on parallel corpus preprocessing and filtering, an aspect that gained
importance in WMT18 due to the addition of the large and noisy ParaCrawl
corpus to the task. Furthermore, regarding data augmentation, we report
how we extended the supplied parallel dataset with data based on automatic
backtranslations from the provided target language monolingual corpora.

3.3.1 Data preparation

In this section, we described the techniques we used to leverage the provided
WMT German↔English data (both parallel and monolingual) to improve our
MT system results: corpus preprocessing, corpus filtering, and parallel data
augmentation via backtranslation. These tasks acquired relevance in WMT18,
with the addition of the new noisy ParaCrawl parallel corpus crawled from
the internet, which sextuplicates the amount of available parallel data in this
language pair with respect to the previous editions. There are ∼36 million
sentence pairs in ParaCrawl alone, versus ∼6 million in the rest of the corpora
taken together, for a total of ∼42 million sentence pairs. This distribution is
illustrated in table 3.1.
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Table 3.1: Size by corpus of the WMT18 parallel dataset

Corpus Sentences (M)
News Commentary v13 0.3
Rapid (press releases) 1.3
Common Crawl 1.9
Europarl v7 2.4
ParaCrawl 36.4
WMT18 total 42.3

While it is true that the large size of the ParaCrawl parallel corpus makes
it a valuable resoure for MT system training, it contains much more noise
compared to the rest of the WMT18 corpora: misaligned sentences, wrong
languages, meaningless sentences, and other artifacts that may hinder system
training for the purpose of German→English translation. In our experiments,
we observed that preprocessing and filtering this corpus is necessary to turn
it into training data that can effectively increase the translation quality of
the model. In fact, using the ParaCrawl corpus “as is”, we even observed a
degradation in all metrics of quality, as described in detail in Section 3.3.3.

With respect to data augmentation, the usage of relevant in-domain monolin-
gual data has shown to be key in order to improve NMT systems [SHB16a]. We
leveraged the provided monolingual resources in WMT18 via backtranslations
to increase the accuracy of the system.

Corpus preprocessing

We performed a standard preprocessing as suggested by the WMT18 organi-
zation [18] using the provided scripts, comprising punctuation normalization,
tokenization, cleaning, and truecasing via standard Moses [Koe+07] scripts.
Additionally, we removed from the training corpora any sentence containing
characters outside the Latin UTF interval (u0000-u20AC) plus the euro sign
(e). This decision enabled us to reduce the vocabulary size by eliminating
sentences belonging to languages other than German or English, or that are
not useful for the translation of online news between them.

29



Chapter 3. Machine Translation Systems for News and Related Languages (WMT)

Corpus filtering

Our aim in data filtering is to leave out noisy sentence pairs from the parallel
corpora. That is, meaningless sentences or sentences in other languages that
were present in the ParaCrawl corpus. To this end, we trained two separate
9-gram character-based language models, one for German and another one for
English. These language models were trained on the newstest2014 develop-
ment set using the SRI Language Modelling Toolkit [Sto+11]. Using these
language models, we scored the sentences in the whole WMT18 corpus, in-
cluding ParaCrawl, according to their perplexity value; in a manner similar to
the techniques described by [Yas+08; FGK10; AHG11].

Accordingly, a score was obtained for each sentence pairs combining their sep-
arate perplexity scores s, t with the geometric mean

√
s · t. The geometric

mean of two perplexities is approximately the perplexity of their concatena-
tion, and exactly if both are the same length. We selected subsets of different
sizes from the WMT18 corpus taken as a whole, taking the n lowest-scored
sentence pairs. Filtering out high-perplexity pairs simultaneously attains two
goals: to filter out the noise and to provide some degree of domain adaptation,
since the scoring models were trained with in-domain data.

Exploiting monolingual data

To make the most out of all the provided data for the task, we augmented
the WMT German↔English parallel dataset with synthetic source sentences,
automatically backtranslating from the provided target language monolingual
corpora, following the approach outlined by [SHB16a].

In particular, we trained an English→German NMT system based on our best
configuration for German→English. We then used this system to generate our
synthetic source German sentences from a subset of the WMT18 English mono-
lingual corpora. This provided us with a significant amount of new sentence
pairs to use as in-domain synthetic training data.
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3.3.2 System description

We decided to build an NMT system based on the Transformer architecture
[Vas+17]. We opted for a pure NMT system due to the solid advances made
by this field over the previous years, which led this kind of systems to sys-
tematically outperform both the more traditional PBMT systems and PBMT-
NMT combinations, as outlined in Section 3.1. In particular, our choice of
the Transformer architecture, was based on its state-of-the-art results and rel-
atively short computational time for its training. To build our Transformer
models, we used the Sockeye NMT framework [Hie+18].

We based our systems on the Transformer “base” configuration with 65M pa-
rameters over the “big” configuration with 213M parameters, due to its shorter
training time and smaller need of computational resources, in exchange for a
minor expected decrease in translation quality as described in [Vas+17]. Train-
ing time was a relevant constraint to be able to complete our experiments in
time for participation in the shared task. Thus, our models used 6 self-attentive
layers on the encoder and decoder, with a model dimension of 512 units and a
feed-forward dimension fo 2048 units.

During training, we applied 0.1 dropout and 0.1 label smoothing, the Adam
optimization scheme [KB15] with β1 = 0.9, β2 = 0.999, and learning rate
annealing: we set an initial learning rate of 0.0001 and scaled it by a factor
of 0.7 whenever the validation perplexity did not improve in 8 consecutive
checkpoints, each checkpoint being validated every 2000 parameter updates.
The system was trained with a batch size of 3000 tokens and a maximum
sentence length of 75.

For our internal experiments, our systems were trained after applying 20k BPE
operations [SHB16b], but we increased this amount to 40k BPE operations for
our final submissions. The final system consists of an ensemble of 4 independent
training runs of our best configuration, based on a linear combination of the
individual model probabilities at each timestep.

3.3.3 Experimental evaluation

In this section, we outline the experimental setup, report our experiments and
results on corpus filtering, describe our setup for data augmentation via back-
translation, and discuss our final German→English NMT system evaluation
and results.
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Experimental setup

For our experiments, we used newstest2015 as the development set and new-
stest2017 as the test set. We also report the results obtained with the official
test set newstest2018. We evaluated our systems using the BLEU [Pap+02]
and TER [Sno+06] measures. All reported scores were computed with the
system output formatting as indicated by the instructions provided by the
WMT18 organization.

Results on corpus filtering

Here, we show and interpret the results obtained with the corpus filtering tech-
niques described in section 3.3.1. Table 3.2 summarizes the translation quality
results obtained with different subsets of the WMT18 parallel subset. We can
see that using the full 42M sentence pairs, including the ParaCrawl corpus “as
is”, leads to significant performance degradation in all quality metrics com-
pared to using the 6M sentence pairs of the WMT18 corpus excluding the
ParaCrawl. We also observe that using an excessively restricted training set
when applying filtering (5M sentence pairs) also leads to degradation in com-
parison to the WMT18 corpus without ParaCrawl. Otherwise, our filtering
approach is effective at selecting useful training data from ParaCrawl: filtered
training datasets over the original 6M sentence pairs provide significant im-
provements in quality, even with a small increase to 7.5M pairs. At the other
extreme, going over 15M filtered sentence pairs meant quality metrics started
degrading again.

Table 3.2: Results of 9-gram character-based LM filtering, by number of selected sentence
pairs

newstest2015 newstest2017 newstest2018
Subset (# of sentence pairs) BLEU (%) TER (%) BLEU (%) TER (%) BLEU (%) TER (%)
Full WMT18 dataset (42M) 20.6 71.1 21.3 70.2 26.2 64.2

minus ParaCrawl (6M) 31.1 55.4 32.0 54.8 39.1 46.3
Filtered corpus (5M) 30.3 56.3 31.4 55.5 38.7 46.5
Filtered corpus (7.5M) 32.8 54.0 33.7 56.5 41.5 44.5
Filtered corpus (10M) 33.0 53.7 34.5 52.9 42.2 43.7
Filtered corpus (15M) 33.4 53.2 34.3 52.7 42.2 43.6

As Table 3.2 shows, the best results on newstest2015 and newstest2017 were
obtained with the 10M and 15M subsets. As the quality was very similar in
both cases, we opted to use the 33% smaller 10M subset to train our systems
on, for its significantly faster convergence in system training time. Thus, the
10M subset filtered corpus is used as a basis for the subsequent work.
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Bactranslation setup

Here, we detail how we augmented the WMT18 German↔English parallel
training dataset based on the backtranslation technique. First, we trained
an English→German NMT system using the same configuration as our best
German→English system as described in Section 3.3.2, and trained it with the
10M sentence pairs filtered subset of the WMT18 parallel dataset. The re-
sulting English→German NMT system obtained 27.4 BLEU on newstest2017.
Using this system, we translated into German a random sample of 20M English
sentences from NewsCrawl 2017 – the most recent in-domain corpus among the
provided WMT18 monolingual corpora. This provided us with 20M synthetic
in-domain sentence pairs of German→English as additional training data. This
was added to the 10M selected sentence pairs, comprising a total of 30M sen-
tence pairs as an augmented training corpus which was used for the final sys-
tems.

Final system evaluation and results

We will now summarize the most relevant results for the final German→English
NMT system trained for WMT18. These are shown in Table 3.3. Our baseline
model was trained excluding the ParaCrawl corpus from the training data and
used 20K BPE operations. The first step to improve over this baseline system
was filtering the full WMT18 corpus including ParaCrawl, as explained in
Section 3.3.3. Table 3.3 only shows the results of the best-performing system
from the filtering evaluation. The 10M filtered corpus provides an improvement
of 2.5 BLEU and 1.7 TER over the baseline model in the newstest2017 test
set, showing how our data filtering approach was effective to extract useful
sentences from the noisy ParaCrawl corpus in order to improve the performance
of our system.

Table 3.3: Summary of German→English system evaluation results

newstest2015 newstest2017 newstest2018
System (# of sentences) BLEU (%) TER (%) BLEU (%) TER (%) BLEU (%) TER (%)
WMT18 corpus (6M) 31.1 55.4 32.0 54.8 39.1 46.3
Filtered corpus (10M) 33.0 53.7 34.5 52.9 42.2 43.7
+ backtransl. (10M+20M) 34.3 52.0 35.9 51.2 44.7 41.1
Ensemble (x4) 34.6 51.9 36.2 51.0 45.1 40.8

For the final systems, we added 20M synthetic sentence pairs with backtrans-
lations as described in Section 3.3.3. For balance, we oversampled the 10M
filtered training set by duplicating it, giving us a final training set of 40M
sentence pairs. We also increased the number of BPE operations from 20K to
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40K. A single NMT system trained with this configuration yielded 35.9 BLEU
and 51.2 TER in the newstest2017 test set, representing a significant improve-
ment of 1.4 BLEU and 1.7 TER over the model without the synthetic data.
This is explained by a combination of the additional sentence pairs and the in-
crease in vocabulary size. Training a system with this final configuration took
approximately 120 hours on a single-GPU machine with an Nvidia GeForce
GTX 1080 Ti.

Finally, our primary submission for WMT18 consisted of an ensemble of 4
independent training runs with this final configuration, resulting in 36.2 BLEU
and 51.0 TER in newstest2017, and 45.1 BLEU and 40.8 TER in the official
test set newstest2018.

3.3.4 Comparative results

Here we will review the primary submission results of all participants in the
Shared Task. Table 3.4 shows the results of all participants in the
German→English news translation shared task. The table contains the re-
sults in the official score Ave. z [Boj+18]. To obtain this score, human direct
assessments were made and then standardized according to each individual
assessor’s mean and variance. The final score for the system is computed as
the average of its segment scores. In addition to the Ave. z score, the corre-
sponding BLEU figures were included in the table whenever the information
was publicly available.

The conference organization ranked the participant systems by clusters accord-
ing to the official score Ave. z and identified by grouping systems together so
that they significantly outperform, according to the Wilcoxon rank-sum test,
all other systems in a lower rank.

Note that as the BLEU scores were not computed by the organization, there
may be some inconsistencies in how the participants assessed their own submis-
sions, which could explain the apparently anomalous result of JHU reporting
a BLEU much lower than other participants with a worse Ave. z score or that
were even in a lower rank.
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Table 3.4: Primary submission results, in BLEU, of the German→English news translation
shared task in the hidden test set newstest2018

Rank Team BLEU (%) Ave. z
1 RWTH [Gra+18] 48.4 0.413

UCAM [SGB18] 48.0 0.395
NTT [MSN18] 46.8 0.359
ONLINE-B — 0.346
MLLP 45.1 0.321
JHU [KDT18] 37.0 0.317
UBIQUS-NMT — 0.315
UEDIN [Had+18] 43.9 0.261

11 LMU-NMT [Huc+18] 42.2 0.162
NJUNMT-PRIVATE — 0.149

13 ONLINE-G — –0.074
14 ONLINE-F — –0.296

3.3.5 Conclusions

The MLLP group of the Universitat Politècnica de València participated in the
WMT18 news translation shared task in the German→English direction. Our
primary submission was an ensemble of four NMT models based on the Trans-
former architecture, trained using a combination of filtered parallel data and
synthetic in-domain data using backtranslations from monolingual corpora.

Our results confirm the capability of the Transformer NMT architecture to
attain highly competitive MT results with a relatively low training and infer-
ence computational cost. We also showed the relevance of data curation, in
this case in the form of filtering and data augmentation leading to significant
improvements in translation quality.

3.4 Related Language translation task (WMT19)

In this section we describe the MT systems developed by the MLLP research
group for the Related Languages Translation Shared Task of the ACL 2019
Fourth Converence on Machine Translation (WMT19). For this task, we par-
ticipated in both directions of the Portuguese↔Spanish language pair using
NMT models. We also tried out our 2D Alternating RNN NMT architecture.
We report results for this approach and the Transformer [Vas+17] NMT ar-
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chitecture. A domain-adapted Transformer system achieves the best results of
all submitted systems on both directions of the shared task.

3.4.1 Baseline systems

Here we describe the training corpora as well as the baseline model configura-
tions. Two different model architectures were used: the Transformer architec-
ture and our proposal of 2D alternating RNN. The performance was evaluated
by the BLEU metric [Pap+02].

Data preparation

The training data consisted of the JCR, Europarl, news-commentary, and wik-
ititles corpora.

Table 3.5: Statistics of the datasets used to train the Spanish↔Portuguese MT systems

Corpus Sent.(K) Words(M) Vocab.(K)
Es Pt Es Pt

JCR 1650 42 40 264 264
Europarl 1812 53 52 177 156
news 48 1 1 49 47
wikititles 621 1 1 292 295
dev 1.5 0 0 6 6
test 1.5 0 0 6 6

The data was processed using the standard Moses pipeline [Koe+07] with the
standard scripts for punctuation normalization, tokenization, and truecasing.
We applied 32K BPE [sennrich2017bpe] operations learned jointly over the
source and target languages, including into the vocabulary only those tokens
occuring at least 10 times in the training data.

Transformer baseline models

For the Transformer model, we used the “base” configuration consisting in
512 model size, 8 attention heads, and 2048 feed-forward size; trained on a
single GPU machine. The batch size was 4000 tokens, carrying out gradient
accumulation by temporarily storing gradients and updating the weights ev-
ery 4 batches, allowing for an effective batch size of 16000 tokens. We used
dropout [Sri+14] with probability 0.1 of dropping a single connections, and
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label smoothing [Sze+16] where we distribute 0.1 probability weight among
the target vocabulary at each label. We stored a checkpoint every 10000 up-
dates, and for inference used the average of the last 8 checkpoints. We used
the Adam optimizer [KB15] with β1 = 0.9, β2 = 0.98. The learning rate was
updated following an inverse square root schedule, with an initial learning rate
of 5 · 10−4 and 4000 warm-up updates. The training was performed using the
Fairseq toolkit [Ott+19].

2D alternating RNN baseline model

For the 2D alternating RNN models, we used GRU for the recurrent cell, with
an embedding size of 256 and 128 as the size of each layer of the block. The
model consisted of a single block. The batch size was 20 sentences, with a
maximum length of 75 subword units. We used the Adam optimizer with β1 =
0.9, β2 = 0.98. We used learning rate annealing with an initial learning rate
of 10−3, halving it after 3 checkpoints without improvement in development
perplexity. A checkpout was saved every 5000 updates. The model was built
using our own toolkit. Due to time constraints, the 2D alternating RNN model
was only trained for the Portuguese→Spanish direction.

Baseline Results

Table 3.6 shows the evaluation results for the Portuguese→Spanish and
Spanish→Portuguese systems. For the Portuguese→Spanish direction, the
Transformer model obtained 57.4 BLEU in the open test set, and 51.9 in the
hidden test set of the competition. The 2D alternating RNN model achieved
55.1 and 49.7 BLEU, respectively. These results showed how a very preliminary
version of the 2D alternating RNN model was able to approach competitive
results for this task. It is worth noting that this was achieved with a model
with significantly fewer parameters: 14.9M compared to its Transformer coun-
terpart with 60.2M parameters.

Table 3.6: Baseline BLEU scores on the Portuguese→Spanish and Spanish→ Portuguese
tasks

Pt→Es BLEU (%) Es→Pt BLEU (%)
System test test-hidden test test-hidden
Transformer 57.4 51.9 51.2 45.5
2D alternating RNN 55.1 49.7 - -
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3.4.2 Fine-tuning

NMT models perform best when trained with in-domain data. However, most
available parallel sentences came from corpora belonging to other domains:
either institutional documents or internet-crawled general content, not from
news. Therefore, we find a significant domain mismatch between the domains
of the training data and the test data. In such cases, even small amounts
of in-domain training data can be leveraged to improve system performance.
This is done by carrying out an additional specific training step, referred to
as the fine-tuning step, using the in-domain data after the main training has
finished. Fine-tuning has been widely used to adapt general-purpose models
trained with general-domain data to specific domains using only small amounts
of in-domain data [LM15; SHB16a]

To check how big the mismatch between out-of-domain and in-domain data
was, we trained two language models: one using only the general training
data from Table 3.5, and another one using only the in-domain development
data. Both LMs were 4-gram language models trained using the SRI Language
Modelling Toolkit [Sto+11]. We then computed the perplexity of the open
test set using these two language models. The out-of-domain LM obtained a
perplexity of 298.0, whereas the in-domain LM achieved a perplexity of 81.9.
This striking difference exposes the significant mismatch between train and
test data, supporting the idea of carrying out fine-tuning.

In order to understand the impact and behaviour of the fine-tuning process,
we analyzed the model’s performance as a function of the number of fine-
tuning epochs. Figures 3.2 and 3.3 show the results of this procedure for the
Portuguese→Spanish and Spanish→Portuguese tasks, respectively. In both
language pairs, the first epochs are most beneficial to system performance,
while additional epochs bring diminishing returns until the curve flattens.

3.4.3 Comparative results

Here we will review the primary submission results of all participants in the
Shared Task. Our primary submission was the fine-tuned Transformer system
for both tasks. The submission was made with the checkpoint that achieved the
best performance on the fine-tuning dev data. Table 3.7 shows the results of
the Portuguese→Spanish and Spanish→Portuguese shared tasks. The results
are evaluated in terms of BLEU and TER.

In both tasks, our system outperformed all other participants by a significant
margin. In the Portuguese→Spanish task, our submission outperforms the next
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Figure 3.2: BLEU scores in the open test set as a function of the number of fine-tuning
epochs on the Transformer and 2D alternating RNN models for the Portuguese→Spanish
task

Figure 3.3: BLEU scores in the open test set as a function of the number of fine-tuning
epochs on the Transformer model for the Spanish→Portuguese task

Table 3.7: Primary submission results of the Portuguese→Spanish and
Spanish→Portuguese shared tasks in the hidden test set

Portuguese→Spanish
Team BLEU (%) TER (%)
MLLP 66.6 19.7
NICT 59.9 25.3
U. Helsinki 58.4 25.3
Kyoto U. 56.9 26.9
BSC 54.8 29.8
UBC-NLP 52.3 32.9

Spanish→Portuguese
Team BLEU (%) TER (%)
MLLP 64.7 20.8
UPC-TALP 62.1 23.0
NICT 53.3 29.1
U. Helsinki 52.0 29.4
UBC-NLP 46.1 36.0
BSC 44.0 37.5
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best system by 6.7 BLEU and 5.6 TER. Similarly, in the Spanish→Portuguese
taks, our system is at a distance of 2.6 BLEU and 2.2 TER from the second
best. We attribute this success to the domain adaptation via fine-tuning, using
part of the competition’s development data as in-domain training data.

3.4.4 Conclusions

We approached the similar language translation task similarly to other trans-
lation tasks. NMT models and specifically the Transformer architecture fared
well in this task without specific adaptations to the similar-language setup,
obtaining excellent results with BLEUs around 65%.

Applying a domain adaptation approach based on fine-tuning on in-domain
data, we achieved the best results among all participants by a significant mar-
gin in both Portuguese→Spanish and Spanish→Portuguese. We believe these
results are explained by the domain mismatch between the training and test
data, and not specific to the similarity between Spanish and Portuguese.

We tried out the 2D alternating RNN model architecture, testing it in the
Portuguese→Spanish task. With relatively small embedding and hidden unit
vector sizes and a shallow architecture, there was a gap between its performance
and that of the fleshed-out Transformer model.

3.5 Conclusions

Within the framework of the MLLP research group, we participated in the
WMT18 and WMT19 machine translation shared tasks. In WMT18, we par-
ticipated in the news translation task in the German→English direction with
an ensemble of four NMT Transformer models. With an emphasis on filter-
ing and data augmentation, we attained highly competitive MT results and
showed the relevance of data curation, leading to significant improvements in
translation quality.

In WMT19, we participated in the similar language translation task with a
Transformer model in both directions of Portuguese→Spanish and
Spanish→Portuguese. With fine-tuning on in-domain data and a single Trans-
former model, we achieved the best results among all participants in both
directions. We also tested our 2D alternating RNN architecture proposal,
finding a performance gap between itself and the fully fleshed-out Transformer
architecture.
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3.5 Conclusions

The work described in this chapter was done in collaboration with other mem-
bers of the MLLP research group, in particular with Javier Iranzo-Sánchez, and
resulted in two publications in which each is recognized as the first author, as
detailed in the conclusions of the thesis in Chapter 6.
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Chapter 4

Streaming Automatic Speech
Recognition with Transformer

Language Models

4.1 Introduction

The second goal of this thesis is to improve the state-of-the-art in streaming
ASR technology. Previous progress in the ASR field has brought great atten-
tion to the streaming tasks due to their immense applicability. The streaming
setup for ASR comes with additional challenges and restrictions. First, the
automatic system must deliver the output in real time as the continuous audio
stream is processed. Second, the system cannot defer the output transcription
until the end of the acoustic stream. As a consequence, the main challenge
is finding the best way to come the closest possible to the accuracy of state-
of-the-art off-line ASR under the streaming conditions. That is, delivering
continuous output transcriptions within a short delay, i.e. not much longer
than a second, with respect to the acoustic audio stream.

Lately, many authors are currently exploring the use of monolithic neural net-
works, also known as end-to-end systems, both to ASR in general and to
streaming ASR in particular [MHL20; Zha+20; Mia+20a; Zey+19]. End-to-
end systems are comparatively simple and easy to build from widely available
deep learning toolkits and require minimal human expert knowledge. However,
despite their simplicity and promising prospects, it was still unclear whether or
not they will soon definitively surpass state-of-the-art hybrid systems combin-
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ing separate acoustic and language neural models under the more conventional
HMM paradigm.

This chapter focuses on language models for hybrid ASR systems for the pur-
pose of building streaming ASR systems. Following our previous work on
real-time one-pass decoding with LSTM LMs [Jor+19] and further realization
of a streaming one-pass decoder achieving live transcription with minimal ac-
curacy loss with a delay of less than a second [Jor+20], the work described in
this chapter brings further improvements to the performance of this architec-
ture, inspired by the latest developments reported in the literature for language
modelling in the off-line setup [Iri+19], by leveraging the power of Transformer
as language models. Our empirical study on the LibriSpeech and TED-LIUM
tasks shows that the introduction of Transformer LMs (TLM) lead to top,
state-of-the-art recognition accuracy rates and latencies under streaming con-
ditions.

This chapter is organized as follows. Section 4.2 describes the decoder archi-
tecture we designed and its specific adaptations enabling streaming capabili-
ties in hybrid ASR systems. Section 4.3 presents the alterations made to the
Transformer language models to adapt them to a streaming use. Section 4.4
contains the description of the experimental study and its results, as well as
the corresponding analysis. Finally, Section 4.5 offers some conclusions to the
chapter.

4.2 Streaming one-pass decoder

We proposed the direct use of neural LMs in a one-pass History Conditioned
Search (HCS) strategy [Nol17]. HCS-based decoders group hypotheses by their
history, each group representing all state hypotheses sharing the same LM his-
tory. This way, word histories only need to be considered when handling word
labels, and thus can be ignored during dynamic programming at the intra-word
state level [NO00]. HCS makes large decoding sub-networks able to be safely
removed during search, thereby lowering memory requirements. The HCS ap-
proach allows us to deal with any length of LM histories, potentially even
infinite, but other challenges remain to build a real-time decoder. The most
important of them is the computational cost required by the neural model,
in particular the Softmax layer, that can be excessively expensive for large
vocabularies in order to even approach real-time capabilities. In the follow-
ing, we describe the solutions that we implemented in order to address these
challenges.
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4.2 Streaming one-pass decoder

4.2.1 Static look-ahead tables

LM look-ahead is a well-established pruning technique consisting of adjusting
the LM score for each hypothesis h and time t by taking into account every
possible word w to follow [Nol17]. Strictly, this technique implies computing an
extra set of look-ahead scores p(w|h) for each history h and word w. The cost of
this computation, already high when using n-gram LMs, becomes prohibitive
when using neural-based LMs.

To ensure the look-ahead computation is done within strict time constraints,
a common technique is to build pre-computed static look-ahead tables from
simplified n-gram LMs. That is, look-ahead tables are built from m-grams
with m < n from a “big” n-gram LM so that all of them fit concurrently in
memory. The pre-computed look-ahead table is used for p(w|h) except for when
a word-end node is reached, situation where the look-ahead score is replaced
by the big LM probability. This procedure allows for both the look-ahead
tables and different queries to the big LM to be greatly reduced, bringing huge
improvements to the speed of the decoder.

4.2.2 Variance regularization and lazy evaluation

As previously mentioned, one of the main drawbacks of using neural-based LMs
for large vocabulary ASR decoders is the computational cost of the Softmax
layer, primarily derived from the calculation of the normalization term. To
address this issue, we follow [Shi+14] and include a Variance Regularization
term to the training optimization function that allows for a drastic decrease
in required compute. This technique makes the softmax normalization term
approximately constant so that the probability of a word y given a history h
can be approximated as

p(yt|yt−1
0 ) =

exp(nn(yt−1
0 ) · ay)∑

i exp(nn(yt−1
0 ) · ai)

≈ exp(nn(yt−1
0 ) · ay)
D

(4.1)

where nn(yt−1
0 ) is the final layer of the neural network given the input h, ai is

the weight for the output i, and D is the constant being approximated as the
normalization term. This technique involves introducing a special term into
the optimization function involving the variance of the softmax normalization
term, so that the neural network “wants to” minimize that variance during
training. At the end of the training, D is taken as the mean of the normal-
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ization term in the training data, from which the actual normalization term is
expected to deviate only minimally.

To speed up the decoding, the Variance Regularization technique was used
in conjunction with a lazy evaluation strategy delaying the evaluation of the
neural LM as much as possible. Each neural history h is internally represented
as the tuple (y, h′, V ) where y is the last word of h, h′ = (y′, h′′, V ′) the
previous history state, and V is either ∅ (empty) or the hidden state for h.
During decoding, each time a word-end node y is reached, the following steps
are executed:

1. Look up V ′. If not found, compute the RNN for it from h′.

2. Compute the estimated p(y|h) ≈ exp(nn(h)·ay)

D

3. Create the new state h = (y, h′,∅)

By this approach, new histories are created at a negligible cost, since the for-
ward step in the neural model is only carried out when a word-end node is
reached for the first time. Once the state for the neural model is obtained, it
is cached. Furthermore, in practice most histories will be pruned before any
hypothesis reaches a word-end node, saving significant amount of computa-
tion. This saving is compounded by the fact that the Softmax computation
is approximated by a constant term as the normalization factor, as previously
mentioned.

4.2.3 Novel pruning techniques

Two new pruning techniques were implemented specifically for the one-pass
decoder, in addition to the conventional pruning methods. These techniques
apply to the search process, and not at all to the neural models themselves. A
problem we encountered was that in some situations, the lack of LM history
recombination together with the histogram pruning (a maximum number of
active hypotheses at each time frame) produced a decrease in transcription
quality. This was apparent for some long sentences where most of their active
hypotheses were identical except for long term differences in their LM history,
effectively making the beam decoder behave as a greedy decoder. To avoid this
behaviour, a LM history recombination parameter (LMHR) was introduced,
where two different histories are recombined if their last n words are the same.
This kind of recombination forces the decoder to consolidate prefixes and thus
to focus its exploration of possible decisions on the present time frame. A
similar technique was introduced in [HZD14], although with a different moti-
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4.2 Streaming one-pass decoder

vation. Another pruning scheme that was introduced is LM histogram pruning
(LMHR), which sets the maximum number of new LM histories that can be
created at each time frame.

We explored these pruning parameters in the two tasks that will be introduced
in Section 4.4, namely LibriSpeech and TED-LIUM version 2. These experi-
ments related to pruning parameters were made in collaboration with Javier
Jorge and not the main focus of this thesis. They have been included in this
section for a better understanding of the new pruning parameters in our cus-
tom one-pass decoder for hybrid ASR systems. The main experimentation and
the focus of the work described in this thesis is located on Section 4.4.

The LMHR parameter is evaluated in Figure 4.1, where a Transformer language
model (as will be described in Section 4.3) was used with different history
window sizes to gauge the collusion between the limitation on the number of
words coming from the LMHR parameter and coming from the LM window
in terms of WER. We observe, in each task, an optimal value for the LMHR
parameter irrespective of the LM window limitation: 12 for LibriSpeech and
9 for TED-LIUM. For LMHR values below the optimal, the differences in LM
histories between the hypotheses are not allowed the weight they should have.
For values above the optimal, the differences are often too far in the past and
newer differences should have more weight in the present decision.
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Figure 4.1: WER and PPL as a function of TLM history size for different LMHR values.
Solid curves represent WER, measured on the left axis, while the dashed curve represents
the PPL, measured on the right axis. LibriSpeech (left) and TED-LIUM (right).

The LMHR parameter is evaluated in Figure 4.2, with the same tasks and
models as the LMHR parameter. As it is relevant for computational time, in
this case the WER was measured against latency, varying other search param-
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eters. We observe that not for all latencies the optimal LMHP stays the same,
and that it is highly dependent on the task. The “LMHP=Inf” line represents
no LM histogram pruning at all. It is not surprising that it entails the highest
latencies and, as such, is often above the other lines in the figure.
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Figure 4.2: WER against latency (in seconds) for different LMHP values, for LibriSpeech
(left) and TED-LIUM (right).

4.2.4 Streaming adaptation

The decoder structure described above has to be adapted to bridge the gap
between real-time and actual streaming conditions. Under these conditions, the
complete acoustic context is not available for a given acoustic frame. Therefore,
we need to define a future context window to calculate the scores for each
acoustic frame. This window directly implies a delay between the input and
the output, and is also referred as acoustic lookahead.

Regarding this acoustic lookahead, we followed a similar strategy to [ZSN16],
based on a sliding window of a given size over the acoustic sequence. The
frames in the window are used to compute the forward and backward steps of a
BLSTM over the sequence, obtaining a score for each frame within the window
as in [Moh+15]. We move the sliding window frame by frame. Regarding
the overlapping frames, to obtain the final score that will be provided to the
decoder we use a uniform weighted average of the acoustic score of all windows
for a given frame. In the extreme cases where the utterance is shorter than
the window, zero padding is introduced up to the length of the window beyond
the sequence.

48



4.3 Streaming Transformer language models

Limiting the future context forbids us from performing full sequence normaliza-
tion of acoustic features. To address this, we apply a weighted moving average
technique, updating normalization statistics on-the-fly. An initial delay is in-
troduced to gather statistics to initialize the mean and variance. A parameter,
nnorm, controls the number of seconds that are used to compute the initial
statistics. The first nnorm frames are normalized with this mean and variance.
Afterwards, the mean and variance are updated frame by frame without incur-
ring in any additional delay. This scheme causes an initial delay for the first
few words from the stream out of the decoder. However, in a real streaming
setup, this initial delay is small and the system will catch up quickly without
any further impact to global latency or system performance. The technique is
applied over a batch Bj of frames as

B̂j = Bj − µ̂j (4.2)

µ̂j =
fj−1 +

∑b+w
t=1 Bj,t

nj−1 + b+ w
(4.3)

Where fj−1 represents the accumulated sum of values from previous frames up
to batch Bj−1, Bj,t the t-th frame in batch Bj, nj−1 stands for the number
of frames until batch Bj−1, and b and w are the batch and window sizes,
respectively. Our implementation sets fj and nj to be exponentially decaying
accumulators, updated by weighting the contribution of previous batches with
an adjustable parameter α ≤ 1:

fj = α · fj−1 +
b∑
t=1

Bj,t (4.4)

nj = α · nj−1 + b (4.5)

4.3 Streaming Transformer language models

Two key ideas are in play to adapt the Transformer LM (TLM) to the streaming
setup. A first key idea is, like seen above, to add a Variance Regularization
term during training as a way to fit the normalization term of the Softmax so
that it deviates minimally from a constant value. This is critical to reduce the
high computational cost of the linear projection to vocabulary size before the
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Softmax activation during inference time, as we are enabled to approximate
the normalization term by a constant.

A second key idea, concerning particularly TLMs and not other neural LMs
such as LSTMs or other RNN LMs, is to limit the word history size. The
strength of self-attentive LMs like the Transformer model resides in their ability
to attend to all previous words and better condition their output based on their
history. This makes them more versatile than RNNs, as they are not forced to
compress all the history into a single vector, causing some information loss. In
exchange for that, this fact implies that the whole history must be processed
every time a next word is predicted. Although some workarounds exist that
can expedite this process, it is still troublesome for the streaming setup: if
we allow the history to grow without limit, both memory requirements and
computational time will increase boundlessly as well. To circumvent this issue,
we limit the Transformer history size to the n previous words and we do not
store any internal state, alleviating the memory requirements. However, in
exchange, we are forced to compute the output again with each call. As we
will see during the empirical study, with the history sizes that we worked with,
this was not an issue.

4.4 Experiments

4.4.1 Experimental setup

We evaluated the performance of our streaming decoder and models on the Lib-
riSpeech ASR corpus [Pan+15] and the TED-LIUM release 2 corpus [RDE14].
Acoustic models were trained on the 961 hours for LibriSpeech and the 207
hours provided in TED-LIUM v2. As development and test data, we used the
*-other for LibriSpeech, with 5.3 hours for dev and 5.1 hours for test, and the
*-legacy for TED-LIUM, with 1.6 and 2.6 for development and test, respec-
tively. Regarding the text data, we used the ∼800M words text provided for
LibriSpeech, whereas for TED-LIUM the text data came from the six provided
subsets extended with the TED-LIUM training audio transcriptions with up to
230M running words in total. System vocabularies were limited to 200K and
153K words for LibriSpeech and TED-LIUM, respectively. Out-of-vocabulary
(OOV) ratios were less than 1% in both tasks.

The acoustic models were trained as follows. First, we trained context-dependent
feed-forward DNN-HMMs with three left-to-right states, using the transLectures-
UPV toolkit [Del+14]. The state-tying scheme follows a phonetic decision tree
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approach [YOW94] resulting in 8.3K and 10.8K tied states for LibriSpeech
and TED-LIUM, respectively. Gaussian mixture models were used to initial-
ize alignments, from where feed-forward models bootstrapped the training of
BLSTM-HMMs [Zey+17] as the acoustic model, trained with TLK and Tensor-
Flow [Aba+15]. These BLSTMs were composed of 8 layers with 512 cells per
layer and direction, trained with the cross-entropy criterion. Back-propagation
through time was limited to a window size of 50 frames.

As to language modelling, we trained TLMs using fairseq [Ott+19] with a cus-
tom implementation of the Variance Regularization criterion. We followed the
‘base’ configuration of the Transformer, with 512 cells per layer, a feed-forward
of 2048 units, and 8 attention heads. Only in TED-LIUM, the intersection be-
tween the provided vocabulary and the vocabulary of the training set resulted
in a smaller output layer of 144K units. We ran our experiments with three
different model sizes per task, with different number of Transformer layers: 12,
18, and 24.

Additionally, we explored LM combination by interpolating Transformer mod-
els with n-gram and/or LSTM LMs. Regarding n-gram LMs, we used the
4-gram ARPA LM provided with the LibriSpeech dataset (fglarge), while for
TED-LIUM we explicitly trained a standard Kneser-Ney smoothed 4-gram LM
with the same data as [RDE14] using SRILM [Sto+11]. A pruned version of
these models was used to estimate the static look-ahead tables. LSTM LMs
were trained with two specific criteria added to the objective function: Noise
Contrastive Estimation [MT12] and Variance Regularization [Hor+07], and us-
ing the CUED-RNNLM toolkit [Che+16]. LSTM LMs consisted of a 256-unit
embedding layer and two LSTM layers of 2048 units. Output Softmax layers
have the same number of units as the respective TLMs for each task.

To assess and compare the different LM performances, we provide perplexities
(PPL) computed over the development sets of each task. To evaluate overall
ASR system quality, we computed Word Error Rate (WER) figures on the
corresponding development and/or test sets. Additionally, we measured times
for ASR systems both for the off-line and streaming setups. For the off-line
case, we provide Real Time Factor (RTF) values. RTF is defined as the ratio
between the computation time to transcribe a set of audios, and the duration
of that set. For the streaming case, we provide mean system latencies. We
define latency as the time elapsed between the system receiving the last input
frame of an uttered token (in our case, word) and the point in time when the
first hypothesis for that word is delivered. All time-measuring experiments
were conducted on a machine with an Intel Xeon(R) CPU E5-1620@3.50GHz
and a GPU GTX2080Ti with 12GB of RAM. The estimation of the scores for
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the neural models (the acoustic BLSTM, the LSTM LM, and the TLM) was
performed on the GPU, while the n-gram scoring and the rest of the decoding
took place on the CPU.

The experimentation is structured as follows. First, Section 4.4.2 explores the
performance of the different LMs considered in this work and studies the effect
of limiting the history window of the TLMs. Then, Section 4.4.3 analyses ASR
performance considering WER and RTF for different number of Transformer
layers and search parameters. Next, Section 4.4.4 gauges the performance
of systems interpolating different LMs including the best performing Trans-
formers with other LMs. Finally, Section 4.4.5 compares the performance of
the ASR systems, using the best found LM combination in both off-line and
streaming conditions, and provides latencies for the latter.

4.4.2 Language model evaluation

Table 4.1 shows the PPLs on the development sets for the three types of LM
model considered in this chapter: n-gram, LSTM, and Transformer models
of 12, 18, and 24 layers. As expected, TLMs attained significantly better
PPLs than the other LMs being considered. Furthermore, slight improvements
of PPL were provided by increasing the number of Transformer layers. The
question we are to explore is whether a streaming ASR system can exploit
these better PPL figures and translate them to terms of WER and latency.

Table 4.1: LM perplexities for LibriSpeech and TED-LIUM

Model LibriSpeech TED-LIUM
n-gram 140.9 117.5
LSTM 72.5 86.7
Transformer 12L 60.7 74.3
Transformer 18L 58.1 72.4
Transformer 24L 56.2 71.0

Figure 4.3 shows the impact of limiting the history window in the evaluation
of TLMs, in terms of PPL as a function of th history size in words. The
numbers are computed over the developments sets of LibriSpeech (left plot)
and TED-LIUM (right plot) for Transformer models of 12, 18, and 24 layers.
The discontinuous line indicates the percentage of fully-seen sentences and is
measured against the right vertical axis.

From this figure we realize that PPLs consistently improve in all cases as we
increase the history size, until we reach approximately size 40. For history
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Figure 4.3: Transformer LM PPLs (left vertical axis) for different number of layers (in
legend), and percentage (right vertical axis) of fully-seen sentences (discontinuous line), as
a function of history size, for LibriSpeech (left) and TED-LIUM (right).

sizes over 40, further PPL improvements are negligible. In LibriSpeech, this
behaviour is to be expected considering that 94% of sentences are shorter than
40 words. This result is somewhat more interesting in TED-LIUM, where a
significant number of sentences (35%) are longer than 40 words. This latter
case is, to some extent, more representative of a real streaming ASR scenario,
for example a lecture of more than half an hour, where most of the history
would fall out of any realistic history window size. For this reason, we chose
a history window size of 40 words for the rest of the experiments described in
this chapter.

4.4.3 ASR systems with Transformer language model

In this section, we analyse the performance of hybrid ASR systems with TLMs
of varying number of layers under an off-line setup. The goal is to find a
good trade-off between transcription quality, measured in WER, and speed,
measured in RTF. As our aim is to bring these systems to a streaming setup,
our search for this trade-off is strictly limited to those with RTF<1, to ensure
they are able to process input audio streams in real time. System speed is
adjusted by altering search parameters, particularly the prune.

Figure 4.4 shows WER (vertical axis) and RTF (horizontal axis) curves for ASR
systems with TLMs of 12, 18, and 24 layers, computed over the development
sets of LibriSpeech and TED-LIUM. As expected, the lowest RTF values are
obtained with 12 layers. But taking into account also the WER, the best option
for a good WER-RTF balance turns out to be different for each particular
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task. For LibriSpeech, the TLM with 24 layers provides the best quality (5.6%
WER) while complying with RTF constraints (∼0.9 RTF). On the other hand,
for TED-LIUM, the LM with 12 layers is the fastest and also provides the best
quality (5.8% WER, ∼0.8 RTF).
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Figure 4.4: WER vs RTF of ASR systems with different Transformer LMs, for LibriSpeech
(left) and TED-LIUM (right).

We interpret these results in the light that WER is particularly sensible to
PPL changes in th LibriSpeech task. In other tasks such as TED-LIUM, this
correlation is weaker and, as such, more exploration of the search space is al-
ways preferred with a faster LM, even when it provides an inferior PPL. In
other words, computation time is better spent exploring more prefixes, instead
of computing a more accurate LM score for each candidate prefix. Is is also
important to remark that LibriSpeech provides four times more text data than
TED-LIUM, and this may have an impact of how great the improvements of
increasing the model size are. To us, all of the above explains the striking
differing behaviour of the two tasks in Figure 4.4. For the remaining experi-
ments, we selected the best-performing TLMs complying with an RTF<1: the
24-layer TLM for LibriSpeech and the 12-layer TLM for TED-LIUM.

4.4.4 ASR systems with language model combination

Our aim is to further increase overall ASR performance further than in the
previous section by LM combination. Studying the effects of combining the
best-performing TLMs with n-grams and/or LSTM LMs on our streaming
decoder, we may arrive at a combination that enhances the transcription ac-
curacy while remaining under RTF<1. For simplicity, and taking into account
PPL results described in Table 4.1, we only studied LM combinations involv-
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ing Transformer LMs. LM combinations are done by a linear interpolation,
where the corresponding weights are the result of a minimization of PPL on
the development set for each task. First, the impact of these interpolations is
analysed in terms of PPL, and afterwards in terms of how the PPL gains are
translated into ASR performance, in terms of both transcription quality and
speed.

Table 4.2 shows interpolation weights (W%) and PPLs computed for each
possible combination involving Transformer models over the development set
in both tasks. Only the weights of the n-gram and LSTM LM models are
shown, the Transformer LM receiving the remaining weight up to 100%.

Table 4.2: Interpolation weights (W%) and PPLs computed over the development sets of
each task, for all LM combinations. Interpolation weights are shown only for models other
than Transformer, which receives the remaining weight

LibriSpeech TED-LIUM
Model W(%) PPL W(%) PPL
Transformer – 56.2 – 74.4
+ n-gram 4 54.9 27 63.2
+ LSTM 14 54.6 39 68.3
+ n-gram + LSTM 2+13 54.4 27+19 61.0

We observe that LM combination has a positive effect on PPL, but the mag-
nitude of its impact is diverse. On LibriSpeech, the improvement is very slight
with only a 3% reduction on PPL when the three LMs are involved. Mean-
while, on TED-LIUM, the PPL reduction of up to 18% is quite significant.
Interpolation weights reflect this phenomenon, and correspondingly, n-grams
and LSTM models take lower weights on LibriSpeech (up to 15%) and higher
weights on TED-LIUM (up to 46%).

Next, we study how these improvements in PPL may translate to ASR sys-
tem performance. For the goal of building the best possible streaming ASR
system, we must again explore different prune parameters, as LM combination
increases the computational load of computing the LM scores during the de-
coding process, to ensure the RTF<1 requirement while keeping a good balance
with transcription quality. Figure 4.5 shows WER, measured in the vertical
axis, against RTF, measured in the horizontal axis, for all LM combinations
present in Table 4.2, computed over the development sets of LibriSpeech and
TED-LIUM.

For LibriSpeech, the interpolation has little effect on the WER, and most of
the difference is made by varying the search parameters. This result is in line
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Figure 4.5: WER vs RTF of ASR systems with different LM combinations, for LibriSpeech
(left) and TED-LIUM (right).

with the PPLs in Table 4.2, where the interpolation returned limited improve-
ments. The Transformer + n-gram combination provided slight but consistent
improvements for the quality-speed balance, as we can observe by the curve
being always below the others. For TED-LIUM, the greater PPL improve-
ments due to LM combination translated into WER figures. The Transformer
+ n-gram + LSTM LM combination offered the best quality at acceptable
RTF<1 rates.

At this point, as final ASR systems, we selected those using the LM combi-
nation offering the lowest WER with an RTF<1, which are: Transformer +
n-gram for LibriSpeech, and Transformer + n-gram + LSTM for TED-LIUM.

4.4.5 Streaming ASR systems

Finally, the two selected systems, one for each task, were tested under a true
streaming setup. First, we measure WERs over the development and test sets,
and compare them with the performance under an off-line setup, and observe
the corresponding WER degradation. Then, we compare these results with
other works up to that date. Finally, we provide measured system latencies.
The streaming configuration providing the best result in [Jor+20] was used
during these experiments. Particularly, the overlapping acoustic window was
of size 50 and stride 1.

Tables 4.3 and 4.4 show WER figures of our final ASR systems for LibriSpeech
and TED-LIUM, respectively, evaluated on off-line (restricted to RTF<1) and
streaming conditions, and comparative results with other related works. First,
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we can observe a small WER degradation when we move from off-line to a
streaming setup. This is caused only due to our inability to compute acoustic
statistics from the whole input stream for mean and variance normalization of
acoustic features. Second, our streaming systems obtained competitive results,
even when compared to other off-line works; and top, state-of-the-art results
when compared to other streaming works evaluated under similar conditions.

Table 4.3: LibriSpeech results summary

System dev test
Off-line (RTF<1) 5.6 5.9
Streaming 5.9 6.4
Lüscher et al. [Lüs+19] (Off-line) 4.5 5.0
Moritz et al. [MHL20] (Off-line) 6.0 6.1
Moritz et al. [MHL20] (Streaming) 7.2 7.3
Zhang et al. [Zha+20] (Off-line) – 5.6
Zhang et al. [Zha+20] (Streaming) – 10.0

Table 4.4: TED-LIUM results summary

System dev test
Off-line (RTF<1) 5.5 6.2
Streaming 5.7 6.4
Zhou et al. [Zho+20] (Off-line) 5.1 5.6

As for latencies, our theoretical latency (0.6s) is dominated by the look-ahead
window of 0.5 seconds, plus 0.1 seconds due to batch processing. Actual mea-
sured latencies are slightly higher: 0.9±0.4s in LibriSpeech, and 0.8±0.3s in
TED-LIUM. We can compare this to theoretical latencies of other works, like
the 2.2 seconds of [MHL20], or the 1.1 seconds of [Zha+20]. As a reference, the
UK Office of Communications recommends, to TV broadcasters, a maximum
latency of 3 seconds in live subtitling [Uni14].

4.5 Conclusions

Following our previous work on real-time one-pass decoding with hybrid ASR
systems and LSTM language models, in the work described by this chapter
we reported further improvements by replacing LSTM LMs with Transformer
LMs. Two key ideas have been implemented to adapt TLMs to our streaming
one-pass decoder: the incorporation of a Variance Regularization term to the
optimization criterion during training, and the limitation of the word history
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size during inference time. Empirical results showed that the incorporation of
TLMs into our decoder lead to top recognition rates on both tasks, LibriSpeech
and TED-LIUM release 2, under the streaming setup.
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Chapter 5

Streaming Automatic Speech
Recognition with Transformer

Language Models for the
Albayzin-RTVE contest

5.1 Introduction

The third goal of the thesis is to apply the reached streaming ASR technical ca-
pabilities to a relevant use case. This chapter revolves around a use case for the
technology developed in Chapter 4 applied to TV broadcasting. Specifically,
a research challenge issued by the main public TV broadcaster of Spain, the
Radio Televisión Española (RTVE), namely the Albayzín-RTVE 2020 Speech-
to-Text (S2T) challenge. Live audio and video streams such as TV broadcasts,
conferences, lectures, and general-public streaming services over the Internet
are becoming prevalent in recent years. The COVID-19 pandemic has only ac-
celerated this trend, with video meeting platforms having experienced a rapid
growth in use. With this phenomenon, automatic transcription and trans-
lation of such audio streams is a key feature for many of these services, for
accessibility reasons, in order to reach wider audiences, or to ensure a proper
understanding among non-native speakers.

There is a growing number of countries that require, even by law, that TV
broadcasters provide accessibility options to people with hearing disabilities,
with the minimum amount of content to be captioned increasing yearly [07;
08]. Some TV broadcasters and other live streaming services employ human
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transcribers, manually transcribing from scratch the content of the media, as an
initial solution to comply with both the legislation and the user expectations.
However, a manual solution is a hard and difficult to scale task. Furthermore, is
is usual for these organizations to not have many human resources available to
devote to this particular task. Consequently, the relevance of the challenge of
obtaining high-quality real-time streaming ASR systems for live TV captioning
is undoubtable.

Our participation in the Albayzín-RTVE 2020 S2T Challenge consisted in the
submission of a primary, performance-focused streaming ASR systems, plus
three extra contrastive systems: two of them are latency-focused streaming
systems, and the other is a more conventional off-line ASR system with a Voice
Activity Detection (VAD) module. These systems followed the streaming ASR
one-pass hybrid decoder strategy described in Chapter 4 and were built with
our in-house transLectures-UPV ASR toolkit (TLK) [Del+14]. In contrast,
most other participants in the contest used the widely-available Kaldi toolkit
for DNN-HMM ASR systems [Álv+21]

This chapter is organized as follows. Section 5.2 contains a description of the
challenge including an overview of the databases intrinsic to it. Section 5.3
details the ASR systems that we submitted to the challenge, how they were
trained, and the relevant experimentation. Section 5.4 describes similar exper-
iments but with the same data restriction as in the 2018 closed challenge, for a
more comprehensive comparison of the state of the technology and its advance
during these two years. Finally, Section 5.5 contains concluding remarks for
the chapter.

5.2 Challenge Description and Databases

The Albayzín-RTVE 2020 S2T Challenge consists of automatically transcribing
different types of TV shows from the main Spanish public TV station RTVE,
and the assessment of ASR system performance in terms of Word Error Rate
(WER) by comparing those automatic transcriptions with human-generated
reference transcriptions [Lle+20a].

The MLLP-VRAIN group previously participated in the 2018 edition of the
challenge in collaboration with the Human Language Tecnology and Pattern
Recognition (HLTPR) of RWTH Aachen University [Jor+18]. The evaluation
was carried out on the RTVE2018 database [Lle+18], which includes 575 hours
of audio from 15 different TV shows broadcasted between 2015 and 2018. This
database is partitioned into four sets: train, dev1, dev2, and test (test-2018 ).
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In the 2018 challenge, our systems won both the open-condition and the closed-
condition tracks [Lle+19], scoring 16.5% and 22.0% WER points respectively
in the test-2018 set.

For the 2020 editions of the challenge, a single open-condition track was pro-
posed. Submitted systems were evaluated over the test set from the
RTVE2020database (test-2020 ), including 78.4 speech hours at a sampling
rate of 16 kHz from 15 different TV shows broadcasted between 2018 and 2019
[Lle+20b].

5.3 MLLP-VRAIN Systems

This section describes the (hybrid) ASR systems that we submitted to the
Albayzín-RTVE 2020 S2T Challenge.

5.3.1 Acoustic Modelling

The AMs were trained using 205 filtered speech hours. They came from the
RTVE2018 train set (totalling 187 hours), but we also split the dev1 set into a
dev1-train and a dev1-dev set, as we used part of the official dev set as internal
training data. The dev1-train set contains 18 hours of transcribed speech,
and this is the exact same partition as in our previous participation in 2018
[Jor+18]. The acoustic data was extended with about 3.7K hours of audio
resources crawled from the Internet in 2016 and earlier. Table 5.1 summarises
all training datasets along with their total duration in hours.

Table 5.1: Spanish transcribed speech resources for AM training

Resource Duration
RTVE2018: train 187
RTVE2018: dev1-train 18
Internal: entertainment 2932
Internal: educational 406
Internal: user-generated content 202
Internal: parliamentary data 158
Voxforge [Vox] 21
TOTAL 3924

From the acoustic data, we extracted 16-dimensional MFCC features plus
first and second derivatives, amounting to 48-dimensional acoustic feature vec-
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tors, every 10ms. We trained a context-dependent feed-forward DNN-HMM
with three left-to-right tied states for each triphoneme using the TLK toolkit
[Del+14]. The state-tying scheme followed a phonetic decision tree approach
[YOW94] that produced 10K tied states. The feed-forward models were used
to generate an alignment from which a BLSTM-HMM AM was trained with
85-dimensional filterbank features, following [Zey+17] and using both TLK
and TensorFlow [Aba+15]. The BLSTM had 8 bidirectional hidden layers
with 512 LSTM celss per layer and direction. As in [Zey+17], we performed
chunking during training, performing back-propagation through time up to a
window size of 50 frames. SpecAugmentation was applied by means of time
and frequency distortions [Par+19].

5.3.2 Language Modelling

As to language modelling, we trained both n-gram and neural-based (LSTM
and Transformer) LMs to perform one-pass decoding with linear combinations
of them as described in Chapter 4, using the text data sources and corpora
described in Table 5.2.

Table 5.2: Statistics of Spanish text resources for LM training. S=Sentences, RW=Running
words, V=Vocabulary. Units are in thousands(K)

Corpus S (K) RW (K) V(K)
OpenSubtitles [Ope] 212,635 1,146,861 1,576
UFAL [Cor] 92,873 910,728 2,179
Wikipedia [Wik] 32,686 586,068 3,373
UN (WSMT corpus) [WSM] 11,196 343,594 381
NewsCrawl [WMT] 7,532 198,545 648
Internal: enterntainment 4,799 59,235 307
eldiario.es [Eld] 1,665 47,542 247
El Periódico [Per] 2,677 46,637 291
Common Crawl [201] 1,719 41,792 486
Internal: parliamentary data 1,361 35,170 126
News Commentary [WMT] 207 5,448 83
Internal: educational 87 1,526 35
TOTAL 369,434 3,423,146 5,785
Google-counts v2 [Lin+12] - 97,447,282 3,693

For the n-grams, we trained 4-gram LMs using SRILM [Sto+11] with all text
resources plus the Google-counts v2 corpus [Lin+12], accounting for 102G run-
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ning words. The vocabulary size was limited to 254K words, with an OOV ratio
of 0.6% computed over our internal development set.

For the neural LMs we considered the LSTM and Transformer architectures.
In both cases, LMs were trained using a 1-gigaword subset extracted ran-
domly from all available text resources, except Google-counts which were not
strictly text but counts of co-occurrences. The vocabulary for the neural LMs
was defined as the intersection between the n-gram vocabulary (254K) and
that derived from the training subset. This intersection was taken to avoid
zero probabilities for words that are present in the system vocabulary but not
in the training subset. The n-gram words that remain out of this intersec-
tion are taken into account when computing perplexities by renormalizing the
unknown-word score accordingly.

Specific training details for each neural architecture are as follows. On the one
hand, LSTM LMs were trained using the CUED-RNNLM toolkit [Che+16].
The Noise Constrastive Estimation (NCE) criterion [MT12] was used to speed
up model training, and the normalization constant learned from training was
used during decoding [Che+15]. A model was selected based on the lowest
perplexity over our internal development set, with 256-unit embedding and
two hidden LSTM layers of 2048 units. On the other hand, Transformer LMs
(TLM) were trained using a customized version of the Fairseq toolkit [Ott+19],
selecting on the basis of lowest perplexity with a 24-layer Transformer with 768
units per layer, 4096-unit feed-forward, 12 attention heads, and an embedding
of 768 dimensions. The Transformer network was trained with a Variance
Regularization criterion, applying the learned constant regularization constant
during the training to speed up the computation of TLM scores as in [Shi+14]
and as described in Chapter 4. Both models were trained until convergence
with batches limited to 512 tokens, with parameter updates every 32 batches.

5.3.3 Decoding Strategy

As described in Chapter 4, our hybrid ASR systems follow a real-time one-pass
decoding by means of a History Conditioned Search (HCS) strategy [Nol17].
HCS allows us to leverage additional LMs during decoding while satisfying
real-time constraints. Our decoding strategy introduces two parameters to
control the trade-off between Real Time Factor (RTF) and WER: LM history
recombination and LM histogram pruning. A static look-ahead table is needed
by the decoder to use pre-computed look-ahead LM scores, and is generated
from a pruned version of the n-gram LM. Section 4.2 expands more details
about the decoding strategy that was applied.
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Specifically for Transformer LMs, an approximation for the Softmax computa-
tion is applied to ensure the computation is performed in time; and the history
is limited to a maximum number of words, as they otherwise have the inherent
capacity of attending to potentially infinite word sequences. These adaptations
are needed to meet the strict computational time and memory constraints im-
posed by the streaming requirement. More details about these adaptations are
found in Section 4.3. By applying these modifications, our decoder acquires the
capacity to deliver live transcriptions for incoming audio streams of indefinite
length, with latencies lower-bounded by the context window size.

5.3.4 Experiments and Results

For the system development evaluations, we used the dev and test sets from the
RTVE2018 database. We devoted our internally split dev1-dev set [Jor+18]
for development purposes, whilst the dev2 and test-2018 sets were used to test
ASR performance. Finally, test-2020 was the blind test used by the organiza-
tion to rank the participant systems. Table 5.3 contains essential statistics of
these sets.

Table 5.3: Statistics of RTVE development and test sets, including our internally split dev1-
dev set. Contains: total duration (in hours), number of files, average duration of samples in
seconds (dµ) ± standard deviation (σ), and running words (RW) in thousands (K)

Set Duration (h) Files dµ ± σ RW (K)
dev1-dev 11.9 10 4267 ± 1549 120
dev2 15.2 12 4564 ± 1557 149
test-2018 39.3 59 2395 ± 1673 377
test-2020 78.4 87 2314 ± 1576 519

First, we studied the perplexity (PPL) on the dev1-dev set of all possible linear
combinations for the three types of LMs considered in this work: n-gram,
LSTM, and Transformer. Table 5.4 provides the PPLs obtained by each of
these interpolations, along with the optimum LM weights that minimized PPL
in the dev1-dev set. The presence of the Transformer LM in the interpolation
provides significantly lower perplexities in all cases and, consistent with this
fact, it takes on a high portion of the interpolated weight when combined with
other LMs. The TLM in isolation already attains a strong perplexity baseline
of 63.3, and the best possible combination represents only a 6% relative, with
all three LMs involved.

Second, we tuned decoding parameters to provide a good WER-RTF tradeoff
on dev1-dev, with the hard constraint of RTF<1 to ensure the hard prereq-
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Table 5.4: Perplexity (PPL) and interpolation weights, computed over the dev1-dev set, of
all possible combinations of n-gram (ng), LSTM (ls) and Transformer (tf) LMs

LM Combination PPL Weights (%)
ng 179.5 –
ls 98.4 –
tf 63.3 –
ng + ls 93.2 15 + 85
ng + tf 61.1 6 + 94
ls + tf 60.7 13 + 87
ng + ls + tf 59.5 5 + 10 + 85

uisite of real-time processing of the input. From these hyperparameters, we
highlight, due to their relevance, a LM history recombination of 12, LM his-
togram pruning of 20, and TLM history limited to 40 words.

At this point, we defined our participant off-line hybrid ASR system identified
as c3-offline (contrastive system no. 3), consisting of a fast pre-recognition +
Voice Activity Detection (VAD) step to detect speech/non-speech segments as
in [Jor+18], followed by real-time one-pass decoding with our BLSTM-HMM
AM, using a Full Sequence Normalization scheme and a linear combination of
the three types of LMs: n-gram, LSTM, and Transformer. This system scored
12.3 and 17.1 WER points on test-2018 and test-2020, respectively.

Next, as our focus was to develop the best-performing streaming-capable hy-
brid ASR system possible for this competition, we explored streaming-related
decoding parameters to optimize WER on dev1-dev, using the BLSTM-HMM
AM and the strongest LM consisting of a linear combination of all three LMs.
From this exploration, a context window size of 1.5s and α = 0.95 was chosen
for the acoustic feature normalization technique as described in Section 4.2.4.
This configuration was chosen for our primary submitted system, labelled p-
streaming_1500ms_nlt, achieving WER rates of 11.6 and 16.0 on test-2018
and test-2020, respectively. This system, in contrast to the above described
c3-offline, does not integrate any VAD module. Instead, this task is left for the
decoder to carry out via the implicit non-speech model of the BLSTM-HMM
AM.

The removal of the LSTM LM from the linear interpolation led to the con-
trastive system no. 1, identified as c1-streaming_1500ms_nt. The motivation
for this action was that the computation of LSTM LM scores is computa-
tionally expensive, while contributing only a 3% relative improvement to PPL
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scores. This enhanced the stability of the system latency with almost no degra-
dation to output quality in terms of WER: 11.6 and 16.1 points on test-2018
and test-2020, respectively.

Both of the above described streaming systems, p-streaming_1500ms_nlt and
c1-streaming_1500ms_nt, share the same theoretical latency of 1.5s due to the
context window size. This parameter can be adjusted at decoding time, which
can result in some mismatch between training and inference depending on
how the system was trained. In our past experience with BLSTM-HMM AMs,
this mismatch doesn’t affect the final performance of the system. Adjusting the
context window size allows us to tune the decoder balance for lower latencies or
better transcription quality. We set for ourselves a final goal for the challenge
in finding a system configuration providing state-of-the-art, stable latencies
with minimal WER degradation.

Figure 5.1 illustrates the performance in WER on our development set as a
function of the context window size, limited to one second at maximum. Keep
in mind that in the framework that we use, the context window size is equiva-
lent to the acoustic lookahead. As we focused on analysing AM performance,
we used the n-gram LM for this study for efficiency reasons. In light of the
results, we chose a window size of 0.6s for our short-latency system, as it brings
a good balance between transcription quality and theoretical latency.
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Figure 5.1: WER as a function of context window size (in seconds) for the streaming
setup, computed over the dev1-dev set. This figure encompasses both the setup in this
section (dashed line) and the setup for the closed-condition system described in Section 5.4
(solid line)
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After fixing 0.6s as the acoustic window size, the last step for our latency-
focused system was to balance WER against measured latencies for different
pruning parameters and LM combinations. In our experiments, latency is
measured as the time elapsed between the instant of an acoustic frame and
the instant at which it is fully processed by the decoder. Latency figures are
reported here at the dataset level, as the average of the latencies observed at a
frame level over the whole dataset. Figure 5.2 depicts WER against measured
latencies, computed over our internal development set dev1-dev. For each LM
combination involving the Transformer LM, an exploration of different pruning
parameters is represented. All measurements of latencies were performed on
an Intel i7-3820 CPU @ 3.60GHz, with 64GB of RAM and a GeForce RTX
2080 Ti GPU.
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Figure 5.2: WER versus mean empirical latency (in seconds) on dev1-dev. Measured for
different pruning parameters for the search, considering only LM combinations involving
TLM. An acoustic window size of 0.6s was used in all cases.

We can appreciate that combination involving LSTM LMs (ls in the caption
of the figure) are systematically shifted rightwards with respect to other com-
binations, meaning that the addition of the LSTM LMs has a negative impact
on system latency, with no worthwhile improvement on output quality. This
result corroborates our earlier decision to remove the LSTM LM in defining
our contrastive system c1-streaming_1500ms_nt. Furthermore, the TLM used
alone generally provides a good quality baseline, only ever slightly improved
upon in terms of WER when including the other LMs, action that comes at a
cost in an increased latency.
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Hence, we selected the Transformer LM in isolation as the LM for our latency-
focused streaming system. We presented this system as our contrastive system
no. 2, identified as c2-streaming_600ms_t. Its measured latency on the inter-
nal development test dev1-dev was 0.81 ± 0.09 s (µ±σ), and its error rate was
of 12.3 and 16.9 WER points on test-2018 and test-2020, respectively. With a
very small WER degradation of 6% relative with respect to the primary sys-
tem, we achieved state-of-the-art, stable empirical latencies. On production,
the system has a baseline consumption of 9GB RAM and 3.5GB GPU mem-
ory. More than one decoding instance can use it simultaneously, adding 256MB
RAM and one CPU thread per each incoming audio stream to be decoded. For
instance, decoding four simultaneous audio streams in a single machine would
use four CPU threads, 10GB RAM and 3.5GB of GPU memory.

Table 5.5 summarizes the results obtained for all four submitted ASR systems
on the dev2, test-2018, and test-2020 sets, with the extra addition of the re-
sults from our 2018 open-condition submitted system. Surprisingly, the offline
system was surpassed by all three streaming systems on the official test set
test-2020, by up to 1.1 absolute WER points (6% relative). We interpret this
outcome as being caused by the Gaussian mixture HMM-based VAD module
producing false negatives (speech being erroneously labelled as non-speech).
The VAD module was trained with music and noise segments as non-speech,
and it may misclassify speech passages with loud background music and/or
noise as non-speech, which are often present in TV programmes. Furthermore,
the Full Sequence Normalization technique might turn out to be inappropriate
for some TV shows, as temporally local acoustic conditions may vary and be-
come diluted in the full-sequence normalization, leading to minor inaccuracies
in the acoustic scores that can degrade system performance. Nonetheless, it
is remarkable that our 2020 systems significantly outperform the 2018 win-
ning system, in the case of our primary submission by 28% relative WER on
boh dev2 and test-2018, and 25% in the case of our latency-focused system
c2-streaming_600ms_t ; while also being able to work under strict streaming
conditions.

All these streaming ASR systems can be put into production environments
using our custom gRPC-based server-client infrastructure [Str]. Indeed, ASR
systems similar to c2-streaming_600ms_t and c1-streaming_1500ms_nt are
already in production at our MLLP Transcription and Translation Platform
[TP] for streaming and off-line processing, respectively. Both can be freely
tested using our public APIs, accessible via the MLLP Platform.
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Table 5.5: WER of the participant systems, including our open-condition system submitted
to the 2018 challenge, computed over the dev2, test-2018, and test-2020 sets. In bold, the
result from our primary submission in the contest main test test-2020

System dev2 test-2018 test-2020
p-streaming_1500ms_nlt 11.2 11.6 16.0
c1-streaming_1500ms_nt – 11.6 16.1
c2-streaming_600ms_t 12.0 12.3 16.9
c3-offline – 12.0 17.1
2018 open-cond. winner [Jor+18] 15.6 16.5 –

5.4 Closed-Condition Systems

For a more comprehensive comparison with our results from the similar 2018
challenge and to better track our progress these two years, experiments similar
to those reported above were carried out using only the data available for the
2018 challenge under closed data conditions. This additional study was not
done for the challenge itself, but for a more comprehensive comparison of the
state of our technology and its advance during these two years. In this section,
we present these experiments and their results.

5.4.1 Acoustic Modelling

As in [Jor+18], acoustic models were trained using only the train set together
with the dev1-train partition that we defined from the dev1 set (see Table 5.3)
for a total of 205 hours, accounting for just 5.2% of the 3924 hours used to
train our open challenge submissions. Other than the data, the AMs were built
the same as under the open condition and as described in Section 5.3, using
MFCC features, HMMs with state tying, BLSTMs, and SpecAugmentation.

5.4.2 Language Modelling

For language modelling, we followed the same steps as indicated in Section 5.3
and trained both n-gram and neural LMs. Similarly, the systems employed the
LMs under one-pass decoding with linear combinations of them. We made use
of significantly fewer text data to comply with the closed condition constraint.
Specifically, we used the same data as in [Jor+18], comprising 5.2 M sentences
(1.4% of the full data) and 96 M running words (2.2%) with a vocabulary size
of 132 K, obtaining an OOV ratio less than 0.6% computed over our internal
development sets and test2018, and less than 0.8% over test2020.
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For the n-gram LM, we used a single model trained with the fraction of the
data that was available, in contrast with our submissions to the open challenge,
where we employed an interpolation of n-gram models trained on different
subsets. As for the neural models, we decided against the use of LSTM LMs,
and thus only Transformer LMs were considered. This decision was based
on the empirical results reported in Section 5.3.4, with a similar reasoning
that led to the removal of the LSTM LM to define our contrastive system c1-
streaming_1500ms_nt. Apart from this decision and the training data, both
the neural architecture and training methodology were kept the same.

5.4.3 Experiments and Results

We reproduced an empirical study similar to that described in Section 5.3 us-
ing the systems trained with limited data and the development and test sets
detailed in Table 5.3. The first step was to evaluate n-gram and Transformer
LMs, as well as their combination, in terms of perplexity on the internal de-
velopment set dev1-dev. Table 5.6 shows the results, including the optimal
interpolation weights found for the case of the interpolation. We observe the
expected improvement of the Transformer LM over the n-gram LM, but, in
contrast to Section 5.3, the interpolation does bring a noticeable improvement
in perplexity where the n-gram LM takes a significant weight (30%), accord-
ingly.

Table 5.6: Perplexity (PPL) and interpolation weights, computed over the dev1-dev set, of
the n-gram (ng) and Transformer (tf) LMs, as well as their combination, when trained with
restricted data

LM Comb. PPL Weights (%)
ng 164 –
tf 103 –
ng + tf 84 70 + 30

As a second step, we analyzed the size of the acoustic context window, which
is equivalent to the theoretical latency. In particular, we studied the effect of
the window size on system output quality. Figure 5.1 incorporated the WER
as a function of AM context window size for the closed condition exploration,
for window sizes under one second, and using the simpler n-gram LM in isola-
tion. The performance of the open-condition system is also shown for a better
comparison. From the results in Figure 5.1, and in agreement with the open-
condition experimentation performed in Section 5.3, an acoustic window size
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of 0.6 s was selected for further experiments designed to build the best possible
streaming system considering both WER and real, measured latencies.

For the final streaming and latency tests, we studied the balance between
WER and empirical latencies by exploring different pruning parameters and
LM combinations. All measurements were made on the same hardware used
to assess the open condition systems and described in Section 5.3. Figure 5.3
shows the WER as a function of the mean empirical latency computed over the
internal development set dev1-dev. For comparison, the corresponding results
from the open-condition systems are also included. We can see that in contrast
to the open-condition results where the inclusion of the n-gram LM didn’t offer
much difference over the baseline, here a significant improvement is achieved by
combining the n-gram and Transformer LMs, instead of using the Transformer
LM alone. In consequence, we chose a system using an interpolated n-gram
and Transformer LM to consider our final closed-condition system.
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Figure 5.3: WER as a function of measured system latency (in seconds) for the closed-
conditions systems (solid line), computed over the dev1-dev set by exploring different values
for the pruning parameters during search. An acoustic window size of 0.6s was used in
all measurements for this plot. For comparison, relevant results from the open-condition
systems are also shown (dashed line)

Table 5.7 contains a summary of the most relevant results obtained with our
systems, both under open and closed data conditions. For the closed-condition
systems, we also included results for LMs trained without data restrictions, to
check how far we go without expanding the acoustic data. This scenario better
reflects the more usual case where text data is relatively much easier to obtain
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than audio with reliable human transcriptions. For comparison purposes, Table
5.7 also includes the figures for the 2018 contest winners and results from other
participants in the 2020 challenge.

Table 5.7: WER of our open- and closed-condition systems, together with statistics for
the number of hours used for the AM, including for comparison: the winner systems of the
2018 challenge both open- and closed-condition, and other participants for this edition of
the challenge. Highlighted in bold, the most relevant results to compare the performance of
open- and closed-condition systems in the main test set test-2020

System hours dev2 test-2018 test-2020
open-p-streaming_1500ms_nlt 3924 11.2 11.6 16.0
open-c2-streaming_600ms_t 3924 12.0 12.3 16.9
closed-streaming_600ms_nt2018 205 15.0 15.3 23.5

+ open ng 15.3 15.8 22.9
+ open ng+tf 13.0 13.7 19.9

closed-streaming_1500ms_nt2018 205 14.7 15.3 23.1
+ open ng 15.3 15.8 22.9
+ open ng+tf 13.0 13.7 19.9

2018 open-cond. winner [Jor+18] 3800 15.6 16.5 –
2018 closed-cond. winner [Jor+18] 205 20.0 22.0 –
Vicomtech [Álv+21] 743 – – 19.3
BRNO [Koc+21] 780 12.8 13.3 23.2
Sigma-UPM [PEH21] 615 – – 27.7
Biometric Vox System [FG21] 1000 17.8 22.0 30.3

From the results in test-2020, we can observe that we can still obtain an ac-
ceptably well-performing streaming ASR system using only around 5% of the
acoustic data and 2% of the text data, while there still is a wide margin be-
tween the open- and closed-condition systems. Interestingly, the WER reduc-
tion entailed by moving from an acoustic latency of 1.5s to 0.6s in the open-
condition systems is largely gone in the closed-condition systems: completely
negligible on test-2018 and just 0.5 WER on test-2020 in the case of text
data restrictions being applied. Lifting the text data restrictions, the large-
latency closed-condition system closed-streaming_1500ms_nt2018 is able to
shed over 3 WER points, from 23.1 to 19.9, representing about a 15% relative
improvement and landing among the best performing systems submitted by
other participants under open conditions.

Regarding the change from the closed-condition LM to the unrestricted LM,
both in the 1500ms and the 600ms window size systems, most of the improve-
ment comes from the substitution errors: from 10.7 to 7.3 in the 1500ms case,
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and from 10.9 to 7.4 in the 600ms case. This is due mostly to the unrestricted
LM retrieving the correct word due to its expanded lexicon (as previously
mentioned, the OOV rate falls from 0.8 to 0.6) and better tuned prediction
probabilities. Some examples of words that are only correctly recognized with
an unrestricted LM are “desacreditarme”, “dosificador” or “hermeneuta”.

It is to be remarked that our submission two years prior [Jor+18] achieved 16.5
WER on test-2018, achieving the best results of that contest, while here we
obtained 11.6 WER points with a comparable amount of training hours (3924
vs. 3800). The decoder structure improvements and the Transformer LM used
as described in this work are two of the factors that are involved, but we are
unable to pinpoint which of the many changes are more critical in the overall
improvement of performance in our systems.

5.5 Conclusions

In this chapter, we describe our participation in the Albayzín-RTVE 2020
Speech-to-Text Challenge with four ASR systems. The primary one, a
performance-focused hybrid system p-streaming_1500ms_nlt, provided a score
of 16.0 WER points on the contest test set test-2020, winning the challenge by
a margin larger than 3 points from the second position participant while also
being enabled for a streaming use, a technical feat that no other participant in
the contest included in their systems, although with a relatively high theoreti-
cal latency of 1.5s, as latency was not the primary focus for this system. It also
achieved a remarkable 28% relative WER improvement over the 2018 winning
ASR system on test-2018. Almost the same performance was delivered by our
first contrastive system c1-streaming_1500ms_nt : 16.1 WER points on test-
2020, at a significantly lower computational expense. Focused on low latencies,
our second contrastive system c2-streaming_600ms_t provided a solid perfor-
mance of 16.9 WER points on test-2020 with a theoretical latency of 0.6s and
an empirical latency of 0.81±0.09 (µ±σ). Finally, our fourth ASR system was
a contrastive off-line ASR system with a VAD module, c3-offline, providing a
WER score of 17.1 points, somewhat higher than our streaming systems, fact
that we attribute to the VAD module not being finely tuned to the particular
task and to the limitations of Full Sequence Normalization when dealing with
changes in local acoustic conditions.

In addition to the four ASR systems participating in the 2020 challenge,
which included no restrictions to training data, we describe two additional
systems trained under the same data restrictions as under the 2018 closed
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challenge, for better comparison with those results and to better gauge the
progress of our technology over these two years. Closed data conditions rep-
resent about 5% of the speech data and 2% of the text data that we em-
ployed to train our submitted systems. The first of the data-restricted sys-
tems, closed-streaming_600ms_nt2018, was focused on latency and achieved
23.5 WER points on test-2020, while a performance-focused system closed-
streaming_1500ms_nt2018 reduced this number to 23.1 WER points. Lifting
the text data restriction and using their AMs with the unconstrained LMs,
these figures are further reduced to 20.4 (at 600ms window size) and 19.9 (at
1500ms window size), an excellent quality of transcription using only 205h of
RTVE2018 speech training data and thus not including any data related to the
last two years of speech and accounting for only 5% of the total speech training
data available. Nevertheless, these WER figures are not far behind those of the
second-best 2020 open-condition system (19.3) and remain significantly ahead
of results reported by other participants.

Part of the work contained in this chapter was done in collaboration with other
members of the MLLP research group. In particular, the evaluation of the
systems submitted to the contest was organized jointly with Javier Jorge, while
the author of the thesis is the primary responsible for the second part where
equivalent data-restricted systems were built and evaluated, systems that were
not submitted to the contest but served to check that the improvement in
technological capabilities developed in Chapter 4 is the main cause of system
performance improvements.
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Chapter 6

Conclusions and future work

6.1 Scientific and technological achievements

In this section, we discuss the achievement of the scientific and technological
goals of this thesis formulated in Section 1.2. These goals were centered around
MT and ASR, two fundamental keystones of human language computer tech-
nologies, bringing the latest neural architecture into action by reaching excel-
lent results in some MT tasks and demonstrably improving the state-of-the-art
in streaming ASR technological capabilities.

The first scientific goal of the thesis is covered in Chapter 3, where the fresh
Transformer neural architecture was used to achieve excellent results in com-
petitive MT challenges, namely the WMT18 German→English news transla-
tion task and the WMT19 similar language Portuguese↔Spanish translation
task.

Having verified the capabilities of the Transformer as a translation model,
Chapter 4 centers around the second scientific goal of this thesis: improving
the state-of-the-art in streaming ASR technology. To achieve this, we leveraged
the “decoder” part of the Transformer architecture as a language model and
two adaptations were made to, in addition, make it suitable for streaming use.

The third and final goal is addressed in Chapter 5, where we applied the tech-
nical capabilities developed in Chapter 4 to a relevant use case, namely the
Albayzín-RTVE 2020 Speech-to-Text challenge issued by RTVE, the main pub-
lich TV broadcaster of Spain. We demonstrated the best performance in the
competition, by a large margin, and we performed additional data-restricted
experiments afterwards to check that the improvements were primarily ex-
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plained by our technological progress and not to the particular training/test
data.

6.2 Publications

The work described in this thesis has directly yielded articles in international
workshops, conferences, and journals. This section enumerates these contribu-
tions and states their relationship with the chapters of this thesis.

The work in competitive MT challenges leveraging the Transformer architec-
ture to achieve excellent results in news translation and the first position in
similar language translation presented in Chapter 3 resulted in a couple of
workshop publications. The work was done in team and the author of this
thesis is the first author of one of the two publications:

• Baquero-Arnal, P.; Iranzo-Sánchez, J.; Civera, J.; Juan, A. The MLLP-
UPV Spanish-Portuguese and Portuguese-Spanish Machine Translation
Systems for WMT19 Similar Language Translation Task. Proc. of WMT19,
2019, 179–184.

• Iranzo-Sánchez, J.; Baquero-Arnal, P.; Garcés Díaz-Munío, G. V.; Martínez-
Villaronga, A.; Civera, J.; Juan, A. The MLLP-UPV German-English
Machine Translation System for WMT18. Proc. of WMT18, 2018, 422–
428.

The development of new technical capabilities to improve the state-of-the-art
in Streaming ASR by adapting the Transformer decoder to serve as a LM with
specific streaming adaptations, described in Chapter 4, yielded the following
publication in an international conference:

• Baquero-Arnal, P.; Jorge, J.; Giménez, A.; Silvestre-Cerdà, J. A.; Iranzo-
Sánched, J.; Sanchis, A.; Civera, J.; Juan, A. Improved Hybrid Streaming
ASR with Transformer Language Models. Proc. of Interspeech 2020,
2127–2131.

The work related to the participation in the Albayzín-RTVE 2020 Speech-
to-Text Challenge with systems leveraging the developed improved streaming
ASR technology presented in Chapter 5 produced the following article in in-
ternational journal, following an invite from the challenge organization as the
winners of the contest to provide an extension to our work:
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• Baquero-Arnal, P.; Jorge, J.; Giménez, A.; Iranzo-Sánchez, J.; Pérez, A.;
Garcés Díaz-Munío, G.V.; Silvestre-Cerdà, J.A.; Civera, J.; Sanchis, A.;
Juan, A. MLLP-VRAIN Spanish ASR Systems for the Albayzín-RTVE
2020 Speech-to-Text Challenge: Extension. Applied Sciences. 2022, 12,
804.

Finally, other publications not directly related to this thesis have been pro-
duced in collaboration with the MLLP-VRAIN research group:

• Iranzo-Sánchez, J.; Jorge, J.; Pérez-González-de-Martos, A.; Giménez,
A.; Garcés Díaz-Munío, G. V.; Baquero-Arnal, P.; Silvestre-Cerdà, J.
A.; Civera, J.; Sanchis, A.; Juan, A. MLLP-VRAIN UPV Systems for
the IWSLT 2022 Simultaneous Speech Translation and Speech-to-Speech
Translation Tasks. Proc. of IWSLT 2022, 255–264.

• Pérez González de Martos, A.; Giménez Pastor, A.; Jorge Cano, J.;
Iranzo-Sánchez, J.; Silvestre-Cerdà, Joan A.; Garcés Díaz-Munío, G. V.;
Baquero-Arnal, P.; Sanchis Navarro, A.; Civera Sáiz, J.; Juan Ciscar, A.;
Turró Ribalta, C. Doblaje Automático de Vídeo-Charlas Educativas en
UPV[Media]. Proc. of IN-RED 2022, Forthcoming.

• Jorge, J.; Giménez, A.; Baquero-Arnal, P.; Iranzo-Sánchez, J.; Pérez, A.;
Garcés Díaz-Munío, G.V.; Silvestre-Cerdà, J.A.; Civera, J.; Sanchis, A.;
Juan, A. MLLP-VRAIN Spanish ASR Systems for the Albayzín-RTVE
2020 Speech-to-Text Challenge. Proc. of IberSPEECH 2021, 118–122.

• Iranzo-Sánchez, J.; Jorge, J.; Baquero-Arnal, P.; Silvestre-Cerdà, J. A.;
Giménez, A.; Civera, J.; Sanchis, A.; Juan, A. Streaming Cascade-Based
Speech Translation Leveraged by a Direct Segmentation Model. Neural
Networks, 142, 303-315, 2021.

• Garcés Díaz-Munío, G. V.; Silvestre-Cerdà, J. A.; Jorge, J.; Giménez,
A.; Iranzo-Sánchez, J.; Baquero-Arnal, P.; Roselló, N.; Pérez, A.; Civera,
J.; Sanchis, A.; Juan, A. Europarl-ASR: A Large Corpus of Parliamen-
tary Debates for Streaming ASR Benchmarking and Speech Data Filter-
ing/Verbatimization. Proc. Interspeech 2021, 3695–3699.

• Iranzo-Sánchez, J.; Giménez Pastor, A.; Silvestre-Cerdà, J. A.; Baquero-
Arnal, P.; Civera, J.; Juan, A. Direct Segmentation Models for Streaming
Speech Translation. Proc. of EMNLP 2020, 2599–2611.
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• Valor Miró, J. D.; Baquero-Arnal, P.; Civera, J.; Turró, C.; Juan, A.
Multilingual Videos for MOOCs and OER. Journal of Educational Tech-
nology and Society, 21 (2), 1–12, 2018.

6.3 Future work

This work started on MT with the latest (at that time) and fresh Transformer
model and pivoted to ASR when it became clear that the improvements in MT
could be realized in other sequence-related tasks. Streaming ASR was chosen
as it is a field in which the state-of-the-art is relatively hard to improve, since
the most popular end-to-end approaches struggle to work with sequences of
unbounded length and hybrid systems retain the best performances. In this
thesis, the Transformer architecture was leveraged as a language model for
streaming ASR systems.

As a future work, we intend to further improve the streaming hybrid ASR
architecture by also adapting the Transformer architecture, or some of its vari-
ants, to do the work of the acoustic model. We are also interested in devising
some mechanism to make the end-to-end models work correctly in a stream-
ing fashion so that long-form speeches can be adequately transcribed by the
system. Finally, we will also continue to explore the potential application of
these technologies in the media industry, where automatic speech recognition
and machine translation is becoming a standard element among the tools used
by professional subtitlers and translators.
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