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Abstract—Although initially considered for fast system proto-
typing, Field Programmable Gate Arrays (FPGAs) are gaining
interest for implementing final products thanks to their inherent
reconfiguration capabilities. As they are susceptible to soft errors
in their configuration memory, the dependability of FPGA-based
designs must be accurately evaluated to be used in critical sys-
tems. In recent years, research has focused on speeding up fault
injection in FPGA-based systems by parallelising experimenta-
tion, reducing the injection time, and decreasing the number
of experiments. Going a step further requires delving into the
FPGA architecture, i.e. precisely determining which components
are implementing the considered design (mapping) and which are
exercised by the considered workload (profiling). After that, fault
injection campaigns can focus on those components actually used
to identify critical ones, i.e. those leading the target system to fail.
Some manufacturers, like Xilinx, identify those bits in the FPGA
configuration memory that may change the implemented design
when affected by a soft error. However, their correspondence to
particular components of the FPGA fabric and their relationship
with the implementation-level model are yet unknown. This paper
addresses whether the effort of reversing an FPGA architecture
to filter out redundant and unused essential bits pays in terms
of experimental time. Since the work of reversing the complete
architecture of an FPGA is titanic, as the first step towards this
ambitious goal, this paper focuses on those elements in charge
of implementing the combinational logic of the design (Look-Up
Tables). The experimental results that support this study derive
from implementing three soft-core processors on a Zynq SoC
FPGA and show the interest of the proposal.
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I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have be-
come increasingly widespread across diverse application do-
mains, ranging from high-performance computing clusters
to aerospace equipment. Such valuable features of FPGAs
explain this trend as energy efficiency, short design cycle,
and run-time reconfiguration capabilities. On the downside,
the usage of FPGAs leads to an increased number of de-
pendability and security threats, as FPGAs are highly sus-
ceptible to Single Event Upsets (SEU) affecting their Con-
figuration Memory (from now on CM) [1]. As each cell of
the CM directly controls the configuration or interconnection
of fabric elements to provide the functionality required by a
design, any modification of its content directly impacts the
implemented design. This is why SEUs affecting the FPGA
CM (typically SRAM) manifest as stuck-at faults from the
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Fig. 1. Relationship of device configuration memory bits and
design bits. Solid lines denote the common approach, whereas
dashed lines denote the approach under study.

viewpoint of the implemented design, as they may lead to
open lines, shortcircuits, delays, and permanent changes in
the combinational logic of the circuit. Once affected by SEUs,
CM cells remain faulty until partially or fully reprogrammed
to fix the problem, using scrubbing techniques [2], or to
implement another circuit. This problem becomes critical in
high-radiation environments [3] [4], where upset rates may
exceed the terrestrial conditions by orders of magnitude. Thus,
designers should carefully assess the robustness of FPGA-
based systems against SEUs to locate their weak points,
which should be protected in the first place, and evaluate the
efficiency of any integrated SEU mitigation mechanism [5].

The robustness of FPGA-based designs is commonly esti-
mated after the reliability device report provided by manu-
facturers. It is calculated by scaling the failures-in-time (FIT,
failures in 1 billion device-hours of operation) per megabit of
the device by the number of megabits existing in the FPGA
CM. However, designs loaded into FPGAs typically only use
a fraction (around 10-35%) of the total number of available
megabits (see case studies for convolutional neural networks
in [6]). Even though designs may use most of the available
logic resources, routing resources account for about 70% of
the CM bit and they will not be used in the same proportion.
Those unused bits are considered non-essential for the design
and could be disregarded during robustness estimation. Some
works, like [7], obtain rough estimates by scaling the total CM
bits of the selected device by the configurable logic blocks util-
isation ratio of the design. Although fast for calculation, these
methods are highly inaccurate and may result in insufficient
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Fig. 2. Architecture of Xilinx 7-Series and Zynq-7000 FPGAs. The distribution of clock regions, clock rows and top/bottom
of a Zynq xc7z020clg484-1 device is shown as an example.

protection against SEUs or unnecessary overprotection at the
cost of performance, power, and area overheads.

Xilinx essential bits technology identifies those CM bits that
are involved in the circuitry of the design implemented in an
FPGA (in grey in Fig. 1). More elaborated proposals [8] [9]
make use of this technology to restrict the robustness estima-
tion to just those essential bits. Nevertheless, not all upsets on
these essential bits will affect the functionality provided by the
design, and thus, part of them may be disregarded to accelerate
experimentation. According to [10] the effective soft error rate
is 5% (1 in 20 upsets causes a functional soft error) on average
and never greater than 10% in the worst case.

Determining the complete list of critical bits, i.e. those
bits leading the system to fail, requires an exhaustive fault
injection campaign targetting every essential bit. Although
several works, like [11], use fault injection to identify the
set of critical bits in a design and obtain highly accurate
robustness estimations, there are still some improvements that
could be worthwhile pursuing. On the one hand, the essential
bits provided by Xilinx technology include all CM bits from
related logic primitives, even if they are only partially used by
the design. This unnecessarily increases the number of fault
injection experiments required to determine the set of critical
bits. On the other hand, existing tools do not relate the set of
essential bits with the design hierarchy.

Addressing the aforementioned challenges has the potential
to reduce the set of essential bits to a smaller set of prioritised
essential bits (see Fig. 1), thus, decreasing the number of
fault injection experiments to carry out and the time devoted
to their execution to determine the set of critical bits. In
addition, this can be done without reducing the representativity
of results since disregarded CM bits will be those not used
by the design and not exercised by the considered workload.
However, addressing this problem is very complex from a

technical perspective, as the relationship between the FPGA
fabric and its CM is usually unknown. The computational
cost of reversing such a relationship may be greater than the
time saved by reducing the set of essential bits initially under
consideration.

This work studies the internals of FPGAs to determine
where the bits corresponding to Look-Up Tables (LUTs) are
located within the CM (mapping). The LUTs implement the
combinational logic of designs and have been selected as a first
step towards the challenging goal of mapping the complete set
of CM bits of an FPGA. After a static (mapping) and dynamic
(profiling) analysis, unused bits can be removed from the set of
essential bits to reduce the number of fault injections required
to estimate the robustness of the design.

First, Section II details the generic architecture of FPGAs,
particularly that of the Xilinx 7-Series and Zynq-7000 devices
that will be used as a target technology for this paper. After
that, Section III-A proposes an algorithm that accurately
locates LUTs bits within the CM of FPGAs and enables
removing redundant essential bits from experimentation. Sec-
tion III-B presents an approach for profiling the activity
of LUTs to identify and remove inactive essential bits and
prioritise the criticality of the rest of the CM bits according
to their activity at runtime. The usefulness of the proposal is
illustrated in Section IV through a case study of three soft-core
processors implemented on a Xilinx Zynq-7000 SoC FPGA.
Finally, conclusions drawn from this work and future research
directions are summarised in Section V.

II. XILINX 7-SERIES AND ZYNQ-7000 DEVICES

A coarse-grain architecture of the programmable fabric of 7-
series and Zynq-700 devices from Xilinx is depicted in Fig. 2.
This section details this architecture following a bottom-up
viewpoint.



TABLE I. Description of the frame address [12].

Address Type Bit Index Description 
Block Type [25:23] CLB, I/O, CLK (000), BRAM (001), CFG_CLB (010) 
Top/Bottom Bit 22 Top rows (0) and Bottom rows (1) 

Row Address [21:17] Clock row. It increases from centre to top, then 
resets and increases from centre to bottom. 

Column Address [16:7] Major column, like a column of CLBs. Starts at 0 
and increases from left to right (matches XT). 

Minor Address [6:0] Selects a frame within a major column. 
 

 

 
The logic elements inferred by synthesis tools are mapped

to technology-specific components, known as basic logic ele-
ments (BELs) by Xilinx. For instance, look-up tables (LUTs)
and flip-flops (FFs) implement the combinational and se-
quential logic of the design, respectively, whereas memory
(BRAMs) and digital signal processing (DSPs) blocks improve
the implementation of memories and multipliers. A set of
related BELs defines a Slice that, for the considered families of
devices, include four LUTs (A, B, C, and D), eight FFs, some
multiplexers (MUXes), and a carry chain (CARRY). Slices
appear in two flavours: L (logic), whose LUTs may implement
combinational logic, and M (memory), whose LUTs may also
act as distributed memory and shift registers.

A configurable-logic block (CLB) Tile comprises a pair
of Slices and a Switchbox, which enables the connection of
the Slices with the general routing logic. Tiles of the same
type are arranged in columns that span the full height of the
device, with BRAM and DSP columns interspersed with CLB
columns.

A two-dimensional array of Tiles forms a clock region,
which is horizontally divided into two parts by a clock lane.
For the considered families of devices, clock regions consist
of 50 CLB Tiles, 5 DSP Tiles, or 5 BRAM Tiles. Horizontally
adjacent clock regions define a clock row.

Finally, different clock rows are joined together into the Top
or Bottom part of the device.

Slices, Tiles, and clock regions are located in unrelated two-
dimensional grids with (X,Y ) coordinates, thus providing a
reasonably regular structure for the logic elements within the
configurable fabric.

The contents of the CM of an FPGA determine the inter-
connection and configuration of fabric elements to provide
the functionality required by the design. The CM is arranged
in frames that are tiled about the device. These frames are
the smallest addressable segments of the CM space, and
each frame consists of 3232 bits (101 32-bits words) for the
considered families of devices.

All read/write operations on the CM must act upon whole
configuration frames, whose particular address must be written
to the Frame Address Register (FAR) using any of the inter-
faces provided by the manufacturer. The five fields comprising
the frame address are listed in Table I.

Even though part of the frame address is determined by
the location of a logic element within the structure of the
FPGA, the minor address related to that element is unknown.
Likewise, the particular contribution of each bit of the frame to
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Fig. 3. Block diagram of the proposed approach (in grey) to
optimise FPGA-based fault injection procedures for LUTs.

the configuration of the target element is also unknown. Thus,
even though the Xilinx essential bits technology provides the
location of all those bits identified as essential, no information
is provided to determine to which of the implemented logic
they refer or their purpose in the design.

III. LOCATING LUTS NON-ESSENTIAL AND UNUSED BITS

Approximately 15% of the total number of CM bits cor-
respond to LUTS contents. Thus, locating the essential bits
related to LUTs which are actually used by a design under
a given workload may contribute to reducing the number of
fault injection experiments required to determine the critical
bits of a design. The procedures proposed in this approach,
highlighted in grey in Fig. 3, make use of data extracted after
implementing a design for the selected device.

A. Static analysis of LUTs

1) Are there redundant bits in LUTs?: After synthesis,
as shown in Fig. 4, the combinational logic of a design
is represented by a set of logic primitives known as LUT
macrocells. They are named LUT{6, · · · , 2}, depending on
the number of inputs of the implemented Boolean function
(I5, · · · , I0), and LUT6 2 for implementing two functions.
They all have an INIT attribute (from 2 to 64 bits) representing
the function’s truth table.

During the implementation, in the selected families of
devices, these LUT macrocells are mapped to 6-input LUTs
(MUXes are used to implement Boolean functions up to eight
variables). As depicted in Fig. 2, each of the four LUT
BELs in a slice (A6/A5, B6/B5, C6/C5, D6/D5) presents
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func5a <= (a and b) or 

(c and not d) or 
e;

func5b <= (a xor b) or 
(not c and d) or 
not e;

Macrocell LUT6_2
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func3 <= (a and b) xor c;
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LOCK_PINS={I2:A3, I1:A2, I0:A1}

Fig. 4. Example of how logic functions are synthesized as
macrocells and then implemented as LUTs: a) two combined
5-input functions, and b) a 3-input function.

six independents inputs (A1, · · · , A6) and two independent
outputs (O5 and O6). They can implement i) any six-input
Boolean function, ii) two five-input Boolean functions that
share common inputs, or iii) two Boolean functions with no
more than 3 and 2 inputs [13]. To do so, it is necessary
to adequately program the 64 bits of the CM representing
the truth table of the desired Boolean functions. In the case
of implementing two Boolean functions, A6 is set to logic
‘1’, and the top 32 bits determine the O6 output, whereas
the 32 bottom bits represent the O5 output (see Fig. 4a).
Additionally, macrocell inputs can be assigned to any BEL
inputs (LOCK PINS attribute) to reduce the critical path.

When a LUT is used in a design, all 64 bits are highlighted
as essential by the manufacturer as any change alters the
implemented Boolean function. However, what if a function
does not use all the available bits?

Let us consider, for instance, a LUT2 macrocell (INIT
= {I1 and I0}, LOCK PINS = {I1 : A2, I0 : A1})
implemented as a 4-input LUT BEL. Only 4 out of 16 bits of
the LUT are required to implement the 2-input logic function.
Nevertheless, as all CM bits must be programmed, the output
of the function is replicated to completely fill the LUT, as
shown in Fig. 5 (a). In such a way, the LUT will safely provide
the expected result regardless of the value of the unused inputs
A4 and A3. But, are all those bits really essential?

A simple design featuring one LUT was implemented on
a real device to experimentally answer this question. After
implementation, the contents of the LUT were modified using
the editor provided by the manufacturer in such a way that,
by going through all valid input values, a different pattern
will be obtained as output depending on the actual value of
the unused inputs. For instance, as can be seen in Fig. 5 (b),
by sequentially providing as input 00, 01, 10, and 11, the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A4 A3 A2 A1 O 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 0 
0 0 1 1 1 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 0 
0 1 1 1 1 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 0 
1 0 1 1 1 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 1 

A4 A3 A2 A1 O 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 0 
0 0 1 1 1 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 0 
0 1 1 1 1 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 0 
1 0 1 1 1 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 1 

A4 A3 A2 A1 O 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 0 
0 0 1 1 0 
0 1 0 0 1 
0 1 0 1 0 
0 1 1 0 1 
0 1 1 1 0 
1 0 0 0 0 
1 0 0 1 1 
1 0 1 0 0 
1 0 1 1 1 
1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 1 
1 1 1 1 1 

A4 A3 A2 A1 O 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 0 
0 0 1 1 1 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 0 
0 1 1 1 1 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 0 
1 0 1 1 1 
1 1 0 0 0 
1 1 0 1 0 
1 1 1 0 0 
1 1 1 1 1 

A2 and A1 
Unused 
inputs 

0x5 

0x0 

0xA

0xF 

Unused 
inputs 

Test 
output 

a) b) 

Fig. 5. a) Example of the contents of a 4-input LUT imple-
menting A2 and A1, and b) test pattern used to determine the
actual value of unused inputs.

obtained output should be 0x0, 0x5, 0xA, or 0xF depending
on whether the unused inputs are held at 00, 01, 10, or 11
by the device. After testing LUTs with inputs ranging from
1 to 6 and located in several positions across the device,
we experimentally concluded that unused bits are always
physically bound to a logical ‘1’ in the implementation.

Accordingly, only those LUT bits related to a high logic
level of the unused inputs can be considered essential. The rest
should not be considered for fault injection as they will never
lead the system to fail. So, this means reducing the number
of essential bits to 50%, 25%, 12.5%, 6.45%, or 3.125%, for
5-, 4-, 3-, 2-, and 1-input Boolean functions, respectively.

Although this could be used to improve the worst-case
estimation of the design’s failure rate, it is still necessary to
establish the location of those bits within the CM to determine
their criticality using fault injection.

2) Locating LUTs bits in the CM: Several
works [14] [15] [16] have dealt with the extraction and
replacement of LUTs content from the CM of FPGAs.
However, none of them has proposed a generic algorithm to
map each bit of a LUT’s INIT attribute to the corresponding
CM bit taking into account all LUT placement attributes (see
Fig. 2). This is a must to enable filtering out the redundant
bits from the LUT.

As before, a simple design featuring a single LUT is enough
to obtain the required information experimentally. To ease the
location of the whereabouts of the LUT contents in the CM,
a zero-cold pattern (all bits are set to ‘1’, except one of them
that is set to ‘0’) has been used for the INIT attribute of the
LUT6 macrocell, whereas its LOCK PINS attribute was set
to {I5 : A6, I4 : A5, I3 : A4, I2 : A3, 1 : A2, I0 : A1}.
This macrocell was mapped to an A6LUT BEL located at
Slice (XS , YT ), CLB Tile (XT , YT ), clock row (XCR, YCR),
and Top (T ). A total of 64 variations of this design were
implemented, shifting the ‘0’ from the bit 0 to 63 of the INIT
attribute to determine the exact location of each bit of the LUT



TABLE II. Excerpt of the LUT6 macrocell mapping within the CM.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INIT (64 bits) 
LUT_A BEL (X113, Y18) 

CM Fragment (64 bits): Top = 1, Clock row = 1, Column = 18, Word = 36, Bits [15:0] 
Minor = 26 Minor = 27 Minor = 28 Minor = 29 

11111…11110 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 
11111…11101 1111 1111 1111 1111 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 
11111…11011 1011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 
11111…10111 1111 1111 1111 1111 1011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 

… … … … … 
10111…11111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 
01111…11111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1111 1111 1111 1111 

 

 

LutContent getLutContent(int NCR, int YCR, int XT, int XS, int YS, String LutType) { 

  int Block = 0                           // CLB Block 

  int max_row = NCR/2 + NCR%2              // NCR is the number of clock regions 

  int Top = (YCR > rows -1) ? 0 : 1       // Top / Bottom 

  int Row = (YCR > rows -1) ? YCR – max_row : max_row - YCR - 1 

  int Column = XT 

  int Minor = (XS % 2 == 1) ? 26 : 32     // Odd (L) Slice/ Even (L/M) Slice 

  int Word = (LutType == A || B) ? (YS % 50) * 2 : 1 + (YS % 50) * 2 

  if (Word >= 50) Word++ 

  Range Bits = (LutType == A || C) ? [15:0] : [31:16] 

  LutContent result 

  result[63:48] = readFrame(Block, Top, Row, Column, Minor + 0, Word, Bits) 

  result[47:32] = readFrame(Block, Top, Row, Column, Minor + 1, Word, Bits) 

  result[31:16] = readFrame(Block, Top, Row, Column, Minor + 2, Word, Bits) 

  result[15:0]  = readFrame(Block, Top, Row, Column, Minor + 3, Word, Bits) 

  return result 

} 

Fig. 6. Algorithm that gets the LUT contents from the CM.

contents. As nearly all of the CM contents for this simple
design are set to ‘0’, this particular zero-cold pattern enables
the easy location of the LUT contents within the CM, as shown
in Table. II.

Similar experiments were performed for the rest of LUT
BELs. Then, all these experiments were repeated for the other
Slice (XS+1, YT ) within the same CLB Tile. After that, several
similar experiments were carried out with Slices across the
whole device to derive a generic formula for locating the
LUT contents within the CM depending on the LUT’s location
within the device’s architecture. For the sake of completeness,
Fig. 6 lists the pseudocode that maps the LUT contents to the
bits of the CM.

By using this directed mapping between the inputs of
a LUT6 macrocell and a 6LUT BEL pins (LOCK PINS
attribute), it is possible to derive the relationship of each bit in
its contents (INIT attribute) with the bits obtained from CM by
the proposed algorithm. This precise mapping, which differs
for LUTs located in L and M Slices, is listed in Table III.

However, this precise pin assignment is just one of the 720
possible assignments for LUT6 macrocells. Furthermore, as
previously discussed, some BEL pins may be unused when
implementing Boolean functions with less than 6 variables.
Accordingly, it is necessary to recompute the bit mapping
shown in Table III to account for the unused pins and the
specific pin assignment by following these steps:

1) Rename the (A6,· · · ,A0) columns to match their associ-
ated macrocell input (I).

2) Remove all the entries that will never be accessed: unused
pins are assumed to be tied to ‘1’, except A6 that is tied
to ‘0’ when the LUT’s output is O6.

TABLE III. Mapping of LUT6 contents to CM bits read by
the proposed algorithm.

LUT-BEL 
mapping INIT 

bit 
index 

LutContent
bit  

I5
A6 

I4
A5 

I3
A4 

I2
A3 

I1
A2 

I0
A1 

Slice 
L 

Slice 
M 

0 0 0 0 0 0 0 63 31 
0 0 0 0 0 1 1 47 15 
0 0 0 0 1 0 2 62 30 
0 0 0 0 1 1 3 46 14 
0 0 0 1 0 0 4 61 29 
0 0 0 1 0 1 5 45 13 
0 0 0 1 1 0 6 60 28 
0 0 0 1 1 1 7 44 12 
0 0 1 0 0 0 8 15 63 
0 0 1 0 0 1 9 31 47 
0 0 1 0 1 0 10 14 62 
0 0 1 0 1 1 11 30 46 
0 0 1 1 0 0 12 13 61 
0 0 1 1 0 1 13 29 45 
0 0 1 1 1 0 14 12 60 
0 0 1 1 1 1 15 28 44 
0 1 0 0 0 0 16 59 27 
0 1 0 0 0 1 17 43 11 
0 1 0 0 1 0 18 58 26 
0 1 0 0 1 1 19 42 10 
0 1 0 1 0 0 20 57 25 
0 1 0 1 0 1 21 41 9 
0 1 0 1 1 0 22 56 24 
0 1 0 1 1 1 23 40 8 
0 1 1 0 0 0 24 11 59 
0 1 1 0 0 1 25 27 43 
0 1 1 0 1 0 26 10 58 
0 1 1 0 1 1 27 26 42 
0 1 1 1 0 0 28 9 57 
0 1 1 1 0 1 29 25 41 
0 1 1 1 1 0 30 8 56 
0 1 1 1 1 1 31 24 40 

LUT-BEL 
mapping INIT 

bit 
index 

LutContent
bit  

I5
A6 

I4
A5 

I3
A4 

I2
A3 

I1
A2 

I0
A1 

Slice 
L 

Slice 
M 

1 0 0 0 0 0 32 55 23 
1 0 0 0 0 1 33 39 7 
1 0 0 0 1 0 34 54 22 
1 0 0 0 1 1 35 38 6 
1 0 0 1 0 0 36 53 21 
1 0 0 1 0 1 37 37 5 
1 0 0 1 1 0 38 52 20 
1 0 0 1 1 1 39 36 4 
1 0 1 0 0 0 40 7 55 
1 0 1 0 0 1 41 23 39 
1 0 1 0 1 0 42 6 54 
1 0 1 0 1 1 43 22 38 
1 0 1 1 0 0 44 5 53 
1 0 1 1 0 1 45 21 37 
1 0 1 1 1 0 46 4 52 
1 0 1 1 1 1 47 20 36 
1 1 0 0 0 0 48 51 19 
1 1 0 0 0 1 49 35 3 
1 1 0 0 1 0 50 50 18 
1 1 0 0 1 1 51 34 2 
1 1 0 1 0 0 52 49 17 
1 1 0 1 0 1 53 33 1 
1 1 0 1 1 0 54 48 16 
1 1 0 1 1 1 55 32 0 
1 1 1 0 0 0 56 3 51 
1 1 1 0 0 1 57 19 35 
1 1 1 0 1 0 58 2 50 
1 1 1 0 1 1 59 18 34 
1 1 1 1 0 0 60 1 49 
1 1 1 1 0 1 61 17 33 
1 1 1 1 1 0 62 0 48 
1 1 1 1 1 1 63 16 32 

3) Remove the columns corresponding to the unused pins.
4) Reorder columns I by descending index (left to right).
5) Reorder rows by ascending value of I vector (top to

bottom).
As a result, the columns L and M in the reduced and

reordered Table III contain the bit indexes within the LUT
contents retrieved from the CM that directly correspond to the
INIT bits of the mapped LUT macrocell in ascending order.
Fig. 7 displays the procedure followed for a given LUT to get
the exact location of all its content bits in the CM.

In this way, it is now possible to restrict the number of fault
injection experiments related to LUTs to those essential bits
that may potentially affect the behaviour of the design, the
so-called prioritised essential bits (see Fig. 1). The higher the
underused LUT pins, the higher the expected reduction.

B. Dynamic Analysis of LUTs

SEUs impacting any prioritised essential bit change the
structure of the implemented design and, as such, may affect
its functionality. However, it is up to the particular workload



A6 A5 A4 A3 A2 A1 L M

0 0 0 0 0 0 63 31

… … … … … … … …

0 0 1 1 1 1 28 44

0 1 0 0 0 0 59 27

… … … … … … … …

0 1 1 1 1 1 24 40

1 0 0 0 0 0 55 23

… … … … … … … …

1 0 1 1 1 1 20 36

1 1 0 0 0 0 51 19

1 1 0 0 0 1 35 3

1 1 0 0 1 0 50 18

1 1 0 0 1 1 34 2

1 1 0 1 0 0 49 17

1 1 0 1 0 1 33 1

1 1 0 1 1 0 48 16

1 1 0 1 1 1 32 0

1 1 1 0 0 0 3 51

1 1 1 0 0 1 19 35

1 1 1 0 1 0 2 50

1 1 1 0 1 1 18 34

1 1 1 1 0 0 1 49

1 1 1 1 0 1 17 33

1 1 1 1 1 0 0 48

1 1 1 1 1 1 16 32

Slice (X45, Y104), Tile (X30, Y104)
BEL A6LUT

I2						I0					I1 Type	L

I2 I0 I1 L
0 0 0 35
0 0 1 34
0 1 0 33
0 1 1 32
1 0 0 19
1 0 1 18
1 1 0 17
1 1 1 16

Reduce

I2 I1 I0 L
0 0 0 35
0 1 0 34
0 0 1 33
0 1 1 32
1 0 0 19
1 1 0 18
1 0 1 17
1 1 1 16

Reorder	
columns

Reorder	
rows

I2 I1 I0 L
0 0 0 35
0 0 1 33
0 1 0 34
0 1 1 32
1 0 0 19
1 0 1 17
1 1 0 18
1 1 1 16

Word	8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FA
R

0xF1A 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48
0xF1B 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
0xF1C 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0xF1D 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Block 0, Top 0, Row 0, Colum 30

LUT3 FAR Word Bit
0 0xF1B 8 3
1 0xF1B 8 1
2 0xF1B 8 2
3 0xF1B 8 0
4 0xF1C 8 3
5 0xF1C 8 1
6 0xF1C 8 2
7 0xF1C 8 0

Fine‐grain	
mapping
(PRIORITISED	
ESSENTIAL	BITS)

getLutContent()
(ESSENTIAL	BITS)

Fig. 7. Example of fine-grain mapping a LUT3 macrocell
contents in the CM. LUT entries used are shaded in grey.

and incoming inputs to propagate this error through the design.
For instance, if a CM bit corresponding to entry 0 of a specific
LUT BEL is flipped (from ‘0’ to ‘1’ or from ‘1’ to ‘0’) and
this entry is never accessed during operation, this fault will
never lead to failure. This fact provides an opportunity to
reduce further the set of prioritised essential bits attending
to the dynamic behaviour of the implemented design.

State-of-the-art simulation tools, like Siemens Model-
Sim/QuestaSim, offer profiling functionalities to monitor the
switching activity of selected signals in a design. Hence, if the
workload of a given design is known, it could be possible to
profile the switching activity of all LUTs’ interfaces using an
implementation-level (timing-accurate) simulation model.

Fig. 8 continues the example presented in Fig. 7 to reduce
the set of prioritised essential bits obtained after the static
analysis of the design using profiling. Profiling table entries
with zero activity time (or a Count value of 0) indicate those
LUT bits that have remained inactive during the workload
execution and, thus, can be ignored during fault injection. In
this case, the workload does not use 4 out of 8 bits, reducing
the prioritised essential bits for that LUT of 50%.

It must be noted that when implementing two Boolean
functions that do not share inputs, each INIT bit of the profiled
LUT maps onto several CM cells. Thus, to determine which
CM cell is active at each instant, it is necessary to consider
the switching activity of both combined LUT primitives in the
same activity trace.

Time	
(ns) ADR

100.0 2

140,0 0

150,0 5

280,2 2

500,3 0

300,3 6

800,0 0

ADR Count
Activity
time	(ns)

0 2 110,0

1 0 0

2 2 260,1

3 0 0

4 0 0

5 1 130,2

6 1 199,7

7 0 0

T(2) = 40.0 ns

Activity trace
(LUT3)

T(2) = 220.1 ns

Activity profile
(LUT3)

LUT3 FAR Word Bit

0 0xF1B 8 3

2 0xF1B 8 2

5 0xF1C 8 1

6 0xF1C 8 2

Fine-grain mapping
(PRIORITISED ESSENTIAL BITS

AFTER PROFILING)

T(2) = 40.0 ns
Remove
unused

ADR

Fig. 8. Example of profiling the switching activity of the
macrocell from Fig. 7 to reduce the set of prioritised essential
bits. LUT entries used are shaded in grey.

IV. CASE STUDY

As previously mentioned, mapping the complete set of CM
bits of an FPGA is very challenging and time-consuming,
so the question is whether this proposal pays in terms of
experimental time reduction against simply deploying a fault
injection campaign on all essential bits automatically identified
by the manufacturer development tools. This case study shows
that the approach pays even when just considering the bits of
the CM devoted to the configuration of the design combina-
tional logic.

The considered case study integrates the implementation of
three soft-core processors (AVR [17], MC8051 [18], and Mi-
croblaze [19]) onto a Xilinx Zynq-7000 SoC FPGA (xc7z020)
using Xilinx Vivado 2018.3 design suite. It enables the com-
parison of different approaches for estimating the sensitivity
of a design to SEUs, in particular: i) conservatively (blindly)
assuming all CM bits are essential, ii) using Xilinx essential
bits information, iii) using the prioritised essential bits ob-
tained after the proposed static and dynamic analysis, and iv)
quantifying the exact number of critical bits through FPGA-
based fault injection experiments.

The publicly available DAVOS toolkit [20] has been used
to emulate the occurrence of upsets (single bit-flips) in each
cell of the CM before executing the workload and to check
whether this bit is critical (results differ from the fault-free
run) or not. Before each fault injection experiment, the CM
content and the design context reset to their initial state. All the
designs under test run the same synthetic matrix multiplication
workload.

The number of essential bits estimated after the considered
approaches is listed in Table IV. As it can be seen, the CM
of the selected device holds roughly 23.7 Mbit. Suppose all
of them are considered potentially critical under an upset rate
of 74 FIT/Mbit (as reported by Xilinx reliability report [10]
for the selected FPGA family). In that case, this will lead to
a failure rate estimation of 1753.8 FIT. Even if taking into
account the typical device vulnerability factor (percentage of
critical bits) of 5% to 10% [10], this estimation will range
between 87.7 FIT and 175.4 FIT.

Analysing the Xilinx essential bits information (*.ebc file
produced by Vivado) can provide more accurate estimations.
Table IV reports 474 Kbit, 342 Kbit, and 351 Kbit of essential



TABLE IV. Total (a) and LUT-related (b) essential bits obtained by using a blind approach (all device CM), the manufacturer
(Xilinx essential bits), and the proposed static and dynamic analysis (prioritised essential bits).

 

 

a) Total number of bits        b) Bits related to LUTs 

Design	 	 Blind	approach	
(All	CM	bits)	

	 Xilinx	
(Essential	
bits)	

	 Static	and	dynamic	
analyses	

(Prioritised	
Essential	bits)	

  Kbits  Kbits  Kbits Reduction 
MC8051  23745.5  474.6  383.2 19% 

AVR  23745.5  342.9  295.2 14% 
Microblaze  23745.5  351.7  296.3 16% 

 
a)          b) 

 

Design	
	

Xilinx	
(Essential	bits)	

Static	and	dynamic	analyses	
(Prioritised	Essential	bits)	

  
  

 Static 
analysis 

 Dynamic 
analysis 

  Kbits % of total  Kbits Reduction  Kbits Reduction 
MC8051  144.4 30%  113.8 21%  52.9 63% 

AVR  98.6 29%  78.6 20%  50.9 48% 
Microblaze  71.9 20%  32.2 55%  16.5 77% 

TABLE V. Estimated critical bits using FPGA-based fault injection when targeting the essential bits reported by Xilinx Vivado,
and the prioritised bits obtained after the proposed static and dynamic analysis.

 

 FFI using Xilinx essential bits  FFI using optimized essential bits and profiling 
 Critical bits  

(Kbit)  Experimental Time 
(hour) 

 Critical bits 
(Kbit)  Experimental Time1 

(hour) 
 Speed-up 

LUTs Total CM  LUTs Total CM  LUTs Total CM  LUTs Total CM  LUTs Total CM 
MC8051 9.0 56.0  1.04 3.42  9.0 56.0  0.59 2.96  1.75 1.16 

AVR 9.8 56.9  0.71 2.47  9.8 56.9  0.46 2.20  1.54 1.12 
Microblaze 6.2 75.9  1.10 5.37  6.2 75.9  0.41 4.67  2.69 1.15 

 

 

 Xilinx	Essential	bits	 	 Static	analysis	 	 Dynamic	analysis	

 
Critical 

bits 
(Kbits) 

Experimentation 
(hours) 

 

Critical bits 
(Kbits) 

Mapping 
overhead 

(hour) 

Experimentation 
including 
overhead 
(hours) 

Speed-
up 

 

Critical bits 
(Kbits) 

Profiling 
overhead 
(hours) 

Experimentation 
including 
overhead 
(hours) 

Speed-
up 

MC8051 56.0 3.42  56.0 0.02 3.19 1.07  56.0 0.19 2.96 1.16 

AVR 56.9 2.02  56.9 0.02 1.90 1.06  56.9 0.07 2.20 1.12 

Microblaze 75.9 5.33  75.9 0.02 4.80 1.11  75.9 0.14 4.67 1.14 

 

Percentage of CM cells wrt. activity time Failure rate (%)
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Fig. 9. Percentage of LUT-specific CM cells with respect to their profiled activity time and failure rate.

bits for MC8051, AVR, and Microblaze, respectively. This
significantly refines the initial failure rate estimation, reducing
it to just 35.1 FIT (MC8051), 25.3 FIT (AVR), and 26.0 FIT
(Microblaze), well below the worst-case scenario computed.

Between 20% and 30% of these essential bits (144 Kbit
(MC8051), 99 Kbit (AVR), and 72 Kbit (Microblaze)) are at-
tributed to the LUT content. Applying the proposed LUT map-
ping algorithm reduces this amount of LUT-specific essential
bits between 20% (AVR) and 55% (Microblaze). Furthermore,
profiling has shown that between 35.2% (AVR) and 56.7%
(MC8051) of LUT-specific CM cells remain inactive during
the execution of the considered workload. By combining both
proposals, the initial estimation of LUT-specific essential bits
provided by Vivado is reduced between 48% (AVR) and 77%
(Microblaze).

Accordingly, the set of prioritised essential bits is between

14% and 19% smaller than that provided by Vivado. Thus,
the estimated failure rates are reduced to 28.3 FIT (MC8051),
21.8 FIT (AVR), and 21.9 FIT (Microblaze). Although this
refinement may seem not a vast improvement, it effectively
narrows down the worst-case scenario without running a single
fault injection experiment.

After applying the proposed static and dynamic analyses,
all the essential bits of the designs were exhaustively targeted
by fault injection experiments to estimate each design’s exact
number of critical bits. The results, summarised in Table V,
show that the actual number of critical bits ranges between
75.9 Kbit (Microblaze) and 56.0 Kbit (MC8051). This leads
to an even more refined estimation of the failure rate: 4.1
FIT (MC8051), 4.2 FIT (AVR), and 5.6 FIT (Microblaze).
These experiments have confirmed that the occurrence of
upsets in those essential bits reported by Vivado and excluded



from the set of prioritised essential bits never leads to a
failure. Therefore, they are not critical and can be safely
disregarded to reduce the number of faults injected and speed
up experimentation by 1.12 to 1.16.

It is to note that the overhead introduced by the static
analysis is negligible and constant, as it depends on the
size of the target device and not the design. Accordingly, it
should always be applied to speed-up fault injection campaigns
(between 1.06 and 1.11 for this case study) at a negligible
cost. However, the dynamic analysis (profiling) benefits are not
so clear. On the one hand, the simulation of implementation-
level models is time-consuming and may result in significant
overhead. Accordingly, it will depend on each particular design
and workload whether the simulation time is longer than the
time saved by reducing the number of essential bits. On
the other hand, Fig. 9 reveals that the criticality of LUT-
specific CM cells seems to increase as their activity time does.
Therefore, activity profiles could indicate those CM cells with
the highest probability of being critical even without costly
fault injection experiments. Likewise, activity profiles could
guide fault injection experiments to detect the highest possible
number of critical CM cells under a limited experimental time.

V. CONCLUSIONS AND FUTURE WORK

As the potential benefits of FPGA-based designs for critical
applications and their complexity increase, the need for new
techniques to estimate their robustness also does. However,
speeding up injection campaigns concerning what is currently
provided by the design of experiments, parallelisation, and
statistical fault injection is quite challenging.

This paper delves into the FPGA architecture to determine
which combinational logic elements are used by the considered
design (mapping through static analysis) and which are exer-
cised by the workload (profiling through dynamic analysis).
This reversing approach identifies a set of prioritised essential
bits that limits the potential fault injection targets to consider
for experimentation.

Results show that this work pays with respect to ex-
haustively injecting faults in all design essential bits. In all
considered processor implementations, the number of bits to
consider is reduced by up to 19%, whereas the subsequent
fault injection campaign runs 1.16 times faster without loss of
accuracy. Even though the savings may not be vast, the cost of
applying the proposed static analysis is negligible. Although
conditioned by the considered workload, the dynamic analysis
remains of interest to identify critical CM cells requiring more
protection.

We plan to continue with this research by testing the
approach using a more representative set of benchmark circuits
and enlarging its applicability to reverse the part of the CM
devoted to the interconnection (routing) of the FPGA fabric
elements. It must be noted that routing resources account for
around 75% of the CM content of an FPGA. So, considering
the speed up resulting from analysing just the combinational
logic of the FPGA, this future investigation has a great
potential not only to accelerate (even more) fault injection

campaigns but also to exploit the information issued from
the static and dynamic analysis to more precisely identify
dependability bottlenecks and define more effective protection
mechanisms.
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