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ABSTRACT The a priori probability of a dataset is usually used as a baseline for comparing a particular
algorithm’s accuracy in a given binary classification task. ZeroR is the simplest algorithm for this, predicting
the majority class for all examples. However, this is an extremely simple approach that has no predictive
power and does not describe other dataset features that could lead to a more demanding baseline. In this
paper, we present the Extended A Priori Probability (EAPP), a novel semi-supervised baseline metric for
binary classification tasks that considers not only the a priori probability but also some possible bias present
in the dataset as well as other features that could provide a relatively trivial separability of the target classes.
The approach is based on the area under the ROC curve (AUC ROC), known to be quite insensitive to class
imbalance. The procedure involves multiobjective feature extraction and a clustering stage in the input space
with autoencoders and a subsequent combinatory weighted assignation from clusters to classes depending
on the distance to nearest clusters for each class. Class labels are then assigned to establish the combination
that maximizes AUC ROC for each number of clusters considered. To avoid overfit in the combined feature
extraction and clustering method, a cross-validation scheme is performed in each case. EAPP is defined
for different numbers of clusters, starting from the inverse of the minority class proportion, which is useful
for a fair comparison among diversely imbalanced datasets. A high EAPP usually relates to an easy binary
classification task, but it also may be due to a significant coarse-grained bias in the dataset, when the task is
previously known to be difficult. This metric represents a baseline beyond the a priori probability to assess
the actual capabilities of binary classification models.

INDEX TERMS A priori probability, EAPP, clustering, autoencoder, semisupervised, combinatory, bias.

I. INTRODUCTION
From text analysis [1], [2] or pedestrian detection [3], [4] to
healthcare [5], [6], it is unquestionable that Artificial Intel-
ligence (AI) has become more and more useful in almost
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any technological challenge. The paradigms of Machine
Learning (ML) and Deep Learning (DL) in particular, have
become state of the art in several scientific fields. How-
ever, is such complex technology needed to solve any chal-
lenge? Can data affect the knowledge extracted using DL?
Is a given trained network as good as it seems or is it just
because of the dataset? With all of these questions, it is clear
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that it is necessary to assess how the algorithms are really
performing.

The a priori probability is used in classification tasks as the
lower bound or baseline that any predictor should achieve.
The ZeroR classifier, which simply predicts the majority
class, is used for establishing this baseline, which is useful
as a benchmark for comparison with other classifiers. Any
classifier performing poorer than the ZeroR classifier is con-
sidered to have no predictive value.

However, a more demanding and realistic baseline could
be established considering not only the a priori probability,
but also possible biases in the dataset and/or trivial class sepa-
ration. For example, a binary classifier reaching an accuracy
of 0.8 on a dataset with a priori probability of 0.5 but with
a relatively obvious bias in the dataset that allows 80% of
its samples to be predicted trivially, should be considered as
good as a ZeroR classifier.

In this paper, we propose a method to compute a more
challenging metric than a priori probability, which can be
used as a baseline to determine the prediction capabilities
of a given classifier. This metric, which we call Extended
A Priori Probability (EAPP), takes into account not only the
a priori probability, but also other underlying characteristics
of the sample, such as the presence of biases in the data or an
obvious class separation. Thus, bias in this paper refers to the
features of the dataset that are not related to the pure data but
external conditions, i.e., different brightness in images taken
with different equipment, different acquisition procedures
depending on the human knowledge for this sample, or any
artifact not naturally present in the data.

There are several types of bias as reported on [7]. First,
selection bias is present when a dataset prefers a particular
type of image (e.g. indoor or outdoor scenes). Second, capture
bias can affect the dataset, i.e., different hospitals apply dif-
ferent settings to the RX equipment and category. Third, label
bias appears when different labelers assign different labels to
the same type of object. Finally, negative set bias defines what
the dataset considers to be the rest of the world.

In recent years, there has been a renewed interest in the
study of bias [8], [9], [10], [11], [12]. According to [13],
while the known unknowns are wrong predictions with low
confidence that can cast doubt on accuracy, the unknown
unknowns are wrong predictions with high confidence of
truth that can mask dataset-intrinsic representation prob-
lems. Since the classical AI definition proclaims imitation
of humans, in terms of ML, the unknown unknowns are
extremely harmful, raising controversy around ML usage.
Attenberg et al. designed an experiment to prove humans
can detect bias, unknown unknowns, where a machine can
not [13]. Bansal et al. proposed a way to automatically dis-
cover unknown unknowns [14].

Awide range ofmethods are focused on the removal of bias
in the dataset in many different ways. Alvi et al. presented
an algorithm to remove spurious features for the task at
hand [15]. Others like Khosla et al. proposed a method to

undo the bias by learning two sets of weights: bias and visual
world weights [16], Tommasi et al. use DeCAF features in
order to mitigate bias [17], and Clark combines biased and
unbiased ensembles to remove dataset biases [18].

Hoffman and Tzeng proposed a discriminative domain
adaptation to minimize the impact of bias on the task [19],
[20] which was outperformed by the method given by [21],
where stacked autoencoders based on domain adaptation are
used to extract domain invariant features. Finally, Zhao et al.
presented a way to constrain the training corpus to reduce
bias [9]. Also, several feature-adaptive methods have been
proposed for the removal of selection bias (or covariate
shift) [22], [23] and CNN descriptors demonstrated to be
robust against this bias [24].

Some of the works presented before use supervised meth-
ods to reduce the bias in a dataset mainly by building a
classifier that is not affected by bias or using cross-dataset
performance drop [7], [23] as a generalizationmeasure. How-
ever, our main objective is to obtain a simple semi-supervised
metric that allows evaluation of the ease or complexity of
the task beyond the well-established baseline for any binary
classification (namely, the a priori probability, that is, the
proportion of examples belonging to themajority class). If the
task is previously known to be difficult but the EAPP is
high, then the dataset is likely to have a heavy bias, as a
simple algorithm may be able to tell the difference between
examples from two classes without supervision, using
only the locality of the observations in the representation
space.

II. MATERIALS AND METHODS
A. DATASETS
We tested the performance of the EAPP method covering a
wide range of scenarios.

• Since the EAPP deals with binary classification tasks,
a subset of the handwritten digits dataset MNIST [25]
was extracted. The images of ‘‘1’’ and ‘‘7’’, which are
relatively similar, were compared to those of ‘‘8’’.

• The ImageNet dataset [26] consists of 3.2 million
images covering up to 20000 categories. Under the
assumption that the categories mushroom and wedding
may have different environmental elements, we selected
the images of these two classes looking at whether the
background that do not contain the object could intro-
duce bias to the dataset.

• Our previous work [12] showed the presence of bias in
the BIMCV-PADCHEST [27] chest x-ray image dataset.
In this paper, we assess the EAPP metric in that real,
biased, task.

• The EAPP definition is independent of the input data
type. In this sense, we evaluated the metric in a subset of
the nCOV2019 dataset [28]. This dataset was shown to
have potential bias sources [11] and after replicating the
data processing proposed in the previously mentioned
work, we evaluated EAPP.
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FIGURE 1. EAPP process.

B. DATA PREPROCESSING
The image datasets analyzed contained images of multiple
shapes. As Neural Networks are used and scale invariance
is not our focus, the task is simplified resizing all images to
the same shape to perform feature extraction. Therefore, they
were cropped as a square, keeping the same image center, and
resized to 128 × 128 pixels. Regarding numerical datasets,
all raw features were separately normalized (mean 0 and
standard deviation 1).

C. EAPP
The goal of EAPP is to assess how well a non-supervised
feature extraction method automatically splits classes into
different clusters. The method is based on assigning the same
class to all the examples that fall into the same cluster. This is
done iteratively for different numbers of clusters and combi-
nations of class assignments. A probability of belonging to a
class is assigned to each observation depending on its distance
to the centroids of the nearest positive and negative classes’
clusters.

The process is divided into 3 stages: feature extraction,
clustering, and combinatory analysis. The stages of the com-
plete process, shown in Figure 1, are described below.

1) FEATURE EXTRACTION
To compute the EAPP metric, labels must not be used during
the training phase. Therefore, feature extraction is performed
using unsupervised learning methods only. Algorithms such
as Convolutional AutoEncoders (CAEs) are valid candidates.
An autoencoder forces its inputs to fit into a reduced latent
space and then tries to rebuild the original input from that
smaller representation. The structure of the network can be
seen in Figure 2.

2) CLUSTERING
Additionally, this algorithm should group together observa-
tions that have similar features, as they are likely to be from
the same class. Therefore, clustering algorithms such as K-
means are useful to find the inner clusters that group samples
of the dataset. Even if only two classes are present within the
data, we cannot assume that the latent representations of both
classes are linearly separable. Therefore, using a number of
clusters equal to the number of classes might not represent
an adequate EAPP value. For instance, classifying the XOR
problem may be an easy task but cannot be performed using
two clusters. The optimal number of clusters is unknown,

FIGURE 2. Structure of the CAE.

so the algorithm should exploremultiple values up to a certain
limit. In this sense, the limitation of cluster cardinality k
controls the likelihood of overestimating the fit by chance.
Arguably, if the number of maximum clusters is small enough
compared to the number of samples in the dataset, the over-
fitting probability is bounded.

Moreover, it is important to highlight that the a priori
probability for both classes gives a clear insight into the
minimum number of clusters to consider to fit the data well.
This is the case if the clustering method tends to group a
similar number of examples in each cluster, as is the case
of K-means, assuming that instances of the same class are
close in the input space. Given a binary classification task,
in this scenario, the k values should start from 1/p0 upwards,
being p0 the a priori probability for the minority class. For
example, for p0 = 0.5 (a perfectly balanced dataset), the
minimum cluster number is k = 2, while for p0 = 0.25, the
range starts at k = 4. Interestingly, this matter allows us to
establish a fair comparison among different datasets regard-
less of their diverse a priori probability values. If 1/p0 is the
exact k value for the number of clusters needed to establish
a comparison in a dataset, then, this value can be inferred
by linear interpolation between both b(1/p0)c and ceil(1/p0)
EAPP values. For instance, if p0 = 0.4, then the exact k is
2.5, so EAPP(2.5) ≈ (EAPP(2)+ EAPP(3))/2.

Because of this, all graphs are plotted similarly: the X
axis starts from k = b(1/p0)c upwards, but the zone below
k = 1/p0 is shaded because it falls below the minimum
theoretical k value to establish a fair comparison for clusters
of similar size, as explained above. Furthermore, to assess the
level of improvement obtained by chance by reaching higher
k values, a baseline curve for randomly shuffled classes (that
is, respecting the original p0 values for the task) is presented.
For any k , a number of different random shuffles are per-
formed and the maximum EAPP values reached are saved as
a population, from which the mean and the 95% confidence
intervals are plotted in blue.

3) HYBRID TECHNIQUE
To achieve better clustering for EAPP computation, one
option is to perform clustering and feature extraction
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separately. In this case, these processes are independent, with
no restrictions on their training metric (i.e. loss). However,
both stages may also be considered together, as a part of a
particular algorithm, with goal interdependence (for example,
with a loss function composed of two terms, one for each
process).

Assuming that an incremental approach to the clustering
phase would benefit the latent space configuration, the initial
number of clusters is set at k = b(1/p0)c, and this value
is increased after the current configuration converges. After
each convergence, the feature extraction network and pre-
vious cluster centers are kept, and an additional cluster is
added. This is performed by splitting the largest cluster along
its axis of largest variance. Then, the training phase of the
feature extraction network and clustering is performed until
convergence. In each iteration of the incremental approach,
the closest cluster center index for each sample is stored.

4) COMBINATORY ANALYSIS
Once a particular clustering scheme has been computed for
a given feature representation, this proposal aims to assess
the ease or complexity of the classification task by searching
a higher baseline above the a priori probability, dependent
only on the number of instances of each class. The underlying
idea is, once the clustering process converges for a range of
different cluster cardinalities k in the training stage, to save
the model information (namely, the centroids) and apply this
clustering to new test data but, for each cluster assignation
(for each k considered), assigning all the possible different
combinations of binary labels to the clusters, leaving out the
trivial ones (the extreme all-negative and all-positive corre-
spondences, since they would lead to a strongly unbalanced,
useless classification). For example, for k = 2, the only
chances are cluster 1 assigned to the positive class and cluster
2 to the negative class, and conversely (we discard the all-
negative and all-positive assignations, as said before). This
correspondence can be represented as a binary number, where
each digit represents a particular cluster and the particular
value it takes (0 or 1) represents its correspondence to the
negative or positive class, respectively. Similarly, for k = 3,
the only chances are 001, 010, 011, 100, 101, and 110, since
the extreme 000 and 111 are discarded. In the general case,
for each k , (2k − 2) cases are computed, and the combination
of better results is taken as a representative of this k , and the
particular metrics used are to be discussed.

Moreover, we sort the set of observations based on the
distance to the inferred clusters. The assignation to a binary
class for each example in each combination is then performed
depending on the distance between that instance and the
centroids of the nearest positive and negative classes clusters,
so that a continuous score is available.

Hence, to sum up, for each k , we compute all the possible
binary assignations leaving out both extreme configurations
andwe obtain a similarity indicator depending on the distance
to the nearest positive and negative clusters. Then, using this
sorting procedure, we compute a performance index, in this

case the Area Under the ROC, and select the assignation
which leads to the best score. Finally, we plot the maximum
AUC ROC values for k . Note that, if the particular divisive
clustering method used is not hierarchical, there is no guaran-
tee for the curve to be increasing in a monotonic way, but this
behavior is predominant since with more clusters there are
more chances to fit the data accurately. It is also worth to note
that as it is mentioned before, EAPP evaluates the complexity
of a task and this could also be seen as a randomness test [29]
where non-random data would get higher EAPP than random
data.

5) CROSS-VALIDATION TRAINING SCHEME
Our complete algorithm is semi-supervised, so it faces the
problem of overfitting as do others of this kind. In fact, even
some basic algorithms such as the naive K-means clustering,
which is totally unsupervised, could suffer from it [30]. For
this reason, a 10 cross-validation was established as a stan-
dard for all our experiments. To be precise, for each dataset,
the whole process is split into two parts: the training process,
in which 90% of the data is used to learn all clustering
schemes for any k (centroids), and a particular internal rep-
resentation, and the testing process, in which the remaining
10% is processed with all these parameters obtained by train-
ing. This procedure is repeated 10 times for each experiment
to allow a fairer comparison throughout all datasets. However,
for nCov2019, the cross-validation process is 50-fold because
of its reduced size, as it was not appropriate to suppress 10%
of the data for training in each fold. Thus, we trained with
98% of data in each iteration.

III. RESULTS
A. IMPLEMENTATION DETAILS
The experiments were carried out on diverse datasets, most
of them based on images, but also on non-image, structured
data. This approach is valid regardless of the nature of data
as long as a binary classification problem underlies the task.
For reasons of clarity, the experiments on image datasets are
presented first in order of increasing difficulty and finally,
an additional experiment on a numerical dataset is shown.
Note that curves are plotted with k starting at b(1/p0)c, being
p0 the a priori probability for the minority class in each
task, but with the zone between b(1/p0)c and 1/p0 shadowed
because it falls outside the range of fair comparison. Again
for reasons of clarity, the vertical axis starts at 0.5, as EAPP
is defined in terms of AUC ROC, whose mathematical expec-
tation is 0.5 for a random assignation. Finally, for assessing
the likelihood of adapting the data by chance as k increases,
a baseline curve with confidence intervals is presented, rep-
resenting the best data fit for each k for random shuffle of the
original data.

B. IMAGE DATASETS
In this subsection, we aim to study the EAPP behav-
ior for diverse binary classification tasks within different
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FIGURE 3. EAPP trend for multiple cluster number values for reduced
MNIST dataset (digit ‘8’ vs ‘1’ and ‘7’ combined).

FIGURE 4. EAPP trend for multiple cluster number values for reduced
ImageNet dataset (wedding vs mushroom).

well-known image datasets. For simplicity, we present our
experiments sorted by increasing perceived difficulty of the
detection task.

1) MNIST
MNIST is a standard database of handwritten digits com-
monly used for training classifiers. It consists of the 10 dif-
ferent arabic numerals, but our approach is defined for binary
classification. Therefore, we selected the set {‘1’, ‘7’} for
class w0, and {‘8’} for w1. Since all digits are represented
evenly in the dataset, p0 is around 0.33 (minority class).
Therefore, the results for this MNIST task, from k =
b(1/p0)c = 3, are presented in Figure 3.

It comes as no surprise that this binary classification task
yields very high EAPP values already from k = 2. It is the
expected behavior for such an easy task. It is noticeable that
the ‘8’ vs other task is easier than other combinations because
the digits ‘1’ and ‘7’ are visually similar, so the clustering
process is more likely to group them together than for other
combinations (for example, ‘1’ and ‘8’ digits). EAPP is able

FIGURE 5. EAPP trend for multiple cluster number values for BIMCV
dataset (cases vs controls).

FIGURE 6. Latent space and cluster assignment for several cluster
numbers.

to correctly differentiate among groups of digits. This simple
task serves as a starting point from which we will reach more
difficult binary tasks, such as the following more difficult
classification tasks.

2) ImageNet
WithMNIST experiments, a particular spatial distribution for
bright pixels is easily noticeable. To overcome this, a slightly
more complex dataset which more image richness is used:
ImageNet. It is another well-established image dataset con-
taining more than 20,000 categories, but again, we focused on
two visually different categories (wedding and mushroom) so
as toworkwith an appropriate subset for binary classification.
The results for this ImageNet task, from k = b(1/p0)c = 2,
are shown in Figure 4.
This experiment also leads to significant EAPP values.

However, they are not as high as in MNIST (Figure 3)
since the task is now more complex, as the variability
in images increased noticeably. In this regard, EAPP for
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FIGURE 7. Comparison between different latent space sizes and feature extraction algorithms for a specific clustering method in the ImageNet
dataset.

FIGURE 8. Comparison between different clustering methods and feature extraction algorithms
for MNIST dataset.

the ImageNet task seems to plateau around 0.8, whilst for
MNIST, it reaches almost 1.

3) BIMCV
In our previous paper [12], we carefully designed a mor-
phological segmentation scheme by which an important bias

was detected in some chest X-ray image datasets (mainly
BIMCV). That methodology consisted of comparing the clas-
sification performance of the whole images with images
where areas of the lungs and the background had been
removed. From this, we could check that the background was
accountable for most of the detection accuracy, despite the
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FIGURE 9. Comparison between different clustering methods and feature extraction algorithms
for nCov2019 dataset.

fact that all the information of the disease is expected to be
inside the lungs. In particular, this is a case of capture bias
where different settings on acquisition are used as task infor-
mation by the CNN or other algorithms. Therefore, our aim is
to check if this fine-grained bias was easily perceptible using
our simple EAPP method. The EAPP results for BIMCV
dataset, from k = b(1/p0)c = 3, are presented in Figure 5
(sigma 0 curve in green).

The results show moderate EAPP values around 0.6, sug-
gesting that the generic approach is not as powerful as the ad-
hoc morphological method that excluded the lung. To check
if further biases are detected, we introduced different levels
(sigma 1, 2 and 3) of controlled class-dependent noise to
this dataset in terms of increased average grayscale levels
to images of one of the classes. This shift is visually per-
ceived as a slight increase in brightness of the overall image.
As expected, higher levels of EAPP are noticeable in Figure 5
as the increase gets larger (sigma represents the number of
standard deviations of brightness added to one class of the
dataset), with a good separability when the gray levels are
increased at least by 2σ .

C. NUMERICAL DATASETS
The EAPP calculation was then performed on the numerical,
structured nCOV dataset to evaluate the difficulty of a binary
classification task not dealing with image data.

In this case, p0, which accounts for the a priori probability
of the minority class, is 0.28, being p1 the a priori probability
of the majority class equal to 0.72. As can be seen in Figure 6,
the EAPP value using 4 clusters is around 0.86, which is
significantly higher than the one expected from a random
classifier represented by the line and the shaded zone plotted
in blue.

Figure 6 shows how the 2D latent representation of the
nCOV2019, as k increases, can be automatically classified
by a set of clusters built without taking into account the class
labels. This EAPP value confirms the analysis of [28], where
a high bias in the dataset is reported.

Additional experiments are reported on the Appendix.
They show the results for different latent space sizes, where
it can be seen that this parameter does not significantly affect
the results. Furthermore, different clustering methods have
been explored, such as DBSCAN [31], while agglomerative
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FIGURE 10. Comparison between different clustering methods and feature extraction algorithms for
ImageNet dataset.

clustering and hierarchical clustering [32] have also been
used with worse results than other methods like K-means.
Similarly, agglomerative clustering and hierarchical cluster-
ing have also been explored, yielding similar results to the
ones obtained by K-means (see Figs. 8, 9, 10 and 11). It is
also worth mentioning that PCA can be a good alternative
to KmeansAutoEncoder, as it is faster to train and achieves
similar results. Finally, an alternative approach to reduce the
evaluation’s computational cost is commented.

In short, a correlation between the perceived difficulty of
the task and EAPP values can be noticed. This behavior
is consistent with our hypothesis. However, if a significant
amount of hidden bias is present in the data, EAPP values
could also potentially rise. Notwithstanding that, the dif-
ference between ease and bias is not yet detected by the
algorithm.

IV. DISCUSSION
A. STATE OF THE ART COMPARISON
Our contribution aims to establish a new and more infor-
mative baseline for the performance of binary classification

tasks. Although any internal metric might be used,
we selected the AUC ROC as the performance metric. Due
to the nature of our approach, the results are not meant to
compete with the performance of supervised algorithms, but
to offer a lower bound.

B. STRENGTHS AND WEAKNESSES
The algorithm proposed is able to give an estimate of the hard-
ness of any dataset for a binary classification task further than
the naive a priori probability, which is simply the proportion
of the majority class to the dataset size. Therefore, it may
be used as a baseline for the AUC ROC obtained from any
binary classification algorithm. Also, as could be seen in the
results, our methodology can be applied both to images and
other structured data.

Nevertheless, that hardness can be intrinsic or due to a
particular bias in the dataset that allows correct classification
of a vast majority of examples without considering the real
nature of the evidently meaningful attributes. This effect may
be especially interesting in images, in which a particular clas-
sification algorithm (i.e. convolutional deep neural networks)
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FIGURE 11. Comparison between different clustering methods and feature extraction algorithms for
BIMCV sigma 3 dataset.

could take enormous advantage of the fine-grain, complex
variables extracted from the image, which would be almost
indistinguishable for a human. These cases are frequently
related to some bias in the dataset that allows these powerful
algorithms to clearly outperform the expected outcomes for
the classification task with no real basis on the real predictive
attributes.

C. FURTHER WORK
The current proposal is based on a particular internal rep-
resentation and clustering technique, but our paradigm can
accommodate different methods. Therefore, internal repre-
sentations for data, such as those obtained with other dimen-
sionality reduction techniques (PCA, ZCA whitening. . . ),
may be tested. Similarly, other clustering methods like Gaus-
sian Mixtures or Ward, may be used. Further research is
needed in order to gain more insight into the difference
between ease of the classification task and bias presence in
the dataset, so as to infer this information automatically, with-
out human intervention. Furthermore, our method could be

extended to other problems such as multiclass classification,
multilabel classification or regression.

Moreover, model interpretability is highly relevant in this
procedure as features that affect the score most can be iden-
tified. This means that, should the features not be related to
class information, bias can be detected.

V. CONCLUSION
This paper proposes a method to calculate a more informative
metric set than the simple a priori probability for estimating
the difficulty or bias of the data in the context of a binary
classification task.

Themethod is based on the separability of the target classes
in a given latent space of representation: it tries to find the
assignation of clusters and classes that performs the best
regarding the area under the ROC curve. Thismaximumvalue
is registered for any number of clusters k , so a graph can
be plotted for k , starting from the inverse of the minority
class proportion to set a fair comparison among imbalanced
datasets. Moreover, a cross-validation scheme is included
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FIGURE 12. Comparison between different cluster labeling methods.

to avoid overfitting and assure independence between the
training and testing stages.

By using some well-known datasets, our method has
proven beneficial to preliminarily assess the difficulty of a
binary classification task and suggest a certain level of bias in
cases where the task is perceived to be easy, and a high EAPP
is found. Thus, our metric represents a baseline beyond the
a priori probability to assess the actual capabilities of binary
classification models.

APPENDIX. COMPARISON OF DIFFERENT LATENT SPACE
SIZES, CLUSTERING METHODS AND FEATURE
EXTRACTORS
In this section, we present a comparison of several latent
space sizes (32, 64 and 128), clustering methods (DBSCAN,
K-means, Agglomerative Clustering and Spectral Clustering)
and feature extractors (the proposed KmeansAutoEncoder,
PCA and Variational AutoEncoders). Remark that, in con-
trast with the original experiments where the K-means is
performed along feature extraction training, in this section,
all clustering methods are applied after training the feature
extraction algorithm.

A. LATENT SPACE STUDY
Figure 7 shows how different latent spaces affect the results
in the ImageNet dataset. As can be seen, this hyperparameter
does not significantly affect the results achieved by each
feature extractor. Thus, for simplicity purposes, we selected
a latent space size of 64 for the paper.

B. CLUSTERING METHOD AND FEATURE EXTRACTOR
STUDY
Given the results above wihch are similar for 32, 64 and
128 sizes, we finally select a 64-dimensional latent space
(except for nCov2019, which is has only 27 variables and the
latent space size is set to 2 dimensions).

DBSCAN is not a clustering method that contains the
number of clusters as a hyperparameter. However, it includes
a distance hyperparameter that could be swept to achieve
the same comparable values to other clustering methods.
Nonetheless, in the following Figures 8, 9, 10 and 11, it
can be seen that DBSCAN cannot be properly used for the
EAPP score. Moreover, these figures show that PCA and
KmeansAutoEncoder achieve the best results compared to
Variational AutoEncoder (VAE). Therefore, PCA can be a
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good alternative toKmeansAutoEncoder, as it is faster to train
and achieves similar results.

C. EXHAUSTIVE CLUSTER LABELING VS SAMPLE
CONTRIBUTION CLUSTER LABELING
As described in this article, to assess if the samples were
effectively clustered in an unsupervised manner, an exhaus-
tive combinatory analysis was performed. This procedure
evaluates all the possible labels each cluster could take, and
the best combination is returned. However, this evaluation has
an exponential cost that depends on the number of clusters.
Another alternative approach is that each sample contributes
to its closest cluster center with its class weighted by the dis-
tance. This way provides a good alternative to the exhaustive
one, as seen in Figure 12, scaling linearly with the number of
samples and obtaining almost the same results.
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