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Abstract: Current enteroscopy techniques present complications that are intended to be improved
with the development of a new semi-automatic device called Endoworm. It consists of two different
types of inflatable cavities. For its correct operation, it is essential to detect in real time if the inflatable
cavities are malfunctioning (presence of air leakage). Two classification predictive models were
obtained, one for each cavity typology, which must discern between the “Right” or “Leak” states.
The cavity pressure signals were digitally processed, from which a set of features were extracted
and selected. The predictive models were obtained from the features, and a prior classification
of the signals between the two possible states was used as input to different supervised machine
learning algorithms. The accuracy obtained from the classification predictive model for cavities of
the balloon-type was 99.62%, while that of the bellows-type was 100%, representing an encouraging
result. Once the models are validated with data generated in animal model tests and subsequently in
exploratory clinical tests, their incorporation in the software device will ensure patient safety during
small bowel exploration.

Keywords: classification predictive models; digital signal processing; enteroscopy; feature extraction;
inflatable cavities; medical device; real-time detection system; soft robot

1. Introduction

Currently, there are different techniques for the exploration, diagnosis, and therapy of
small bowel pathologies, the main one being enteroscopy. There are three different types of
commercially available enteroscopes: single-balloon (SBE) [1], double-balloon (DBE) [2,3],
and spiral (SE) [4]. Although these systems allow exploration of the small intestine, they
are not without limitations [5–9].

In this context, a research group from the Universitat Politècnica de València and the
Fundación de Investigación del Hospital La Fe de Valencia is working on the development of a
new enteroscopy system, called Endoworm, which aims to improve the existing systems.

Endoworm is a semiautomatic soft robot device [10–13], which is mounted on a
conventional endoscope and allows exploration of the small intestine. It consists of a
pneumatic translation system of inflatable cavities governed by a microcontroller-based
electronic device. The objective is to retract the intestine over the endoscope, thus assisting
in advancing the endoscope [14,15].
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The commercial systems used to explore the small bowel (especially DBE and SBE)
have been tested for years, and some problems have been detected [16]; among them, no air
leakage has been reported. The main reason for that is the manual operation of these two
systems that allows the specialist to detect any malfunctioning of every inflatable cavity.
Due to the automated operation of the Endoworm system and its complexity compared to
the mentioned systems, the detection of malfunctioning in one of the three cavities is very
difficult for the specialist, even more so to determine which one has failed. For this reason,
developing an autonomous system for detecting air leakage from its inflatable cavities is
necessary. An air leak in any of the cavities would represent a potential risk to the patient
and even a significant loss in device efficiency to help the enteroscope advance through the
small bowel.

Automated leak detection has been studied for different industrial applications. Leaks in
rigid pipes have been investigated [17], some of them using machine learning methods [18].
In [19], a pneumatic system was analyzed to detect air leakage in the pipes and the pneumatic
actuators while the system continues working. However, all the systems were rigid. Different
methods to determine the leakage were presented in [20]. One of them used the pressure drop
in the pipeline, again considering rigid pipes in industrial applications.

The complexity of detecting air leaks in Endoworm cavities lies in two aspects: their
continuous inflation and deflation, which makes the static analysis of pressures ineffec-
tive, and the impossibility of seeing what is happening inside the patient, as well as the
fact that it is not intended to introduce any electrical element that could cause damage.
As described, leakage problems have been studied for industrial applications, but no
previous studies have addressed this specific problem.

In medical applications, classification predictive models are commonly used to solve
binary new cases classification, with high performance ratios [21]. These techniques can be
used to classify the state of each cavity as “Right” or “Leak” while the device is working.

This work aimed to obtain two classification predictive models capable of detecting air
leaks in the two different types of cavities (balloon and bellows) that make up the Endoworm
translation system. The data used to generate the models were obtained by performing
tests on the Endoworm enteroscopy system in in vitro models. The training and validation
of the predictive models were carried out using k-fold cross-validation and test performance
techniques. Finally, the best classification predictive model for each cavity type was selected,
considering that they will have to be run in real time on the Endoworm control device.

2. Materials and Methods

Classification predictive models, which are intended to be obtained, require a series of
input variables (features) that contain the necessary information on the pressure signals of
the Endoworm cavities to classify the cases as “Right” or “Leak”.

The starting point to obtain the features was the differential pressure signals (relative
to atmospheric pressure) received from the sensors arranged in the air outlet ports of
the Endoworm control device. There are four signals in total: system pressure, pressure
in the two radial expansion cavities (balloons), and the pressure in the axial expansion
cavity (bellows). A detailed description of the Endoworm control device, the three inflatable
cavities, and the inflation-deflating sequence can be found in [15].

The system pressure typically ranges from 200 to 300 kPa, depending on the configu-
ration entered by the user. The pressure signals, measured in real time from the balloons
and bellows, vary from 0 kPa to system pressure.

Of these four pressure signals, only the three corresponding to inflatable cavities are
of interest for air leak detection. Therefore, these will serve as sources of information from
which to extract the features to be used as inputs for the predictive model of each type of
cavity (balloons or bellows).

The cavities are directly connected to the “Honeywell” pressure sensor “26PCFFA2G”,
which can measure maximum differential pressure of 100 psi (689.476 kPa) with a sensitivity
of 1 mV/psi (145.038 µV/kPa). This is important as the sensor model was changed from
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that used in [14,15], increasing the full scale of the measurement to 320 kPa. The gain of
the AD620 instrumentation operational amplifier was readjusted to 107.73 V/V, achieving
the desired full scale and a resolution of 0.313 kPa/bit. Between the output of the AD620
and the ADC input of the PIC18F4550 microcontroller, an anti-aliasing filter (first-order
passive low pass filter) was placed. The cutoff frequency of the anti-aliasing filter is 10 Hz.
This frequency was selected because all the representative spectral content of the signals is
contained below this cutting frequency. Moreover, it allows a reliable representation in the
time domain of the fast transients present in the signals. The sampling frequency selected
for the signals is 200 Hz, resulting in a time resolution of 5 ms per sample.

An external module was developed to acquire the main analogue and digital signals,
in real time, that define the behavior of the control device (Sniffer), avoiding overloading
the device’s control microcontroller.

The Sniffer was a board based on the Atmega2560 microcontroller. It was connected
via a matching board to the microcontroller pins of the control device. The digital I/O of
the Sniffer and the control device were connected directly. In contrast, the analogue signals
from the pressure sensors were connected to the Sniffer via four rail-to-rail operational
amplifiers in buffer configuration (MCP6044), whose function was impedance matching
between the inputs to the ADCs of the PIC18F4550 and the Atmega2560. Figure 1 shows a
block diagram illustrating the connection of the Sniffer to the control device.
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Figure 1. Diagram of the circuit for adapting the 26PCFFA2G sensor output signal to the ADC input
of the Endoworm microcontroller (PIC18F4550), as well as the capture of the pressure signals, through
the impedance matching board, and the main digital control signals.

The Sniffer records and sends to an external PC the pressure signals, the states of the
solenoid valves, the state of the pneumatic pumps, and the main parameters of the Finite
State Machine, which determine the control behavior of the device. The theoretical basis on
which the programming of the Endoworm control device is based can be found in [22].

The data used to generate the predictive models were obtained by performing tests
on the Endoworm enteroscopy system, aiming to capture the device’s normal functioning.
A PU (polyurethane) artificial bowel model with an internal diameter of 40 mm was used
for all tests. The intestine and the cavities used were characterized, and the results can be
found in [14].

A total of 121 recordings were made, attempting to capture as much behavioral
variability as possible in the operation of the Endoworm system. In some trials, the device
was allowed to move freely (without being operated by any user); in others, it was driven
by an expert endoscopist. The speed of the cavity sequence, its inflation–deflation times,
and the system’s maximum pressure were varied. Three possible values for the sequence
speed (“Low”, “Medium”, and “High”) could be established. The inflation and deflation
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times determined by the opening times of the solenoid valves varied from 0.050 to 0.125 s
for balloons and from 0.8 to 1.4 s for bellows.

The “Right” or “Leak” operation was determined by the persons performing the
experiment, on the basis of the observation of air leaks, for each inflation–deflating cycle of
each cavity.

Figure 2 shows the pressure signals from the Endoworm control device corresponding
to a segment of a recording in which all cavities were functioning correctly.
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system pressure (red), fixed balloon (dark blue), mobile balloon (blue), and bellows (green).

The digital processing of the signals and the training of the classification predictive
models were carried out using the “Matlab R2022a” software under a research license
acquired by the Universitat Poltècnica de València.

A segmentation of the signals was carried out, consisting of two steps: signal swell
detection and windowing of the signal. Swell detection was set as the instant at which
the rising edge of the cavity pressure signal occurs. It was a robust parameter because
whenever the solenoid valve was ordered to open, an abrupt rise in pressure was recorded
in the sensors and calculated by detecting the positive peak of the derivative of the signal.
From the time at which inflation occurs, a signal windowing was established to cover a
complete cavity inflation–deflation cycle. This windowing was different depending on the
type of cavity.

Figure 3 shows an example of the segmentation of each type of cavity, revealing the
pressure signal, its derivative, and the instant in which the swelling of the cavity was
detected. In addition, the time window corresponding to the segmented signal is shown.

A total of 2350 balloon-type segmented signals and 924 bellows-type segmented signals
were obtained. These were assigned the label (“Right” or “Leak”) designated by the qualified
personnel during the tests. Figure 4 shows typical signals representing the two possible
states of the two cavity types that make up the Endoworm.

Once the balloon and bellows signals were segmented and associated with their corre-
sponding classification, they were randomized. The data for each cavity type were divided
into two subsets: cross-validation (80%) and testing (20%).
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Subsequently, the features of the signals were extracted. The features were identified
to reflect, quantitatively or categorically, the physical–mathematical aspects of the signals
to reflect the differences between cavities without and with leakage. In the case of the
balloon-type cavities, a total of 12 features (a1–a12) were extracted, while, for the bellows-type
cavities, a total of 13 features (b1–b13) were extracted.

The features of both cavity types were divided into four subgroups: a1–a3, a6–a8, and
b1–b8 to quantify pressure losses using different metrics; a4 and b4 to measure the time
difference between the detection of inflation and deflation; a10, a11, and b10–b12 to indicate
the correlation of the signal concerning different standard signals of the “Right” or “Leak”
classes; a5, a12, and b13 to indicate categorical variables that, depending on a premise, assign
a logical value (zero or one). Specifically, a5 indicates whether or not a deflating edge
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was detected, while a12 and b13 assign a label depending on the class of the pattern with
the highest correlation value between the features a10 and a11 in the balloon and b10–b12
in the bellows, respectively. For a more extensive description of all extracted features, see
Appendix A.
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In order to optimize the performance of the algorithms and make their training
more efficient, the descriptors were subjected to a normalization process using the z-score
method [22–24].

The training of the predictive models was facilitated by a prior selection of features
using filters. To increase the discriminant potential, those variables that obtained better
results with respect to an objective function were selected. A total of four filters were used:
Fisher’s score [25,26], ReliefF [27,28], Chi-square [29], and MRMR [30,31] (see Appendix B
for a description of filters). Applying the four filters, four scores and ranking positions
were obtained for each feature. A total score for the features was obtained by adding the
ranking positions of each filter, which was lower for a better position. From this score,
a total ranking was obtained that guarantees the same weight to the four filters when it
comes to taking them into account when selecting the features. On this basis, the eight best
characteristics were chosen for each type of cavity, discarding the rest.

Subsequently, the training and the validation of the predictive models were carried
out. For this purpose, the k-fold cross-validation technique was used to make the most of
the cross-validation subset, which was divided into k-folds. Typically, a low k-value means
that the training subset was smaller and the validation subset was higher in percentage.
This could result in a higher average prediction error (when averaging the results of the
k-folds). In contrast, a high k-value would be the opposite; a higher training subset and a
lower validation subset (in percent)could result in a lower average prediction error [32].
It is widely accepted to use a number of k between five and 20 folds [33]. A total of five folds
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were used for both types of cavities. This way, five instances of training were performed
with 80% of the dataset for the cross-validation and 20% for validation. The ratio between
the validation and test set was maintained at 20%.

The “Classification Learner” app in “Matlab R2022a” was used to obtain the classifica-
tion predictive models. Algorithms that require a low computational cost and memory
usage were selected because the models obtained were intended to be implemented in the
device’s microcontroller. The following models (from the “Classification Learner” app) were
trained: fine, medium, and coarse tree, linear and quadratic discriminant, logistic regression, linear,
quadratic and cubic SVM, and narrow, medium, and bilayered neural Network, yielding a total of
12 different algorithms. For training the models, the default hyperparameter configu-
ration of the app was maintained, and it was not modified during the whole training
and validation process (cross-validation). It was not considered necessary to adjust the
hyperparameters of each of the different algorithms.

During the cross-validation process, the wrapper technique was applied [34]. It started
with the eight previously selected features, from which a reduced set that presented the
best possible performance was obtained. The selected features were tested, and the test
performance, together with the cross-validation, produced the final performance of each
model. Due to high combinatoriality, the wrapper procedure gave rise to the training and
validation of the 12 classification algorithms. Only the best-performing combinations of
input features and algorithms are shown. The main metrics used for this purpose were
accuracy, recall, precision, and F1-score [35]. Finally, the selected model of each type had a
tradeoff among better performance, lower computational cost and memory usage, and a
set of input features that were easy to compute.

3. Results
3.1. Structure of the Datasets

Tables 1 and 2 show the prevalence of the two classes, “Right” and “Leak”, in the two
available datasets, balloon and bellows cavities, respectively.

Table 1. Number of cases and percentage distribution of the classes for the subset of balloon-type data
into which the initial dataset was subdivided.

Data Subset Class N Percentage

Cross-
Validation

Right 1593 84.73

Leak 287 15.27

Test
Right 387 82.34

Leak 83 17.66

Total
Right 1980 84.26

Leak 370 15.74

Table 2. Number of cases and percentage distribution of the classes for the subset of bellows-type data
into which the initial dataset was subdivided.

Data Subset Class N Percentage

Cross-
Validation

Right 637 86.20

Leak 102 13.80

Test
Right 151 81.62

Leak 34 18.38

Total
Right 788 85.28

Leak 136 14.72
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3.2. Preliminary Screening of Features

Box-and-whisker plots of the quantitative features of the cross-validation subset for each
cavity type are plotted in Section 3.4 and Figure 6; categorical features were suppressed
because they do not provide useful information in this type of plot. The cases were grouped
according to whether they were previously classified as “Right” or “Leak”.
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3.3. Feature Selection
Tables 3 and 4 show the results of applying the filters for the balloon and bellows features,
indicating scores and rankings by features.

3.4. Classification Predictive Models
This section presents a selection of the best results obtained by training the different
classification predictive models and following the assumptions specified in Section 2.
Table 5 shows the main results for leak detection in the balloon-type cavity, where the “Leak”
class is defined as positive, and the “Right” class is defined as negative.
The best-performing and simplest classification predictive model for balloon-type cavities
was the medium tree algorithm with input features a4, a6 and a7. Its final performance was
99.62% accuracy, 98.11% recall, 99.45% precision, and 98.78% F1-score.
Figure 7 shows the ROC curve resulting from cross-validation for the classification predic-
tive model obtained with medium tree algorithm with input features a4, a6, and a7. The
ROC curve obtained for the best-performing balloon cavity models, shown in Table 5,
is very similar to the one shown. The AUC of the best models of the balloon cavity was in
the range of 0.97 to 0.99.
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Table 3. Results of applying filters for the features of the balloon signals.

Features
Scores Ranking

Fisher’s ReliefF Chi2 MRMR Total

a1 0.218 0.123 114.2 1.5 × 10−14 10

a2 0.386 0.000 160.3 2.9 × 10−14 11

a3 2.610 0.049 708.1 2.8 × 10−14 5

a4 15.824 0.073 711.9 3.9 × 10−1 1

a5 12.875 0.000 65,535.0 9.5 × 10−14 2 or 3

a6 0.002 0.054 576.7 5.9 × 10−14 8

a7 2.032 0.017 630.8 1.1 × 10−13 4

a8 0.004 −0.001 13.3 7.6 × 10−14 12

a9 1.644 0.050 684.8 9.8 × 10−14 2 or 3

a10 0.051 0.058 191.3 3.9 × 10−14 9

a11 0.239 0.033 347.0 3.3 × 10−1 6

a12 2.766 0.000 457.1 8.0 × 10−14 7
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Table 4. Results of applying filters for the features of the bellows signals.

Features
Scores Ranking

Fisher’s ReliefF Chi2 MRMR Total

b1 0.442 0.043 278.627 0.098 5

b2 0.017 0.000 2.338 0.002 12

b3 0.433 0.010 99.692 0.099 9

b4 0.570 0.034 278.873 0.199 2 or 3

b5 0.000 0.000 0.000 0.000 13

b6 0.579 0.042 278.873 0.131 2 or 3

b7 0.283 −0.017 38.996 0.061 11

b8 0.127 0.004 278.566 0.387 6 or 7

b9 3.009 0.009 218.732 0.061 6 or 7

b10 1.380 0.019 211.381 0.332 4

b11 4.779 0.019 266.701 0.259 1

b12 0.010 0.007 40.772 0.008 10

b13 1.751 0.000 114.625 0.128 8

Table 5. The seven models that obtained the best results for leak detection in balloon-type cavities.
Results are expressed as percentages.

Algoritm Features
5-Fold Cross-Validation Test Total

Acc. Recall Pre. F1-Sc. Acc. Recall Pre. F1-Sc. Acc. Recall Pre. F1-Sc.

Medium tree

a4, a6, a7 99.63 98.26 99.30 98.77 99.57 97.59 100 98.78 99.62 98.11 99.45 98.78

a3–a7, a9, a11, a12 99.63 98.26 99.30 98.77 99.57 97.59 100 98.78 99.62 98.11 99.45 98.78

a4, a6 99.36 97.91 97.91 97.91 99.79 98.80 100 99.39 99.45 98.11 98.37 98.24

Bilayered
neural network a3–a7, a9, a11, a12 99.41 97.21 98.94 98.07 99.57 97.59 100 98.78 99.45 97.30 99.17 98.23

Narrow
neural network a4, a6, a7, a9 99.36 97.21 98.59 97.89 99.79 98.80 100 99.39 99.45 97.57 98.90 98.23

Quadratic SVM a4–a7 99.36 96.17 99.64 97.87 99.57 97.59 100 98.78 99.40 96.49 99.72 98.08

Medium
neural network a4–a7 99.36 98.26 97.58 97.92 99.36 96.39 100 98.16 99.36 97.84 98.10 97.97
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Figure 8 shows the scatter plots of the three input features to this predictive model.
It also indicates the cases that were hit and miss in the model’s classification of the entire
dataset.

On the other hand, the models of the bellows cavities obtained perfect results, with
a correct classification for all the cases presented (100% accuracy). The best-performing
algorithms were logistic regression, linear SVM, neural networks, and coarse tree, when features
b1, b4, and b6 were part of the input set to the models.

Figure 9 shows the ROC curve resulting from cross-validation for the classification
predictive model obtained with the logistic regression algorithm with input features b1, b4,
and b6. The ROC curve obtained for the best-performing bellows cavity models is identical
to the one shown. The AUC was 1.00 for all models.

Figure 10 shows the scatter plots of the three input features to this classification pre-
dictive model. It also indicates the cases that were hit and miss in the model’s classification
of the entire dataset.
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4. Discussion

The results showed an imbalance in the two datasets (balloon and bellows), being
around 85% for the “Right” class versus 15% for “Leak” for both (Tables 1 and 2). This
fact must be considered to evaluate the performance of the predictive classification. FN
(false negative) mean that the device does not detect air leakage, resulting in unnecessary
air injection into the patient’s small bowel, while FP (false positive) is the opposite case,
resulting in unnecessary interruption of the scan due to false detections of leakage, which
is also undesirable for the device’s proper functioning. In the issue at hand, it is preferable
to give priority to FNs over FPs, as this prioritizes patient safety over the interruption of
the scan. Therefore, the model with the best F1-score result and minimum number of FN
was prioritized, i.e., the one with the highest recall.

In the exploration of the cavity features, it was detected that a8 and b5 had a value of
0 kPa in all the samples (Section 3.4 and Figure 6). This did not provide any discriminant
capacity to our predictive models; hence, it can be anticipated that they will obtain very
low scores when applying the filters. These two features belong to the subgroup of pressure
parameters; more specifically, both indicate the pressure 0.5 s before cavity inflation occurs.

Section 3.4 and Figure 6 show that the features a1, a2, a6, a7, a10, a11, b2, b3, b7, and b9–b12
overlapped with the boxes and/or whiskers of the two classes, indicating that, on their
own, they did not appear to have high discriminatory power between classes. In contrast,
the features a3, a4, a9, b1, b4, b6, and b8 did not have overlapping boxes or whiskers between
classes, but presented anomalous data that overlapped with the boxes and whiskers or
anomalous data from the opposite class. The latter group of features had a high interclass
discriminant potential on their own.

Following the preliminary analysis of the features, the filters were applied; the results
are shown in Tables 3 and 4 for the balloon and the bellows, respectively. Calculating the total
ranking, it was guaranteed that the four filters provided the exact weighting. On this basis,
the eight best characteristics of each cavity type were selected, and the rest were discarded.
Thus, a1, a2, a8, and a12 were discarded for balloon-type cavity models, and b2, b3, b5, b7, and
b12 were discarded for bellows.

As mentioned in Section 3, the AUC ranges obtained in the training of the best models
were between 0.97 and 0.99 for the balloon cavity models and 1.00 for the bellows cavity
models. This indicates that the performances obtained by the models were excellent.
Additionally, in the representative ROC curves of the models (see Figures 7 and 9), it can
be seen that the training of the models converged with few iterations, and that they were
very close to the ideal ROC.

Regarding the models obtained, it can be said that the algorithms that performed best
from highest to lowest performance for balloon cavities were medium tree, neural networks, and
quadratic discriminant. Furthermore, most of the interclass discriminating power, regardless of
the algorithm, was concentrated in the features a4, a6, and a7 (see Table 5). It was observed that
the combination of a4 with a6 and a7 gave high discriminatory power, as the cases of different
classes tend to be grouped, except for some cases of “Leak” that were embedded within the
cluster of cases of the “Right” class. However, a4 and a7 did not have such a clear separation
of cases and tended to intermingle to a greater extent (see Figure 8).

On the other hand, the predictive models of the bellows cavities obtained perfect re-
sults, with a correct classification for all the cases presented. The algorithms with the
best performance for this case were logistic regression, linear SVM, neural networks, and
coarse tree. These excellent results could be explained by the absolute discriminant power
of the b6 feature, which was capable of 100% classification accuracy in the vast major-
ity of algorithms. Excellent predictive power was obtained if this was combined with
the b4 feature (see Figure 10).

For the detection of air leaks in balloon cavities, we chose the classification predictive
model obtained with the medium tree algorithm and the input features a4, a6, and a7. It had
a final performance of 99.62% accuracy, 98.11% recall, 99.45% precision, and 98.78% F1-score.
The model achieved the best result for the F1-score/recall ratio. Moreover, this model was
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chosen due to its low computational cost and memory usage, and the input features were
simple to calculate.

Tree-type algorithms are implemented straightforwardly by nesting “if–else” state-
ments that compare a given threshold of input features to the model (establishment of
decision boundaries).

It had as input features a4, a6, and a7, which were simple to calculate and required a low
computational cost compared to other features. The feature a4 was the time in seconds from
detecting balloon cavity inflation to detecting deflation. The feature a6 was the variability
of the cavity pressure in kPa in the time span from when the pressure signal stabilized after
the inflation transient to the detection of cavity deflation. The feature a7 was the average
pressure in the time range between 100 and 50 ms before detecting deflation of the signal.

The only features that were computationally and memory-intensive were those that
belonged to or were directly related to the subgroup of features that showed the correlation of
the signal to different standard signals of the “Right” or “Leak” classes (a10–a12 and b10–b13).

To detect air leaks in the bellows cavities, we chose the classification predictive model
obtained with the logistic regression algorithm with the input features b1, b4, and b6, achieving
a performance of 100% in all metrics. In addition to presenting unbeatable results, it was
selected because a predictive logistic regression model is easy to implement on a microcontroller
and requires a low computational cost. Moreover, the input features it used were easy to
compute. The feature b1 was the difference (in kPa) between the pressure in the bellow cavity
when inflation was detected and the pressure just before deflation was detected. The feature
b4 was the average of the derivative of the pressure signal (kPa/s) at the instant between the
detection of cavity inflation and the instant just before detection of cavity inflation. In contrast,
feature b6 estimated the pressure slope (kPa/s) calculated as feature b1 divided by the time
elapsed between the detection of cavity inflation and deflation.

5. Conclusions

This article aimed to obtain two classification predictive models, one for each type
of cavity (balloon and bellows), that detect the presence of air leaks from the cavity and
that could be implemented within the Endoworm control device. The models served two
purposes: safety for patients and effective functioning. The most important was patient
safety against possible problems due to excess air insufflation in the small intestine after an
air leak. The second was to provide the device with a mechanism to ensure its effective
functioning. If any cavities leak air, the translation system will not effectively perform its
function (i.e., to fix and retract the intestine over the endoscope advancing through the
digestive tract).

In order to achieve this objective, a series of features were extracted after digital
processing of the pressure signals. Features were analyzed and selected by filtering. Later,
fivefold cross-validation with wrappers for the training and validation of different supervised
classification predictive models was applied. Finally, these models were tested with a
subsequent selection of the best set of features and algorithm that obtained the best results.

Following this procedure, it was concluded that the best model for air leakage detection
in balloon cavities was crafted from the medium tree algorithm and the input features
a4, a6, and a7. The best model for the bellows cavities was composed of the logistic regression
algorithm and the input features b1, b4, and b6.

With regard to the features extracted from the signals of the balloon cavities, it can be
concluded that the best discriminating results were obtained by combining that which measures
the time the cavity remained inflated (a4) with two parameters that measured the pressure and
variability of the pressure once the cavity inflation pressure stabilized (a7 and a6, respectively).
On the other hand, the features extracted from the signals of the bellows cavities were those
that measured the pressure loss while the cavity remained inflated, either incrementally (b1) or
through the derivative or approximations thereof (b4 and b5, respectively).

The algorithm and features used in both models required relatively low computational
costs, allowing them to be run on the microcontroller of the Endoworm control device
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without problems. This will allow detecting, practically in real time, the presence or absence
of air leaks in the medical device during small bowel examinations in patients.

The results obtained in this article are encouraging and meet the proposed objectives,
as models with a high degree of reliability were obtained. In the future, the models obtained
in this article should be tested and validated with experimental data on animal models
(pigs are generally used) and subsequently with clinical trials on patients.
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Appendix A

Bellow: the description of the features that were extracted from the pressure signals of
the balloon (ai) and bellows (bi) type cavities are shown below.

a1: Pressure drop occurring in the signal’s stationary regime while the cavity remains
inflated. It is calculated as the difference between the pressure value 1.5 and 3 s after the
detection of cavity inflation (kPa).

a2: Pressure value close to the deflation of the signal. This is the pressure value 3 s
after cavity inflation is detected (kPa).

a3: Pressure in the stationary regime when the cavity is inflated. It is calculated as the
average of sample pressures between 1.5 and 3 s after the detection of cavity inflation (kPa).

a4: Time between detection of inflation and deflation of the cavity. It is calculated as
the difference between the instant of time at which deflation is detected with inflation (s).

a5: Categorical feature indicating whether cavity deflation is detected. Its value is ‘1′ if a
negative peak in the derivative of the pressure signal is detected in the time interval between
1.5 and 4 s after the detection of cavity inflation; otherwise, its value is ‘0′ (dimensionless).

a6: Variability of pressure in the stationary regime when the cavity remains inflated.
It is calculated as the statistical variability of the pressure values between the time instants
1.5 and 3 s after the detection of cavity inflation (kPa).

a7: Average pressure immediately before to the detection of cavity deflation. It is calculated
as the average pressure between 100 and 50 ms before cavity deflation is detected (kPa).

a8: Average pressure before the cavity is inflated. It is calculated as the average
pressure of the values between 550 and 450 ms before cavity inflation is detected (kPa).

a9: Average cavity deflation slope in the stationary regime when the cavity is inflated.
It is calculated as the average of the derivative of the pressure values between 1.5 s after
cavity inflation and one sample before signal deflation is detected. In the case where cavity
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deflation is not detected (feature a5), it is calculated as the average of values between 1.5
and 3 s after the detection of signal inflation (kPa/s).

a10: Maximum correlation of the segmented pressure signal concerning four standard
signals of the class “Right”. It is calculated by obtaining the correlation of the four standard
signals concerning the segmented signal, assigning to the value of the feature the highest
value of the four correlations obtained (dimensionless).

a11: Maximum correlation of the segmented pressure signal concerning four standard
signals of the class “Leak”. It is calculated using the same method as a10 (dimensionless).

a12: Categorical feature indicating whether the signal is of the “Right” or “Leak” class
on the basis of the correlation value of the signal concerning the standard signals of the two
classes. It is assigned a value of ‘0′ if a10 is greater than a11 and ‘1′ otherwise (dimensionless).

b1: Pressure loss that occurs while the cavity is inflated. It is calculated as the difference
between the maximum pressure from the time cavity inflation is detected until 1 s later and
the minimum pressure from the time cavity deflation is detected until 1 s earlier (kPa).

b2: Maximum peak of the derivative of the segmented pressure signal, corresponding to
cavity inflation. It is calculated as the maximum value of the derivative of the signal (kPa/s).

b3: Minimum peak of the derivative of the segmented pressure signal, corresponding to
cavity deflation. It is calculated as the minimum value of the derivative of the signal (kPa/s).

b4: Average slope of the pressure loss that occurs while the cavity remains inflated.
It is calculated as the average of the derivative values between the maximum peak (inflated)
and the minimum peak (deflated) of the derivative of the pressure signal (kPa/s).

b5: Average pressure before to cavity inflation. It is calculated as the average pressure
between 200 and 250 ms before detection of cavity inflation (kPa).

b6: Estimation of the pressure loss slope while the cavity remains inflated. It is calculated
as the feature b1 divided by the time difference between the detection of deflation and inflation
of the cavity (kPa/s).

b7: Variability of the pressure loss slope while the cavity remains inflated. It is calculated
as the statistical variability of the values of the pressure derivative between the maximum and
minimum peak of the derivative (kPa/s).

b8: Variability of pressure while the cavity remains inflated. It is calculated as the
statistical variability of the pressure values between inflation and deflation detection (kPa).

b9: Time the cavity remains inflated. It is calculated as the difference between the time
instant at which deflation and inflation are detected (s).

b10: Maximum correlation of the segmented pressure signal concerning three standard
signals of the class “Right”. It is calculated by obtaining the correlation of the three standard
signals with respect to the segmented signal, assigning to the value of the feature the
highest value of the four correlations obtained (dimensionless).

b11: Maximum correlation of the segmented pressure signal concerning two standard
signals of the class “Leak”. It is calculated using the same method as b10 (dimensionless).

b12: Maximum correlation of the segmented pressure signal concerning two standard
signals of the class “Leak”. It is calculated using the same method as b10, but the standard
signals are different from those used in b11 (dimensionless).

b13: Categorical feature indicating whether the signal is of the “Right” or “Leak” class on
the basis of the correlation value of the signal concerning the standard signals of the two classes.
It is assigned a value of ‘0′ if b10 is greater than b11 or b12 and ‘1′ otherwise (dimensionless).

Appendix B

The formulation of the four types of filters used for the selection of the features is
shown below.

1. Fisher’s score was calculated according to Equation (A1).

F(k) =
∑c

i=1 ni
(
µi

k − µk
)2

∑c
i=1 ni

(
σi

k
)2 , (A1)
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where ni is the number of the i-th class, µi
k and σi

k are the mean and variance of the k-th
feature in the i-th class, respectively, and µk is the mean of the k-th feature in all classes [26].

2. ReliefF score was calculated using the default algorithm in Matlab 2022a using the
“relieff ” function. This algorithm works best for estimating feature importance for
distance-based supervised models that use pairwise distances between observations
to predict the response. The theoretical development of the calculations made by the
algorithm to obtain the feature scores was described in [27].

3. Chi-square score was calculated using the default algorithm in Matlab 2022a using the
“fscchi2” function. This filter examines whether each predictor variable is independent
of a response variable using individual chi-square tests, ranking the features using
the p-values of the chi-square test statistics. The theoretical development of how the
algorithm works to obtain the scores and the ranking was shown in [29].

4. MRMR score was calculated using the default algorithm in Matlab 2022a using the
“fscmrmr” function. The MRMR algorithm is responsible for finding an optimal set
of features that are mutually and maximally dissimilar and that can effectively repre-
sent the response variable. The algorithm’s goal is to minimize the redundancy of a
set of features and maximize the relevance of a set of features to the response variable.
The algorithm quantifies redundancy and relevance using the mutual information of the
variables (by pairs of features) and mutual information between a feature and the response.
The theoretical and mathematical development of the algorithm was shown in [31].
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