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Abstract: Emptying processes are typical maneuvers that should be performed by water distribution
companies for operation purposes. These processes involve a complex numerical analysis, since a
set of algebraic and ordinary differential equations needs to be solved for the intricacy of hydraulic
and thermodynamic formulations for two analyzed phases (liquid and gas). This research provides
an implicit equation to compute exactly the final conditions in water emptying operations in single
pipelines without an air valve (or admitted air). The implicit expression was developed by considering
that for all final conditions, the water velocity is null, and thus, the water column length and air
pocket pressure can be computed. The friction factor, internal pipe diameter, and opening maneuvers
of drain valves do not disturb the final conditions in draining processes. The developed implicit
formulation was validated using experimental measurements in a pipeline with a total length of
4.36 m. The equation is of utmost importance, since it can be utilized for engineers to easily plan for
future conditions in water distribution networks.

Keywords: emptying process; implicit formulation; transient flow; pipelines

1. Introduction

Emptying processes are common operations that should be performed in water dis-
tribution networks, since pipelines need to be maintained, repaired, and/or cleaned [1,2].
These processes are complex for simulating, because they involve the analysis of two fluids
(water and air), where thermodynamic and hydraulic equations need to be formulated
for knowing the behavior of the variables that describe these phenomena [2]. The imple-
mentation of mathematical models can vary depending on the installation or absence of
vacuum air valves [3]. When vacuum air valves are installed, the water installation can be
completely drained, and down-surge pulses can be less risky in comparison to when these
devices have not been installed [2].

Mathematical models for analyzing emptying processes in water pipelines have been
studied by the authors in recent years, both numerically and experimentally [4–6] con-
sidering and neglecting air valves. Experimental tests have been conducted at Hydraulic
Laboratories of the University of Lisbon, Portugal, and Polytechnic University of Valencia,
Spain, which were used to validate mathematical models proposed by the authors [4–6].
Experimental measurements in emptying pipelines by pressurized air have been conducted
by some authors [7,8].
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Different kinds of approaches have been implemented for studying emptying oper-
ations. In this sense, 1D mathematical models have been developed for predicting the
evolution of the hydraulic and thermodynamic variables [4–6]. Afterwards, 2D and 3D
computational fluid dynamics were used to study not only the behavior of variables, but
also the backflow air phenomena [9–11]. The implementation of 1D mathematical models
can be complex for engineers, since they must formulate a system composed by algebraic
and ordinary differential equations. On the other hand, 2D and 3D CFD mathematical
models have a high computing time.

This research focused on emptying processes without vacuum air valves. Under
this consideration, the phenomenon can be modeled using three formulations for a one-
dimensional (1D) approach: (i) the mass oscillation approach for describing the water
column movement along a pipeline [12,13]; (ii) the polytropic law that describes the evo-
lution of an entrapped air pocket [14,15]; and (iii) the piston flow model that simulates
the air–water interface, which assumes a perpendicular separation of these two fluids
regarding the main direction of a pipeline [16,17]. The numerical resolution of the system,
composed by a set of algebraic and ordinary differential equations, is carried out using
numerical methods [18–20]. Air pocket pressure, water velocity, and air–water interface
position need to be computed to describe emptying processes in water pipelines. Currently,
the mathematical model developed by the authors [4] is the unique formulation based on
physical equations that can be used to simulate emptying operations with entrapped air
pockets in water pipelines.

The purpose of this research was to calculate the final conditions of emptying pro-
cesses without solving the set of algebraic and ordinary differential equations. An implicit
equation was obtained to compute the final conditions of emptying processes in single
pipelines. The new formulation was applied to a case study in order to know the final con-
ditions during emptying maneuvers, for both the hydraulic and thermodynamic variables.
The current research establishes an initial step for developing implicit formulations for
water pipelines of irregular profiles [21,22] with entrapped air pockets as well as various
air valves.

2. Numerical Approach

A mathematical model for simulating air pocket pressure (p*1), water velocity (v), and
water column length (L) during drainage maneuvers in pressurized water installations
was developed by the authors in previous publications [4]. A system of 3 × 3 algebraic
and ordinary differential equations needs to be solved to obtain the responses of the
aforementioned variables. Figure 1 describes the hydraulic and thermodynamic variables
for the initial and final conditions during an emptying process without admitted air. Air
pocket size is represented by x. The subscript 0 indicates the initial condition of an analyzed
variable, and the subscript f is used to represent the final condition. Figure 1a shows
the situation when a system is at rest, while Figure 1b presents the final position of an
emptying process.
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A drainage maneuver in a single water pipeline with a total length of LT and an
internal pipe diameter D can be analyzed using the formulations as follows:

dL
dt

= −v (1)

dv
dt

=
p∗1 − p∗atm

ρL
+ g sin θ − f

2D
v|v| − RvgA2

L
v|v| (2)

p∗1 =
p∗atmxk

0

(LT − L)k (3)

where v = water velocity, L = water column length, p*1 = air pocket pressure, patm
* = atmo-

spheric pressure, r = water density, g = gravity acceleration, f = the Darcy–Weisbach friction
factor, θ = pipe slope (rad), A = cross-sectional area of pipe, Rv = resistance coefficient, and
k = polytropic coefficient.

The initial conditions of the system are: v(0) = 0, L(0) = LT-x0, and p1*(0) = patm*
= 101,325 Pa.

The numerical resolution of Equations (1)–(3) provides the behavior of the variables
of the emptying process (v, L, and p1*). Commonly, mathematical packages (e.g., Matlab,
Scilab, or Octave) are utilized to compute the aforementioned variables. Equations (1)–(3)
correspond with the mathematical model developed by the authors in previous works [4,23].

To demonstrate an implicit formulation that can be used to compute final conditions
of draining processes, the following steps were developed in this research.

Equations (1)–(3) may be written in a simple form in a nonlinear differential equations
system (NDES) composed by two formulations and two variables (L and v). The new
system is transformed by plugging Equation (3) into Equation (2). Now, Equations (1) and
(4) give the system responses.

dv
dt

=
p∗atmxk

0

ρL(LT − L)k −
p∗atm
ρL

+ g sin θ − f
2D

v|v| − RvgA2

L
v|v| (4)

The functions P and Q are defined by:

P(L, v) = −v (5)

Q(L, v) =
p∗atmxk

0

ρL(LT − L)k −
p∗atm
ρL

+ g sin θ − f
2D

v|v| − RvgA2

L
v|v| (6)

Then, the nonlinear differential equations system (NDES) can be written as:

dL
dt

= P(L, v) (7)

dv
dt

= Q(L, v) (8)

Bear in mind, the functions P and Q do not explicitly depend on time (t). Therefore,
the NDES is a nonlinear autonomous system, so it can be presented in a vector form. Thus,
the variables L and v are placed in a vector, X, and the functions P and Q are also included
in vector V, as follows:

V(L, v) = 〈P(L, v), Q(L, v)〉, X(t) = 〈L(t), v(t)〉 (9)

Thus, both X and V are functions of t, so it can then be deduced that:

X′(t) = V(L(t), v(t)) (10)
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In this sense, V defines a vector field in a region in the plane (L, v) and the solution of
the ordinary differential. Equation (10) describes the trajectory of a particle moving in a
region with velocity V, passing through the initial point X(0) = (LT-x0, 0) at time t = 0.

Because X(t) is a vector function of t, then the points (L(t), v(t)), where (such that) X′

(L(t), v(t)) = (0, 0), are critical points of X. In order to find critical points, it is necessary to
calculate V(L(t), v(t)) = (0, 0), which implies that: 〈P(L, v), Q(L, v)〉 = (0, 0). Then, the NDES
(see Equation (4)) is reduced to:

p∗atmxk
0

ρL f

(
LT − L f

)k −
p∗atm
ρL f

+ g sin θ = 0 (11)

where L f = water column length at the end of an emptying process.
Since there is not an algebraic method to solve Equation (11) because it has a decimal

power k (polytropic coefficient), the Newton–Raphson method was used to find L f at the
end of the transient event at t f . Otherwise, to begin the root search, it is important to have
a good seed or initial value to guarantee the convergence of the algorithm. In this sense,
the condition of a polytropic evolution (k = 1.0) was considered, because with it, an explicit
equation is obtained. Thus, considering k = 1.0, Equation (11) can be reduced as:

p∗atmx0 − p∗atm

(
LT − L f

)
+ g sin θρL

(
LT − L f

)
ρL
(

LT − L f

) = 0 (12)

By organizing terms:

− g sin θρL2
f + L f (p∗atm + g sin θρLT) + (p∗atmx0 − p∗atmLT) = 0 (13)

By solving the quadratic equation for an Lf value, the initial value of L f ,0 is found for
the method,

L f ,0 =
−p∗atm − g sin θρLT +

√
(p∗atm + g sin θ ρ LT )2 + 4g sin θρp∗atm(x0 − LT)

−2g sin θ ρ
(14)

By using the Newton–Raphson method, the final value of Lf can be found with few

iterations. The definition of j
(

L f ,i

)
is given by:

j
(

L f ,i

)
=

p∗atmxk
0

ρLi

(
LT − L f ,i

)k −
p∗atm
ρL f ,i

+ g sin θ (15)

By deriving the last equation:

j′
(

L f ,i

)
= −

p∗atmxk
0

ρ

 1

L f ,i
2
(

LT − L f ,i

)k −
k

Li

(
LT − L f ,i

)k+1

 +
p∗atm

ρL f ,i
2 (16)

This application guarantees obtaining the correct values, since j′(Lf,i) is not null, when
considering seed values ranging from 0 to LT-x0. The value Li+1 can be computed by
considering the following formulation:

L f ,i+1 = L f ,i −
j
(

L f ,i

)
j′
(

L f ,i

) (17)

Figure 2 shows a flowchart to use the obtained implicit formulation.



Water 2022, 14, 3364 5 of 13

Water 2022, 14, x FOR PEER REVIEW 5 of 15 
 

 

This application guarantees obtaining the correct values, since j′(Lf,i) is not null, when 
considering seed values ranging from 0 to LT-x0. The value Li+1 can be computed by con-
sidering the following formulation: 𝐿 , = 𝐿 , − 𝑗 𝐿 ,𝑗 𝐿 ,  (17)

Figure 2 shows a flowchart to use the obtained implicit formulation. 

 
Figure 2. Flowchart for computing final conditions in a single water emptying pipeline. 

 

Figure 2. Flowchart for computing final conditions in a single water emptying pipeline.

3. Analysis of Results
3.1. Practical Application

This section presents the application of these formulas to a case study. In this sense,
the objective was to follow the presented flowchart (see Figure 2) to know the final position
of a water column without applying the system composed by the three differential ordinary
equations (see Equations (1) to (3)). To note the order of magnitude of the hydraulic and
thermodynamic variables, the case study had the following data: LT = 600 m, f = 0.018,
D = 0.35 m, Rv = 0.06 ms2 m−6, x0 = 200 m, k = 1.2, g = 9.81 ms−2, r = 1000 kg/m−3,
p*atm = 101,325 Pa, and θ = 0.025 rad. Figure 3 presents the evolution of length and water
velocity for the case study, which was obtained by solving the differential ordinary system
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composed by Equations (1)–(3). The numerical resolution of these equations was imple-
mented by the authors in previous publications. At the beginning of the transient event,
a maximum water velocity value of 2.66 m/s was attained at 25 s. A minimum value of
−0.62 m/s was found at 160 s. After that, water velocity pulses were observed. From 3000
to 5000 s, the water velocity tended to be null (v = 0), which corresponded to the final water
position during the transient event. The length of the water column rapidly decreased,
passing from 400.0 m (at 0 s) to 202.9 m (at 124 s), which implied that almost half of the
water column was drained. Then, some oscillations were detected, tending to a final value
of 221.2 m (from 3000 to 5000 s).
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Figure 3. Evolution of length and water velocity for the case study.

The final water column position is shown in a diagram of length versus water velocity
(see Figure 4). The system starts at rest (v(0) = 0, and L(0) = 400 m). The maximum value of
water velocity (2.66 m/s) is related to a water column length of 354.3 m. A spiral curve is
presented towards the final position of the water column, reaching a water column length
of 221.2 m.
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Based on the application of the flowchart (see Figure 2), it is possible to determine
the final water column position without running the mathematical model composed by
Equations (1)–(3). At the end of the transient flow, the water velocity was zero (v = 0), and
the final water column position was 221.20 m (see Figure 2). Table 1 presents a scheme
for computing the final water column position based on Figure 2, with a tolerance of
2.2204 × 10−17, which is practically null). According to the results, the Newton–Raphson
method can converge rapidly (within four iterations) to find the required value. In this
sense, the first iteration provided a value of 220.16 m, the second one found a value of
221.19 m, and from the third iteration, the value remained practically constant (221.20 m).
The remaining iterations provided the same value. Figure 5 shows the results of the
application of the Newton–Raphson method, which confirms how the convergence process
is rapidly carried out. It shows how, from iteration three, there was no variation in the
computation of Lf.

Table 1. Newton–Raphson method.

i Lf,i (m) J (Lf,i) j′ (Lf,i) Lf,i+1 (m) Lf,i+1 − Lf,i (m)

0 204.33 −0.03197 0.00202 220.16 15.83
1 220.16 −0.00185 0.00180 221.19 1.03
2 221.19 −0.00001 0.00178 221.20 0.00
3 221.20 0.00000 0.00178 221.20 0.00

. . . . . . . . . . . . . . . . . .
18 221.20 0.00000 0.00178 221.20 0.00

Note: i represents a specific iteration.
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3.2. Validation

The experimental results were used to validate the developed implicit formulation.
Data were obtained from Fuertes-Miquel et al. (2018) [23]. The experimental facility
consisted of a PVC pipe that was 4.36 m long, with an internal pipe diameter of 42 mm.
Figure 6 shows the used experimental facility. The total length was composed of two
branches: an inclined pipe branch (4.16 m) and a vertical pipe branch (Lp = 0.2 m). A
pressure transducer was installed at the upstream end, and a scour valve (ball valve) was
installed at the downstream end to control the variation of water flow.
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Details of the experimental facility and experimental tests can be found in Fuertes-
Miquel et al. (2018) [23]. When an inclined pipe is analyzed, the gravity is ∆z/L = sin θ,
while for the analyzed pipe system, the gravity term is:

∆z
L

=
L− Lp

L
sin θ +

Lp

L
cos θ (18)

Then, for the analyzed pipeline, the critical point can be found using the formulation
as follows:

p∗atmxk
0

ρL(LT − L)
− p∗atm

ρL
+ g
(

L− Lp

L
sin θ +

Lp

L
cos θ

)
= 0 (19)

where Lp represents the vertical pipe length (0.2 m).
The experimental tests were conducted at the Polytechnic University of Valencia,

Spain. A total of 12 experiments were performed as shown in the reference published by
Fuertes-Miquel et al. (2018) [23]. For validation purposes, two experiments were used: (i)
Test No. 1, which corresponds to an air pocket size (x0) of 0.205 m and a pipe slope (θ) of
0.515 rad; and (ii) Test No. 2, where an x0 value of 0.45 m and an θ value of 0.457 rad were
considered. Programmed maneuvers were used with maximum resistance coefficients (Rv)
of 30.86 × 106 and 14.79 × 106 ms2m−6 for Tests No. 1 and No. 2, respectively, in the ball
valve. Each test was repeated twice to confirm the measurements. Figure 7 shows the
results of the mathematical model (see Equations (1)–(3)). The final air pocket pressure
was computed by considering both Equations (3) and (19). The measurements and the
implicit formulation provided air pocket pressure heads of 8.22 and 8.54 m for Test No.
1 and No. 2, respectively, at the end of the transient event (at 6 s). This shows that
the implicit formulation is suitable for computing final conditions, since it is based on a
physical equation.
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4. Sensitivity Analysis

The final position during emptying processes does not depend on the internal pipe
diameter (D), the drain valve maneuver (resistance coefficient (Rv)), or the friction factor
(f ), as shown in Equation (11). In this sense, a sensitivity analysis was performed based on
the case study of Section 3. For the analysis, the internal pipe diameter varied from 0.10 to
0.70 m; the resistance coefficient ranged between 0.03 and 1000 ms2 m−6; and the friction
factor varied from 0.010 to 0.026. Figure 6 presents the results of emptying simulations
considering the variation of the mentioned parameters. Figure 8a–c shows that the final
position of the water column length had no variation, independently of the used initial
values of D, Rv, and f. For all cases, a final value of 221.20 m was found.
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Figure 8. Sensitivity analysis for non-dependent parameters: (a) internal pipe diameter; (b) resistance
coefficient; and (c) friction factor.

On the other hand, the final position of the length of a water column is related to the
parameters of k, x0, θ, and LT according to Equation (11). Figure 9 presents the results for
the mentioned parameters. Polytropic coefficients from isothermal (k = 1.0) to adiabatic
(k = 1.4) were considered for simulations. The greater the polytropic coefficient, the lower
the obtained value of the length of the water column (see Figure 9a). Adiabatic behavior
always provides lower values of water column length compared to an isothermal evolution.
The initial value of air pocket size (x0) influences the final position of water column length,
as shown in Figure 9b. In this sense, considering an initial air pocket size of 100 m, a final
value of 302.1 m for the water column length was computed; while, for an initial air pocket
size of 500 m, the final position of the water column length was 47.1 m. The pipe slope
(θ) is another parameter that is important to analyze for detecting changes regarding the
final position of the water column length. The higher the pipe slope, the lower the attained
values of the water column length. The total length (LT) of the pipeline was analyzed
considering values between 550 and 650 m. The greater the value of the total length, the
greater the reached values of the final water column length.

The Newton–Raphson method should be applied when considering seed values (SVs)
varying from 0 to LT-x0 (0 to 400 m). If an isothermal evolution (k = 1.0) is presented, then
the final position of the water column length can be computed using Equation (14). For
other polytropic coefficients (1.0 < k ≤ 1.4), Equation (14) can be used for a seed value.
A sensitivity analysis was performed using seed values from 0 to 400 m (see Figure 10).
For all seed values, the Newton–Raphson method is suitable to compute the final position
of the water column length (221.20 m). The seed value computed with Equation (14)
(SV = 204.33 m) was the best starting point to calculate the final position of the water
column length.
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5. Conclusions

In this research, an implicit equation was developed (see Equation (11)) to compute
final conditions in emptying processes without admitted air (no air valves) in single
pipelines, which was derived by considering that water velocity tends to be null. Thus,
the water column length can be directly obtained. The final air pocket pressure can be
computed using the polytropic law.

The implicit equation was solved using the Newton–Raphson method, since the
function derivative is not null for seed values ranging from 0 to LT-x0. For the case study,
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the Newton–Raphson method provided excellent results, independently of a selected seed
value. Seed values varying from 0 to 400 m were used, obtaining the searched root with a
maximum of four iterations.

Both the implicit equation (see Equation (11)) and the algebraic differential equations
(see Equations (1) to (3)) show that the final conditions in water emptying pipelines do
not depend on the friction factor, internal pipe diameter, or resistance coefficient of a
discharge valve. On other hand, the remaining parameters (pipe slope, air pocket size,
total length of a pipeline, and polytropic coefficient) affect the final conditions in emptying
processes. In addition, the implicit formulation was validated by considering experimental
measurements in an experimental facility that was 4.36 m long.

The implicit formulation can be used for engineers and designers for knowing final
conditions in emptying operations without solving the algebraic differential equations.
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Abbreviations
The following abbreviations were used in this research:
A Cross-sectional area of pipe (m2)
D Internal pipe diameter (m)
f Friction factor (-)
g Gravity acceleration (m s−2)
k Polytropic coefficient (-)
j Used function in the Newton–Raphson equation
L Water column length (m)
LT Pipe length (m)
P Function based on piston flow model
patm

* Atmospheric pressure (101,325 Pa)
p*

1 Air pocket pressure (Pa)
Q Function based on both mass oscillation equation and polytropic law
Rv Resistance coefficient (ms2 m−6)
t Time (s)
v Water velocity (m s−1)
V Vector field on a region in the plane (L, v)
x Air pocket size (m)
X Vector function of t
r Water density (kg m−3)
θ Pipe slope (rad)
γw Water unit weight (N m−3)
Subscripts
0 Refers to an initial condition
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f Refers to a final condition
i Iteration number
Superscripts
′ Derivative
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