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Abstract: This research develops an extension of the Model Conditional Processor (MCP), which
merges clusters with Gaussian mixture models to offer an alternative solution to manage heteroscedas-
tic errors. The new method is called the Gaussian mixture clustering post-processor (GMCP). The
results of the proposed post-processor were compared to the traditional MCP and MCP using a
truncated Normal distribution (MCPt) by applying multiple deterministic and probabilistic verifica-
tion indices. This research also assesses the GMCP’s capacity to estimate the predictive uncertainty
of the monthly streamflow under different climate conditions in the “Second Workshop on Model
Parameter Estimation Experiment” (MOPEX) catchments distributed in the SE part of the USA.
The results indicate that all three post-processors showed promising results. However, the GMCP
post-processor has shown significant potential in generating more reliable, sharp, and accurate
monthly streamflow predictions than the MCP and MCPt methods, especially in dry catchments.
Moreover, the MCP and MCPt provided similar performances for monthly streamflow and better
performances in wet catchments than in dry catchments. The GMCP constitutes a promising solution
to handle heteroscedastic errors in monthly streamflow, therefore moving towards a more realistic
monthly hydrological prediction to support effective decision-making in planning and managing
water resources.

Keywords: uncertainty analysis; water resources; cluster analysis; Gaussian mixture model; proba-
bilistic prediction

1. Introduction

Hydrological predictions are beneficial for water management and planning, such as
arranging hydraulic infrastructure (irrigation and draining systems, aqueducts, reservoirs,
among others), managing flood and drought risks, and estimating ecological flows, oper-
ations, and monitoring existing systems—among others [1]. In addition, estimating the
predictive uncertainty of monthly streamflow plays a crucial role in supporting decision-
making for water resources management, such as water supply, hydropower, and water
balance [2]. Moreover, decision-making in the context of water resources is a complex
practice due to the investments, the large scale, and the meaning of projects [3]. Further-
more, such hydrologic predictions are affected by various sources of uncertainty, mainly
in observed data [4], the model’s parameters [5,6], the model’s structure [7,8], the initial
conditions [9], the model’s numerical solution [10], and the intrinsic non-deterministic
performance of the systems [11]. Accordingly, Predictive Uncertainty Quantification (PUQ)
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is a fundamental tool for risk management and for supporting decision-making in an
informed manner when administering water resources [12].

Predictive uncertainty is the probability of observations conditioned by all information
and available knowledge (predictions) occurring until today [13]. Therefore, predictive
uncertainty is conditioned on the model’s structure, parameters, and input data [14]. Hence,
PUQ is crucial for making reliable, sharp, and accurate hydrological predictions. It also
characterises all the possible predictions and their respective occurrence probabilities [15].
This way of characterising uncertainty does not simplify the decision-making process but
provides valuable information about what is not known in the system [16,17]. According
to Prieto et al. [18], making predictions without quantifying uncertainty is not knowing
reality. Hydrological post-processing methods are suitable for estimating the predictive
uncertainty of deterministic hydrological predictions (point predictions).

Formally speaking, a hydrological post-processor is a statistical model employed to
improve deterministic predictions by relating the hydrological model’s outputs with the
corresponding observations [19]. In practice, post-processors are used to characterise the
hydrological model’s uncertainty and to eliminate the systematic bias of predictions [20].
Post-processors are in charge of mitigating errors in the model’s input and output data,
parameters, initial conditions, boundary conditions, and structure. Hydrological post-
processors have two main objectives: (i) estimating the predictive uncertainty of the hy-
drological model’s deterministic outputs. In this context, hydrological post-processing can
be understood as a simple method to convert deterministic predictions into probabilis-
tic ones [21,22]; (ii) correcting the systematic bias of hydrological models to make more
accurate predictions.

In recent years, different methods have been developed to estimate the predictive
uncertainty of hydrological forecasts. To determine the structure of dependence between the
predictions and observations, most methods are based on the meta-Gaussian model, owing
to the statistical goodness and facilities that Gaussian variables present [13,14,23–26]. This
procedure distributes bivariate probability distributions between deterministic predictions
and observations. The errors of hydrological predictions are generally non-Gaussian,
heteroscedastic, and autocorrelated [27–30]. To solve this problem, many post-processors
apply normalisation methods, such as Normal Quantile Transform (NQT) [31], Box-Cox
transformation [32], log-sinh transformation [33], etc.

The first work about predictive uncertainty and hydrological post-processing was
conducted by Krzysztofowicz [13] in the context known as the Bayesian Forecasting Frame-
work (BFS). This method developed a bivariate meta-Gaussian distribution function based
on a Normal quantile transformation of two variables: observations and predictions accord-
ing to Gaussian laws. This procedure is known as the Hydrological Uncertainty Processor
(HUP) [34]. One of the disadvantages of the HUP is that it does not suitably represent the
heteroscedasticity of the error variance. Todini [14] proposed the Model Conditional Proces-
sor (MCP), which employs a meta-Gaussian model to estimate the predictive uncertainty
of one or a combination of many hydrological models. Coccia and Todini [35] extended the
MCP by using Multivariate Truncated Normal distributions to model the joint distribution
for many variables in the Normal space to solve the heteroscedastic error problem. Weerts
et al. [36] applied quantile regression (QR) to deal with the heteroscedasticity of the hydro-
logical variables’ error. QR offers the advantage of analysing the relationship between the
observations and predictions from different quantiles, which could be very important for
understanding extreme data and managing data with heteroscedasticity [37]. Nonetheless,
QR separately estimates one regression for each quantile, generating many parameters.

Similarly, Raftery et al. [38] introduced the Bayesian Model Average (BMA) method
that uses many models. Uncertainty is estimated as the average weight of each model’s
predictive distribution [39]. BMA offers the disadvantage of uncertainty, being conditioned
to the number of employed models and their diversification to represent the state variable’s
uncertainty.
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Other hydrological post-processing methods have been implemented, and most em-
ploy Bayesian principles. For example, Wang et al. [25] presented the Bayesian Joint
Probability (BJP) and Zhao et al. [26] introduced the General Linear Model Post-processor
(GLMPP). There are also hydrological post-processors with different error models that
had been evaluated under different climate conditions [40,41], such as post-processors
that employ non-parametric methods [42], post-processors based on machine-learning
principles [43–48], and post-processors based on the copula concept to establish the relation
of the dependence among state variables [49–51]. This list of hydrological post-processors
is not long, and readers can find more details in the work by Li et al. [52]. Likewise, for
reviews of advances in uncertainty analysis, see Moges et al. [53] and Matott et al. [54].

The Model Conditional Processor (MCP) has been established as a hydrologic post-
processor for quantifying predictive uncertainty in diverse applications. For instance,
precipitation and temperature re-analyses [55], floods in real-time [56], ensemble predic-
tions [57], and satellite rainfall information [58]. Although Coccia and Todini [35] provide
insights to deal with the heteroscedastic error using multivariate truncated Normal distri-
butions, the problem is still an open question, especially in monthly streamflow. This paper
introduces the Gaussian mixture model and cluster method as a promising alternative to
deal with the heteroscedasticity problem, namely that the forecast uncertainty increases
with the magnitude of forecast variables.

Nowadays, the use of clusters has become popular in hydrology. For example, Parviz
and Rasouli [59] made rain forecasts by artificial intelligence and cluster analysis; Yu
et al. [60] implemented the regionalisation of hydroclimate variables with clustering; Basu
et al. [61] worked with clusters to analyse floods; and Zhang et al. [62] used clusters
and climate similarities to calibrate hydrological models, among others. Likewise, some
studies use the Gaussian mixture to represent errors of hydrological variables. For example,
Schaefli et al. [63] used a mixture of Normal distributions for quantifying hydrological
modelling errors, Smith et al. [64] proposed a mixture of the likelihood for improved
Bayesian inference of ephemeral catchments, and Li et al. [65] developed the Error reduction
and representation in stages (ERRIS) in hydrological modelling for ensemble streamflow
forecasting, which used a sequence of simple error models through four stages. Other
authors employ the Gaussian mixture to estimate marginal probability distributions. Thus,
Klein et al. [51] proposed a hydrological post-processor based on the bivariate Pair-copula
concept and recommended the Gaussian mixture to estimate marginal distributions. Feng
et al. [66] introduced a minor modification into the traditional HUP using the Gaussian
mixture to estimate marginal distributions. Also, Yang et al. [67] proposed a Bayesian
ensemble forecast method, comprising of a Gaussian mixture model (GMM), a hydrological
uncertainty processer (HUP), and an autoregressive (AR) model. Finally, Kim et al. [68]
used Gaussian mixture clustering to determine groundwater pollution by anthropic effects.
It is important to notice that many Gaussian mixture applications were used to estimate
marginal distributions.

The importance of estimating uncertainty and support for decision-making in water
resources management and planning is stressed. When managing water resources, the
monthly temporal discretisation scale is essential for planning the rules for operating in
reservoirs, estimating the water balances of catchments, and administrating hydraulic
infrastructure in the long term. To deal with these problems, monthly streamflow was
employed to evaluate hydrological post-processing.

This paper develops an extension of the MCP [14], which merges clustering with the
Gaussian mixture model to offer an alternative solution to manage heteroscedastic errors.
The new method is called the Gaussian mixture clustering post-processor (GMCP). The
results of the proposed post-processor were compared to the MCP [14] and the MCPt [35]
by applying multiple deterministic and probabilistic verification indices. This research
also assesses the GMCP’s capacity to estimate the predictive uncertainty of the monthly
streamflow under different climate conditions in the 12 MOPEX catchments [69] distributed
in the SE part of the USA.
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To achieve the above goals, this paper is structured as follows: the reference hydrolog-
ical post-processing methods and the basis for the new post-processor are described; next,
the origin of the hydrological predictions and the characteristics of the 12 MOPEX Project
catchments are presented to prove the new post-processor’s predictive performance; this
is followed by the Results, Discussion, and Conclusions sections. All the analyses were
carried out using the R Statistical software [70].

2. Materials and Methods

The GMCP post-processor is a statistical model to transform point predictions obtained
by any deterministic model into probabilistic predictions, thus deriving the predictive
uncertainty of the predictand. The GMCP computes the probability distribution of the
observed data conditioned on the generic deterministic model’s output (point predictions),
along with its mode (median or mean) value and uncertainty band, which is asymptotically
consistent in quantifying total uncertainty. In general, all MCP post-processors assessed
are based on the following main assumptions:

1. Uncertainty of weather forecasts has been substantially reduced because past observa-
tions are employed as the hydrological model’s input.

2. Predictions and observations correlating, and this system performance will continue
in the future. Similarly, modelled variables are stationary during the calibration and
application period. Non-stationarity can be accounted for using deterministic model
non-stationarity [71,72]. Such extension is not considered in the present contribution,
but a discussion is provided in Section 4.

3. A single deterministic model with a single parameter set is considered. Section 4 will
discuss the possible extension of the GMCP post-processor to multi-model applications.

4. The calibration dataset is long enough to ensure sufficient information to upgrade the
deterministic and post-processor models. The predictive capacity of the models is
limited by proper calibration, which implies that sufficiently long records of observed
data, guiding to a variety of hydrologic conditions, are available for model training.

As previously mentioned, this research aims to develop an extension of the MCP [14],
which merges clusters with a Gaussian mixture model to offer an alternative solution
to manage heteroscedastic errors. The method is identified with the acronym “GMCP”
post-processor. This research also assesses the GMCP’s capacity to estimate the predictive
uncertainty of the monthly streamflow under different climate conditions in 12 catchments
in the MOPEX Project [69]. The results of the proposed post-processor were compared to
the MCP [14] and the MCPt [35].

2.1. Predictive Uncertainty

In hindcasting, predictive uncertainty describes the probability of any value condi-
tioned to all the information and knowledge acquired by hydrological predictions [13,14,16].
Krzysztofowicz [13] and Todini [14] emphasise two basic theses. Firstly, the objective of
hydrological predictions is to quantify the uncertainty of observations rather than the
uncertainty of hydrological models. Secondly, the main aim to improve hydrological pre-
dictions is to estimate the actual streamflow and to reduce their predictive uncertainty.
To better explain these ideas, and to keep in line with Todini [14], a joint probability dis-
tribution concept of observations qo and predictions qs is presented. Figure 1 shows the
joint sample’s frequency of qo and qs that can be used to quantify the joint probability
density function. For any given hydrological model, predictions qs should be a function
of the model parameters (θ) and the input data (x) (precipitation, evapotranspiration, and
others.) Therefore, joint density probability can be expressed as f

(
qo,
(
qs
∣∣x, θ̂

))
. To predict

qo, the conditional predictive distribution must be derived from qo given qs. This can
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be accomplished by conditioning the joint probability density to the qs predicted value
(Figure 2) and renormalizing. This can be formally expressed as:

f
(
qo
∣∣(qs

∣∣x, θ̂
))

=
f
(
qo,
(
qs
∣∣x, θ̂

))∫
f
(
qo,
(
qs
∣∣x, θ̂

))
dqo

(1)

It is stressed that the conditional predictive uncertainty of Equation (1) represents
the predictive uncertainty given a hydrological model, input data, certain conditions, and
some hydrological parameters. Accordingly, and for this paper, the term “predictive uncer-
tainty” refers to “conditional predictive uncertainty”. As Figure 1 shows, the conditional
distribution f (qo|qs) is not as dispersed as the marginal distribution is for f (qo) because
uncertainty could be reduced by any further information provided by the hydrological
model’s predictions.
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Figure 1. Predictive density is defined as the probability density of the observed variable qo that is
conditional on the hydrological model’s predictions, qs, where qs is considered to be known in the
prediction time (adapted from Todini [14]).
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2.2. Marginal Distribution and Normal Quantile Transformation

In general, the problem with Gaussian approaches in hydrology is that variables do
not tend to be distributed as Gaussian. Therefore, some kind of statistical transformation
must be applied to take the hydrological variables to the Gaussian space and to thus adjust



Water 2022, 14, 1261 6 of 24

the joint Gaussian probability density distribution (PDF) of both the observations and
predictions. The present research applied Normal Quantile Transform (NQT) [31] to all
the evaluated post-processing methods. Two auxiliary variables, ηo and ηs, derive from
NQT to replace F(qo) and F(qs) so that the probability distribution of the observations and
predictions in the Gaussian space would, respectively, be:

ηo = N−1(F(qo)),
ηs = N−1(F(qs)),

(2)

where N represents the standardGaussian distribution with zero mean and unit variance,
and F() symbolises marginal distributions. The present research used non-parametric
probability distributions to adjust marginal distributions because monthly streamflow is
heterogeneous, and the data represent different hydrological situations that might not be
easy to describe with the parametric distribution. The kernel density estimation method
was applied to adjust the marginal distributions of the random variables [73]. For a random
bivariate sample, X1, X2, . . . , Xn, are obtained from a joint PDF, f , and the kernel density
estimation is defined as:

f̂ (x; H) = n−1
n

∑
i=1

KH(x−Xi), (3)

where x = (x1, x2)
T and Xi = (Xi1, Xi2)

T , i = 1, 2, . . . , n. Here, K(x) is the kernel, which is
the asymmetric probability density function, H is the symmetric and positive bandwidth
matrix, and KH(x) = |H|−0.5K

(
H−0.5x

)
. Selecting K is not fundamental: the standard

Gaussian distribution K(x) = (2π)−1e(−0.5xTx) was used. Conversely, selecting H is very
important for f̂ performance [73]. The most widely used parametrization for the bandwidth
matrix is the diagonal H = diag

(
h2

1, h2
2, . . . , h2

n
)

with no constraints in H, but it ensures that
H is positive and symmetric. For the present research, the kernel estimation was applied
using the last square cross-validation method implemented in the ks library [74] of the R
statistical software [70].

2.3. Hydrological Post-Processing Methods

The streamflow post-processing methods assessed in this research consist of imple-
menting the Model Conditional Processor (MCP) [14] and some of its ramifications from
the MCP using a truncated Normal distribution (MCPt) [35] to finish with the proposed
extension of the MCP [14], which merges clustering with a Gaussian mixture model to offer
an alternative solution to manage heteroscedastic errors. The new method is called the
Gaussian mixture clustering post-processor (GMCP). Only a short overview of the theory
of the methods is given here. For future details, we refer to cited publications.

2.3.1. Model Conditional Processor (MCP)

Todini [14] proposed the Model Conditional Processor (MCP), a meta-Gaussian ap-
proach initially designed to estimate the predictive uncertainty of floods in real-time. The
MCP can be used in several ways: bivariate (observed, simulated), multivariate (several
prediction models), unique forecast horizon [35], and multiple lead-time [56]. The MCP is a
well-accepted hydrological post-processing method by the hydrological community [55–58].
The MCP mainly establishes a joint probability distribution to describe the relationship
between the deterministic hydrological predictions and the corresponding observations.
The joint probability distribution is modelled as a bivariate Gaussian distribution, followed
by adjusting the marginal distributions and transforming the Gaussian space variables.
The MCP, herein employed, includes three steps. The first is the transformation of the
predictions and observations to the Gaussian space by the NQT transformation method [31],
as shown in Section 2.2. The second step is predictive distribution, which was calculated
using Bayes’ Theorem by assuming that both the predictions and observations are avail-
able simultaneously. In line with the notation of the present paper, observations qo were
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transformed to Gaussian space ηo and predictions qs were transformed into ηs. Therefore,
the relation between ηo and ηs was formulated using a bivariate Gaussian distribution:[

ηo
ηs

]
∼ N(µ, Σ), (4)

where µ =

[
µηo

µηs

]
is the means vector and Σ =

[
σ2

ηo ρηoηs σηo σηs

ρηoηs σηo σηs σ2
ηs

]
is the

covariance matrix. In step three, the predictive uncertainty estimated in Gaussian space
was reconverted into real space by the inverse of NQT. The series of observations was
divided into two parts to identify the MCP parameters. The first half of the series was used
for calibration purposes; that is, to identify marginal distributions and joint distribution
thorough Bayes’ Theorem. The second half of the series was employed to validate the MCP;
the calibrated MCP was conditioned to new predictions to evaluate its performance for
a group of parameters θ and the new predictions were transformed into Gaussian space
ηs_new:

ηo_new|ηsnew , θ ∼ N
[

µηo + ρηoηs

σηo

σηs

(
ηsnew − µηs

)
, σ2

ηo

(
1− ρ2

ηoηs

)]
, (5)

Interestingly, the MCP is simple to implement with a low computational cost because
the bivariate Gaussian distribution is analytically processed. Likewise, the parameters are
analytically identified, saving the total parametric inference cost. For further details about
the MCP, we recommend that readers look at the work of Todini [14]. Next, an improved
version of the traditional MCP is presented.

2.3.2. MCP Using Truncated Normal Distribution (MCPt)

To address the heteroscedasticity in the error variance, Coccia and Todini [35] ex-
tended the MCP [14] by joining two truncated Normal distributions (TND). The general
recommendation is to use two TNDs to characterise the heteroscedasticity of the error
variance properly. In line with our monthly streamflow research objective, two TNDs were
used; that is, two variances were employed. The split of the Normal multivariate space
into two parts is obtained by identifying an M-dimensional hyperplane:

Hp = ∑M
i=1 ηsi = M·a, (6)

where M is the number of models and ηsi is the prediction in Gaussian space. The threshold
a can be distinguished as the value of ηsi that minimizes the predictive variance of the upper
sample. In other words, the value of a is identified by minimizing the predictive variance
of the upper sample. The predictive uncertainty for the sample above the truncation
hyperplane is represented as:

f
(

ηo

∣∣∣ηsi = η∗si
, H∗p >M∗

)
∼ N

(
µηo |ηsi=η∗si ,H∗p>M∗a, σ2

ηo |ηsi=η∗si ,H∗p>M∗a

)
(7)

Here, η∗si
, H∗p symbolize a new realization of predictions and a new hyperplane, respec-

tively. Moreover, the predictive mean is represented by:

µηo |ηsi=η∗si ,H∗p>M·a = µηo + ∑
ηoηs

−1

∑
ηsηs

(
η∗si
− µηs

)
, (8)

and the predictive variance:

σ2
ηo |ηsi=η∗si ,H∗p>M·a = ∑

ηoηo

− ∑
ηoηs

−1

∑
ηsηs

T

∑
ηoηs

, (9)
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In Equations (7)–(9), µηo and µηs are the sample means, while σ2
ηo |ηsi

is the conditional

variance and T is the transpose of a matrix. In addition, the model parameters, i.e., the mean,
variance, and covariance matrices, are computed from the data of the upper sample. The
predictive uncertainty distribution of the lower sample looks similar but is characterised
by the values of the sample below the truncation hyperplane H∗p ≤ M·a, for more details
see [35]. The MCP and MCPt can work with a multi-model, but, for this research, we used
only a single model for which we aimed to quantify the total predictive uncertainty. We
did not include multiple models because of the ease of understanding and transparency of
the procedure. This assumption is further discussed in Section 4.

2.3.3. Gaussian Mixture Clustering Post-Processor (GMCP)

The extension of the MCP method known as GMCP post-processor came about after
merging the bivariate Gaussian outline and grouping it into clusters with the Gaussian
mixture models (GMM). This means that the GMCP post-processor begins with MCP [14]
for a single hydrological model in Section 2.3.1, but the GMCP post-processor offers a dif-
ferent way to deal with the heteroscedasticity of the error variance when the error variance
is characterised by clustering with GMMs. The Gaussian mixture is well established in
the literature to find homogeneous groups (clusters) in heterogeneous data. The idea of
employing GMM to perform a cluster analysis is not new. Wolfe [75] was the first to test
GMMs to find clusters. The GMMs offer the advantage of including a probability measure
when assigning cluster data. This assignment is known as a soft cluster, where data have a
probability of belonging to each cluster [76].

The basic idea behind mixture models of probability distributions to perform cluster
analyses consists of assuming that data come from a mixture of underlying probability
distributions. The most well-known approach is the Gaussian mixture model (GMM) [77],
in which each observation is assumed to be distributed into g Normal distributions and
g is the number of clusters (components). For more details, readers refer to the work of
Fraley and Raftery [78]. Generally, when GMMs are employed to perform cluster analyses,
the same model type is employed ( fg

(
x
∣∣θg
)
) for all the components (clusters), which, in

this case, is Gaussian, but with different means and covariance structures.
There are different automatic methods to select the number of mixture components

and their parameters [79]. However, the number of mixture components can also be fixed
by some prior knowledge about the modelled phenomenon. This research assumes that
the joint probability distribution of the observed and simulated data (model error) can be
grouped into three categories of variance, and thus choose a three-components Gaussian
mixture model. We fixed the number of components a priori to three, thereby corresponding
to the high, middle, and low flow period, which is typical of monthly streamflow. Using
more than three components is possible, but we will show that three components are
sufficient for monthly streamflow and water resources applications in our case studies.

The GMCP provides a semi-parametric outline to model unknown probability distri-
butions, which are represented as the weighted Gaussian sum [80]. Specifically, GMMs
possess the flexibility of non-parametric methods with the added advantage of a lower
number of parameters, i.e., the dimension of the parameter’s vector [81]. To express the
mathematical basis of the cluster with GMMs, let us take X as a random vector that stems
from the G in the Gaussian mixture distribution. For all x ∈ X, its probability density can
be expressed as:

f (x|ϑ) =
G

∑
g=1

πg fg
(
x
∣∣θg
)
=

G

∑
g=1

πg Ng
(
x
∣∣µg, Σg

)
, (10)

where weights πg > 0 and ∑G
g=1 πg = 1, which are known as the mixture proportion or

weighted weights; fg
(
x
∣∣θg
)

is the gth component of probability density; θ = θ1, . . . , θG
and π = π1, . . . , πG are the parameters; Ng represents the Normal distribution; µg is the
means vector; and Σg is the covariance matrix for each component (cluster) g. This research
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employed two random variables (observed streamflow (ηo) and simulated streamflow (ηs)
after normalisation). Then, each data pair (ηo, ηs) was modelled as if sampled from one
of the g probability distributions

(
N1(µ1, Σ1), N2(µ2, Σ2), . . . , Ng

(
µg, Σg

))
. For example,

assuming that three clusters were identified, the probability of belonging to a given cluster
lowers as data points (ηo, ηs) move away from the cluster centre.

Now, let us assume that zi = (zi1, . . . , ziG) represents the membership of the compo-
nent of observation i. Thus, zig = 1 if observation i belongs to component g, and zig = 0
otherwise. Let us also assume that the n vectors of data x1, . . . , xn are observations with no
assigned component g. In this scenario, the likelihood function is:

L(ϑ|x) =
n

∏
i=1

∑G
g=1 πg N

(
xi
∣∣θg
)
, (11)

where N represents the Normal probability distribution. The parameters were estimated
with the Expectation-Maximization (EM) algorithm [82]. This algorithm is an iterative
procedure followed to estimate the maximum likelihood function. Having estimated the
parameters, the predictive classification results are supplied by the a posteriori probability
distribution:

ˆzig =
π̂g f

(
xi
∣∣θ̂g
)

∑G
h=1 π̂h f

(
xi
∣∣θ̂h
) , (12)

for i = 1, · · · , n. The complete cluster grouping analysis was implemented with GMMs
using the mclust library [83] of the R statistics software [70]. Figure 2 displays the flow chart
of the procedure for applying the GMCP post-processor.

2.4. Case Studies

The data, herein employed, were the observed and simulated monthly streamflow ob-
tained from the “Second Workshop on Model Parameter Estimation Experiment (MOPEX)” [69].
The MOPEX project is a well-known reference database in the international hydrologi-
cal community that has mainly been used to evaluate hydrological models and theo-
ries [8,10,84]. For example, and particular to this paper, Ye et al. [19] used the 12 catchments
from the MOPEX database to compare the results from post-processing and calibrated the
hydrological models. Thus, MOPEX offers a valuable opportunity to evaluate and compare
the performance of new hydrological post-processing methods under different climate
conditions. From the MOPEX database, 12 catchments were selected, which are distributed
in the SE area of the USA. The Aridity Index (relation between potential evapotranspiration
and precipitation) ranges from 0.43 to 2.22, and the Runoff Ratio (relation between surface
run-off and precipitation) varies between 0.15 and 0.63 (Table 1). Thus, the 12 catchments
selected from the MOPEX project represent different climate conditions (Figure 1). Basic
information about them is supplied in Table 1. We selected the same 12 MOPEX catchments
used by Ye et al. [19] to discuss the results.

Figure 3 depicts the Budyko curve for all 12 catchments from the MOPEX project.
According to the Budyko hypothesis, if the energy available in a catchment suffices to
evaporate humidity, then the catchment is limited by water availability (catchment B12 has
the highest Aridity Index). Conversely, if the available energy does not suffice to evaporate
humidity, the basin is limited by energy availability (catchment B2 is the exact opposite of
B12 as it has the lowest Aridity Index). It is worth stressing that the 12 selected catchments
were distributed all over the Budyko curve, as Figure 3 depicts, which ensures the critical
evaluation of post-processors under different climate conditions.
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Table 1. Hydrological information about the 12 catchments selected from the Mopex project.

ID Station Name Elev. Area
(km2) P PET Q

Run-Off
Index
(Q/P)

Aridity
Index

(PET/P)

B1 Amite River Near Denham Springs, LA 0 3315 1560 1068.5 612 0.39 0.67
B2 French Broad River at Asheville, NC 594 2448 1378 588.9 795 0.58 0.43
B3 Tygart Valley River at Philippi, WV 390 2372 1164 661.4 736 0.63 0.57
B4 Spring River Near Waco, MO 254 3015 1075 1119.8 300 0.28 1.04

B5 S Branch Potomac River Nr Springfield,
WV 171 3810 1043 636 339 0.33 0.61

B6 Monocacy R At Jug Bridge Nr
Frederick, MD 71 2116 1042 906.1 421 0.4 0.87

B7 Rappahannock River Nr
Fredericksburg, VA 17 4134 1028 856.7 375 0.36 0.83

B8 Bluestone River Nr Pipestem, WV 465 1020 1017 678 419 0.41 0.67
B9 East Fork White River at Columbus, IN 184 4421 1014 838 377 0.37 0.83

B10 English River at Kalona, IA 193 1484 881 989.9 261 0.3 1.12
B11 San Marcos River at Luling, TX 98 2170 819 1462.5 170 0.21 1.79
B12 Guadalupe River Nr Spring Branch, TX 289 3406 761 1691.1 116 0.15 2.22

Elev: elevation (m), P: mean areal precipitation (mm/year), PET: potential evapotranspiration (mm/year), Q:
observed streamflow (mm/year).
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the figure came directly from the MOPEX database.

2.5. Hydrological Model

The GR4J hydrological model predictions were employed [85], which are a well-known
and widely used model in different parts of the world. GR4J is a lumped conceptual model
with four calibration parameters: maximum capacity of the production store x1(mm);
groundwater exchange coefficient x2(mm); 1-day-ahead maximum capacity of the routing
store x3(mm); and time base of unit hydrograph x4(days). For further information about
the model’s description, readers refer to the work by Perrin et al. [85]. Daily predictions
were aggregated on a monthly basis to evaluate the post-processors’ performance for
planning and managing water resources. We want to emphasise that the GR4J hydrological
model predictions were not prioritised because they are input data. According to the aim
of this paper, we focused on the performance of the post-processors.
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2.6. Verification Indices

Assessment of the performance is vital to offer end-users an indication of the pre-
dictions´ reliability and uncertainty bands. Some verification indices exist that can be
used to assess the performance of hydrological post-processors. This research employed
deterministic and probabilistic verification indices, which evaluate the hydrological predic-
tions´ accuracy, sharpness, and reliability. These indices were also recommended by Laio
and Tamea [86], Renard et al. [6], and Thyer et al. [87]. The deterministic Nash–Sutcliffe
efficiency index (NSE) [88] was applied to the predictive distribution mean. This index
does not assess the complete predictive distribution but is a classic index and a general
reference in hydrology. The NSE measures the squared differences between predictions qs
and observations qo, which are normalised by the variance of the observations:

NSE = 1− ∑n
i=1(qs − qo)

2

∑n
i=1(qo − qo)

2 , (13)

where qo is the average of the observations. Probabilistic indices were employed to as-
sess the predictive distributions. The predictive quantile–quantile (PQQ) plot [86] was
applied. This diagram shows how probabilistic predictions represent the observations´ un-
certainty [86,87]. If both predictive distribution and observations are consistent in the PQQ
context, the value corresponding to the distribution p-value must be uniformly distributed
throughout the interval [0, 1]. In other words, predictions are considered reliable when the
relative frequency of the observations equals the frequency of predictions. This situation
can be visually identified when the PQQ curve follows the bisector (line 1:1). Otherwise,
predictive distribution deficiencies can be interpreted when the curve moves away from the
bisector. Indeed, according to Laio and Tamea [86], the predictive distribution can display
three patterns. If the PQQ plot follows the bisector, the predictive uncertainty is correctly
estimated, and the observations are a random sample of the predictive distribution. Con-
versely, if the PQQ plot shows an “S”-shape, it means that the predictive distribution is
underestimated (large bands) and an inverted “S”-shape implies an overestimated uncer-
tainty (narrow bands). From the PQQ plot, we can deduce two indices: reliability and
sharpness.

The reliability index quantifies the statistical consistency between the observations
and predictive distribution:

Reliability = 1− 2
n ∑n

i=1

∣∣FU − Fqs(qo)
∣∣, (14)

where FU is a uniform cumulative distribution function (CDF) and Fqs(qo) is the predictive
CDF. The reliability index ranges from 0 (the worst reliability) to 1 (perfect reliability).

The sharpness index is related to the predictive distribution concentration. In other
words, it refers to the coverage provided by the distribution [6]:

sharpness =
1
n ∑n

i=1
E[qs]

σ[qs]
, (15)

where E[] and σ[] are the operators of the expected value and standard deviation, respec-
tively. The sharpness index range is (0, ∞), and the predictive distributions with higher
sharpness index (narrower) values are more accurate. Predictive distributions can be found
with equal reliability indices but different degrees of sharpness, in which case the higher
sharpness values are preferable because they denote more accurate predictive distributions.

Furthermore, the containing ratio (95%CR) was used. The 95%CR is the percentage
of observations that fall within the 95% uncertainty band. In this research, the 95% band
was estimated to be within the 2.5 and 97.5 percentiles. This allowed the quantification
of the desired uncertainty to be achieved when the 95%CR came close to 95%. As the
presented verification indices are well-known in the literature, no lengthy description is
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provided. However, readers are recommended to the works of Franz and Houge [84], Laio
and Tamea [86], and Renard et al. [6] for further information.

2.7. Comparison Frame

It should be remembered that the main aim of the present paper is to develop an
extension of the MCP [14], which merges clustering with a Gaussian mixture model to offer
an alternative solution to manage heteroscedastic errors. In addition, comparing GMCP’s
performance to similar post-processing methods under different climate conditions is also
needed as a benchmark. In order to perform the post-processing of monthly streamflow
and to quantify predictive uncertainty, the following procedure was used.

First, daily streamflow predictions were obtained from the GR4J hydrological model [85],
and were calibrated and validated by Ye et al. [19] for the 12 MOPEX catchments. Given
this, the hydrological model outputs (previously calibrated and validated) become the
inputs for the evaluated hydrological post-processors.

Second, the daily hydrological predictions were aggregated monthly because the
post-processing methods were applied in the water resources management context.

Third, to evaluate the post-processing methods, the time series of both observations
and predictions were divided into 20 years to calibrate the post-processors’ parameters
(1960–1980) and into 17 years for the validation (1981–1998).

Fourth, NQT [31] was applied to all the evaluated post-processors with non-parametric
marginal distributions to map the observations and simulations to the Normal space.
The three evaluated post-processors were separately implemented into the 12 MOPEX
catchments to find the best performing post-processors. The 12 MOPEX catchments were
selected because they were the same catchments employed in previous studies to compare
hypotheses, which the hydrological community is very familiar with, e.g., [8,19,84,89].

Moreover, evaluating hydrological post-processors under different climate conditions
allows for more general recommendations to be obtained [90].

Finally, evaluating the predictive uncertainty with only one verification index can lead
to mistaken interpretations and wrong decision-making for managing water resources [41].
Consequently, many independent verification indices were used together instead of indi-
vidual ones.

3. Results

The hydrological post-processing methods evaluated according to the framework
described in the previous subsection are presented. The results correspond to the validation
period, as it is the most critical period where the predictive uncertainty of the analysed
methods is identified. Section 3.1 benchmarks the GCMP post-processor with the MCP [14]
and MCPt [35] to quantify the predictive uncertainty of the monthly streamflow, which
is conditional on deterministic model predictions. The case studies consider 12 MOPEX
catchments with a diverse range of hydroclimatology. The Nash–Sutcliffe efficiency index
(NSE), sharpness, and the containing ratio (95%CR) verification index are presented in
Figure 4. Moreover, the PQQ plots, which assess the reliability, sharpness, and bias, are
depicted in Figure 5.

An initial inspection of the results found considerable overlap in the performance
verification indices achieved by the MCP and MCPt post-processors for monthly stream-
flow. The MCP and MCPt also showed poor performance in dry catchments. Conversely,
the GMCP post-processor empirically made the most accurate, reliable, and sharpest
predictions.
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The streamflow forecast time series and corresponding skill for a single catchment,
the San Marcos catchment (B11), are presented in Figure 6. Then, the relation of the Aridity
index with the performance of post-processors is shown in Figure 7.
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3.1. Comparison of Post-Processors: Individual Verification Indices

Figure 4 offers the average values for the verification indices for the 12 catchments
in boxplot-type diagrams. In terms of the Nash–Sutcliffe efficiency index (NSE), Figure 4
shows considerable overlap in the boxplots corresponding to MCP and MCPt. This finding
suggests little difference in the performance of these post-processors for monthly stream-
flow. Moreover, the NSE indices are generally suitable for all 12 catchments and assessed
post-processors (Figure 4, left panel), and, according to the classification of Martinez and
Gupta [91], NSE > 0.75 is considered a good result. Overall, these results suggest the GMCP
is consistently better in terms of the NSE values because of its higher NSE indices and
shows less dispersion in the boxplot.

Regarding the sharpness index, and in line with Figure 4 (middle panel), GMCP has
the highest sharpness values. The sharpness index refers to the predictive distribution
concentration [92]. High sharpness indices indicate that the predictive distribution is less
dispersed or more concentrated, and therefore high sharpness indices are preferable [6].
The GMCP post-processor improves the sharpness index by 36.64% compared to the MCP
and MCPt post-processors.

In terms of the containing ratio (95%CR), the GMCP post-processor outperforms the
MCP and MCPt methods. The GMCP improves the 95%CR by 10.29% compared to the MCP
and MCPt, which perform similarly. A proper predictive uncertainty estimation is achieved
when the 95%CR comes close to 95%. According to Figure 4 (right panel), the 95%CR
obtained by GMCP comes closer to 95%, and with lower variance. The average 95%CR is
93.82% for the GMCP post-processor compared with 85.06% for the MCP or MCPt.

These results show how the boxplots for MCP and MCPt methods overlap. These can
indicate that the evaluated reference post-processors that are used with monthly streamflow
perform the same in terms of accuracy, sharpness, and reliability. Conversely, the GMCP
empirically made the most accurate, reliable, and sharpest predictions for the monthly
streamflow of the 12 MOPEX catchments.

Regarding reliability, Figure 5 shows the predictive PQQ plots for the post-processors
evaluated through the 12 MOPEX catchments. The PQQ plot indicates the predictive
distribution’s reliability. According to Figure 5, we stress that the predictive distribution
of GMCP (blue line) in most of the evaluated catchments follows the diagonal line in the
PQQ, which evidences a reliable predictive uncertainty estimation under different climate
conditions. We can also note that the MCP (green curve) and MCPt (red curve) performance
is similar for all the evaluated catchments. Furthermore, the PQQ plot for the MCP and
MCPt deviates substantially from the 1:1 line in the B4–B9 catchments, indicating some
bias. Also, the PQQ plot for the MCP and MCPt in the B11 catchment shows unreliable
results, as the predictions are overconfident. In the following subsection, we provide the
predictive uncertainty bands of the B11 catchment to explain the poor reliability issue.

3.2. Uncertainty Bands in San Marcos Catchment (B11)

The PQQ plots (Figure 5) evidence that the reference post-processors present reliability
problems, while GMCP provides reliable results. The 95% confidence interval of predictive
distribution is presented to illustrate these reliability difficulties better. We cannot present
the 95% confidence interval for all the catchments and post-processors for space reasons.
Given this, we only present the predictive distribution for the San Marcos catchment
(B11), a dry catchment, because it clearly shows the reliability problems of the evaluated
post-processors.

To illustrate these results, Figure 6 shows the time series of the median and 95%
confidence interval of the monthly streamflow forecast at the San Marcos catchment (B11).
The GMCP post-processor, which merges clustering with the Gaussian mixture model
to deal with heteroscedastic errors, achieves the following verification indices: reliability
index = 0.94, sharpness index = 4.44, NSE = 0.94, and the containing ratio (95%CR) = 93.55.
Meanwhile, the MCP and MCPt, which perform similarly, have a worse reliability index
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(metric value = 0.82), sharpness index (metric value = 1.84), NSE (metric value = 0.82), and
containing ratio (95%CR) (metric value = 98.16).

In terms of sharpness, the MCP and MCPt methods produce a wider 95% predictive
range than the GMCP post-processor (Figures 4 and 6), which manifests as degradation in
the sharpness index from 4.44 to 1.84. The widest uncertainty bands produced by the MCP
and MCPt confirm the results obtained with the sharpness index (Figure 4, middle panel)
and reliability (Figure 5).

Altogether, in the 12 MOPEX catchments, these results show that the GMCP post-
processor achieves significant improvements in reliability, sharpness, NSE, and the contain-
ing ratio (95%CR). In addition, using the GMCP post-processor for monthly streamflow has
an incremental impact on performance, as measured using deterministic and probabilistic
verification indices. These results show the robust ability of the GMCP post-processor for
better quantifying hydrologic uncertainty and producing enhanced probabilistic streamflow
forecasts.

3.3. Influence of the Aridity Index

Figure 7 shows the comparison between the deterministic and probabilistic verification
indices for the new GMCP and the two reference post-processors during the validation
period (1980–1998) in the 12 MOPEX catchments. Note that the horizontal axis in Figure 7
sorts the catchments from wettest to driest, whereas the vertical axis denotes the post-
processor name.

In NSE index terms, and given the purpose of unifying the Figure 7 legend, |1−NSE|
is shown, where the values close to 0 are the most optimum ones (blue colors in Figure 7).
Figure 7 (upper panel) shows the differences in the performance of post-processors in the
catchments. For example, the GMCP shows the best performance (blue colors) in most of
the evaluated catchments (Figure 7, upper panel). Moreover, the performance in NSE terms
for the reference post-processors was generally similar, while the worst performances were
obtained in drier catchments (B4, B10, B11, and B12), except for the B5 catchment, which
is humid.

In terms of the sharpness index, Figure 7 (middle panel) shows that the lowest sharp-
ness values, which were for the driest catchments (B4, B10, B11 and B12), and the highest
values were for the wettest (B2 and B3). In most catchments, the GMCP achieves higher
sharpness values than the reference post-processors (MCP and MCPt) (Figure 7, mid-
dle panel).

For the 95%CR index, the statistics |95− 95%CR| were calculated, where values close
to 0 are preferable and interpreted as the best performance. Similarly, the other verification
indices—and as shown in Figure 7 (lower panel)—the GMCP best performed in all the
evaluated catchments. Unlike the other verification indices, the 95%CR did not indicate a
worsened performance for post-processors in the driest catchments (B4, B10, B11 and B12).

Overall, the results suggest that streamflow forecasts using the GMCP post-processor
are better (i.e., NSE and sharpness) than that of the MCP and MCPt methods, particularly
in dry catchments. For example, in dry catchments (B4, B10, B11 and B12), the GMCP
processor improves the NSE index by 16.66 % compared to the MCP and MCPt methods.

4. Discussion

Predictive uncertainty quantification (PUQ) is essential for supporting effective decision-
making and planning for water resources management [93]. In recent years, PUQ has
become essential in hydrological predictions [16]. A wide range of methods has been
developed to evaluate the predictive uncertainty of the variables of interest. This paper
develops an extension of the MCP [14], which merges clusters with Gaussian mixture mod-
els to offer an alternative solution to manage heteroscedastic errors. The new method is
called the Gaussian mixture clustering post-processor (GMCP). The results of the proposed
post-processor were compared to the MCP [14] and the MCPt [35] by applying multiple
deterministic and probabilistic verification indices. This research also assesses the GMCP’s



Water 2022, 14, 1261 18 of 24

capacity to estimate the predictive uncertainty of the monthly streamflow under different
climate conditions in the 12 MOPEX catchments [70] that are distributed in the SE part of
the USA.

Overall, GMCP has shown significant potential in generating more reliable, sharp,
and accurate monthly streamflow predictions, especially for dry catchments. Compared
to the benchmark methods, GMCP shows more consistency in the validation period than
MCP and MCPt (Figure 4). The improvement in the GMCP compared to the MCP and
MCPt can be attributed to the procedure used by GMCP to model the dependence structure
between observation and forecast (residual error model). GMCP joins the variables via
Gaussian mixture models and clusters. Therefore, the Gaussian mixture distribution
treats model residuals as three clusters with different means and variances. The Gaussian
mixture distribution can capture the peak and the tails of the underlying residual density
for all catchments, indicating reliable, sharp, and accurate forecasts. Consequently, this
dependence structure of the residual error model faces the assumption of homoscedastic
error variance, which provides poor probabilistic predictions. In addition, note that the only
difference between the MCP (or MCPt) and GMCP post-processors is the use of clusters
and Gaussian mixture models in the GMCP. Hence, the performance improvement must be
due to this difference.

Moreover, the MCP and MCPt methods provide similar performances for monthly
streamflow predictions regarding the NSE index, reliability, sharpness, and containing ratio
(95%CR) (Figures 4–6). The MCPt was designed by Coccia and Todini [35] to improve the
reliability and sharpness of predictions, particularly for high flows, and has worked well
for flood applications. The MCPt used the truncated Normal distribution (TND) to deal
with heteroscedastic errors. In theory, the TDN reduces the standard error of high flows
when there is a significant difference between low and high flows, which is the case in
flood applications. However, these differences are minor for monthly streamflow, so using
the standard Normal distribution or TDN provided similar results.

Figure 5 shows that the PQQ plot for the MCP and MCPt deviates substantially from
the 1:1 line in the B4–B9 catchments, indicating some bias. However, the proposed GMCP
can obtain unbiased results in the same catchments. One possible explanation is that
the MCP uses a linear regression in the Normal transformed space for bias correction,
while the GMCP uses three Gaussian mixture models with different means and variances
corresponding to the high, middle, and low flow period. Therefore, the bias corrector
of GMCP is more robust and flexible than the MCP. As well, Figure 5 depicts that the
PQQ plot for the MCP and MCPt in the San Marcos (B11) catchment shows unreliable
results, as predictions are overconfident, while GMCP provides reliable results. San Marcos
(B11) is a dry catchment with complex residual errors [19]. It is possible that the residual
error model of MCP is not enough to represent the complex errors of the San Marcos (B11)
catchment. The residual error model of MCP has two assumptions that are undoubtedly
inappropriate for the San Marcos (B11) catchment. The MCP assumes homoscedastic errors
and a linear relationship between observed and simulated Normal transformed variables.
Conversely, the residual error model of GMCP is more complex because of using clustering
and Gaussian mixture models.

Our findings in this study confirm the insights of Schaefli et al. [63], namely that
using a finite mixture model constitutes a promising solution to residual model errors
and to estimate the total modelling uncertainty in hydrological model calibration stud-
ies. However, there are two differences between this research and the previous work of
Schaefli et al. [63]. First, we used the “post-processing” strategy, where the hydrological
model parameters were estimated first using an objective function, followed by a separate
estimation of the residual error model parameters. In contrast, Schaefli et al. [63] used the
more classical “joint” strategy to estimate all parameters simultaneously using a single
likelihood function. Second, we merged the Gaussian mixture model with clusters and
used them in the framework of the Model Conditional Processor (MCP) [14]. Likewise,
Li et al. [65], who developed the ERRIS post-processor, used a mixture of two Gaussian
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distributions to represent the residual error model. GMCP and ERRIS have some similar-
ities: (1) both are post-processors of deterministic hydrological models for hydrological
uncertainty quantification, (2) both apply a transformation to normalised data, and (3) both
use a Gaussian mixture distribution to model residual errors. However, GMCP and ERRIS
have some differences. For example, ERRIS uses a linear regression in the transformed
space for bias correction, uses an autoregressive model to update hydrological simulation,
and is implemented in stages.

We want to discuss some assumptions mentioned in the Materials and Methods in
Section 2. First, although GMCP has been conceived to be applied to one single model
(point prediction), a multi-model application would be possible. An extension of the
GMCP consists of a matrix of predictions and various deterministic models (one column for
each model), yet here we study the simpler scalar version of the model. Second, there are
possible ways to advance towards the application of GMCP in a non-stationary context. The
simplest option is using a deterministic model for non-stationarity [71,72]. We also suggest
considering a deterministic model with time-varying (perhaps seasonal) parameters, under
the assumption that the uncertainty of the model for non-stationarity is represented by a
stationary distribution. In addition, we recommend the use of data assimilation to update
hydrological predictions [94]. Third, in the GMCP, we used Gaussian mixture distributions
and fixed the number of mixture components (clusters) to three—corresponding to the high,
middle, and low flow period, which are typical of monthly streamflow. This practical choice
is based on a priori information about the sources and behaviour of the residual error model.
Therefore, identifying the number of clusters is purely heuristic accounting for a priori
knowledge about the total error model. Fourth, in the GMCP, any probabilistic prediction is
primarily based on the conditions monitored during the considered observation period only,
and thus particular care should be used when extrapolation to out-of-sample conditions.

This research confirms the importance of using multiple independent verification
indices to assess hydrological post-processors. For example, if one considers the containing
ratio (95%CR) verification index alone, all post-processors yield comparable performances,
and there is no argument for selecting any of them. Nonetheless, once the sharpness
index and reliability index are considered explicitly, the GMCP post-processor can be
recommended for significantly better sharpness and reliability than the MCP and MCPt.
These results align with Woldemeskel et al. [41], who showed that evaluating the predictive
uncertainty with a single metric can lead to suboptimum conclusions.

Moreover, examining and evaluating hydrological post-processors in catchments with
different climate and hydrological conditions ensures suitable comparisons and helps to
generalise the obtained results [47,95]. Furthermore, the diverse climate conditions of
catchments analysed allow us to deduce functional relationships between climatic indices
and the post-processors’ performance. This research attempted to establish a relation
between the Aridity index and the post-processors’ performance (Figure 7). In most
dry catchments, the MCP and MCPt perform relatively worse, especially in terms of the
sharpness and NSE index. This result is because streamflow data for dry catchments
contain too many days with low flow (defined as flow below 2% of the mean flow [12]).
Thus, dry catchments require more complex residual error modelling methods [64]. Our
findings agree with Ye et al. [19], who found that the GLMPP post-processor [26] could not
improve the predictions or reduce uncertainty in the same dry MOPEX catchments.

In this study, all post-processors provide a clear improvement in hydrological pre-
dictions. Post-processing usually leads to better performance verification indices than
deterministic hydrological predictions alone because post-processing works directly to
correct the errors in the model outputs [19]. Accordingly, Farmer and Vogel [22] stated
that the prudent management of environmental resources requires probabilistic predic-
tions, which offer the potential to quantify predictive uncertainty, and can avoid the false
sense of security associated with point predictions [16]. Generally speaking, predictive
distribution explicitly represents the system’s uncertainty, and it can, therefore, perform
risk management in a more informed manner. In addition, the probabilistic approach
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can be put to further use for process-based deterministic hydrological modelling and by
coupling it with a hydrological post-processor to convert deterministic predictions into
probabilistic predictions. Probabilistic predictions offer an opportunity to improve the
operational planning and management of water resources.

A promising improvement is to extend the GMCP post-processor in future work using
a multi-model or a chain of hydrological models. Also, it can be interesting to validate the
GMCP using daily and hourly data and couple the GMCP method with data assimilation
to update the states of hydrological models. Bourgin et al. [94] recommended using data
assimilation and post-processing in forecasting because data assimilation strongly impacts
forecast accuracy, while post-processing strongly impacts forecast reliability. Besides,
evaluating the GMCP post-processor in many catchments is beneficial for establishing its
robustness.

Another area for further investigation is overcoming the data transformation. In
hydrology, data transformation is a popular approach to reduce the heteroscedasticity of
the error model because these approaches are simple to implement and can give satisfactory
results in hydrological modelling [14,41,51,65]. However, Schaefli et al. [63], Brown and
Seo [42], and others indicated that this approach is questionable. A detailed discussion of
the implications of data transformation is beyond the context of this paper. Nevertheless,
we recommend reading the work of Hunter et al. [96], which established the detrimental
impact of calibrating hydrological parameters in the real space and calibrating the error
model parameters in the transformed space using post-processing methods on the quality
of probabilistic predictions. Moreover, a future possible study could be to extend the GMCP
post-processor using a link function to avoid the Normal quantile transformation, especially
the link function, which has provided promising results in the context of the Generalized
Linear Model. Finally, another improvement can be the selection of the number of GMCP
clusters using unsupervised learning, for example, by using cluster indicators [97].

5. Conclusions and Summary

Considering that predictive uncertainty is crucial for providing reliable, sharp, and
accurate probabilistic streamflow predictions, the Model Conditional Processor (MCP) [14]
is a well-known method for quantifying predictive uncertainty by providing a posterior
distribution conditioned on the deterministic model forecast. This study develops an
extension of the MCP [14], which merges clustering with the Gaussian mixture model
to offer an alternative solution to manage heteroscedastic errors. The new method is
called the Gaussian mixture clustering post-processor (GMCP). The results of the proposed
post-processor were compared to the MCP [14] and the MCPt [35] by applying multiple
deterministic and probabilistic verification indices. This research also assesses the GMCP’s
capacity to estimate the predictive uncertainty of the monthly streamflow under different
climate conditions in the 12 MOPEX catchments [70] distributed in the SE part of the USA.
The summary of the most important empirical findings based on the detailed analysis of
the results are as follows:

1. In general, all three post-processors showed promising results. However, the GMCP
post-processor has shown significant potential in generating more reliable, sharp, and
accurate monthly streamflow predictions than the MCP and MCPt methods, especially
in dry catchments.

2. The MCP and MCPt methods provided similar performances for monthly streamflow
predictions regarding the NSE index, reliability, sharpness, and containing ratio
(95%CR).

3. The MCP and MCPt showed a better performance in wet catchments than in dry
catchments.

Overall, when used for post-processing monthly predictions, the GMCP method
provides an opportunity to improve forecast performance further than is possible using the
MCP and MCPt methods, especially in dry catchments. In addition, it is worth mentioning
that incorporating clusters and Gaussian mixture models into the Model Conditional
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Processor framework constitutes a promising solution to handle heteroscedastic errors
in monthly streamflow, therefore moving towards a more realistic monthly hydrological
prediction to support effective decision-making in planning and managing water resources.
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