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Abstract: Due to the growing air quality concern in urban areas and rising fuel prices, urban bus
fleets are progressively turning to hybrid electric vehicles (HEVs) which show higher efficiency and
lower emissions in comparison with conventional vehicles. HEVs can reduce fuel consumption
and emissions by combining different energy sources (i.e., fuel and batteries). In this sense, the
performance of HEVs is strongly dependent on the energy management strategy (EMS) which
coordinates the energy sources available to exploit their potential. While most EMSs are calibrated for
general driving conditions, this paper proposes to adapt the EMS to the specific driving conditions
on a particular bus route. The proposed algorithm relies on the fact that partial information on the
driving cycle can be assumed since, in the case of a urban bus, the considered route is periodically
covered. According to this hypothesis, the strategy presented in this paper is based on estimating the
driving cycle from a previous trip of the bus in the considered route. This initial driving cycle is used
to compute the theoretical optimal solution by dynamic programming. The obtained control policy
(particularly the cost-to-go matrix) is stored and used in the subsequent driving cycles by applying
one-step look-ahead roll out, then, adapting the EMS to the actual driving conditions but exploiting
the similarities with previous cycles in the same route. To justify the proposed strategy, the paper
discusses the common patterns in different driving cycles of the same bus route, pointing out several
metrics that show how a single cycle captures most of the key parameters for EMS optimization.
Then, the proposed algorithm (off-line dynamic programming optimization and one-step look-ahead
rollout) is described. Results obtained by simulation show that the proposed method is able to keep
the battery charge within the required range and achieve near-optimal performance, with only a 1.9%
increase in fuel consumption with regards to the theoretical optimum. As a reference for comparison,
the equivalent consumption minimization strategy (ECMS), which is the most widespread algorithm
for HEV energy management, produces an increase in fuel consumption with respect to the optimal
solution of 11%.

Keywords: hybrid electric vehicle; energy management strategy; dynamic programming

1. Introduction

With the growing concern about greenhouse gases and air pollution on the environ-
ment, hybrid electric vehicles (HEV) are being considered as one of the alternatives towards
clean mobility [1]. One of the advantages of vehicle hybridization is that the combination
of internal combustion engines (ICE) and electric motors (EM) provides an additional
degree of freedom to the powertrain that allows meeting the driver power demands more
efficiently. In addition, the use of batteries and EMs allows energy recovery during brak-
ing [2]. Among mobility alternatives, urban buses present a high potential of electrification
(including hybridization) due to their high mileage covered, known routes and strict re-
quirements for air pollution control in cities. The previous reasons are leading European
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cities and manufacturers who invest efforts in electrified powertrains for buses [3] such
as pure electric, fuel cell or HEV and in other sustainable alternatives such as hydrogen
engines.

HEV performance depends on powertrain configuration, and accordingly, there is
an extensive literature discussing HEV powertrain architectures (parallel, series, power
split, etc.) and sizing [4–6]. However, the additional degree of freedom of HEVs, i.e., the
power split between battery and fuel tank, addressed by energy management strategies
(EMS), also plays a key role in vehicle performance. For this reason, several approaches
have been investigated in the literature. An extensive review of HEV energy management
can be found in [7]. As expected, the literature points out that the performance and optimal
EMS are closely related with driving factors such as driver behavior, road slope, traffic
and weather conditions that can influence the energy distribution in HEV [8]. Another
important aspect that can be extracted from the available literature is that while the EMS
can be addressed by the application of heuristic techniques, there is room for optimal
control theory, leading the EMSs to specifically address the minimization of the vehicle
energy consumption [7]. In this group, some studies are focused on offline optimization,
where the EMS of a given HEV in a pre-defined driving cycle is optimized. Among the
techniques applied for offline optimization, dynamic programming (DP) [9] and methods
based on Pontryagin’s minimum principle (PMP) [10–12] are the most widespread. DP is
widely applied in offline optimization problems; this method consists of subdividing the
nonlinear dynamic problem into subproblems in a discretized time, and then proceeding
backwards generating a cost-to-go function depending on the state value and control action
chosen. Then, the optimal cost-to-go is calculated for every sample time and stored in a
matrix. When the entire problem has been examined, the optimal solution is obtained by
tracking the path with the lowest cost-to-go. The major issue of the previous techniques is
the requirement of a priori knowledge of the driving cycle, something that only happens in
homologation cycles or very particular vehicle applications. For this reason, DP is widely
used as an optimal benchmark solution to compare with the results of other approaches, as
well as to extract control parameters for other control strategies [13].

Several approaches have been investigated in the literature in order to overcome the
driving cycle dependency to develop methods that can be applied for control purposes,
leading to near-optimal results. Most of them are based on the equivalent consumption
minimization strategy (ECMS), that is based on applying, in any time-step, the control
action that minimizes a weighted function of the energy consumption from the fuel tank
and the batteries [14]. Among them, adaptive-ECMS (A-ECMS) [15,16] and adaptive-PMP
(A-PMP) [17] provide online implementable solutions that consist in updates to the co-state,
or the equivalence factor in the case of ECMS as driving conditions change, making possible
to reach near-optimal solutions [7]. The task of updating the co-state is implemented in
several ways and with different information sources. Ref. [18] shows the adaption based
on driving cycle prediction implementing an on-the-fly algorithm for the estimate of the
equivalent factor according to the driving conditions, combining past and predicted data to
periodically refresh the equivalent factor. Ref. [19] uses an adaptive-ECMS in an HEV with
continuously variable transmission based on driving pattern recognition. The proposed
method considers the type of driving pattern and the battery state of charge (SOC) to adapt
the equivalent factor. Ref. [17] presents an online co-state adaptation rule based on the SOC.
In a similar way, authors in [20] employ a Markov chain model for vehicle-speed forecasting,
and adapt the equivalent factor to the expected driving cycle. The main advantages of the
previous approaches are the physical interpretability and their low computational cost;
on the other hand, they need substantial calibration effort (specially for the equivalent
factor) and sacrifice optimality in order to be applicable in cases where the conditions of
the driving cycle are not well defined [21].

Another method developed to tackle the limitations of the driving-cycle information
dependency of DP is the model predictive control (MPC). The main advantages of MPC
are its ability to deal with system constraints and the capability of leveraging driving cycle
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estimations in a prediction horizon (e.g., traffic data, preceding vehicles and traffic lights)
for optimization [22–24].

Although previous techniques have been developed, in general, for the passenger-car
application, most of them have been adapted to the particular case of urban buses. In
this sense, ref. [25] compare different architectures for HEV hybrid buses and employ
DP to perform this comparison with optimal energy management for every architecture.
In the same line [26] propose the use of DP to calibrate a heuristic energy management
strategy for a hybrid bus. Regarding methods that can be applied for control, several
variations of the ECMS have been applied to the field of hybrid buses. For example, in [27],
authors approach the optimization of emissions by applying ECMS with an engine map
that combines fuel consumption and emissions. In [28], authors proposed a ECMS strategy
where the equivalence factor is adapted to driving condition of the bus by means of neuro-
fuzzy inference techniques. Similarly, in [29], the equivalence factor of the ECMS in a
HEV bus is adapted by means of genetic algorithms. A model predictive control based
on Pontryagin’s minimum principle is applied in [30] to a hybrid electric bus, with a fuel
consumption that exceed the theoretical optimum of 6% according to simulation results.

In line with previous papers, this article presents an EMS for a parallel hybrid electric
urban bus. The objective of the proposed strategy is to be applicable for control purposes
and have a performance close to the theoretical optimum. As in previous literature [7], the
criteria to judge the performance of the strategy is the fuel consumption and the deviation
between the initial and final energy stored in the battery, which must be minimized to
ensure the charge sustainability. To approximate the theoretical optimum, the proposed
strategy is based on model-based optimization. On the other hand, to be applicable for
control purposes, the proposed strategy must meet two main conditions:

• The computation time should be low enough to be applied in real time. To this aim,
the developed EMS is based on a simplified powertrain model as in the previously
cited papers.

• The strategy should not rely on future information. The proposed method exploits
the periodicity in the route covered to reduce the dependence of the optimal control
technique on the information about the future driving conditions. While previous
literature estimates the future driving conditions from a receding horizon and then
searches of an optimal control policy, the proposed methodology does not rely on
the estimation of future driving conditions. Instead, the proposed methodology is
based on the offline optimization of a previously covered driving cycle by dynamic
programming, and then uses the obtained cost-to-go as an approximation for the
cost-to-go in the actual route, which is a novelty with regards to previous works.

Once the cost-to-go is estimated, the optimal power-split at every time-step of the
real route can be computed by applying the one-step look-ahead roll out algorithm [31].
The simulation results obtained show near-optimal performance for the proposed strategy,
sustaining the energy in the battery and, in terms of fuel consumption, showing a 1.9%
increase with regards to the theoretical optimum, while the standard ECMS, with the same
information as the rollout, shows an increase of 11%.

According to the previous paragraph, the main novelties and contributions of the
proposed strategy are:

• The paper shows that the resemblance of the different loops covered by an urban bus
in its route can be used to obtain a control strategy that minimizes its fuel consumption
while fulfilling the restrictions on the energy in the battery.

• The proposed strategy produces near-optimum results, improving the fuel consump-
tion obtained with other algorithms in the literature and without relying on informa-
tion about future driving conditions.

• Unlike most of the available literature on the EMS of HEVs, the proposed strategy
does not require the estimation of the future driving conditions and does not follow
the ECMS approach for optimization.
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The paper is organized as follows: after this introduction in Section 1, the case study
and the powertrain model used in the paper are presented in Section 2. Then, Section 3
introduces two standard algorithms (DP and ECMS) to be used as reference strategies for
offline and online optimization in order to assess the performance of the proposed strategy.
Section 4 analyzes the measured vehicle-speed profiles and the optimal controls from DP
in order to find the main patterns. Section 5 describes the proposed algorithm based on the
dynamic programming optimization of a reference loop previously registered and one-step
look-ahead rollout. Finally, Sections 6 and 7 discuss the obtained results and highlight the
main paper conclusions, respectively.

2. Case Study and HEV Model

The case study is a hybrid electric bus covering the route 2 (“Universitats-Hosp.
Dr.Peset”) from the public transport service in the city of Valencia (EMT-Valencia). The
route consists of a loop of 15.1 km which is repeated by the bus between 9 and 10 times
a day with an average duration of 5100 s and a standard deviation of 320 s. The vehicle
position and speed of the bus in the considered route was registered during two consecutive
working days, covering 287 km in total. A GPS in the vehicle outputs the vehicle position,
while the vehicle speed is obtained from the vehicle measurements through the OBD port.
To divide the total distance covered daily by the bus between the different loops, the
starting and ending point of every loop is determined from the GPS signal. In particular,
the starting point of the route is associated to the measurement sample with minimum
Euclidean distance between its GPS coordinates (in UTM) and those of the theoretical
starting location (7.275 × 105 UTM Easting, 4,373,741 UTM Northing). The ending point of
a given loop is associated to the starting point of the next loop. When the initial and final
points of a given loop are determined, the distance covered is computed by integrating the
vehicle-speed signal obtained from the ECU. Figure 1 shows the vehicle-speed traces in
time (left plot) and space (right plot) bases along the 19 repetitions of the loop.

Figure 1. Recorded vehicle-speed traces in time (left plot) and distance (right plot) bases along the
19 loops covered by a bus of route 2 (“Universitats-Hosp. Dr.Peset”) during two consecutive days.

While it is difficult to observe any clear correlation between the speed profiles shown
in Figure 1, not in time (left plot) nor in distance domain (right plot), it is intuitive that
most of the vehicle speed disturbances, e.g., traffic lights or bus stops, and even the trip
duration, are defined in a space basis. It is intuitive that the loop duration is defined in
terms of distance instead of time, for this reason, important deviations in the time duration
of the different loops can be observed in Figure 1 (left), while they show similar distances
covered around the theoretical value of 15.1 km (right). Despite the route being the same in
all the loops, some discrepancies with the exact distance covered appear due to differences
in the driving trajectory, e.g., due to sporadic line changes to avoid obstacles and due
to measuring uncertainties. In any case, Figure 1 shows a better correlation between the
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driving cycles in the distance domain and even some strips of high and low velocity can be
observed in the space basis (right plot). This correlation is exploited by the proposed control
strategy of the HEV bus, whose architecture follows the P2 scheme shown in Figure 2.
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+
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PICE = TICEωgPM = TMωg
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Pel = V · Ib

Pw = Twωw

Figure 2. System layout, nomenclature and sign criteria for the parallel HEV architecture considered
in this paper.

According to the previous paragraph, the objective of the energy management strategy
can be formally defined as finding the control law u(t) that minimizes the following cost:

J =
∫ t f

t0

Pf (u(t), t)dt + (Eb(t f )− Eb(t0))
2 (1)

where Pf is the power of the fuel consumed by the ICE, t0 and t f are the starting and ending
time of the trip, u is the control action, i.e., the power split between ICE and motor and
Eb is the energy stored in the battery. Note that the last term in Equation (1) is needed to
ensure the battery charges sustainability. The key variables to determine the value of J
are the energy stored in the battery at the end of the trip and the fuel consumption, so a
powertrain model able to estimate the system evolution and the impact of control decisions
on J is needed. According to the powertrain architecture in Figure 2, the power provided
by the ICE and motor must be equal to the mechanical power required by the vehicle to
follow the driving cycle; moreover, due to the mechanical link, the motor and ICE share
the same speed and, therefore, the following relation between the torque provided by both
machines should be fulfilled:

Tg = Tm + TICE (2)

where Tg, Tm and TICE are the torque in the powertrain transmission, motor and ICE,
respectively. Including the inertia of powertrain elements in an equivalent vehicle mass
(m), the wheel torque required to drive the vehicle is given by:

Tw = (mv̇−mgµcosθ −mgsinθ − 1
2

ρAcdv2)Rw (3)

where µ is the rolling coefficient, θ is the angle due to the road slope (that can be neglected in
the considered route), ρ is the air density, Acd the product of frontal area and aerodynamic
coefficient of the vehicle, Rw the wheel radius and, finally, v and v̇ the vehicle speed and
acceleration, respectively. Note that while motor and ICE speeds are proportional to the
wheel speed through the gear ratio of the selected gear, their joint torque in Equation (2)
(Tg) is proportional to the wheel torque through the inverse of the gear ratio. In this sense,
if the demanded vehicle speed is known, the demanded acceleration can be computed and
the requested torque for the powertrain (Tg) can be estimated from Equation (3) and the
gear ratio. Then, defining the control action as u = Tm, Equation (2) can be reformulated as:

TICE = Tg − Tm (4)
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and, therefore, provided a vehicle-speed demand and a decision on u, the ICE torque is
defined. Regarding the ICE, the model employed is based on the quasi-static (QS) approach
introduced in [32], using experimental data to map the fuel consumption depending on the
engine speed (ωg) and torque (TICE), so:

mQS
f = g(ωg, TICE) (5)

The quasi-static approach assumes that the engine can move instantaneously from
one operating condition to another without an increase in the fuel consumption and,
particularly, there is not any fuel associated to start the ICE. In this sense, the simplicity of
the quasi-static approach comes at the price of having frequent switching between ICE on
and off that can be unrealistic. To avoid this issue, an additional cost is used for the engine
start as:

m f =

{
(1 + β)mQS

f i f ICEon = 0

mQS
f i f ICEon = 1

(6)

where β is a positive value to be calibrated and the integer variable ICEon represents if the
engine is on (1) or off (0) according to the following dynamics:

ICEon(t) =
{

1 i f m f (t− dt) > 0
0 else

(7)

Regarding the energy stored in the battery (Eb), its dynamic equation is:

Ėb = −Pb (8)

with Pb being the battery power (considered positive when the battery is drained and
negative when the battery is being charged according to the sign criteria defined in Figure 2).
The battery power Pb is obtained from the motor power demand and the motor efficiency
by means of a model. The quasi-static approach is employed for the electric motor, while in
this case the map used considers positive and negative torques to model battery recharging.
Finally, a Thevenin electric equivalent circuit is proposed to model the battery dynamics as
a resistance in series with a voltage source:

V = Voc − IbRb (9)

where Ib is the current drawn from the battery, i.e., the variation on the battery charge
(Q̇b = −Ib) and R represents its internal resistance that depends on the battery state of
energy (SoE), i.e., a measure of the energy level in terms of remaining energy relative to the
total energy content of the fully charged battery (Eb,0):

Eb,0 = Voc,0Qb,0 (10)

with Voc,0 and Qb,0 being the open circuit voltage and charge of the fully charged battery.
The actual energy stored in the battery is represented by:

Eb = VocQb (11)

In order to normalize the battery energy, the state of energy of the battery can be defined as:

SoE =
Eb

Eb,0
=

VocQb
Voc,0Qb,0

= SoC
Voc

Voc,0
(12)

where SoC is the state of charge of the battery, used in many works instead of the SoE.
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3. Benchmarkt Solutions: ECMS and DP with a Priori Knowledge of the Driving Cycle

The equivalent consumption minimization strategy (ECMS) is the most frequently
used method to address the optimization problem introduced in Section 2. The ECMS
is based on using an equivalence factor for the battery power to take into account the
potential of currently discharging the batteries and recharging them in the future or vice
versa. Assuming that this equivalent factor between battery and fuel energy is constant,
the integral problem represented by Equation (1) can be replaced by the minimization of a
set of instantaneous objective functions:

c = Pf + sPb (13)

where the parameter s represents an equivalent factor between fuel and battery energy
sources and accordingly balances the solution between the fuel and battery usage. The
link between the ECMS and optimal control, and more precisely Pontryagin’s minimum
principle, is carefully discussed in [33]. From Equation (13), it can be observed that high
values of s impose a high weight to the battery energy in the objective function, then
promoting the fuel use and battery charging, while low values of s entail a low impact
of the battery use in the objective function, then favoring fuel savings at the expense of
battery depletion. For a given driving cycle, there is an optimal value of s that leads to
the fuel consumption minimization while sustaining the battery energy. Of course, the
optimal value of the parameter s strongly depends on the driving conditions, and the same
equivalence factor s may lead to battery depletion in a given cycle and battery overload
in a different one. In cases where the driving cycle is a priori known, the optimal value of
s may be found by iteratively searching the value that satisfies the charge sustainability
(SoE(t f ) = SoE(t0)). In the general case, where the driving cycle is unknown, different
methods to calibrate and adapt the value of s depending on the operating conditions
may be found in [18,21], but essentially, they rely on calibrating the value of s in a set of
representative cycles, and then apply corrections depending on SoE deviations from the
reference value.

On the other hand, the optimization problem introduced in Section 2 can be formally
cast in the optimal control framework aimed to the minimization of a generic cost function:

J = ψ(x(t f )) +
∫ t f

t0

L(x(t), u(t), d(t))dt (14)

where x is a vector containing the system states, u is the vector of control actions and d
is the vector of disturbances that affect the system evolution. Note that the function J
includes an integral term (L) and a terminal cost ψ that penalizes deviations from a desired
final state. From Equation (1), one can identify L in Equation (14) as the power of the fuel
consumed (Pf ) and ψ(x(t f )) as the deviation from the initial energy stored in the battery.
The optimal control problem consists on finding a trajectory u(t) minimizing the function
J, i.e., minu J. The system state evolves from its initial value x(t0) driven by disturbances
and control actuations according to a set of first-order differential equations represented by
a generic function f :

ẋ(t) = f (x(t), d(t), u(t)) (15)

In the case at hand, the states of the system are the battery state of energy (SoE) and the
state of the ICE (on or off), while the control action is the motor torque (see Equation (4)),
the disturbance is the vehicle speed and the function f is defined by Equations (2)–(12).
The Bellman’s principle of optimality states that: “An optimal policy has the property that
whatever the initial state and initial decisions are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first decisions” [34], which
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informally states that any partial trajectory inside the optimal one is also optimal between
its initial and final states and leads to the Hamilton-Jacobi–Bellman (HJB) equation:

J ∗(x(t), t) = minu

{∫ t+δt

t
L(x(τ), u(τ), τ)dτ + J ∗(x(t + δt), t + δt)

}
(16)

where the optimal cost-to-go J ∗ from any arbitrary state x(t) at time t (t0 ≤ t ≤ t f ) can
be calculated as the cost of a differential problem with length δt plus the optimal cost-to-
go from the resulting state at t + δt to the end. Dynamic programming is an algorithm
exploiting the Bellman principle of optimality and the HJB equation to numerically solve
an optimal control problem. The method is based on the discretization of the time span of
the problem in n time-steps, so for any state value in a given time-step (k), the Bellman’s
principle of optimality implies that:

J ∗(x, k) = minu{L(x, u) + J ∗(x, k + 1)} (17)

Among other methods, the x and u spaces can be discretized and the problem numerically
solved, starting from the last time-step k = n− 1 (so J ∗(x, n) = ψ(x(n))) and proceeding
backwards accumulating the cost-to-go for the whole x space until obtaining a resulting
space of cost-to-go values for the optimal solution at the initial time-step as a function
of the initial state J ∗(x, 1). Note that storing J ∗(x, k) allows to reproduce not only the
optimal solution from the initial state, but from any point in the (x, k) space, which makes
DP a powerful tool for the optimization of dynamic systems. Of course, this potential does
not come for free and DP suffers from the so-called curse of dimensionality: the number of
combinations to test during the problem solution and the number of elements that must be
stored in memory rapidly increase with the problem length, number of states and actuators
and their discretization. According to Section 2, there are only two states in the case at
hand, i.e., the energy stored in the battery (see Equation (11)) and the state of the ICE (on
or off, see (7)), and one control (the motor power), so the problem is still affordable by DP.
On the other side, solving the optimal control problem requires perfect knowledge of the
disturbances, in the case at hand the vehicle speed profile. Since future driving conditions
cannot be perfectly known, DP cannot be used for online control purposes, but its result
can be used as a benchmark for the performance of other strategies. In this sense, assuming
that the complete driving cycle consisting of all the loops covered by the bus in the two
days of testing is known, the optimal solution can be found by DP and then be used as a
reference for comparison of the control strategy proposed in this paper. Figure 3 shows
the results obtained after solving by DP for the complete driving cycle. The upper plot
and medium plots show the fuel consumption in the considered loops and in the complete
cycle. An average value of 36.5 kg/100 km in the fuel consumption during the loops and a
standard deviation of 1.5 kg/100 km points out that there are non-negligible differences
between the driving cycles due to the driving conditions but also due to the SoE at the
end of every loop. The lower plot shows the evolution of the SoE despite the different
evolutions during the cycles; a clear pattern can be observed in most of them, consisting on
an initial battery charging during the first part of the loop, then some discharging below the
initial SoE and finally a recovery phase to reach similar values as the initial SoE. Finally, the
contour lines in the bottom plot represent the cost-to-go (J ∗(x, k)), in kg of fuel, depending
on the vehicle position. Note that despite there being two different cost-to-go maps (one
for the case when the engine state is on and other for the case when it is off), for the sake of
simplicity, the figure only shows the case when the engine is on. It can be noticed that the
iso-cost-to-go lines are almost parallel, pointing out again that there is some periodicity in
the optimal solution with regards to the vehicle position.
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1020

304050607080

Figure 3. Evolution of the optimal fuel consumption (top) and battery SoE (bottom) of the vehicle as
a function of the distance covered during the complete driving cycle. The colorscale in the bottom
plot shows the cost-to-go (J ∗(x, k)), in kg of fuel, depending on the vehicle position and energy in
the battery assuming that the engine is on.

4. Discussing Correlation between Bus Driving Cycles

While DP results in the previous section point out that the optimal control of the
vehicle differs from one loop to other, they also show some hidden patterns related to
the vehicle position in the loop. To analyze that, Figure 4 shows the Fourier transform in
distance domain of the measured vehicle speed and optimal SoE evolution obtained by DP.
It can be clearly noticed that in both cases the maximum in the signal amplitude appears at
the loop distance, in the case at hand 15.1 km, and then shows that there is some repetition
in the loops completed by the bus that can be exploited to generalize the controls optimized
for the vehicle in a single loop to the rest of the bus journey.

Figure 4. Distance-based Fourier transform of the vehicle speed and optimal SoE profiles during the
bus duty cycle. Circles represent the maximum amplitude while the dashed black line shows the
characteristic length of a loop.
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Beyond the frequency analysis previously presented, one of the most widespread meth-
ods for driving-cycle characterization relies on the vehicle speed–acceleration probability
distribution (SAPD) [35]. The intuition behind using this metric as a way to characterize
driving cycles is rooted in the vehicle energy balance itself, stating that, in absence of road
gradients and other perturbations such as wind, the vehicle power demands are essentially
governed by the acceleration and the velocity in a nonlinear but straightforward way
according to Equation (3). This fact has lead many authors to propose different metrics
based on the vehicle speed and acceleration to:

• Characterize driving cycles and driving style. A simplified version of those metrics
are the vapos,95 defined as the 95th percentile of the product between vehicle speed
and positive acceleration used in the European regulations [36] to admit an RDE cycle
as valid.

• Classify driving cycles according to their aggressiveness or provide estimations on the
vehicle emissions [37] or powertrain controls to optimize performance [38].

• Predict future driving conditions in a short horizon for control optimization purposes.
In this line, the probability distribution of the vehicle speed and acceleration (or its
equivalent distribution between current and next time-step speed) is used to model
driving conditions as a Markov process, where the probability of a given velocity in a
time-step is only dependent on the velocity in the previous one. The literature on this
topic is extensive, as can be found in [39].

Figure 5 shows the probability distribution of the vehicle speed and acceleration
obtained for the 19 loops registered. Defining a state as the combination of vehicle speed
and acceleration, the distribution matrix for every cycle was estimated from the frequency of
the possible states during the cycle. For practical reasons, the vehicle speed and acceleration
is discretized in intervals of 0.28 m/s and m/s2 corresponding to the measuring sensibility
of 1 km/h and the sampling rate of 1 s. Let Ni,j be the number of times the vehicle speed is
vi and acceleration is aj during a cycle with duration N, the probability of being in state
(vi, aj) in the previous time can be estimated as:

Pvi ,aj =
Ni,j

N
(18)

where, since the sum of the probabilities of all outcomes must equal 1, then:

N = ∑
j

∑
i

Ni,j (19)

Figure 5. Representation of the vehicle speed–acceleration probability distribution (SAPD) for the
19 loops recorded.

Note that the distribution of all the cycles share common characteristics as an attractor
at v = 0, a = 0 due to the frequent stops of the vehicle, and a reduction in acceleration as
speed increases due to vehicle power constraints or maximum velocities around 14 m/s
due to urban speed limits (50 km/h). However, despite there being a clear relation between
probability distributions shown in Figure 5, the quantification of how one of the cycles
may be representative of the rest requires a deeper analysis beyond the visual inspection.
The singular value decomposition (SVD) of a matrix X is a factorization into the product
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of three matrices (X = USVT), such that U and V are orthogonal matrices and S is a
diagonal matrix with decreasing, non-negative singular values (σ). The explanation of
the method is beyond the scope of the present paper and can be found in general linear
algebra or machine learning literature [40]. However it is interesting to recall that SVD
provides the optimal (in the sense of minimum square error) low-rank approximation of
a matrix, then providing the most dominant patterns in the data. Then, rearranging the
velocity–acceleration distributions for every cycle in Figure 5 as columns of a matrix, and
applying the SVD algorithm, it is possible to obtain the 19 linearly independent modes
shown in Figure 6. Any of the vehicle SAPDs in Figure 5 are a linear combination of the
modes in Figure 6 and provide a limited model order (consider only r < 19 modes); the
first r modes provide the best estimation of the distribution. One can observe how the first
mode certainly resembles any of the distributions in Figure 6 (and actually is their average)
and, as the mode number increases, this resemblance progressively disappears.

Figure 6. Representation of the 19 modes obtained by SVD of the SAPDs shown in Figure 5 and
amount of the variance or energy in the measured SAPDs captured depending on the number of
modes considered.

The singular values (σ), which are the elements in the diagonal of the S matrix,
represent the weight of the modes on the description of the data in matrix X, and as
they are ranked in decreasing order, the first singular values (and corresponding modes)
contain the leading information. The last plot in Figure 6 analyzes the percentage of signal
contained as the number of considered modes increases. It can be observed that the first
singular value (corresponding to the average) accounts for 88% of the data variance and
that with three modes this figure increases above 90%.

Both frequency and vehicle speed–acceleration analyses show that there is a close
relation between the operating conditions reached by the bus in the different loops of the
selected route. Consequently, an optimization of the vehicle energy management for one of
the loops might offer useful information to apply in the rest.

5. Proposed Algorithm: Dynamic Programming Optimization of a Reference Loop and
One-Step Look-Ahead Rollout

While the perfect knowledge of the driving conditions is not possible, the preceding
section shows that there is a close relation between the different loops covered by the bus
within the route. In this sense, this paper proposes to use an arbitrary loop to make a DP
optimization and employ the result as a base policy for vehicle energy management. Of
course, despite similarities, all the loops are not exactly the same and deviations may lead
to undesired vehicle behavior, e.g., fully depleting the battery or exceeding its maximum
charge. To avoid this issue, the base policy provided by the DP should be adapted to actual
working conditions. In the present work, the rollout algorithm [31] is used to this aim.

Consider the optimal control problem proposed in Equation (1), where the trip dura-
tion and disturbance (vehicle speed sequence) is that of one loop of the studied bus line
registered beforehand. Call the registered cycle re f . The DP solution for this particular
problem can be obtained offline, as explained in Section 3, and provides the optimal cost-to-
go from any state xj at time-step k denoted by J ∗(xj, k)re f for this specific cycle. Since the
magnitude conserved between loops is the distance, a space-based optimal cost-to-go can
be built by transforming time to space basis by integration of the vehicle speed registered
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during cycle re f . In this sense, a matrix (J ∗(xj, si)re f ) mapping the optimal cost-to-go in
the reference cycle at a given vehicle position in the loop (si), depending on its state (SoE,
ICEon), can be built from the DP solution.

Taking into account that the complete driving cycle consists of a sequence of similar
loops, J ∗(xj, si)re f is an approximation of the optimal cost-to-go from any state xj in
a position si in any of the loops that can be used as a base policy. Recalling the HJB
Equation (16), the one-step look-ahead rollout algorithm proposes to replace the optimal
cost-to-go from the next state by the base policy, then:

uk = argminu

{
L(xk, dk, u) + J ∗( fk(xk, u), sk+1)re f

}
(20)

where fk is the discrete version of the state function f in Equation (15) andJ ∗( fk(xk, u), sk+1)re f
is an approximation of the optimal cost-to-go from the state in the next time step, result-
ing after applying action u, that is obtained from the DP solution of the reference cycle.
Even though the proposed algorithm provides a suboptimal solution due to the fact that
J ∗(xj, si)re f is only an approximation of J ∗(xj, k), their difference tends to vanish as the
estimated driving cycle (re f ) approaches the real one. The inspection of Equation (20)
shows that the proposed rollout algorithm has two main properties:

• The obtained policy always improves the base policy since it uses information from
the actual cycle in the next time-step (dk) to choose uk.

• The algorithm is able to consider the feedback on the current system state to adapt the
control policy, for instance avoiding battery SoE excursions outside the desired range
by the evaluation of L.

Figure 7 shows the diagram of the proposed algorithm particularized for the case
study. The left side shows the offline part of the algorithm, consisting of solving by DP
a previous driving cycle of the bus in the same route. In the case at hand, a single loop
previously recorded is considered as the reference cycle. The cost-to-go of the reference
cycle is obtained by DP. Then, the cost-to-go is stored in a map (J ∗( ¯SoE, ¯ICEon, s̄)re f ) that
provides the minimum fuel that the bus consumes in the reference cycle depending on the
SoE, state of the ICE (on or off) and vehicle distance. In this sense, ¯SoE , ¯ICEon and s̄ are
vectors containing the possible values of SoE, state of ICE and vehicle distance. On the
right side, the algorithm that runs while the vehicle is covering its actual route is described.
The model presented in Section 2 (Equations (2)–(12)) is used to estimate, at every time step
(k), the fuel consumption (m f ,k) depending on a set of possible motor torques (T̄m), as well
as the state of the vehicle in the next time-step (k + 1), consisting of the SoE (SoEk+1(T̄m)),
state of the engine (ICEon,k+1(T̄m)) and distance covered by the vehicle (sk+1(T̄m)). Note
that the estimated fuel consumption and state of the vehicle in the next time-step depend
on T̄m, so they are vectors with the same size. The estimated state of the vehicle is then
used to interpolate in the cost-to-go map the minimum fuel consumption that the vehicle
has from the next time-step to the end of the loop depending on the control action chosen
(J ∗(T̄m)re f ). Finally, in the optimization block, the action to be applied Tm,k, is the one that
minimizes, not only the current fuel consumption (m f (T̄m)), but the total fuel consumption
until the end of the loop, i.e., the sum of m f (T̄m) and the minimum fuel from the next
time-step to the end. This control action is applied to the HEV (in the case at hand a model),
which updates the vehicle state, and the process in the current driving cycle continues until
the end of the trip.
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Figure 7. Block diagram of the proposed algorithm.

6. Results and Discussion

The potential of the proposed strategy is assessed by comparing its performance with
two extreme cases. On the one hand, the DP solution of the complete driving cycle is
considered as best-case scenario, where the complete driving cycle is a priori known and
the optimal power split can be computed. On the other hand, the widespread ECMS is
employed as a reference technique with online capability. The s factor is calibrated with
the reference loop (re f ), and this value is applied during the complete driving cycle. In
the case at hand, the first loop registered by the bus was considered as reference (re f ) for
both ECMS and the rollout algorithms, and was removed from the evaluated driving cycle.
Since differences between the reference loop and the rest may lead the ECMS to fail in its
aim of sustaining the charge, a feedback from SoE is considered, so the reference s is used
in the SoE range between 0.3 and 0.7, while its value increases if SoE falls below 0.3 and
decreases if SoE rises above 0.7.

Figure 8 shows the evolution of the fuel consumption and SoE during the complete
driving cycle for the three strategies compared. It can be observed how the three methods
are able to sustain the charge. Of course, DP succeeds in keeping the SoE within the allowed
range of 0.3 to 0.7 and leads to a final SoE of 0.48, near the initial value of 0.5, to minimize
the cost in (14), since it exploits the full knowledge of the complete driving cycle. The
ECMS with the s parameter calibrated from a single loop frequently hits the SoE limits, and
only is able to keep its value within the required range by applying corrections to the s
parameter. In any case, the ECMS shows how, since the beginning of the route, the strategy
struggles to keep the SoE above 0.3 and leads to a progressive deviation from the optimal
fuel consumption obtained from DP. The result clearly shows that some calibration effort
is needed to overcome this issue. Regarding the proposed strategy (rollout), results show
the SoE evolves well within the limits of 0.3 and 0.7, showing an evolution more similar to
the DP and leading to a final SoE of 0.47. Figure 9 shows the probability distribution of
the difference between the optimal SoE evolution obtained by DP and those obtained with
the two evaluated methods (rollout and ECMS). It can be clearly noticed how despite both
methods being online applicable and requiring the same information, i.e., the optimization
of a single representative loop, the rollout algorithm provides better tracking of the optimal
SoE evolution. Due to the differences between optimal SoE evolution and those obtained
with the online-assessed capable strategies, at the end of the cycle, the ECMS shows an
increase in fuel consumption of 11% with respect to the DP, while this figure is reduced to
1.9% by the proposed strategy based on rollout, as pointed out by the lower plot of Figure 8.
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Figure 8. Comparison between the SoE and fuel consumption evolution obtained with DP assuming
a priori knowledge of the route (optimal solution), the proposed online applicable method (roll out)
and the standard online applicable method ECMS calibrated with a single loop.

Figure 9. Probability distribution of the deviation between the optimal SoE (DP) and that obtained
by the proposed online applicable method (rollout) and the standard online applicable method ECMS
calibrated with a single loop.

The fuel saving provided by the rollout strategy with respect to the standard ECMS
is based on the operation of the ICE and batteries in more efficient conditions. Contour
lines in Figure 10 show the efficiency levels in the ICE depending on the engine speed
and demanded torque, while the color scale represents the observed frequency in the
engine operating conditions obtained with ECMS (left), rollout (center) and DP (right). For
instance, in the standard ECMS case, the ICE operates frequently outside the high-efficiency
area, particularly in the area of middle load (with an efficiency around 40%) and low
load (with an efficiency around 30%) due to the SoE excursions towards 0.3 that force the
engine to start in order to avoid battery depletion, while for the rollout case most operating
conditions are placed in the high-efficiency region, and there are only a few operating
points in the area of medium and low efficiency. In the same way that the rollout strategy
leads to a similar evolution of SoE as DP, the distribution of ICE operating points also
approaches the DP solution.
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Figure 10. Comparison between the engine operating point histogram obtained with DP assuming a
priori knowledge of the route (optimal solution), the proposed online applicable method (rollout)
and the standard online applicable method ECMS calibrated with a single loop.

On the basis of the precedent discussion, the one-step look-ahead rollout outperforms
the standard ECMS. This is justified by the fact that although both strategies have the same
calibration requirements, i.e., both need the optimization of a reference cycle, ECMS lumps
all the information from the reference cycle in a single parameter s, while the rollout exploits
all the cost-to-go from the reference cycle. In this sense, the control policy provided by
the ECMS approach is based on a single constant without dependence (excepting the SoE
correction) of the system state. On the contrary, the rollout is richer and considers the impact
of the system states (SoE and ICEon) and vehicle position in the control policy. Of course,
this is performed at the expense of higher storage requirements, despite the dependence on
the size of the problem, in the case at hand J ∗(xj, si)re f has size 51 × 2 × 152, representing
a discretization in the SoE of 51 points between 0.3 and 0.7, considering two possible states
for ICEon (on and off) and a 100 m discretization of the 15.1 km loop distance.

Regarding the applicability for control purposes, the standard ECMS and look-ahead
rollout run faster than real time, and 875 and 409 times faster than real time, respectively,
for the driving cycle of Figure 8 in a standard laptop (Intel(R) Core(TM) i7-8550U CPU @
1.80 GHz 1.99 GHz with 8.00 GB RAM). The rollout algorithm requires more computation
resources but is still far from the limit. Moreover, neither the rollout nor the ECMS require
information about future conditions, so they have potential to be applied in control pur-
poses. On the contrary, DP, despite running 390 times faster than real time, depends on a
priori knowledge of the driving cycle, so cannot be used for control applications.

Although the proposed rollout algorithm performs better than the standard ECMS,
there is a noticeable gap between its performance and DP. Expressions (16) and (20) used
for DP and rollout, respectively, highlight the two main simplifications that are the reason
of such performance differences:

• The integral term Equation (16) has a time interval (δt) of a single time-step (one-step
look ahead).

• The optimal cost to go from future state (x(t + δt)) to the end (J ∗(x(t + δt), t + δt)) is
approximated by the cost-to-go computed in the reference loop.

The first simplification is important to allow online application since power demands
beyond the next time-step usually cannot be assumed. However, with the advent of vehicle
to vehicle (V2V) and vehicle to infrastructure (V2I) technologies, one can expect an accurate
extension of the look-ahead horizon. To analyze the impact of having information about
future driving conditions on the proposed control algorithm, Figure 11 shows the fuel
consumption and the deviation from the optimal SoE evolution of the rollout algorithm
assuming perfect driving cycle knowledge in different horizons. One can observe that
increasing the look-ahead horizon allows approaching the optimal SoE evolution and fuel
consumption, but there is still a gap that cannot be closed. For this reason, look-ahead
horizons beyond 250 s do not show a substantial improvement in the fuel consumption.
The reason for that is the second simplification hypothesis. On the one hand, the rollout
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uses a reference cycle as estimator of the future driving conditions, on the other hand, the
cost-to-go of the reference cycle is computed by applying a terminal cost to the end of
the loop, while in DP, this terminal cost is only applied at the end of the complete route.
For this reason, even when increasing the look-ahead horizon and obtaining an accurate
estimation of the future driving conditions, the rollout strategy does not allow to reach
the DP performance in terms of fuel consumption. In this sense, the 1.9% increase in fuel
consumption obtained with the one-step look-ahead rollout strategy can be progressively
reduced if accurate information about driving conditions in a future horizon is available,
but even with long horizons such as 500 s, an increase of 0.5% remains due to the cost-to-go
approximation and the impact of imposing the terminal cost at the end of the loop.

Figure 11. Impact of the look ahead on the fuel consumption obtained by the rollout strategy (left)
and probability distribution of the deviation between the optimal SoE (DP) and that obtained by
rollout with different look-ahead horizons (right).

7. Conclusions

This paper proposes a new energy management strategy for a hybrid electric urban
bus. The proposed strategy takes profit from the route pattern of urban buses by using
information from the vehicle story for energy management optimization. While this is an
approach widely discussed in the literature, this paper proposes a different alternative: the
strategies available in the literature are based on the estimation of future driving conditions
from the vehicle story, however, the solution proposed in this paper is based on using the
optimal solution of a reference driving cycle, previously recorded, to estimate a cost-to-go
that can be embedded in an online optimization. The proposed strategy is evaluated with
data from a bus route in Valencia consisting of a loop of 15.1 km in urban conditions that is
covered between 9 and 10 times per day. The recorded data and the optimal evolution of
the SoE was analyzed using the Fourier transform in space domain, showing the existence
of patterns that are repeated at the characteristic length of the loop. In the same way, the
singular value decomposition of the vehicle speed–acceleration probability distributions in
several loops shows that there is a close relation between the operating conditions reached
by the bus in the different loops of the route. The analysis suggests that a single loop can be
representative of the driving cycle assuming periodicity. Following this idea, the optimal
solution of a single loop is computed offline by DP; the cost-to-go generated by this solution
is stored and used as an approximation for the cost-to-go from the next time-step in the
online application of the HJB equation in the actual driving cycle. The proposed strategy is
compared with the theoretical optimal obtained by DP and the online applicable ECMS.
Simulations results show that the proposed method is able to keep the SoE within the range
delimited by the EMS and reduces the fuel consumption increase in the ECMS from 11% to
1.9%. The main contributions of the paper can be summarized as follows:
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• It was shown that there exist patterns in the different loops covered by an urban bus
that can be used for EMS optimization.

• A novel EMS strategy able to exploit those patterns was proposed and simulations
offer near optimum results, improving the fuel consumption obtained with other
algorithms in the literature calibrated with the same information.

• The proposed strategy does not require the estimation of future driving conditions.

Regarding future works, authors can observe the following possible lines:

• Upgrade the objective function to include other important aspects to be addressed by
the EMS, such as emissions, drivability or battery aging.

• Consider other systems and actuators in the vehicle such as the thermal management
to address temperature limitations in the powertrain elements and the impact of
temperature on their efficiency.

• Extend the energy management to other elements in the bus such as the HVAC, which
can be an important energy consumer. A holistic approach to all the energy flows in
the vehicle can potentially improve its efficiency.

• Include other relevant aspects in the description of the driving cycle, for example the
mass of the vehicle that can change substantially in the route depending on the number
of passengers. One can expect a similar periodicity in the number of passengers on
the bus, and the optimization can explore this information.

All the previous aspects involve to some extent increasing the model complexity, but
the algorithm presented in Section 5 can be generalized to consider them at the expense of
computation complexity.
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