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Abstract: This paper presents an extended Kalman-filter-based sensor fusion approach, which
enables path-following control of a holonomic mobile robot with four mecanum wheels. Output
measurements of the mobile platform may be sensed at different rates: odometry and orientation
data can be obtained at a fast rate, whereas position information may be generated at a slower
rate. In addition, as a consequence of possible sensor failures or the use of lossy wireless sensor
networks, the presence of the measurements may be nonuniform. These issues may degrade the path-
following control performance. The consideration of a nonuniform dual-rate extended Kalman filter
(NUDREKF) enables us to estimate fast-rate robot states from nonuniform, slow-rate measurements.
Providing these estimations to the motion controller, a fast-rate control signal can be generated,
reaching a satisfactory path-following behavior. The proposed NUDREKF is stated to represent any
possible sampling pattern by means of a diagonal matrix, which is updated at a fast rate from the
current, existing measurements. This fact results in a flexible formulation and a straightforward
algorithmic implementation. A modified Pure Pursuit path-tracking algorithm is used, where the
reference linear velocity is decomposed into Cartesian components, which are parameterized by a
variable gain that depends on the distance to the target point. The proposed solution was evaluated
using a realistic simulation model, developed with Simscape Multibody (Matlab/Simulink), of the
four-mecanum-wheeled mobile platform. This model includes some of the nonlinearities present in a
real vehicle, such as dead-zone, saturation, encoder resolution, and wheel sliding, and was validated
by comparing real and simulated behavior. Comparison results reveal the superiority of the sensor
fusion proposal under the presence of nonuniform, slow-rate measurements.

Keywords: mobile robot; sensor fusion; Kalman filter; odometry; mecanum wheels

1. Introduction

A holonomic robot is a mobile robot where the number of controllable degrees of
freedom (DOF) is the same as the number of total DOF—that is, the robot has no kinematic
constraints [1]. In contrast, in a nonholonomic robot, the number of controllable DOF
is less than the number of total DOF; thus, the robot may have one or more kinematic
constraints. The main advantage of holonomic vehicles over nonholonomic vehicles is
their ability to rotate and translate independently and simultaneously [2]—that is, to move
in any direction immediately with any orientation, e.g., they can move sideways [3]. In
other words, the holonomic vehicle is capable of omnidirectional movement [4]. Among
others, mecanum wheels [5] are a special kind of wheel that can be installed on the robotic
platform to achieve omnidirectional mobility. This feature of the mecanum-wheeled mobile
platforms implies their use in a wide variety of fields [6]: military activities, industrial tasks,
medical applications, educational environments, etc. However, they usually present some
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practical problems such as random wheel slippage and high-speed vibration, which may
cause uncertain position errors and low efficiency [7].

In our work, a path-tracking application is developed for a holonomic robot equipped
with four mecanum wheels. As no time constraints are required for the mobile platform to
converge to and follow the path, the path-tracking application becomes a path-following
motion control [8]. The Pure Pursuit path-tracking algorithm (see, e.g., [9]) is used in order
to make the robotic platform follow a predefined path approximately. Modified versions of
the algorithm can be found in literature. They introduce different approaches with the aim
of improving the path-tracking behavior by minimizing oscillations and lateral error. For
instance, in [10], the next position of the path is obtained by considering a factor (which is
experimentally calculated) multiplied by the path error (the closest distance of the vehicle
to the path); in [11], a derivative term is added to the desired curvature equation; in [12],
multiple look ahead points along the target path are aggregated to form a spatially filtered
steering command; in [13], the ideal vehicle speed is estimated from curvature information;
in [14], fuzzy control techniques are applied to dynamically obtain the look ahead distance;
in [15], linear interpolation for waypoints and tuning rules for the look ahead distance
based on curvature and speed are proposed. In our case, the Pure Pursuit path-tacking
algorithm computes reference linear velocities from position estimations provided by a
Kalman filter. The novelty of our modified version lies in decomposing the reference
linear velocity into Cartesian components, which are parameterized by a variable gain that
depends on the distance to the target point.

The control solution proposed in this work uses the celebrated Kalman filter [16–18]
via its extended version (see, e.g., [19]) in order to (i) estimate the nonlinear behavior of the
mobile platform, provide not available (not measurable) variables, and reduce the possible
process and measurement noise effect; (ii) fuse all the data provided by the different sensing
devices (encoders and beacons) to be used in the control stage. These data may arrive to the
filter at two different rates—that is, whereas rotational velocities and orientation may be
sensed at a faster rate, position information is usually obtained at a slower rate. In addition,
the possible occurrence of sensor failures or the use of lossy wireless sensor networks
may make the presence of the measurements nonuniform. Not facing these facts in the
control solution may degrade the path-following control performance. For this reason, a
novel, nonuniform dual-rate extended Kalman filter (NUDREKF) is formulated in order to
estimate fast-rate robot states from nonuniform, slow-rate measurements. Providing these
estimations to the fast-rate motion controller, a proper control signal may be generated so
as to achieve a satisfactory path-following behavior. The proposed NUDREKF introduces a
flexible formulation based on the use of a diagonal matrix, which is updated at fast rate
from the current, existing measurements, allowing any possible sampling pattern. This
feature results in a straightforward algorithmic implementation.

Few works on (uniform) DREKF can be found in literature related to autonomous
vehicle frameworks. For instance, the DREKF is used to better estimate unavailable system
states in unmanned aerial vehicles [20] to manage uncertainty in an obstacle tracking
application [21], to fuse output variables sensed at different rates in a self-driving vehi-
cle [22] and in a two-wheeled mobile robot [23]. Nevertheless, to the best of the authors’
knowledge, no work is available coping with the problem of nonuniform measurements via
the so-called NUDREKF. Only in [24,25] is this kind of filter used to deal with nonuniform
and delayed measurements, but applied to numerical examples and case studies out of the
autonomous vehicle field.

In order to authentically reproduce the expected real behavior of the robotic platform,
Simscape Multibody is used in this work. This multibody modeling tool is an extension of
Matlab/Simulink, where complex physical bodies and their interactions can be intuitively
defined so as to realistically simulate system dynamics. In this way, the robot model can
include nonlinearities present in the real vehicle such as dead-zone, saturation, encoder
resolution, and wheel sliding. These model parameters can be previously validated by
comparing real and simulated behavior. Simscape Multibody has been employed in some
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recent studies related to autonomous vehicle frameworks. For instance, in [26], an antilock
braking system (ABS) control for a vehicle is simulated; in [27], a mathematical model
needed for torque determination during robot locomotion is tested and validated; in [28],
simulation results for even and uneven surfaces are compared for a tread robot; in [29],
a mechatronic interface for mobile manipulators is developed; in [23], a path-following
control for a two-wheeled mobile robot is simulated. To the best of authors’ knowledge, few
works on the simulation of mecanum-wheeled mobile platforms via Simscape Multibody
can be found in literature. Some examples may be [30,31], where different motion models
including multiple contact forces for this kind of robot are simulated.

Summarizing, the main contributions of the work are as follows:

• Consideration of a NUDREKF, which enables us to generate fast-rate state estimates
from nonuniform, slow-rate measurements to be supplied to the fast-rate motion
controller in order to reach a satisfactory path-following behavior.

• Modification of the Pure Pursuit path-tacking algorithm to improve adaptability to
the change in turning and curvature sections of paths.

• Development of a powerful simulation tool, which takes into account complex model-
ing aspects to realistically represent the mobile platform movement.

The paper is organized as follows. Section 2 describes the problem scenario and the
proposed control solution. Section 3 is devoted to mathematical aspects such as kinematic
modeling of the process (Section 3.1), formulation of the NUDREKF (Section 3.2), and
presentation of the modified version of the Pure Pursuit algorithm (Section 3.3). Section 4
presents the simulation tool developed, focusing on the description of the nonlinear aspects
of the model. Section 5 introduces the cases simulated and the results obtained, which are
analyzed in detail via some cost indexes. Finally, some conclusions summarize the present
work in Section 6.

2. Problem Scenario

The overall control scheme is depicted in Figure 1, where two main parts
can be distinguished:

• Robot simulator, which contains some complex vehicle modeling aspects as a result of
using the features of the specialized Simscape Multibody simulation tool, and includes
a dynamic proportional–integral (PI) controller for controlling the velocities of the
wheels. More details can be found in Section 4.

• Control structure, which includes a path-tracking controller (in this case, the Pure
Pursuit algorithm), PI controllers for angular orientation and linear and angular
velocities, an inverse kinematics computation block, and a state estimator (in this case,
the proposed NUDREKF).

Figure 1. Control structure with NUDREKF estimator for the vehicle.

The control structure generates the path reference based on waypoints and then gener-
ates the consequent actions to control the actuators. The main novelty of the NUDREKF
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concerning the DREKF [23] is the consideration of possible irregularities in the sampling
period, such as loss of information from the sensors.

The control structure uses two different periods: T as the estimation and control
period, and the sensing period for vehicle orientation and angular velocity; NT as the
vehicle position sensing period, where N ∈ N+ is the multiplicity between both periods.
The position output will be more slowly sampled (at period NT) due to real hardware
constraints in the beacon system. The beacon system also suffers from information losses
denoted by γi. Let us, respectively, denote (.)T

k and (.)NT
k as a T-period and an NT-period

signal or variable, where k ∈ N are iterations at the corresponding period. In more detail,
the control structure works as follows:

• At the current instant kT, from a set of waypoints and the current position estimation
(X̂, Ŷ)T

k , the Pure Pursuit path-tracking algorithm [9] generates the reference linear

velocities along the X-axis and Y-axis of the vehicle body, (Vre f
x , Vre f

y )T
k . Other impor-

tant parameters of the algorithm are the reference linear velocity Vre f , the look ahead
distance Lre f , and the minimum distance ε from the robot to the target point. More
details about the Pure Pursuit algorithm will be given in Section 3.3.

• The reference linear velocities (Vre f
x , Vre f

y )T
k are injected to linear velocity PI con-

trollers to generate the velocity control actions (Vu
x , Vu

y )
T
k . These PI controllers are

used to reduce the negative effect that may cause dead-zones and possible exter-
nal disturbances over the reference linear velocities. The vehicle inverse kinematics
block transforms the velocity control actions (Vu

x , Vu
y , Wu

ψ)
T
k into dynamic references

(ω
re f
1 , ω

re f
2 , ω

re f
3 , ω

re f
4 )T

k .

• From these dynamic references (ωre f
1 , ω

re f
2 , ω

re f
3 , ω

re f
4 )T

k , the internal dynamic PI con-
troller (included in the robot simulator) computes the control signal to be applied
to the vehicle. These control actions will be applied under Zero-Order Hold (ZOH)
conditions.

• As a result, the robot outputs will be obtained. The vehicle is equipped with a virtual
beacon. Four fixed beacons are additionally placed on the walls of the simulation en-
vironment, emulating a beacon-based indoor positioning system. The measurements
(d1, d2, d3, d4)

NT
k are the distances between the virtual mobile beacon and the four

fixed beacons, which are located in a known place with respect to the world system of
the simulator.

• Any vehicle output measurement (ω1, ω2, ω3, ω4, ψ)T
k , (d1, d2, d3, d4)

NT
k may be dis-

turbed by Gaussian noise, which will be created from a set of independent seeds in
order to generate a reproducible pseudorandom noise. As a consequence, the experi-
ments developed with the simulator will be reproducible under the same conditions.

• In addition, each of the position distances (d1, d2, d3, d4)
NT
k may be individually lost

according to a pseudorandom uniform probability distribution with loss probability P.
When a position distance di(i = 1, .., 4) is lost, γi = 0; otherwise, γi = 1.

• The system state estimate (V̂x, V̂y, Ŵψ, X̂, Ŷ, ψ̂)T
k is computed via the NUDREKF. The pre-

diction step is generated at period T from the odometry measurements (ω1, ω2, ω3, ω4)
T
k .

The correction step is also obtained at period T, but from data sensed at the two dif-
ferent periods—that is, (ψ)T

k and (d1, d2, d3, d4)
NT
k . More details about the proposed

NUDREKF can be found in Section 3.2.

3. Mathematical Foundations

In this section, the mathematical aspects of the work are presented. First, the model
of the four-mecanum-wheeled mobile platform is stated. Second, the formulation of the
NUDREKF is presented. Finally, the modified Pure Pursuit path-tracking algorithm is
introduced.
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3.1. Kinematic and Dynamic Vehicle Modeling

The kinematic model represents the vehicle velocity evolution in a fixed inertial frame
(see in Figure 2). A discrete-time version of the model at period T can be deduced as
follows. A detailed description of the kinematic modeling can be found in [32,33]:

(Vx)
T
k =

(
(ω1)

T
k + (ω2)

T
k + (ω3)

T
k + (ω4)

T
k

)
· R

4

(Vy)
T
k =

(
−(ω1)

T
k + (ω2)

T
k + (ω3)

T
k − (ω4)

T
k

)
· R

4

(Wψ)
T
k =

(
−(ω1)

T
k + (ω2)

T
k − (ω3)

T
k + (ω4)

T
k

)
· R

4 · (Lx + Ly)

VT
k =

√(
(Vx)T

k
)2

+
(
(Vy)T

k
)2

XT
k = XT

k−1 + VT
k T cos(ψT

k−1 + (Wψ)
T
k T)

YT
k = YT

k−1 + VT
k T sin(ψT

k−1 + (Wψ)
T
k T)

ψT
k = ψT

k−1 + (Wψ)
T
k T

(1)

where R is the radius of the wheel, and Lx and Ly are, respectively, the distance between the
center of the wheels and the center of the robot along the longitudinal and lateral body axis
of the robot. The linear and angular velocity control actions are transformed into reference
rotational velocities by means of the inverse kinematic model:

(ω
re f
1 )T

k =
1
R
· ((Vu

x )
T
k − (Vu

y )
T
k
− (Lx + Ly) · (Wu

ψ)
T
k
)

(ω
re f
2 )T

k =
1
R
· ((Vu

x )
T
k + (Vu

y )
T
k
+ (Lx + Ly) · (Wu

ψ)
T
k
)

(ω
re f
3 )T

k =
1
R
· ((Vu

x )
T
k + (Vu

y )
T
k
− (Lx + Ly) · (Wu

ψ)
T
k
)

(ω
re f
4 )T

k =
1
R
· ((Vu

x )
T
k − (Vu

y )
T
k
+ (Lx + Ly) · (Wu

ψ)
T
k
)

(2)

In this work, although the mobile platform has 3 DOF, only two of them will be used
in order to reach any 2D point (i.e., lateral and longitudinal movement). Then, the reference
orientation is set to 0 (i.e., (ψre f )

T
k = 0).

Figure 2. Kinematic model.
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3.2. Non-Uniform Dual-Rate Extended Kalman Filter (NUDREKF)

In this section, the NUDREKF is stated. Its formulation is based on a well-known
theory about nonuniform, multirate, sampled-data system modeling [34–36], which will be
revisited in the next subsection.

3.2.1. Nonuniform, Multirate, Sampled-Data System Modeling

First of all, let us consider a continuous time-invariant linear state-space plant model:

ẋ(t) = A · x(t) + B · u(t)
y(t) = C · x(t) + D · u(t)

(3)

where t ∈ R+, x ∈ Rn is the state vector, u ∈ Rm is the control input vector, and y ∈ Rp is
the output vector. In consequence, the state transition matrix A ∈ Rn×n, the input matrix
B ∈ Rn×m, the output matrix C ∈ Rp×n, and the feedthrough (or feedforward) D ∈ Rp×m.

Assuming a periodic sampling T (i.e., t = k · T, k ∈ N), a discrete-time-invariant,
linear, state-space plant model under ZOH conditions yields

xT
k+1 = ASR · xT

k + BSR · uT
k

yT
k = CSR · xT

k + DSR · uT
k

(4)

where

ASR = eA·T

BSR =
∫ T

0
eAsBds

CSR = C

DSR = D

An example of sampling scheme for a nonuniform, multirate, sampled-data multiple-
input multiple-output (MIMO) system is depicted in Figure 3.

Figure 3. Sampled MIMO plant.

To represent the different sampling times, two diagonal matrices of dimensions m×m
and p× p can be used as follows:
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(∆u)T
k ≡ diag

{
[δu]Tk (i), i = 1, 2, . . . , m

}
(∆y)T

k ≡ diag
{
[δy]Tk (i), i = 1, 2, . . . , p

}
[δu]Tk (i) ≡

{
1, when there is a sample

0, otherwise

[δy]Tk (i) ≡
{

1, when there is a sample

0, otherwise

(5)

Following the principles developed in [37,38], a nonuniform, multirate, sampled-data
system can be expressed as two discrete time systems, one of them representing the plant
and another one representing the input-hold process

xT
k+1 = (AMR)

T
k · x

T
k + (BMR)

T
k · u

T
k (6)

where
[
xT

k
]> ≡ [[xT

k
]> [

(νu)T
k
]>] ∈ Rn+m is an extended state vector and (νu)T

k is the

held input. Note that [· ]> denotes the transpose function. The matrices (AMR)
T
k , (BMR)

T
k

are defined as

(AMR)
T
k =

[
ASR BSR(T) ·

(
I − (∆u)T

k
)

0 I − (∆u)T
k

]
(BMR)

T
k =

[
BSR(T) · (∆u)T

k
(∆u)T

k

] (7)

being BSR(T) =
∫ T

0 eA·(T−s)Bds.
These multirate matrices can be easily obtained as the product of two independent

matrices: the first one corresponds to the single-rate system, and the second one to the
nonuniform multirate sampling procedure. So, we have

[
x
u

]T

k+1
= (HSRD)

T
k · (HMRS)

T
k ·

 x
νu

u

T

k

=

[
ASR BSR(T)

0 I

]
·
[

I 0 0
0 I − (∆u)T

k (∆u)T
k

]
·

 x
νu

u

T

k

(8)

If a similar reasoning is additionally applied to output signals, a compact, nonuniform,
multirate, discrete model can be obtained as follows:


xk+1
νu

k+1
ν

y
k+1
uk
yk


T

=


ASR BSR(T) ·

(
I − (∆u)T

k
)

0 BSR(T) · (∆u)T
k

0 I − (∆u)T
k 0 (∆u)T

k
(∆y)T

k · CSR 0 I − (∆u)T
k (∆y)T

k · DSR · (∆u)T
k

0 0 0 I
(∆y)T

k · CSR (∆y)T
k · DSR ·

(
I − (∆u)T

k
)

I − (∆u)T
k (∆y)T

k · DSR · (∆u)T
k




x
νu

νy

u


T

k

(9)

where, now,
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(AMR)
T
k =

 ASR BSR(T) ·
(

I − (∆u)T
k
)

0
0 I − (∆u)T

k 0
(∆y)T

k · CSR 0 I − (∆y)T
k


(BMR)

T
k =

BSR(T) · (∆u)T
k

(∆u)T
k

(∆y)T
k · DSR


(CMR)

T
k =

[
(∆y)T

k · CSR (∆y)T
k · DSR ·

(
I − (∆u)T

k
)

I − (∆y)T
k
]

(DMR)
T
k =

[
∆y

k · DSR · ∆u
k

]
(10)

The proposed NUDREKF-based control structure considers nonuniform, dual-rate,
sampled-data system outputs and fast-rate inputs to the plant. Then, from the previous
formulation, we will have[

x
νy

]T

k+1
=

[
ASR 0

(∆y)T
k · CSR I − (∆y)T

k

][
x
νy

]T

k
+

[
BSR(T)

(∆y)T
k · DSR

]
uT

k (11)

yT
k =

[
(∆y)T

k · CSR I − (∆y)T
k
][ x

νy

]T

k
+
[
(∆y)T

k · DSR

]
uT

k (12)

being

(AMR)
T
k =

[
ASR 0

(∆y)T
k · CSR I − (∆y)T

k

]
(BMR)

T
k =

[
BSR(T)

(∆y)T
k · DSR

]
(CMR)

T
k =

[
(∆y)T

k · CSR I − (∆y)T
k
]

(DMR)
T
k =

[
(∆y)T

k · DSR

]
(13)

3.2.2. Formulation of the NUDREKF

The previous reasoning can be applied to the well-known Extended Kalman Filter
equations [19]:

ξT
k+1 = f

(
ξT

k

)
+ h
(

ξT
k

)
· uT

k

zT
k = g

(
ξT

k

)
+ ηT

k

(14)

where ξT
k is the vehicle state, which is composed of

[
(Vx, Vy, Wψ, X, Y, ψ)T

k
]>; the control

signal is uT
k =

[
(ω1, ω2, ω3, ω4)

T
k
]>; ηT

k is a possible measurement noise, which is as-
sumed to be zero mean multivariate Gaussian noise with covariance RT

k ; and the output is

zT
k =

[
(Vx, Vy, Wψ, ψ, γ1 · d1, γ2 · d2, γ3 · d3, γ4 · d4)

T
k
]>, being di 6= 0, (i = 1 . . . 4) at times

k = NT and γi = 1 if no measurement loss is produced (otherwise, γi = 0).
The nonlinear functions f and g can be linearized as follows:

f
(

ξT
k

)
≈ f

(
ξ̂T

k

)
+

∂ f
∂ξ

∣∣∣∣
ξ̂T

k

·
(

ξT
k − ξ̂T

k

)
g
(

ξT
k

)
≈ g

(
ξ̂T

k|k−1

)
+

∂g
∂ξ

∣∣∣∣
ξ̂T

k|k−1

·
(

ξT
k − ξ̂T

k|k−1

) (15)
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where, as usual, the notation ξ̂T
k|k−1 means the state estimated for the instant k from the

instant k− 1. If the previous nonuniform multirate modeling is applied to the linearized
model, it yields

fMR

(
ξ̂T

k

)
=

 f
(

ξ̂T
k

)
(∆y)T

k · g
(

ξ̂T
k

)
+ (I − (∆y)T

k ) · (ν
y)T

k



∂ fMR
∂ξ

∣∣∣∣
ξ̂T

k

=


∂ f
∂ξ

∣∣∣
ξ̂T

k

0

(∆y)T
k ·

∂g
∂ξ

∣∣∣
ξ̂T

k

I − (∆y)T
k



hMR

(
ξT

k

)
=

[
h
(
ξT

k
)

0

]

gMR

(
ξ̂T

k

)
=
[
(∆y)T

k · g
(

ξ̂T
k

)
+ (I − (∆y)T

k ) · (ν
y)T

k

]
∂gMR

∂ξ

∣∣∣∣
ξ̂T

k

=

[
(∆y)T

k ·
∂g
∂ξ

∣∣∣
ξ̂T

k

I − (∆y)T
k

]

(16)

Then, the NUDREKF is formulated as follows:

• Initialization:

PT
0|0 =

[
Cov(ξT

0 )
0

]
ξ̂T

0|0 =

[
ξ
νy

]T

0|0
=

[
E(ξT

0 )
0

] (17)

where Cov(· ) denotes covariance, and E(· ) denotes the expectation.
• Algorithm ∀k ≥ 1:

PT
k|k−1 =

∂ fMR
∂ξ

∣∣∣∣
ξ̂T

k−1|k−1

· PT
k−1|k−1 ·

[
∂ fMR

∂ξ

∣∣∣
ξ̂T

k−1|k−1

]>

+ hMR(ξ̂
T
k−1|k−1) ·Q

T
k−1 ·

[
hMR(ξ̂

T
k−1|k−1)

]>
KT

k = PT
k|k−1 ·

[
∂gMR

∂ξ

∣∣∣
ξ̂T

k−1|k−1

]>

·

 ∂gMR
∂ξ

∣∣∣∣
ξ̂T

k−1|k−1

· PT
k|k−1 ·

[
∂gMR

∂ξ

∣∣∣
ξ̂T

k−1|k−1

]>
+ RT

k

−1

· (∆y)T
k

PT
k|k = PT

k|k−1 − KT
k ·

∂gMR
∂ξ

∣∣∣∣
ξ̂T

k−1|k−1

· PT
k|k−1

ξ̂T
k|k−1 = fMR

(
ξ̂T

k−1

)
ξ̂T

k|k = ξ̂T
k|k−1 + KT

k ·
(

zT
k − gMR

(
ξ̂T

k|k−1

))

(18)
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where KT
k is the Kalman filter gain, and QT

k , PT
k|k are covariance matrices (see more

details in Appendix A).

3.3. Pure Pursuit Algorithm

As is well-known [9], from a set of waypoints, the current robot position, and the look
ahead distance Lre f , the Pure Pursuit path-tracking algorithm provides the next point to
be followed by the robot. This target point is reached at a desired speed, known as the
reference linear velocity Vre f . Let us name D as the distance from the current robot position
to the target point. D can be decomposed into Cartesian components dx and dy, as depicted
in Figure 4.

Figure 4. Pure Pursuit.

In the present work, a modified version of the algorithm is proposed. Since the mobile
platform is able to laterally and longitudinally move, Vre f can also be decomposed into
Cartesian components, i.e., lateral (Vre f

x ) and longitudinal (Vre f
y ) reference linear velocities.

Additionally, the set of waypoints is composed of a subset of so-called via-points (see,
e.g., [39]). The main goal of these via-points is to improve the approach to the target point
in curved sections of the path. The procedure needs to define a minimum distance ε. Then,
the algorithm searches for the next target point. If this point is not a via-point, the algorithm
proceeds as usual. If the point is a via-point, it will be retained as the current target point
while the distance D is greater than ε.

Finally, the algorithm computes the reference linear velocities Vre f
x and Vre f

y . They
are parameterized by a variable gain KV ∈ [0, 1] that depends on D in such a way that
KV = D

Lre f . If the target point is not a via-point, D = Lre f ; hence, KV = 1. Note that for
a via-point, the lower D is, the lower the velocities will be. The modified Pure Pursuit
path-tracking algorithm is detailed in Algorithm 1.
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Algorithm 1: Calculate (Vre f
x , Vre f

y )T
k

Require: (X̂, Ŷ)T
k ∧ (Xre f , Yre f ) ∧ (Lre f , Vre f ) ∧ ε

Global i = 1; // i represents the vector index position of the current
reference position

(
Xre f

i , Yre f
i

)
dx = 0; dy = 0; D = 0;

Vre f
x = 0; Vre f

y = 0; end_loop = 1;

while i ≤ length
(

Xre f , Yre f
)
∧ end_loop do

dx = Xre f
i − X̂; dy = Yre f

i − Ŷ; D =
√

d2
x + d2

y;

if is_via_point
(

Xre f
i , Yre f

i

)
then

if D ≤ ε then
i = i + 1;

else
end_loop = 0;

end if
else

if D < Lre f then
i = i + 1;

else
end_loop = 0;

end if
end if

end while
if i ≤ length

(
Xre f , Yre f

)
then

KV = sat
(

D
Lre f , 0, 1

)
;

Vre f
x = Vre f · KV · cos

(
atan2

(
dy/D
dx/D

))
;

Vre f
y = Vre f · KV · sin

(
atan2

(
dy/D
dx/D

))
;

end if

4. Four-Mecanum-Wheeled Mobile Platform

Firstly, the simulation tool developed to test the proposed control solution will be
presented in Section 4.1. Secondly, some hardware details about the real platform will be
shown in Section 4.2.

4.1. Simulation Tool

Obviously, the best way to test the proposed path-tracking algorithm is by using a real
four-mecanum wheeled vehicle. The main issue is that it is not easy to measure the real
position of the vehicle. Outdoor positioning (e.g., GPS) does not have enough precision to
measure XY coordinates of a small size vehicle. Indoor positioning (e.g., beacons or LIDAR)
provides the position with a great amount of noise. To prove the validity of the proposed
solutions, a precise way of determining the position and orientation of the vehicle is needed.
Simulation tools can be an especially useful alternative, but the simulation model must
imitate the behavior of the real model as precisely as possible.

Using transfer functions and kinematic equations of the vehicle excludes some impor-
tant characteristics of the real vehicle. Nonlinearities of the motors, the limited resolution of
the encoders, and the sliding of the wheels play a significant role in the trajectory described
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by the real vehicle and must be included in the simulation model. Simscape Multibody, a
well-known Matlab/Simulink library, is used to develop a simulation model in this work.

In this case, the main challenge is to simulate the real behavior of the mecanum wheel.
In a conventional wheel, the friction between the wheel surface and the ground generates
the forces and torques that move the vehicle. An example of this for a two-wheeled vehicle
can be found in [23]. However, in the case of the mecanum wheel, the forces and torques are
generated by the friction with the rollers of the wheel (see Figure 5). The rollers, attached
with a 45◦ angle, allow the wheel to generate a twisting force that makes the vehicle to
move in 3 DOF (forward–backwards, right–left, rotation around the vertical axis).

(a) Real mecanum wheel. (b) Modeled mecanum wheel.

Figure 5. Mecanum wheel: real and modeled.

Figure 6 shows the Simscape Multibody model of the mecanum wheel. As can be seen,
each one of the rollers has a revolute joint to allow it to turn over the hub in which it is
mounted. The contact forces of each one of the rollers can also be seen. These blocks are
the ones that generate the combination of forces/torques that make the wheel behave as in
the real world.

Figure 6. Internal assembly of modeled mecanum wheel.

Each one of the four wheels of the simulated vehicle has its own angular velocity
control, as shown in Figure 7. The revolute joint allows the wheel to turn over the vehicle
chassis. The damping coefficient in this revolute joint was adjusted to emulate the dynamic
behavior of the motor used in the real vehicle. Saturation and dead-zone blocks were
included for a better simulation of the real behavior. As the motors used in the real vehicle
have good linearity, it was considered necessary to include any other nonlinearities. A PI
controller was used to assure that the wheel angular velocity follows its desired reference.
This control loop uses the same sample time as the real control loop, implemented in the
microcontroller mounted in the vehicle. The parameters on this PI controller are the ones
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used in the angular velocity control loops of the real vehicle. In the real motor, the angular
velocity was measured by means of a built-in encoder. The resolution of this encoder, which
depends on the number of pulses-per-revolution, was included in the feedback so that the
simulated control loop works with the same information as in the real world.

Figure 7. PI controller with the revolute joint as motor attached to a mecanum wheel.

The simulated control loop was validated by comparison with the real one. With
the wheels-in-the-air (i.e, no contact with the ground) and the wheels-on-the-ground, the
results provided by the real and simulated encoder are shown in Figure 8a,b. As can be
seen, real results have a great amount of noise, but the dynamical behavior is quite similar
to the simulated results in the transient and steady state.

(a) Wheels-in-the-air. (b) Wheels-on-the-ground.

Figure 8. Closed-loop response.

Joining four of these structures to the CAD (Computer-Aided Design) model of the
chassis, the simulated vehicle is completed, as shown in Figure 9. A Cartesian joint was
included to provide XYZ DOF. A Z-axis revolute joint allows the vehicle to turn around
its vertical axis. The complete simulation model has four inputs (the angular velocity
references) and seven outputs (the angular velocities of the wheels, X and Y position,
and orientation of the vehicle). The angular velocities are provided, as measured by the
encoders. Position and orientation are provided as if they were measured by a perfect
positioning system. To evaluate the proposed algorithms, some noise was added to the
outputs to consider the unavoidable uncertainty of the real measurement devices.
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Figure 9. Simscape simulation model and environment.

To be useful, the simulation model must provide the same information as the real
vehicle. Some parameters of the model must be experimentally adjusted, and this can
only be achieved by comparing the real response with the simulated one. Some of these
parameters are related to the friction of the joints (damping coefficients) that allow the
vehicle to move and turn over the floor; however, the most important ones are the param-
eters involved with the Spatial Contact Forces blocks. Stiffness and damping determine
the normal forces that appear when the mecanum wheel rollers touch the ground surface.
These forces prevent the vehicle going through the ground, as it happens in the real world.
Coefficients of dynamic and static friction determine the frictional forces that make the
vehicle move and turn over the ground surface.

Some angular velocity references can be applied to the control loops of the vehicle
wheels. The consequent movement of the vehicle (position and orientation) can be mea-
sured by processing some images captured by a zenithal camera. The goal is to obtain, with
the simulated vehicle, the same outputs when the same inputs are applied.

For the first test, the same reference was applied to the four wheels, which cause a
longitudinal (in the direction of the wheels) movement ((Vre f

x )T
k , (Vre f

y )T
k = 0, (Wre f

ψ )T
k = 0).

Figure 10a shows the results (real and simulated) obtained from this test. As can be seen, the
vehicle moves about 1.5 m in the Y direction, and the results are quite similar. The second
test applies the same reference to the front-right and back-left wheels and the opposite
reference to the other two wheels. These references cause a transversal (perpendicular to
the direction of the wheels) movement ((Vre f

x )T
k = 0, (Vre f

y )T
k , (Wre f

ψ )T
k = 0). The results are

shown in Figure 10b. The vehicle moves about 1.5 m in the X direction, and the simulation
model proves to be quite accurate. For the third test, the signs of the references for the
right wheels are different from the ones for the left wheels causing a rotational (around
the vertical axis) movement ((Vre f

x )T
k = 0, (Vre f

y )T
k = 0, (Wre f

ψ )T
k ). The results in Figure 10c

show that the real vehicle turns approximately at the same velocity as the simulated model.
These comparisons between real and simulated results prove that the simulated vehicle

behaves similar to the real one. So, it can be used to test the goodness of the path-tracking
algorithms proposed in this work. This will be performed in Section 5.
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(a) Longitudinal movement. (b) Lateral movement.

(c) Rotational movement.

Figure 10. Comparison of results between the simulator and real robot data.

4.2. Real Platform

The reference model for the robot used in the simulator is the NEXUS Robot 4WD
Mecanum Wheel Mobile Arduino Robotics Car 10011 (see Figure 11). Some features of
the robotic platform are as follows: the body weighs about 3 kg, the wheels weigh 400 g
and have 9 rubber rollers, and the parameters related to the kinematic model are (see in
Section 3.1) R = 0.05 m and Lx = Ly = 0.15 m. More details about the robot can be found
in http://www.nexusrobot.com/product/4wd-mecanum-wheel-mobile-arduino-robotics-
car-10011.html, accessed on 25 March 2022.

By default, the robotic platform does not include a global positioning system for in-
doors. For this reason, a beacon-based indoor positioning system—Marvelmind HW v4.9—
was integrated (https://marvelmind.com/pics/marvelmind_navigation_system_manual.
pdf, accessed on 25 March 2022). The experiments in Section 5.3 were performed in an
interference-free environment, where the robot position may be sensed via the Marvelmind
beacon system and the robot orientation by means of a Bosch BNO055 Absolute Orientation
Sensor (https://www.bosch-sensortec.com/products/smart-sensors/bno055/), accessed
on 25 March 2022.

The original metal gearmotor is replaced by a Pololu 37D metal gearmotor (https:
//www.pololu.com/product/4754, accessed on 25 March 2022) with a gear ratio (GR) of
70 and equipped with an integrated quadrature encoder with 64 counts per revolution
(CPR). In order to transform the CPR into the angular velocity of the wheels ωi, the
following equivalence is applied: ωi = 2·π

T ·
1

CPR·GR · NC, where NC is the number of
counts during the sensing period T. The original hardware was updated by means of a
ESP32 with Arduino UNO form factor for compatibility with Adafruit Motor Shield V2
(https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino), accessed on 25 March
2022. In addition, a DFRobot Gravity—I2C Digital Wattmeter is included (https://www.
dfrobot.com/product-1827.html, accessed on 25 March 2022) to measure the voltage and
amperage of the battery, and estimate the real voltage injected to the motor by the PWM
reference of the Adafruit Motor Shield V2. The code was developed via FREERTOS, a
real-time operating system for microcontrollers, which uses a periodic task and the two
cores of the ESP32.

http://www.nexusrobot.com/product/4wd-mecanum-wheel-mobile-arduino-robotics-car-10011.html
http://www.nexusrobot.com/product/4wd-mecanum-wheel-mobile-arduino-robotics-car-10011.html
https://marvelmind.com/pics/marvelmind_navigation_system_manual.pdf
https://marvelmind.com/pics/marvelmind_navigation_system_manual.pdf
https://www.bosch-sensortec.com/products/smart-sensors/bno055/
https://www.pololu.com/product/4754
https://www.pololu.com/product/4754
https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino
https://www.dfrobot.com/product-1827.html
https://www.dfrobot.com/product-1827.html
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Figure 11. Real robot.

5. Simulation Results

This section is organized as follows: The cases simulated are defined in Section 5.1.
Some cost indexes are formulated in Section 5.2 with the aim of being used to better assess
the results obtained in Section 5.3.

5.1. Cases Evaluated

These are the cases studied in the simulation tool:

• Direct position, orientation, and angular velocity at single-rate T (SR): In this experi-
ment, output measurements (ω1, ω2, ω3, ω4, X, Y, ψ)T

k are directly sampled from the
simulator block at different periods T = 0.1s and T = 0.3s. No noise is considered. In
addition, for the case SR 0.1 s, the modified version of the Pure Pursuit path-tracking
algorithm presented in this work is compared with the original method under the
same conditions.

• Dual-rate Extended Kalman Filter (DREKF): This is the filter introduced in [23], which
is used in the present work to be compared with the proposed NUDREKF. Gaussian
noises are added to the robot outputs: distances (d1, d2, d3, d4)

NT
k , which are sensed at

sampling period NT, being N = 10; velocities (ω1, ω2, ω3, ω4)
T
k ; and vehicle orientation

(ψ)T
k , which are sampled at period T = 0.1 s. Regarding possible losses of the distance

values, three options for the loss probability P are simulated: P = 0.1, P = 0.3, and
P = 0.5. Due to the nature of the DREKF, if one or more distances are lost at the current
sensing time, the full set of distances will be considered lost.

• Nonuniform dual-rate extended Kalman filter (NUDREKF): This is the case presented
in Section 3.2. The simulations are carried out under the same considerations as in the
DREKF scenario; now, however, as the NUDREKF is able to face nonuniform sampling
patterns, individual losses for each distance can be treated.

The reference trajectory to be tracked is the Lissajous curve (1, 2) shown in Figure 12,
where the subset of via-points can also be seen.

Figure 12. Lissajous curve reference trajectory.
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5.2. Cost Indexes for Performance Assessment

To better quantify the results to be shown in Section 5.3, four cost indexes will be
used. These indexes evaluate control performance for every case simulated with the aim of
making the comparison easier. The cost indexes are as follows:

• J1, which is based on the `2-norm, and its goal is to provide a measure (in meters)
about how accurately the path is followed:

J1 =
1
l

l

∑
k=1

min
1≤k′≤l

√(
XT

k − (Xre f )
T
k′

)2
+
(

YT
k − (Yre f )

T
k′

)2
(19)

where l is the number of iterations at period T required by the vehicle to reach the
final point of the path, (X, Y)T

k is the current vehicle position, and (Xre f , Yre f )T
k′ is the

nearest kinematic position reference to the current vehicle position. It is worth noting
that, despite using a dual-rate control scheme, the position data may be available at
period T (intersample behavior; see, e.g., [40]) in the simulator environment.

• J2, which is based on the `∞-norm and is defined to know the maximum difference (in
meters) between the desired path and the current vehicle position:

J2 = max
1≤k≤l

{
min

1≤k′≤l

√(
XT

k − (Xre f )
T
k′

)2
+
(

YT
k − (Yre f )

T
k′

)2
}

(20)

• J3, which measures the total amount of time (in seconds) elapsed to arrive at
the final destination:

J3 = lT (21)

• J4, which is based on the `2-norm, and its goal is to provide a measure (in meters)
about how accurately the estimation is made:

J4 =
1
l

l

∑
k=1

√(
XT

k − X̂T
k

)2
+
(

YT
k − ŶT

k

)2
(22)

where (X̂, Ŷ)T
k is the estimated vehicle position.

5.3. Results

First of all, let us compare the modified Pure Pursuit path-tracking algorithm with the
original, conventional version under the same conditions and for SR 0.1 s.

Figure 13 clearly reveals the benefits of using the modified proposal (MPP) versus the
original, conventional one (CPP)—that is, MPP is able to track the path more accurately
than CPP. This fact is confirmed by the cost indexes presented in Table 1, where J1 and J2 are
noticeably worsened for the original algorithm. However, J3 points out a slight reduction
of time that CPP needs to take in order to follow the trajectory. Note that the indexes are
divided by the best case—that is, the SR 0.1 s MPP.

Table 1. Cost index results for Pure Pursuit comparison.

J1 J2 J3

SR 0.1 s—Modified Pure Pursuit (MPP) 1.0 1.0 1.0
SR 0.1 s—Conventional Pure Pursuit (CPP) 14.3 6.96 0.79
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Figure 13. Pure Pursuit comparison results for a Lissajous reference.

Then, adopting the modified Pure Pursuit algorithm for the rest of simulations,
Figures 14–16 show the results obtained for the Lissajous curve. Table 2 presents the
cost indexes calculated for every case, where the cost indexes J1, J2, and J3 are divided by
the nominal case—that is, the single-rate case at T = 0.1 s (SR 0.1 s)—and J4 is divided by
the best case—that is, NUDREKF P = 0.1.

Table 2. Cost index results.

J1 J2 J3 J4

SR 0.1 s 1.0 1.0 1.0 -
SR 0.3 s 42.8 17.5 2.7 -

NUDREKF P = 0.1 4.8 2.4 1.1 1.0
NUDREKF P = 0.3 5.3 3.4 1.1 1.1
NUDREKF P = 0.5 5.5 3.6 1.1 1.3

DREKF P = 0.1 6.9 5.2 1.2 1.5
DREKF P = 0.3 9.4 6.4 1.0 1.9
DREKF P = 0.5 12.2 9.3 1.0 2.6

Figure 14. Cost index results.
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Figure 15. Comparison results for a Lissajous reference.

(a) Single-rate cases. (b) NUDREKF cases.

(c) DREKF cases.

Figure 16. Path-tracking trajectory error over time.
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The main conclusions of the comparison are as follows:

• Cost index J3 presents values very similar to the nominal one for every case, except for
SR 0.3 s—that is, the case where direct measurements are sensed at sampling period
T = 0.3 s, which has a value 2.7 times higher.

• SR 0.3 s shows the worst behavior (noticeable oscillations), which is confirmed by the
clear rise of every cost index. On average, J1 and J2 increase their values by 42.8 and
17.5 times, respectively.

• In general, the NUDREKF cost indices are lower than the DREKF cost indices when
appearing in nonuniform sampling patterns, beyond managing noisy and scarce data,
and existing process nonlinearities. As can be seen in Figure 14, the higher P is, the
worse the cost value will be. This rule is more evident for the DREKF. Note that the
worst case for NUDREKF—that is, when P = 0.5—presents lower J1, J2, and J4 than
the best case for DREKF—that is, when P = 0.1.

• NUDREKF P = 0.1 shows accurate path tracking, despite having scarce position
measurements (10 less times), and assuming dropouts, noise, and nonlinearities. The
cost indexes confirm the achievement of satisfactory control properties, since J1 and
J2 are slightly worsened with respect to the nominal case (4.8 and 2.4 times higher,
respectively). NUDREKF P = 0.3 shows slightly worse path tracking with respect
to NUDREKF P = 0.1, increasing 0.5, 1, and 0.3 points in J1, J2, and J4, respectively.
NUDREKF P = 0.5 worsens the path-tracking behavior a bit more regarding NUDREKF
P = 0.1, and increases 0.7, 1.2, and 0.5 points in J1, J2, and J4, respectively. In summary,
the NUDREKF strategy preserves a satisfactory trajectory tracking performance under
conditions of loss of measurements.

• In contrast, DREKF P = 0.1 shows slightly worse path tracking with respect to
NUDREKF P = 0.5, and quite worse behavior regarding NUDREKF P = 0.1. As
can be seen in Figure 15, DREKF P = 0.3 and DREKF P = 0.5 seem to achieve good
path tracking; however, the correction of the position is taken only a few times and it
is generally based on odometry measurements, obtaining poor performance on the
cost index J1, J2 and J4. If the experiment were extended over time, the tracking would
suffer from drift in the estimation of the robot.

• Figure 16 depicts the path-tracking trajectory error for the different cases evaluated.
As expected (see Figure 16a), SR 0.1 s presents the lowest error, being practically null
except for the four slight spikes corresponding to the four curves of the trajectory, and
SR 0.3 s shows the highest error, which reaches up to 0.6 m. Between both single-rate
cases, the error value for the dual-rate approaches can be found. As can be seen in
Figure 16b,c, NUDREKF cases depict lower error (up to 0.1 m) than DREKF cases
(which can reach up to 0.3 m). This fact confirms the previous conclusions about the
improvement introduced by the nonuniform sampling strategy.

As a summary, the proposed NUDREKF strategy enables us to reach a satisfactory
path-tracking performance, despite considering possible nonuniform patterns of loss of
data. To check the possibilities and power of the simulation tool developed, the next link to
one video that shows the cases evaluated is provided: https://1drv.ms/v/s!AgyvxPGH2
rA4ezbNYsz7S1O6xqg, accessed on 25 March 2022.

6. Conclusions

The proposed nonuniform dual-rate extended Kalman filter solves the problem of
estimating the state of a vehicle from output measurements sensed at different periods
and with possible nonuniform loss of data, despite existing nonlinearities and noises. The
modified Pure Pursuit path-tracking algorithm is a useful procedure for precise reference
tracking of the four-mecanum-wheeled mobile platform along a curved path. The sim-
ulation application based on Simscape Multibody is a powerful tool to test the control
structure proposed.

https://1drv.ms/v/s!AgyvxPGH2rA4ezbNYsz7S1O6xqg
https://1drv.ms/v/s!AgyvxPGH2rA4ezbNYsz7S1O6xqg
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Abbreviations

The following abbreviations are used in this manuscript:
ABS Antilock braking system
CAD Computer-Aided Design
CPR Counts per revolution
DOF Degree of freedom
DREKF Dual-rate extended Kalman filter
GPS Global Positioning System
GR Gear ratio
LIDAR Light Detection and Ranging of Laser Imaging Detection and Ranging
MIMO Multiple-input multiple-output
NC Number of counts
NUDREKF Nonuniform dual-rate extended Kalman filter
PI Proportional–Integral
SR Single-rate
ZOH Zero-Order Hold

Appendix A. Covariance Matrices RT
k and QT

k

In this appendix, the covariance matrices RT
k and QT

k used in this work are declared.
Regarding the matrix RT

k , the first three values of the diagonal are related to the covariance
of the velocity of the wheel (assuming contact with the ground). This covariance was
calculated from a histogram of the steady-state response of the velocity. The value obtained
is 0.014. The fourth value of the diagonal is related to the orientation output, and the rest of
values are connected to the position measurements. The covariances of these variables were
obtained by following the manufacture’s manual (mentioned in Section 4.2) for the absolute
orientation sensor and for the beacon-based indoor positioning system, where the precision
of these devices is indicated. The values obtained are 0.005 and 0.0025, respectively. Finally,
the matrix QT

k is tuned by hand, according to the desired uncertainty for the model.

RT
k =



0.014 0 0 0 0 0 0 0
0 0.014 0 0 0 0 0 0
0 0 0.014 0 0 0 0 0
0 0 0 0.005 0 0 0 0
0 0 0 0 0.0025 0 0 0
0 0 0 0 0 0.0025 0 0
0 0 0 0 0 0 0.0025 0
0 0 0 0 0 0 0 0.0025





Appl. Sci. 2022, 12, 3560 22 of 23

QT
k =



0.025 0 0 0 0 0
0 0.025 0 0 0 0
0 0 0.025 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.1


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