
High Performance Multidimensional
Iterative Processes for Solving Nonlinear
Equations

PAULA TRIGUERO NAVARRO

Supervised by:

VALENCIA, MAY 2023

Dra. ALICIA CORDERO BARBERO
Dra. NEUS GARRIDO SÀEZ
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On numerous occasions, when an applied mathematics problem is
being solved, it is necessary to solve a nonlinear problem. It is
not always possible to solve these nonlinear problems analytically,
so iterative methods are used in order to obtain an approximation
to the solution of the problem.

The work developed in this doctoral thesis is based on the study
and design of iterative methods to obtain approximations to the
solution of nonlinear equations and systems of nonlinear equations.

In this dissertation, the composition of iterative schemes, the
introduction of weight functions or the introduction of memory
are used. These techniques are used to design methods with a
higher order of convergence or to modify existing methods in order
to be applied to problems that cannot be solved by the original
methods, such as obtaining solutions with a multiplicity greater
than one, obtaining solutions simultaneously or the applicability
to non differentiable problems. Dynamical analysis is performed
to obtain the behaviour of the initial estimations by real, complex
or multidimensional dynamical techniques, focusing one of the
chapters of the memory on how to perform the dynamical analysis
of multidimensional iterative methods with memory.
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ha realizado, bajo nuestra dirección, el trabajo que se recoge en esta memoria para optar al t́ıtulo

de Doctor en Matemáticas por la Universitat Politècnica de València.

Asimismo, autorizamos la presentación de este trabajo ante la Universitat Politècnica de València
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Abstract

In a large number of problems in applied mathematics, there is a need to solve nonlinear equations

and systems, since many problems eventually are reduced to these. As the difficulty of the systems

increases, obtaining the analytical solution becomes more complex. Furthermore, with the growth

of computational tools, the dimensions of the problems to be solved have increased exponentially,

making it more essential to obtain an approximation to the solution in a simple way that does

not require significant time and computational cost. That is one of the reasons why iterative

methods have increased their importance in recent years, as a multitude of schemes have been

designed to converge rapidly to the solution and, in this way, to be able to solve problems that

would be more arduous to solve using classical tools.

This Doctoral Thesis focuses on the study and design of numerous iterative methods that improve

classical schemes in terms of their order of convergence, accessibility, number of solutions obtained

or applicability to problems with special characteristics, such as non-differentiability or multiplicity

of roots. The procedures studied in this report range from a family of optimal multi-step methods

for solving equations, to a parametric derivative-free family of weight function schemes, to which

memory is introduced for solving nonlinear systems. Additional procedures are described in

this report such as iterative schemes that obtain roots with different multiplicities for equations

and methods that approximate roots simultaneously for equations as well as for systems, and for

simple as well as for multiples roots. In addition, part of this report focuses on how to perform the

dynamical analysis for iterative schemes with memory that solve systems of nonlinear equations,

as well as this study is carried out for different known iterative procedures. This dynamical analysis

allows us to visualise and analyse the possible behaviours of the iterative methods depending on

the initial approximations.

The results described above form part of this Doctoral Thesis to obtain the title of Doctor in

Mathematics.
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Resumen

En gran cantidad de problemas de la matemática aplicada, existe la necesidad de resolver ecua-

ciones y sistemas no lineales, dado que numerosos problemas, finalmente, se reducen a estos.

Conforme aumenta la dificultad de los sistemas, la obtención de la solución anaĺıtica se vuelve

más compleja. Además, con el aumento de las herramientas computacionales, las dimensiones de

los problemas a resolver han crecido de manera exponencial, por lo que se vuelve más necesario

obtener una aproximación a la solución de manera sencilla y que no requiera mucho tiempo y

coste computacional. Esta es una de las razones por las que los métodos iterativos han aumen-

tado su importancia en los últimos años, ya que se han diseñado multitud de procesos con el fin

de que converjan rápidamente a la solución y, de esta forma, poder resolver problemas que con

las herramientas clásicas resultaŕıa más costoso.

La presente Tesis Doctoral, se centra en estudiar y diseñar numerosos métodos iterativos que

mejoren a los esquemas clásicos en cuanto a su orden de convergencia, accesibilidad, cantidad

de soluciones que obtienen o aplicabilidad a problemas con caracteŕısticas especiales, como la

no diferenciabilidad o la multiplicidad de las ráıces. Entre los procesos que se estudian en esta

memoria, se pueden encontrar desde una familia de métodos multipaso óptimos para la resolución

de ecuaciones, hasta una familia paramétrica libre de derivadas de esquemas con función peso a la

que se introduce memoria para la resolución de sistemas no lineales. Se destancan otros métodos

en esta memoria como esquemas iterativos que obtienen ráıces con diversas multiplicidades para

ecuaciones y procesos que aproximan ráıces de forma simultánea, tanto para ecuaciones como

para sistemas, y, tanto para ráıces simples como para múltiples. Además, parte de esta memoria

se centra en cómo realizar el análisis dinámico para métodos iterativos con memoria que re-

suelven sistemas de ecuaciones no lineales, a la par que se realiza dicho estudio para diversos

esquemas iterativos conocidos. Este análisis dinámico permite visualizar y analizar los posibles

comportamientos de los procesos iterativos en función de las aproximaciones iniciales.

Los resultados anteriormente descritos forman parte de esta Tesis Doctoral para la obtención del

t́ıtulo de Doctora en Matemáticas.
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Resum

En gran quantitat de problemes de la matemàtica aplicada, existeix la necessitat de resoldre

equacions i sistemes no lineals, atés que nombrosos problemes, finalment, es redueixen a aquests.

Conforme augmenta la dificultat dels sistemes, l’obtenció de la solució anaĺıtica es torna més

complexa. A més, amb l’augment de les eines computacionals, les dimensions dels problemes a

resoldre han crescut de manera exponencial, per la qual cosa es torna més necessari obtindre una

aproximació a la solució de manera senzilla i que no requerisca molt temps i cost computacional.

Aquesta és una de les raons per les quals els mètodes iteratius han augmentat la seua importància

en els últims anys, ja que s’han dissenyat multitud de processos amb la finalitat que convergisquen

ràpidament a la solució i, d’aquesta manera, poder resoldre problemes que amb les eines clàssiques

resultaria més costós.

La present Tesi Doctoral, es centra en estudiar i dissenyar nombrosos mètodes iteratius que

milloren als esquemes clàssics en quant al seu ordre de convergència, accessibilitat, quantitat

de solucions que obtenen o aplicabilitat a problemes amb caracteŕıstiques especials, com la no

diferenciabilitat o la multiplicitat de les arrels. Entre els processos que s’estudien en aquesta

memòria, es poden trobar des d’una faḿılia de mètodes multipas òptims per a la resolució

d’equacions, fins a una faḿılia paramètrica lliure de derivades de esquemes amb funció pes a la

que s’introdueix memòria per a la resolució de sistemes no lineals. Es destanquen altres mètodes

en aquesta memòria com esquemes iteratius que obtenen arrels amb diverses multiplicitats per

a equacions i processos que aproximen arrels de manera simultània, tant per a equacions com

per a sistemes, i, tant per a arrels simples com per a múltiples. A més, part d’aquesta memòria

es centra en com realitzar l’anàlisi dinàmic per a mètodes iteratius amb memòria que resolen

sistemes d’equacions no lineals, al mateix temps que es realitza aquest estudi per a diversos

esquemes iteratius coneguts. Aquest anàlisi dinàmic permet visualitzar i analitzar els possibles

comportaments dels mètodes iteratius en funció de les aproximacions inicials.

Els resultats anteriorment descrits formen part d’aquesta Tesi Doctoral per a l’obtenció del t́ıtol

de Doctora en Matemàtiques.
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Chapter 1

Introduction

Many problems in physics, chemistry or applied mathematics are reduced to solve an equation

or system of nonlinear equations, for example those problems modelled by differential equations.

The appropriate tools are not always available to solve these nonlinear systems exactly, due,

among other reasons, to the difficulty of the problem or its size, which has increased considerably

with the advance of computer tools. For this reason, iterative methods have gained attention,

since these schemes aim to find, through an iterative process using an initial approximation close

to the solution, a sequence of approximations that, under certain conditions, converge to the

solution.

An example of this is the resolution of polynomial equations. In the case of low-degree polynomi-

als, there are analytical tools to obtain the roots, but as the degree of the polynomial increases,

so does the complexity of the problem. This was one of the reasons why Newton, in 1669,

developed a process to obtain the roots of polynomials. This method is still one of the most

used and well-known and has the following iterative expression:

xk+1 = xk − f(xk)

f ′(xk)
, k = 0, 1, . . . ,

where f(x) = 0 is the equation to be solved and f ′(xk) is the derivative of this function evaluated

at iterate xk. As we will see later in this report, this method converges, under certain conditions,

to the solution of nonlinear equation f(x) = 0.

Based on this method, many others have been designed in order to solve the cases in which

the problems do not meet the convergence conditions of Newton’s method. One of them is

the applicability to systems of equations, which is why Ostrowski in [1] proposes the extension
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Chapter 1. Introduction

of Newton’s method for the solution of nonlinear systems. Another problem is the condition of

differentiability or the need to have simple roots in order to ensure convergence. In this report, we

focus on several branches of iterative methods, many of them solving problems of differentiability,

extension to systems or roots with different multiplicities.

In the following, we introduce each of the chapters that constitute this thesis.

In Chapter 2, the necessary preliminary concepts for the development of the subsequent chapters

are introduced. This chapter is divided into two sections. In Section 2.1, we introduce iterative

methods and the different categories into which they can be classified. Section 2.2 focuses on

tools necessary for the dynamical analysis of iterative schemes, both from the point of view of

complex unidimensional dynamical analysis and real multidimensional dynamical analysis, as well

as establishing how we graphically represent the behaviour of these methods.

In Chapter 3, a family of optimal multi-step iterative procedures for solving nonlinear equations

is designed. As we know, Newton’s method is optimal, but if we compose n times Newton’s

method, let n be any natural number greater than or equal to 2, what we obtain is a method of

order 2n which is not optimal. In this chapter, we modify this method, whatever the value of n,

in such a way that the order of convergence is maintained and optimal methods are obtained.

As proven in this chapter, the family of multi-step schemes obtained is optimal for any number

of steps. On certain elements of this family, complex dynamical analysis is performed and some

dynamical planes are represented in order to make further comparisons between the proposed

procedures and other known methods of similar order.

In Chapter 4, based on Traub’s method [2], two parametric families of derivative-free iterative

methods with weight function for nonlinear equations are designed, which, under certain con-

ditions, have order 4 and 6, respectively, the family of order 4 is a class of optimal iterative

schemes. Memory is introduced to both families in order to increase the order of convergence

without performing more functional evaluations per iteration, increasing the order by up to two

units for the family of order 4, and increasing it by up to three units for the family of order 6.

A complex dynamical analysis is performed for the order 4 family, obtaining for which parameter

values, the class of iterative methods holds more stable procedures, making parameter planes as

a graphical representation. At the same time that this analysis is performed, a real multidimen-

sional dynamical analysis is also performed for certain memory variants of this family, in order

to make comparisons between the iterative class and its memory variants, beyond the order of

convergence.

Chapter 5 focuses on the design of an iterative step for obtaining simple roots of a nonlinear

equation simultaneously, given that sometimes we are interested in obtaining more than one

solution to the problem as is illustrated in this chapter. It is obtained that the order of convergence

of this step is 2, and it is also analysed that it can be added to any other method, thus generating

a predictor-corrector method that approximates roots simultaneously with twice the order of

convergence of the predictor method used for arbitrary equations and three times the order of

convergence in the case of polynomial equations. How the behaviour of the methods is modified

2



by adding this step of simultaneity is graphically represented in this chapter in order to motivate

the reason of the introduction of simultaneity.

In Chapter 6, iterative schemes for obtaining roots of equations with multiplicity greater than 1

are presented, given that in many of the known iterative methods, it is required that this root is

simple to ensure convergence or achieve a particular speed of convergence. This is not always the

case given that many problems in applied mathematics have roots with different multiplicities.

Many of the known procedures for multiple roots use the value of this multiplicity in their iterative

expression, but to know this value, it is necessary to know the solutions of the problem, and if we

want to obtain all the roots, we must change the value of the multiplicity depending on which root

we want to converge to. For this reason, two iterative methods are designed from Kurchatov’s

scheme that obtain multiple roots without needing to know the multiplicity, one of them free of

derivatives, and both of them maintain Kurchatov’s quadratic convergence order. An exhaustive

dynamical analysis of one of the proposed schemes is carried out on several polynomials, obtaining

that although the multiplicities of the roots are different, the method converges to all of them. In

addition, the iterative step defined in Chapter 5 is added, thus obtaining an iterative method that

converges simultaneously to several roots without the need to take into account whether they

are simple or multiple or whether they have different multiplicities. This method has convergence

order 4 for arbitrary equations and order 6 in the case of polynomial equations.

In Chapter 7, based on two known iterative methods for nonlinear equations, a parametric class

of iterative procedures for the approximation of nonlinear systems of equations is designed. This

iterative class has convergence order 3, and increases to order 4 when the parameter has null

value. We perform a unidimensional complex dynamical study for this family in order to find out

for which parameter values the most stable methods are obtained.

In Chapter 8, the classes proposed in Chapter 4 are extended to the solution of nonlinear systems.

In this case, the family of order 4 maintains the order, but the family of order 6 manages to

increase the order of convergence by one unit, thus obtaining a parametric class of iterative

schemes of order 7 for nonlinear systems. As in Chapter 4, memory is introduced to these

families, increasing the order by two units and four units, respectively, that is, methods of up to

order 6 are obtained for the case of the iterative class of order 4 and schemes of up to order 11

for the case of the parametric iterative class of order 7.

Chapter 9 focuses on the modification of the iterative step proposed in Chapter 5 in order to adapt

it to the solution of nonlinear systems. The obtained step maintains the order of convergence that

we had for nonlinear equations, and it is also proven that it can be added to any iterative method

for systems obtaining a predictor-corrector method that duplicates the order of the predictor

method.

In all the previous chapters, a section of numerical experiments is included to check the theoretical

results obtained from the iterative schemes as well as to compare these iterative procedures with

known methods of similar order. These numerical experiments have been carried out in Matlab

as will be discussed in each corresponding section.
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Chapter 1. Introduction

In Chapter 10, some theoretical results are obtained to carry out the dynamical study for iterative

schemes with memory that solve systems of nonlinear equations, which until now in the literature

it has been carried out only for nonlinear equations. Once these theoretical concepts have

been defined, the dynamical analysis of two known methods, vectorial Steffensen’s method and

Kurchatov’s method is carried out in order to illustrate different behaviours. On the one hand,

we study what happens in the case where the system is uncoupled, that is, the components do

not interact with each other, while on the other hand, we study what happens in the case of a

coupled system, where the behaviour of each component of the fixed point operator on (x1, x2)

involves both components.

To conclude, in Chapter 11 we present a summary of the results obtained and, finally, we end

this report with a list of references that have been used during the development of this doctoral

thesis.
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Chapter 2

Preliminary concepts

In this chapter we are going to present the most used concepts of iterative methods in this

dissertation.

Section 2.1 begins with the definition of nonlinear equations and nonlinear systems of equations

and, since it is often not possible to obtain a solution, discusses how to approximate the solutions

of these problems using iterative fixed-point methods. After that, the order of convergence of the

iterative schemes is stated and results that will be used in the following chapters are presented.

Next, we discuss some of the categories into which iterative procedures can be classified, which

are if the method has memory or not, if the scheme consists of one or more steps, or if it is

a scheme with derivatives or is derivative-free, defining then the divided difference operator for

equations as well as for nonlinear systems.

In Section 2.2, the previous concepts for a dynamical analysis of iterative methods are introduced

in order to illustrate the behaviour of them. The basic concepts of unidimensional complex

dynamical and multidimensional real dynamical analysis required for the further development of

the dynamical analysis of iterative schemes are introduced. We also discuss in each case how to

perform graphical representations in order to compare between the different procedures.
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Chapter 2. Preliminary concepts

2.1 Preliminary concepts of iterative methods

Some of the results developed in this thesis are focused on the resolution of nonlinear equations,

that is, equations which have the form

f(x) = 0, f : D ⊂ R → R, (2.1)

where f is a function defined on an open interval D and α ∈ D denotes a solution of the nonlinear

equation (2.1). Specifically, we study the case in which α is a simple solution and in which it is a

multiple solution, that is, there exists a m ∈ N\{1} such that f (i)(α) = 0 for i = 0, 1, . . . ,m−1

and f (m)(α) ̸= 0.

In addition to dealing with the unidimensional case, we also study the solution of multidimensional

problems, in which the general expression is a system formed by n nonlinear equations with n

unknowns as follows, 
f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,
...

fn(x1, x2, . . . , xn) = 0,

which can be simplified and denoted by

F (x) = 0, (2.2)

where F is a vectorial function, F : D ⊂ Rn → Rn, defined on a non-empty open convex set

D, which has as coordinate functions fi, i = 1, 2, . . . , n.

From this point onwards, we assume that we are solving a system of n nonlinear equations, and

specify, if necessary, the unidimensional case n = 1.

Usually, and as it will be seen in ongoing chapters, the solution of nonlinear systems cannot be

carried out analytically. For this reason, in recent years, it has been studied how to obtain an

approximation to these solutions reliably through iterative methods.

These schemes generate a sequence {x(k)} by an iterative process. This sequence of approxima-

tions to the solution α is obtained from an initial approximation x(0) close to the solution and

it is required that lim
k→∞

x(k) = α exists under certain error criteria. We denote the sequence by

{xk} in the unidimensional case.

Many of the best-known iterative schemes focus on obtaining the approximation to a root as a

fixed point of a certain function ϕ : Rn → Rn by means of the following iterative scheme:

x(k+1) = ϕ(x(k)), k = 0, 1, . . .

These schemes are distinguished from each other by the way the iteration function ϕ is defined.

They are known as fixed-point methods.
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2.1 Preliminary concepts of iterative methods

One of the most well-known method is Newton’s scheme [2], which is structured as follows

x(k+1) = x(k) − [F ′(x(k))]−1F (x(k)), k = 0, 1, . . . , (2.3)

where F ′(x(k)) denotes the Jacobian matrix of F evaluated at x(k).

Based on their characteristics, iterative methods can be classified in several ways. One of the

most relevant is the order of convergence, which provides a measure of the speed of convergence

of the sequence to the solution. Some of the definitions relevant to these concepts are discussed

in this section and can be found, for example, in [2].

Definition 1. Let us consider a sequence {x(k)}k≥0 in Rn generated by an iterative method

that converges to α. Then, the corresponding scheme has order of convergence p, p ≥ 1, if there

exists a strictly positive constant Dp such that

lim
k→∞

∥x(k+1) − α∥
∥x(k) − α∥p

= Dp, (2.4)

where Dp is called the asymptotic error constant. It must be satisfied that Dp < 1 if p = 1.

Ortega and Rheinboldt, realising that definition (2.4) of the order of convergence is quite restric-

tive, introduced in [3] the concepts of Q-order and R-order of convergence. They proved that

these definitions coincide with the classical order when 0 < Dp <∞ exists for some p ≥ 1.

Therefore, from now on, we assume that the definitions are analogous and work with the following

definition of order of convergence.

Definition 2. We denote ek = x(k) − α as the error made in the iteration x(k). Every method

satisfies an equation of the type

ek+1 = Lek +O
(
ep+1
k

)
, (2.5)

called the error equation, where L is a p-linear function L ∈ L (Rn × · · · × Rn,Rn), and p is

the order of convergence of the method. Note that epk denotes (ek, ek, . . . , ek).

Considering {gk}k≥0 and {hk}k≥0 two non-zero scalar sequences, to carry out the analysis of the

order of convergence of some methods, we use the notation given in [4]. We denote gk = O(hk),

or alternatively gk ∼ hk, to denote that

lim
k→∞

gk
hk

= C, (2.6)

with C being a non-zero constant. As a consequence, the error equation (2.5) always satisfies a

relation of the form

ek+1 ∼ Lepk.

The theoretical definitions of the convergence order, however, cannot be used in numerical ex-

periments. For this reason, besides obtaining the approximation to the solution, in numerical
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Chapter 2. Preliminary concepts

experiments we also obtain an approximation to the convergence order. One way to do this is

by using the computational convergence order (COC), introduced by Weerakoon and Fernando

in [5], which is defined as follows

p ≈ COC =
ln
(
∥x(k+1) − α∥/∥x(k) − α∥

)
ln
(
∥x(k) − α∥/∥x(k−1) − α∥

) .
where x(k+1), x(k) and x(k−1) are three successive approximations to α obtained in the iterative

process.

Usually, the value of α is not known, therefore, to obtain the order of convergence it is more

convenient to employ the approximate computational order of convergence (ACOC) defined by

Cordero and Torregrosa in [6], which is given as follows

p ≈ ACOC =
ln
(
∥x(k+1) − x(k)∥/∥x(k) − x(k−1)∥

)
ln
(
∥x(k) − x(k−1)∥/∥x(k−1) − x(k−2)∥

) .
Another important category of iterative procedures is if they have memory or not, that is, how

many previous iterations are used to obtain the next iteration. Thus, a method without memory

can be described as follows

x(k+1) = ϕ(x(k)), k = 0, 1, 2, . . . ,

so we only use the immediately previous iteration to define the next iteration; while a method

with memory has the following expression

x(k+1) = ϕ(x(k), x(k−1), x(k−2), . . .), k = 0, 1, 2, . . . ,

where several previous iterations are used to obtain the next one.

To prove the order of convergence of the methods with memory we use the following Ortega-

Rheinboldt’s Theorem, which can be found in [3].

Theorem 2.1.1. Let ϕ be an iterative scheme with memory that generates a sequence {x(k)}k≥0

of approximations to the root α, and let this sequence converges to α. If there exist a nonzero

constant η and positive numbers ti, i = 0, . . . ,m such that the inequality

∥ek+1∥ ≤ η

m∏
i=0

∥ek−i∥ti ,

holds, then the R-order of convergence of the iterative method ϕ is at least p, where p is the

unique positive root of the equation

pm+1 −
m∑
i=0

tip
m−i = 0.
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2.1 Preliminary concepts of iterative methods

On the other hand, Kung and Traub established in [7] the definition of optimal procedure, which

is only applicable to methods without memory, and is defined below.

Conjecture 2.1.1.1. The order of convergence of a method without memory that performs d

functional evaluations per iteration fulfils

p ≤ 2d−1,

calling optimal scheme the one that satisfies p = 2d−1.

When designing an iterative method, one of the main aims is to achieve the optimality, since

this type of procedure uses the smallest possible number of functional evaluations to obtain the

highest possible order.

Another category to classify iterative schemes is the number of steps involved. The reason for

increasing the number of steps is because Traub in [2] showed that a one-step method, that only

uses derivatives, must include derivatives of at least order p−1 to achieve order p. Consequently,

increasing the number of steps is interesting to increase the order of convergence avoiding higher-

order derivatives.

Multi-step methods that perform m steps, also referred to as predictor-corrector methods, can

be described by

y
(k)
1 = Ψ1(x

(k)),

y
(k)
2 = Ψ2(x

(k), y
(k)
1 ),

. . .

y
(k)
m−1 = Ψm−1(x

(k), y
(k)
1 , . . . , y

(k)
m−2),

x(k+1) = Φ(x(k), y
(k)
1 , . . . , y

(k)
m−1), k = 0, 1, 2 . . .

In [3], it is shown that the order of convergence of the above multi-step method is p, being

p = p1p2pm−1pm, where pi denotes the order of convergence of scheme Ψi for i = 1, . . . ,m−1

and pm denotes the order of convergence of scheme Φ.

There are many known multi-step methods, among which we highlight Traub’s scheme [2] and

King’s family [8].

The last category to classify iterative methods that we are going to establish in this chapter is the

presence or absence of derivatives, giving rise to procedures with derivatives or derivative-free,

which we call with Jacobians or Jacobian-free in the case of systems of nonlinear equations.

For the proofs of iterative methods with Jacobian matrices, it is necessary to recall the notation

presented in [9], which is used in the following chapters.

Let F : D ⊂ Rn → Rn be a sufficiently differentiable function on D. The q-th derivative

of F in u ∈ Rn, q ≥ 1, is the q-linear function F (q)(u) : Rn × · · · × Rn → Rn such that

F (q)(u)(v1, . . . , vq) ∈ Rn.
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Chapter 2. Preliminary concepts

As it is stated in [9], the q-th derivative of F satisfies the following properties:

Proposition 2.1.1.1. Consider u ∈ Rn, q ≥ 1, then the following properties are satisfied for the

q-th derivative of F

1. F (q)(u)(v1, . . . , vq−1, ·) ∈ L(Rn), where L (Rn) is the set of linear operators of Rn.

2. F (q)(u)(vσ(1), . . . , vσ(q)) = F (q)(u)(v1, . . . , vq) for every permutation σ of {1, 2, . . . , q}.

3. F (q)(u)(v1, . . . , vq) = F (q)(u) · v1 · · · vq.

4. F (q)(u)vq−1F (p)(u)vp = F (q)(u)F (p)(u)vq+p−1.

On the other hand, for α+ h ∈ Rn in a neighbourhood of the solution α of F (x) = 0, one can

apply Taylor developments on the derivative around α and, assuming that the Jacobian matrix

F ′(α) is non-singular, one obtains

F ′(α+ h) = F ′(α)

h+

p−1∑
q=2

Cqh
q

+O(hp), (2.7)

where Cq =
1

q!
[F ′(α)]−1F (q)(α), q ≥ 2. It is observed that Cqh

q ∈ Rn since F (q)(α) ∈

L(Rn × · · · × Rn,Rn) and [F ′(α)]−1 ∈ L(Rn).

In some cases, the problems are non-differentiable or it is difficult to obtain the Jacobian matrix

F ′ from the operator F , which is why Jacobian-free schemes arise, which allow us to solve both

differentiable and non-differentiable problems.

One technique used to obtain derivative-free methods is to replace the derivatives in iterative

methods by divided difference operators. The multidimensional first-order divided difference

operator was defined by Ortega and Rheinboldt in [3] as the function

[·, ·;F ] : D ×D ⊂ Rn ×Rn → L(Rn), (2.8)

which satisfies

[x, y;F ](x− y) = F (x)− F (y), ∀x, y ∈ D. (2.9)

In the case n = 1, the notation used to define the first-order divided difference between two

points x and y is

f [x, y] =
f(x)− f(y)

x− y
. (2.10)

The divided differences of order two for the scalar case, defined for the points x, y and z, are

given by the expression

f [x, y, z] =
f [x, y]− f [y, z]

x− z
. (2.11)
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2.1 Preliminary concepts of iterative methods

For the case of order greater than two, the process is equivalent using the divided differences of

the immediately preceding order.

Since the convergence analysis of the proposed schemes is performed using Taylor series devel-

opments of the operator and its derivatives around the solution of the problem, it is necessary to

obtain the development corresponding to the divided difference operator. With this aim, using

the Genocchi-Hermite formula [3]

[x, x+ h;F ](x− y) =

∫ 1

0

F ′(x+ th)dt, (2.12)

and developing F ′(x+ th) in Taylor series around x, we obtain the expression of the operator∫ 1

0

F ′(x+ th)dt = F ′(x) +
1

2
F ′′(x)h+

1

6
F ′′′(x)h2 +O(h3). (2.13)

Also, for the implementation of the iterative methods in later chapters, the multidimensional

divided difference operator is developed following the definition provided in [10], of the form

[x, y;F ]ij =
Fi(y1, y2, . . . , yj−1, yj , xj+1, . . . , xn)− Fi(y1, y2, . . . , yj−1, xj , xj+1, . . . , xn)

yj − xj
,

(2.14)

where x = (x1, x2, . . . , xj−1, xj , xj+1, . . . , xn) and y = (y1, y2, . . . , yj−1, yj , yj+1, . . . , yn) for

all 1 ≤ i, j ≤ n.

Among the derivative-free methods, Steffensen’s scheme [11] and Kurchatov’s scheme [12] stand

out, both procedures with convergence order 2, but the second one is a method with memory.

The following is a summary of the categories discussed in this chapter that the iterative schemes

studied in this report can possess:

Iterative methods categories

Dimension
Equations

Systems

Memory
Without memory

With memory

Steps
One step

Multistep

Derivatives
With derivatives

Derivative free
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2.2 Preliminary concepts of dynamical analysis

In the following subsections we focus on giving the necessary background concepts for the dy-

namical studies in the following chapters, both for unidimensional complex and multidimensional

real dynamical analysis. These results can be consulted in more detail in [13, 14, 15].

Preliminary concepts of unidimensional complex dynamical study

In this section, we are going to introduce some of the essential concepts to carry out the complex

dynamical study of iterative methods that solve nonlinear equations.

The first point to make is that, in general, a method applied to a polynomial p(z) = 0, provides

a rational operator or function R, therefore, part of the definitions and results mentioned in this

chapter, are about the study and conclusions about these rational operators.

Definition 3. Let R be a rational function R : Ĉ → Ĉ, where Ĉ denotes the Riemann sphere.

The orbit of a point z ∈ Ĉ is defined as

{z,R(z), R2(z), . . . , Rm(z), . . .},

that is, the set of its images by R.

• A fixed point of R is a point z ∈ Ĉ such that R(z) = z. A fixed point of R is said to be

strange if p(z) ̸= 0.

• It is said that a point z ∈ Ĉ is a periodic point of R, of period K greater than 1, if it is

satisfied that RK(z) = z and Rk(z) ̸= z, for all k < K.

• A critical point of R is a point z ∈ Ĉ such that R′(z) = 0. A critical point is said to be

free if p(z) ̸= 0.

Next, we define the character of the fixed points of a rational operator.

Definition 4. Let R be the rational operator R, we classify its fixed points as follows:

• If |R′(z)| < 1, then the fixed point z is an attractor. If it happens that the derivative at

the point is exactly 0, that is, R′(z) = 0, then the fixed point z is a superattractor.

• If |R′(z)| > 1, then the fixed point z is a repelling point.

• If |R′(z)| = 1, then the fixed point z is a parabolic or neutral point.

Definition 5. The basin of attraction of an attracting fixed point (or periodic) z ∈ Ĉ is consti-

tuted by the set of its pre-images of any order, that is,

A = {z1 ∈ Ĉ : Rm(z1) → z,m→ ∞}.
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Definition 6. The Fatou set of R, denoted by F(R), consists of those points whose orbits tend

to an attractor, and its complementary on the Riemann sphere is the Julia set, denoted by J (R).

Therefore, the basin of attraction of any fixed point belongs to F(R), while J (R) contains all

points that are repulsors and establishes the boundaries between the basins of attraction.

Another relevant result obtained by Julia and Fatou in [16] and [17], respectively, is the following:

Theorem 2.2.1. Let R be a rational function. The basin of attraction of a periodic (or fixed)

attractor point contains at least one critical point.

In the following, we present results that allow us to reduce the dynamical study to simpler cases.

Definition 7. Let f and g be functions of the Riemann sphere on itself. An analytic conjugation

between f and g is a diffeomorphism h : Ĉ → Ĉ such that h ◦ f = g ◦ h.

Theorem 2.2.2. (Scaling Theorem)

Let f(z) be an analytic function on Ĉ, T (z) = δz + γ an affine application and Rf and Rg

rational operators. If g(z) = (f ◦ T )(z), then fixed point operator Rf is analytically conjugate

to Rg by T , that is, (T ◦Rg ◦ T−1)(z) = Rf (z).

Theorem 2.2.3. Let q(z) = a1z
2 + a2z + a3, with a1 ̸= 0, be a quadratic polynomial with

simple roots and Rf and Rg rational operators. It can then be reduced to p(z) = z2 + c by

an affine transformation, where c = 4a1a3 − a22. This affine application induces a conjugation

between Rq(z) and Rp(z).

Let p(z) = (z − a)(z − b), with a and b ∈ C. Since the operator associated to p(z) depends on

parameters a and b, we use the Möbius transformation and its inverse to simplify our rational

function so that it does not depend on a and b. Then, we make the study of the dynamics easier,

both in terms of obtaining fixed and critical points and also of its graphical representation.

To eliminate this dependence of a and b, we get the conjugate operator of Rp by h as follows:

Op(z) = (h ◦Rp ◦ h−1)(z), (2.15)

where h is the application of Möbius and h−1 its inverse, defined as

h(z) =
z − a

z − b
,

h−1(z) =
zb− a

z − 1
,

which satisfy the following properties
h(∞) = 1,

h(a) = 0,

h(b) = ∞.

For the calculation of the dynamical planes, dynamical lines and parameter planes have been

resorted to [14, 15], where the algorithms used for the design of these graphical representations

of the iterative methods’ dynamics are exposed and explained.
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Preliminary concepts of multidimensional real dynamical study

In this section, we provide previous and necessary concepts for the dynamical study of iterative

methods with memory to solve nonlinear equations, since these must be treated in a particular

way as we will see below.

We recall that an iterative process with memory that uses m previous iterations in its iterative

expression to compute the next iteration, can be expressed as

xk+1 = ϕ(xk−m, . . . , xk−1, xk), k ≥ m, (2.16)

where x0, . . . , xm are initial approximations.

Now, we explain the concepts for m = 1 to simplify the notation, but using more initial approxi-

mations the concepts are similar.

Therefore, the structure of the iterative methods that we are going to study is

xk+1 = ϕ(xk−1, xk), k = 1, 2, . . . (2.17)

where x0 and x1 are initial approximations.

A function defined from R × R to R cannot have fixed points since to be a fixed point of a

function, the point and its image by the function must coincide. Therefore, an auxiliary function

G is defined as follows:

G (xk−1, xk) = (xk, xk+1) = (xk, ϕ (xk−1, xk)) , k = 1, 2, . . .

If (xk−1, xk) is a fixed point of G, then

G (xk−1, xk) = (xk−1, xk) ,

and by the definition of G, one has

(xk−1, xk) = (xk, xk+1) .

To simplify the notation, we denote z = xk−1 and x = xk.

Thus, the discrete dynamical system G : R2 → R2 is defined as

G(z, x) = (x, ϕ(z, x)) ,

where ϕ is the operator associated with the iterative method with memory.

Definition 8. A point (z, x) is a fixed point of G if z = x and x = ϕ(z, x). If (z, x) is a fixed

point of operator G that does not satisfy p(x) = 0, it is called a strange fixed point.
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Definition 9. The basin of attraction of a fixed point (z∗, x∗) is defined as the set of pre-images

of any order such that

A(z∗, x∗) = {(z1, x1) ∈ R2 : Gm(z1, x1) → (z∗, x∗), m→ ∞}.

To study the character of the fixed points, we use the following result from [13].

Theorem 2.2.4. Let G : R2 → R2 be of class C2 and y a fixed point. Let λ1 and λ2 be the

eigenvalues of G′(y), where G′ is the Jacobian matrix of operator G.

• If |λj | < 1, for j = 1, 2, then y is an attractor.

• If |λj | = 0, for j = 1, 2, then y is a superattractor.

• If one eigenvalue λj0 has |λj0 | > 1, then y is repelling or saddle.

• If |λj | > 1, for j = 1, 2, then y is repelling.

If one eigenvalue λ of G′(y) satisfies |λ| = 1, then y is not hyperbolic and we cannot conclude

anything about the character of this fixed point.

Another relevant concept in a dynamical study is the critical point. In this case, we use the

following definition of these type of points.

Definition 10. The point (z, x) is a critical point of G(z, x) if all the eigenvalues of G′(z, x) are
0. It is called free critical point if p(x) ̸= 0.

As in the previous section, for the design of the dynamical planes, dynamical lines and parameter

planes have been resorted to [18, 19], where these graphical representations of the dynamical

iterative methods are exposed and explained in more detail.
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Chapter 3

Multi-step iterative methods
with derivatives to solve

nonlinear equations

Based on [Cordero, A.; Torregrosa, JR.; Triguero-Navarro,

P. (2021). A General Optimal Iterative Scheme with Arbi-

trary Order of Convergence. Symmetry (Basel). 13(5):1-17.

https://doi.org/10.3390/sym13050884]
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Chapter 3. Multi-step iterative methods with derivatives to solve nonlinear equations

3.1 Introduction

A well-known iterative method is Newton’s method, due to its efficiency and simplicity, whose

scheme is as follows

xk+1 = xk − f (xk)

f ′ (xk)
, k = 0, 1, 2, . . . (3.1)

where the derivative of function f evaluated at iteration number k, denoted by f ′ (xk), must be

non-zero.

Besides being simple and efficient, Newton’s method has quadratic convergence under certain

conditions and is optimal, in the sense of Kung-Traub’s conjecture.

Composing Newton’s method n-times, it defines an n-step method by repeating its structure

from an initial estimation x0

y1 = xk − f (xk)

f ′ (xk)
,

y2 = y1 − f (y1)

f ′ (y1)
,

...

yj+1 = yj −
f
(
yj
)

f ′
(
yj
) , j = 1, 2, . . . , n− 2

...

xk+1 = yn−1 − f (yn−1)

f ′ (yn−1)
, k = 0, 1, 2, . . .

(3.2)

The order of Newton’s method for n steps is 2n. We perform 2 functional evaluations per step,

so when 2 or more steps are performed it is not an optimal method, because 2n ̸= 22n−1, unless

n = 1.

In the following, we are going to modify Newton’s n-step method to obtain an optimal method.

To do this, we reduce the number of functional evaluations by approximating the derivatives,

which appear in (3.2), after the first step by polynomials satisfying certain conditions. There are

many other families of iterative methods that have been designed using interpolation techniques

such as the classes designed in [20] and [21].

This chapter is structured as follows. In Section 3.2, the iterative expression of the proposed

schemes is obtained, and their convergence order is proven in Section 3.3. In Section 3.4, we

analyse the set of initial estimations that converge to the solution of the proposed and other

known methods when they are applied to different nonlinear equations. In Section 3.5 of this

chapter, several numerical experiments are carried out and, finally, in Section 3.6, we discuss

some conclusions derived from this work.
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3.2 Design of the family of iterative methods

3.2 Design of the family of iterative methods

In this section, we design the family of iterative methods we propose. From expression (3.2) and

approximating the derivatives after the first step, we obtain the following iterative expression

y1 = xk − f (xk)

f ′ (xk)
,

y2 = y1 − f (y1)

P ′
2 (y1)

,

...

yj+1 = yj −
f
(
yj
)

P ′
j+1

(
yj
) , j = 1, 2, . . . , n− 2

...

xk+1 = yn−1 − f (yn−1)

P ′
n (yn−1)

, k = 0, 1, . . .

(3.3)

where y0 = xk and Pl (x) =
l∑

i=0
ai (x− yl−1)

i for l = 1, 2, . . . , n, where Pl are polynomials

that satisfy

1. Pl (yi) = f (yi) con i = 0, . . . , l − 1.

2. Pl
′ (y0) = f ′ (y0).

We look for an explicit expression for Pl
′ (yl−1) since this is what we use to obtain the approxi-

mation in step l. To simplify the expression, we look for P ′
n+1(yn). Thus,

Pn+1 (x) = an+1 (x− yn)
n+1 + an (x− yn)

n + . . .+ a1 (x− yn) + a0.

From the interpolating conditions, it is easy to deduce that

Pn+1 (yn) = a0 = f (yn). Term a1 is the one we are interested in, because P ′
n+1 (yn) = a1.

Denoting a = (an+1, an, . . . , a2, a1, a0)
T . Thus, to obtain term a1, we have to solve

(yn−1 − yn)
n+1 (yn−1 − yn)

n . . . (yn−1 − yn)
2 (yn−1 − yn) 1

(yn−2 − yn)
n+1 (yn−2 − yn)

n . . . (yn−2 − yn)
2 (yn−2 − yn) 1

...
...

...
...

...

(y0 − yn)
n+1 (y0 − yn)

n . . . (y0 − yn)
2 (y0 − yn) 1

(n+ 1) (y0 − yn)
n n (y0 − yn)

n−1 . . . 2 (y0 − yn) 1 0

 a =


f (yn−1)

f (yn−2)
...

f (y0)

f ′ (y0)

 .
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The product between the above matrix and the vector of coefficients a is equivalent to
(yn−1 − yn)

n+1 (yn−1 − yn)
n . . . (yn−1 − yn)

2 (yn−1 − yn)

(yn−2 − yn)
n+1 (yn−2 − yn)

n . . . (yn−2 − yn)
2 (yn−2 − yn)

...
...

...
...

(y0 − yn)
n+1 (y0 − yn)

n . . . (y0 − yn)
2 (y0 − yn)

(n+ 1) (y0 − yn)
n n (y0 − yn)

n−1 . . . 2 (y0 − yn) 1




an+1

an
...

a2
a1

+


a0
a0
...

a0
0

 .

If we subtract a0 from each of the rows, except the last one, from both parts of the equality and

then divide each of the rows by its respective term yj − yn, we obtain that the solution of the

previous system is equivalent to the solution of


(yn−1 − yn)

n (yn−1 − yn)
n−1 . . . (yn−1 − yn) 1

(yn−2 − yn)
n (yn−2 − yn)

n−1 . . . (yn−2 − yn) 1
...

...
...

...

(y0 − yn)
n (y0 − yn)

n−1 . . . (y0 − yn) 1

(n+ 1) (y0 − yn)
n n (y0 − yn)

n−1 . . . 2 (y0 − yn) 1

 a′ =



f(yn−1)−a0

yn−1−yn
f(yn−2)−a0

yn−2−yn

...
f(y0)−a0

y0−yn

f ′ (y0)


,

where a′ = (an+1, an, . . . , a2, a1)
T .

Let us remember that the term a0 is equivalent to f(yn), so that
(yn−1 − yn)

n (yn−1 − yn)
n−1 . . . (yn−1 − yn) 1

(yn−2 − yn)
n (yn−2 − yn)

n−1 . . . (yn−2 − yn) 1
...

...
...

...

(y0 − yn)
n (y0 − yn)

n−1 . . . (y0 − yn) 1

(n+ 1) (y0 − yn)
n n (y0 − yn)

n−1 . . . 2 (y0 − yn) 1




an+1

an
...

a2
a1

 =


f [yn−1, yn]

f [yn−2, yn]
...

f [y0, yn]

f ′ (y0)

 ,

where f [yj , yn] is the first order divided difference of f at points yj and yn, that is,

f [yj , yn] =
f
(
yj
)
− f (yn)

yj − yn
.

If we subtract the penultimate row to the last one and divide the resulting row by y0 − yn, we

obtain the following system to be solved
(yn−1 − yn)

n (yn−1 − yn)
n−1 . . . (yn−1 − yn) 1

(yn−2 − yn)
n (yn−2 − yn)

n−1 . . . (yn−2 − yn) 1
...

...
...

...

(y0 − yn)
n (y0 − yn)

n−1 . . . (y0 − yn) 1

n (y0 − yn)
n−1 (n− 1) (y0 − yn)

n−2 . . . 1 0




an+1

an
...

a2
a1

 =


f [yn−1, yn]

f [yn−2, yn]
...

f [y0, yn]
f ′(y0)−f [y0,yn]

y0−yn

 .

22



3.2 Design of the family of iterative methods

The coefficient matrix of the above system is a confluent Vandermonde matrix, so it is invertible

and the system can be solved.

We are going to see how to solve a system with the confluent Vandermonde matrix, which can

be found in reference [22], explained with more detail. First we define

P (x) = (x− b0)
2 (x− b1) . . . (x− bn−1) ,

where bi = yi − yn, i = 0, 1, . . . , n− 1, and the confluent matrix of Vandermonde

V =


1 0 1 . . . 1

b0 1 b1 . . . bn−1

b20 2b0 b21 . . . b2n−1
...

...
...

bn0 nbn−1
0 bn1 . . . bnn−1

 .

We denote by Pj (x) =
P (x)

(x−bj)
mj , where mj is the maximum exponent of bj , that is,

P0 (x) =
P (x)

(x− b0)
2
=

n−1∏
i=1

(x− bi) ,

Pj (x) = (x− b0)

n−1∏
i=0,i̸=j

(x− bi) , j = 1, . . . , n− 1.

Let us define gj (x) =
1

Pj(x)
and

Lj,kj
(x) = Pj (x)

(
x− bj

)kj

mj−kj−1∑
i=0

1

i!
g
(i)
j

(
bj
) (
x− bj

)i
, 0 ≤ kj ≤ mj − 1.

Then, one has

V −1 =



L0,0 (0) L0,0
′ (0) . . . 1

(n−1)!
L
(n−1)
0,0 (0)

L0,1 (0) L0,1
′ (0) . . . 1

(n−1)!
L0,1

(n−1) (0)

L1,0 (0) L1,0
′ (0) . . . 1

(n−1)!
L1,0

(n−1) (0)

...
...

...

Ln−1,0 (0) Ln−1,0
′ (0) . . . 1

(n−1)!
Ln−1,0

(n−1) (0)


.

Since the system uses matrix V T , then we use the inverse transpose to obtain the values of ai,

i = 1, . . . , n+ 1, and we obtain

a1
a2
a3
...

an
an+1


=



L0,0 (0) L0,1 (0) L1,0 (0) . . . Ln−1,0 (0)

L0,0
′ (0) L0,1

′ (0) L1,0
′ (0) . . . Ln−1,0

′ (0)
L0,0

′′
(0)

2!
L0,1

′′
(0)

2!
L1,0

′′
(0)

2! . . .
Ln−1,0

′′
(0)

2!
...

L0,0
(n−1)(0)

(n−1)!
L0,1

(n−1)(0)
(n−1)!

L1,0
(n−1)(0)

(n−1)!
. . .

Ln−1,0
(n−1)(0)

(n−1)!




f [y0, yn]

f ′(y0)−f [y0,yn]
y0−yn

f [y1, yn]
...

f [yn−1, yn]

 .
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It follows from the above equality that

a1 = L0,1 (0)
f ′ (y0)− f [y0, yn]

y0 − yn
+

n−1∑
j=0

Lj,0 (0) f [yj , yn].

Let us now determine L0,1 (0) and Lj,0 (0) for j = 0, . . . , n− 1.

We have

g0 (x) =
1

n−1∏
i=1

(x− bi)

,

g0
′ (x) = − 1

n−1∏
i=1

(x− bi)

n−1∑
i=1

1

x− bi
,

gj (x) =
1

(x− b0)
∏n−1

i=0,i̸=j (x− bi)
.

Thus,

g0 (b0) =
1

n−1∏
i=1

(b0 − bi)

,

g0
′ (b0) = − 1

n−1∏
i=1

(b0 − bi)

n−1∑
i=1

1

b0 − bi
,

gj
(
bj
)
=

1(
bj − b0

)∏n−1
i=0,i̸=j

(
bj − bi

) .
Since we have

L0,0 (x) = P0 (x)
(
g0 (b0) + g0

′ (b0) (x− b0)
)
,

L0,1 (x) = P0 (x) (x− b0) g0 (b0) ,

Lj,0 (x) = Pj (x) gj
(
bj
)
,

then

L0,0 (0) = (−1)n−1
n−1∏
i=1

bi
b0 − bi

(
1 + b0

n−1∑
i=1

1

b0 − bi

)
.

Furthermore,

L0,1 (0) = (−1)n b0

n−1∏
i=1

bi
b0 − bi

.
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3.2 Design of the family of iterative methods

Finally, we calculate Lj,0(0) for j = 1, . . . , n− 1,

Lj,0 (0) = (−1)n
b0

bj − b0

n−1∏
i=0,i̸=j

bi
bj − bi

.

Thus, if the terms are grouped properly, we obtain

a1 =(−1)n
n−1∏
i=1

bi
b0 − bi

(
f ′ (y0)−

(
2 + b0

n−1∑
i=1

1

b0 − bi

)
f [y0, yn]

)

+

n−1∑
j=1

(−1)n
b0

bj − b0

n−1∏
i=0,i̸=j

bi
bj − bi

f [yj , yn].

Thus, the term a1 is explicit in each step.

We comment on some of the methods obtained from this family. The first one is the method

obtained by performing two steps
y1 = xk − f (xk)

f ′ (xk)
,

xk+1 = y1 − f (y1)

2f [xk, y1]− f ′ (xk)
,

(3.4)

Let us remember that this method has order 4, since it is Ostrowski’s method, [1]. Method (3.4)

is denoted by M4.

Another of the methods belonging to this family is the following three-step method

y1 = xk − f (xk)

f ′ (xk)
,

y2 = y1 − f (y1)

2f [xk, y1]− f ′ (xk)
,

xk+1 = y2 − f (y2)

a1
,

(3.5)

where

a1 =
f [y1, y2] (xk − y2)

2 + (y1 − y2)
(
f ′ (xk) (xk − y1) + f [xk, y2] (−3xk + 2y1 + y2)

)
(xk − y1)

2
.

Next, we prove that this method has order 8. We denote method (3.5) by M8 to simplify the

notation.
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3.3 Convergence analysis

Let f : D → R be a sufficiently differentiable function on an interval D ⊂ R containing α,

solution of the nonlinear equation f(x) = 0. We consider the divided difference operator

f [x+ h, x] =

∫ 1

0

f ′ (x+ th) dt, (3.6)

defined by Genochi-Hermite in [3]. Using Taylor’s development of f ′ (x+ th) around the point

x and integrating, we obtain

f [x+ h, x] = f ′ (x) +
1

2
f ′′ (x)h+

1

6
f ′′′ (x)h2 +O

(
h3
)
, (3.7)

which we use to prove the following result, where it is deduced that the order of the n-step

method defined in (3.3) is 2n.

Theorem 3.3.1. Let f : D ⊂ R −→ R be a sufficiently differentiable function on an interval D

satisfying α ∈ D, such that f (α) = 0. We assume that f ′ (α) ̸= 0. Then, taking an estimation

x0 close enough to α, the sequence of iterates {xk}k≥0, generated by the n-step method (3.3)

converges to α with order 2n.

Proof. We perform this proof by induction on the number of steps.

The method of one step defined in (3.3) is Newton’s scheme, so we know that the method of

one step has order of convergence 2.

Suppose that any method of i steps has order 2i when i ≤ j. Let us proof that the j + 1-step

method has order 2j+1.

We denote by y0 = xk and yi defined in (3.3). We note that

Pj+1 (x) = Pj (x) +
(
f
(
yj
)
− Pj

(
yj
))(j−1∏

i=0

x− yi
yj − yi

)
x− y0
yj − y0

.

Moreover, there exists an ϵ ∈ D that satifies

f (x)− Pj+1 (x) =
f (j+2) (ϵ)

(j + 2)!

(
x− yj

)
· · · (x− y1) (x− y0)

2 ,

from this expression we deduce that

f ′ (x)− P ′
j+1 (x) =

f (j+2) (ϵ)

(j + 2)!

(x− y0)

 j∑
r=0

j∏
i=0,i̸=r

(x− yi)

+ 2

j∏
i=0

(x− yi)

 .

Evaluating the above expression in yj , we obtain

f ′
(
yj
)
− P ′

j+1

(
yj
)
=
f (j+2) (α)

(j + 2)!

(
yj − y0

) j−1∏
i=0

(
yj − yi

)
.
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3.3 Convergence analysis

Since Ci =
1
i!

f(i)(α)
f ′(α)

, one has that

P ′
j+1

(
yj
)
= f ′

(
yj
)
− Cj+2f

′ (α)
(
yj − y0

) j−1∏
i=0

(
yj − yi

)
.

Let us consider Taylor’s development of f (yi) around α

f (yi) = f ′ (α)
(
yi − α+ C2 (yi − α)2 +O

(
(yi − α)3

))
. (3.8)

Then, the development of f ′ (yi) around α has the following expression

f ′ (yi) = f ′ (α) (1 + 2C2 (yi − α)) +O
(
(yi − α)2

)
. (3.9)

Substituting (3.9) into Pj+1(yj), it follows that

P ′
j+1

(
yj
)
= f ′ (α)

(
1 + 2C2

(
yj − α

))
+O

((
yj − α

)2)−Cj+2f
′ (α)

(
yj − y0

) j−1∏
i=0

(
yj − yi

)
.

Assuming that the i-step method has order of convergence 2i for i ≤ j, that is,

yi − α =Mi (y0 − α)2
i

+O
(
(y0 − α)2

i+1
)
and denoting by ek = y0 − α, we obtain

yi − α =Mie
2i

k +O
(
e2

i+1
k

)
.

We now calculate the expression that
j−1∏
i=0

(
yj − yi

)
has from the previous result. Since

yj − yi =
(
yj − α

)
− (yi − α) =Mje

2j

k −Mie
2i

k +O
(
e2

i+1
k

)
= −Mie

2i

k +O
(
e2

i+1
k

)
,

is given, then it follows from the above expression that

j−1∏
i=0

(
yj − yi

)
=

j−1∏
i=0

(
−Mie

2i

k +O
(
e2

i+1
k

))

=

(
j−1∏
i=0

−Mi

)
e

j−1∑
i=0

2i

k +O

ej−1∑
i=0

2i+1

k


= (−1)j e2

j−1
k

j−1∏
i=0

Mi +O
(
e2

j

k

)
.

Therefore,

P ′
j+1

(
yj
)
=f ′ (α)

(
1 + 2C2

(
yj − α

))
+O

((
yj − α

)2)
− Cj+2f

′ (α)
(
yj − y0

)(
(−1)j e2

j−1
k

j−1∏
i=0

Mi +O
(
e2

j

k

))
.
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As it happens that yj − y0 = −ek +O
(
e2k
)
and yj − α =Mje

2j

k +O
(
e2

j+1
k

)
, then

P ′
j+1

(
yj
)
= f ′ (α)

(
1 + 2C2Mje

2j

k

)
− Cj+2f

′ (α) (−1)j+1 e2
j

k

j−1∏
i=0

Mi +O
(
e2

j+1
k

)

= f ′ (α)

(
1 + e2

j

k

(
2C2Mj + Cj+2 (−1)j

j−1∏
i=0

Mi

))
+O

(
e2

j+1
k

)
.

As yj+1 − α = yj − α− f(yj)
P ′

j+1(yj)
, the Taylor development of

f(yj)
P ′

j+1(yj)
is

f
(
yj
)

P ′
j+1

(
yj
) =

(
yj − α+ C2

(
yj − α

)2
+O

((
yj − α

)3))(
1 + e2

j

k

(
2C2Mj + Cj+2 (−1)j

j−1∏
i=0

Mi

))
+O

(
e2

j+1
k

)

=

(
yj − α

)
+ C2M

2
j e

2j+1

k +O
(
e2

j+1+1
k

)
1 + e2

j

k

(
2C2Mj + Cj+2 (−1)j

j−1∏
i=0

Mi

)
+O

(
e2

j+1
k

) .
Thus,

yj+1 − α = yj − α−
f
(
yj
)

P ′
j+1

(
yj
)

= yj − α−

(
yj − α

)
+ C2M

2
j e

2j+1

k +O
(
e2

j+1+1
k

)
1 + e2

j

k

(
2C2Mj + Cj+2 (−1)j

j−1∏
i=0

Mi

)
+O

(
e2

j+1
k

)

=

(
e2

j+1

k

(
2C2M

2
j + Cj+2 (−1)j

j∏
i=0

Mi

))
− C2M

2
j e

2j+1

k +O
(
e2

j+1+1
k

)
1 + e2

j

k

(
2C2Mj + Cj+2 (−1)j

j−1∏
i=0

Mi

)
+O

(
e2

j+1
k

)

=

e2
j+1

k

(
C2M

2
j + Cj+2 (−1)j

j∏
i=0

Mi

)
+O

(
e2

j+1+1
k

)
1 + e2

j

k

(
2C2Mj + Cj+2 (−1)j

j−1∏
i=0

Mi

)
+O

(
e2

j+1
k

) .
From the above expression we obtain

yj+1 − α = e2
j+1

k

(
C2M

2
j + Cj+2 (−1)j

j∏
i=0

Mi

)
+O

(
e2

j+1+1
k

)
.
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Therefore, it is proven that the method of j + 1 steps (3.3) has order of convergence 2j+1 and,

thus, by induction, the proposed method of n steps has order of convergence 2n.

According to the Kung and Traub conjecture, defined in [7], for an iterative method without

memory that performs d distinct functional evaluations in each iteration to be optimal, it must

be satisfied that 2d−1 coincides with the order of the method.

In this case, the n-step method (3.3) performs n+1 functional evaluations, since we perform the

derivative of f at y0 and also the image of f at the approximations y0, y1, . . . , yn−1. For this

reason, we have that the proposed family of methods (3.3) is optimal because 2n = 2n+1−1.

Thus, we have a family of optimal methods that is based on Newton’s composition. We now

analyse the stability of the family members using tools from complex dynamics.

3.4 Complex dynamics

When analyzing an iterative method, convergence order is not the only important criterion. A

method’s validity is also determined by other aspects such as the behaviour of the initial estima-

tions, which is why it is necessary to introduce tools that allow a more thorough investigation.

In the study of iterative methods, the dynamical analysis is becoming one of the most studied

parts. It allows us to classify iterative schemes, based not only on their speed of convergence,

also analysing their behaviour based on the initial estimation taken. Both analytical and graphical

aspects permit to analyse the behaviour of the method and to visualise the solutions and the

convergence regions. Moreover, it provides important information on the stability and reliability

of the iterative method. We focus on studying the dynamics of methods M4 and M8 of the

proposed family (3.3), defined in (3.4) and (3.5), respectively.

To compare the results with methods of similar order, it is necessary to focus on the elements of

the 4-th and 8-th order family. We start by introducing the Cayley test, see [23, 24].

Theorem 3.4.1. (Cayley quadratic test (CQT)). Let Op (z) be the rational operator obtained

from a general iterative scheme applied to a quadratic polynomial q (z) = (z − α1) (z − α2), with

α1 ̸= α2. Assume that Op (z) is conjugated to the operator z → zp, by a Möbius transformation

M (z) = z−α1
z−α2

.

By calculating the rational operators of M4 and M8 on a quadratic polynomial, we can easily

check that these operators satisfy the quadratic Cayley test, that is, that the operator associated

to each of them can be transformed by means of a Möbius transformation into the operator zp,

where p is the order of the method.

Therefore, it follows that they are stable methods, where the only superattracting fixed points

are the roots of the quadratic polynomial. If there are strange fixed points they have a repulsor

character and there are no free critical points in a basin of attraction different from those of

the roots. Moreover, by satisfying Cayley’s quadratic test we also know that the Julia set of the

transformed operator on a quadratic polynomial is a straight line which separates the Riemann

sphere into two semiplanes.
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Chapter 3. Multi-step iterative methods with derivatives to solve nonlinear equations

In the following, the dynamical planes of the M4 and M8 methods applied on some nonlinear

equations are compared with the dynamical planes of other methods of order 4 and 8. We define

below the methods used for this comparative study.

On the one hand, we compare the proposed methods with Newton’s method, denoted by N, from

which we have generated our methods. The two methods of order 4 with which we compare the

proposed methods are Jarratt’s method, which can be found in [9], which is defined as follows
y1 = xk − 2

3

f (xk)

f ′ (xk)
,

xk+1 = y1 − 1

2

f (xk)

f ′ (xk)
3f ′ (y1) + f ′ (xk)
3f ′ (y1)− f ′ (xk)

, k = 0, 1, 2 . . .

(3.10)

and the King’s family method for β = 1, which can be found in [8], which is defined as follows
y1 = xk − f (xk)

f ′ (xk)
,

xk+1 = y1 − f (y1)

f ′ (xk)
f (xk) + f (y1)

f (xk)− f (y1)
, k = 0, 1, 2 . . .

(3.11)

Methods (3.10) and (3.11) are denoted by J4 and K4, respectively.

The 8.th order schemes with which we compare the proposed method are the scheme, denoted

by J8, defined in [25], which is defined as follows

y1 = xk − f (xk)

f ′ (xk)
,

y2 = xk − 1

8

f (xk)

f ′ (xk)
− 3

8

f (xk)

f ′ (y1)
,

y3 = xk − 6
f (xk)

f ′ (xk) + f ′ (y1) + 4f ′ (y2)
,

xk+1 = y3 − f (y3)

f ′ (xk)
f ′ (xk) + f ′ (y1)− f ′ (y2)

2f ′ (y1)− f ′ (y2)
, k = 0, 1, 2 . . .

(3.12)

and also the method, which we denote by K8, that can be found in [26], which is deduced from

K4 

y1 = xk − f (xk)

f ′ (xk)
,

y2 = y1 − f (y1)

f ′ (xk)
f (xk) + f (y1)

f (xk)− f (y1)
,

xk+1 = y2 − H3 (y2)

f ′ (y2)
, k = 0, 1, 2 . . .

(3.13)

where

H3 (y2) =f (xk) + f ′ (xk)
(y2 − y1)

2 (y2 − xk)

(y1 − xk) (xk + 2y1 − 3y2)
+ f ′ (y2)

(y2 − y1) (xk − y2)

xk + 2y1 − 3y2

− f [xk, y1]
(y2 − xk)

3

(y1 − xk) (xk + 2y1 − 3y2)
.
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3.4 Complex dynamics

We define now the equations we have chosen to compare the dynamical planes. These are the

same equations that we are going to use to carry out the numerical experiments.

1. f1(x) = cos (x)− x = 0, whose root is α ≈ 0.739085133215.

2. f2(x) = (x− 1)6−1 = 0, whose roots are α1 = 2, α2 = 0, α3 = 3
2 +

√
3
2 i, α4 = 3

2 −
√
3
2 i,

α5 = 1
2 +

√
3
2 i and α6 = 1

2 −
√
3
2 i.

3. f3(x) = arctan (x) = 0, whose root is α = 0.

4. f4(x) = arctan (x)− 2x
x2+1

= 0, whose roots are α1 = 0. α2 ≈ 1.3917452 and

α3 ≈ −1.3917452.

The algorithms used to generate the dynamical planes are similar to those that can be found in

[14]. To implement the dynamical planes, we denote by z a complex initial estimation. Every

point z in the plane is considered as the starting point of the iterative method, and is represented

in different colours according to the point to which it converges. These dynamical planes shown

in this section were generated with a grid of 400× 400 points with a maximum of 80 iterations

per point. The fixed points are represented as white circles, and the superattracting fixed points

are identified by a white star.

We begin by analysing the dynamical planes for equation cos (x)− x = 0, shown in Figure 3.1,

for the different methods discussed above.

We represent in orange the points of the plane that converge to the root 0.73908513. In blue are

represented the points that tend to infinity, which are determined as the points whose absolute

value is greater than 800, and in black the points that do not converge to α before reaching the

maximum number of iterations. For this equation, all methods have only one fixed point. The

dynamical planes with wider bassins of attraction are those associated with the K4, K8 and J8

methods, (3.1c,3.1f,3.1g).

We comment on what happens in the case of the equation (x− 1)6 − 1 = 0. Figure 3.2 shows

the dynamical planes associated with this equation.

In this case, there are more noticeable changes between the different dynamical planes. We

associate the roots of the equation, which are superattracting fixed points, with one of the

colours represented in the planes, except for black, which is associated with the initial points

that do not converge to any root, and blue, which is associated with the initial estimations

whose iteration in absolute value is greater than 800.

The centres of the images are points of slow convergence to the attracting fixed points. By

increasing the maximum number of iterations, the non-convergence areas at the centre of the

plane would decrease, and if we increase the infinity limit, the area of convergence to infinity

would decrease. It can be seen that the planes that stand out most for their non-convergence

zones in the centre are those associated with the K4 and K8 methods, as can be seen in Figures
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Chapter 3. Multi-step iterative methods with derivatives to solve nonlinear equations

3.2c and 3.2f, which is why this methods would not be recommended to be used for initial

estimations in this zone.

On the other hand, we see that Newton’s method has a larger non-convergence area than the

methods derived from Jarratt or the methods proposed in the paper.

As can be seen in the dynamical planes associated to the equation (x− 1)6 − 1 = 0, we have

not studied the strange repelling fixed points, since the complexity of some methods requires a

high computational cost to calculate these points, but these repelling fixed points will be on the

Julia set.

In conclusion, from these images it is clear that it is more efficient to use M8 versus K4 or K8

in this example.

We discuss the dynamical planes associated to the equation arctan (x) = 0 represented in Figure

3.3. The initial estimations that converge to the solution 0 are represented in orange and the

initial estimations that converge to ∞ are represented in blue, also with the same criteria as

previously.

Here we observe that most of the planes are similar, although some of them have strange repulsive

fixed points and some of them do not. We observe that in the planes associated with methods

M4 and M8, the basin of attraction for the solution α = 0 is much larger than in the rest of the

cases, for this reason it is more convenient in this case to select one of these two methods since

we have a larger number of initial estimations that converge to the solution we are looking for.

We analyse the dynamical planes associated with the equation arctan (x)− 2x
x2+1

= 0 which are

shown in Figure 3.4. Here the initial estimations that converge to the solution 0 are represented

in purple, the initial estimations that converge to the approximate solution −1.3917452 are

represented in green, the initial estimations that converge to 1.3917452 are represented in orange

and are represented in blue the initial estimations whose iteration in absolute value is greater

than 800.

We observe in this case that most of the planes are similar, except for those associated with the

M4, J4 and M8 methods, but among these three it can be seen that the one with the largest

convergence area to ∞ would be the J4 method, so it would be less advisable to use this method.
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3.4 Complex dynamics

Figure 3.1: Dynamical planes for cos (x)− x = 0

(a) N

(b) M4 (c) K4

(d) J4 (e) M8

(f) K8 (g) J8
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Chapter 3. Multi-step iterative methods with derivatives to solve nonlinear equations

Figure 3.2: Dynamical planes for (x− 1)6 − 1 = 0

(a) N

(b) M4 (c) K4

(d) J4 (e) M8

(f) K8 (g) J8
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3.4 Complex dynamics

Figure 3.3: Dynamical planes for arctan (x) = 0

(a) N

(b) M4 (c) K4

(d) J4 (e) M8

(f) K8 (g) J8
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Chapter 3. Multi-step iterative methods with derivatives to solve nonlinear equations

Figure 3.4: Dynamical planes for arctan (x)− 2x
x2+1

= 0

(a) N

(b) M4 (c) K4

(d) J4 (e) M8

(f) K8 (g) J8
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3.5 Numerical Experiments

We note that, for these examples, methods M4 and M8 methods have been among the most

prominent methods in the different nonlinear equations.

3.5 Numerical Experiments

In this section, we are going to solve some nonlinear equations to compare our proposed methods

of order 4 and order 8 with the same known methods of order 4 and order 8 that we compared

our methods with in Section 3.4.

We use Matlab R2020b with variable precision arithmetics with 1000 digits for the computational

calculations, iterating from an initial estimation x0 until the following stopping criterion is satisfied

|xk+1 − xk|+ |f(xk+1)| < 10−100.

The numerical results we are going to compare the methods in these examples are as follows

• the approximation to the solution obtained,

• the absolute value of the nonlinear function evaluated in that approximation (which we

denote by |f(xk+1)| in the tables),

• the absolute value of the distance between the last two approximations (which we denote

by |xk+1 − xk| in the tables),

• the number of iterations needed to satisfy the required tolerance (which we denote by

Iteration in the tables),

• the computational time (which we denote by Time in the tables),

• and the approximate computational order of convergence (ACOC).

The equations we use, which coincide with those used in the previous section, are as follows

• Function cos (x)− x, which has a root α ≈ 0.73908513. We take as an initial estimation

for all methods x0 = 1.

• Function (x− 1)6 − 1, which has a root α = 2. We take as an initial estimation for all

methods x0 = 1.5.

• Function arctan (x), which has a root α = 0. We take as an initial estimation for all

methods x0 = 1.5.

• Function arctan (x)− 2x
x2+1

, which has a root α = 0. We take as an initial estimation for

all methods x0 = 0.4.

Let us consider the results, which have been obtained by solving the equation cos (x) − x = 0

which are shown in Table 3.1.
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Chapter 3. Multi-step iterative methods with derivatives to solve nonlinear equations

Not surprisingly, Newton’s method performs more iterations than the others because it has the

lowest order of convergence and, for this reason, also requires more computational time.

Among the methods of order 4, similar results can be seen in terms of number of iterations,

computational time and the value of the function at the last iteration.

Analysing the results obtained by the 8-th order methods, it can be seen that they perform the

same number of iterations, although in this case the M8 method has less computational time,

as happens with the results of the third column, that is, in this case M8 method give us better

results than methods J8 and K8.

In conclusion, it is obtained that all the methods give similar results, although it would be

advisable to use M8 method in this case, as it is the one that requires the least computational

time, is one of the methods with the fewest iterations to satisfy the stopping criterion and the

one that obtains the highest order, and is by far the method whose distance between the last

iterations is the smallest, as can be seen in the second column of Table 3.1.

Table 3.1: Results for the function cos (x)− x

Method |xk+1 − xk| |f (xk+1)| Iteration ACOC Time

N 7.11815×10−167 1.8724×10−333 8 2 0.2856

M4 4.21403×10−296 1.41767×10−1008 5 4 0.1984

K4 1.90125×10−279 1.41767×10−1008 5 4 0.1922

J4 1.6318×10−299 1.41767×10−1008 5 4 0.1906

M8 5.27514×10−640 1.41767×10−1008 4 8 0.1875

K8 9.74433×10−270 9.92368×10−1008 4 6 0.2344

J8 6.51848×10−608 1.41767×10−1008 4 8 0.2031

Let us consider the equation (x− 1)6 − 1 = 0 whose results are shown in the Table 3.2. Not

all methods converge to the solution in this case, since K4 and K8 methods do not converge

considering x0 = 1.5 as the initial estimation, as can be seen in the dynamical planes associated

with these methods for equation (x− 1)6 − 1 = 0 (Figure 3.2).

We can appreciate differences between Newton’s method and the rest of the converging meth-

ods, since the number of iterations has grown considerably, as has the computational time with

respect to the previous case.

Among the methods of order 4, we can see that the results are similar in all aspects.

Observing the results of the 8-th order methods, it can be seen that they perform the same

number of iterations, but the M8 method has a shorter computational time. The most notable

feature of this table is that the value of the third column of M8 method is smaller than in the

other methods, and considerably smaller than in the case of J8 method.

As a conclusion of this numerical experiment we obtain that between the converging methods

we have similar results in most cases, although we emphasise M8 method, thanks to the fact

that it performs fewer iterations, obtains higher order and, as can be seen in the second column

of Table 3.2, the distance between iterations is smaller.
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3.5 Numerical Experiments

Table 3.2: Results for the function (x− 1)6 − 1

Method |xk+1 − xk| |f (xk+1)| Iteration ACOC Time

N 2.72448×10−119 1.11342×10−236 19 2 0.5234

M4 2.83553×10−271 0 9 4 0.3250

K4 n.c. n.c. n.c. n.c. n.c.

J4 2.02789×10−263 0 9 4 0.3328

M8 3.7096×10−468 0 7 8 0.3281

K8 n.c. n.c. n.c. n.c. n.c.

J8 3.10018×10−130 0 7 7.9992 0.3641

Now, we comment on the results that have been obtained by solving the equation arctan (x) = 0

which are shown in Table 3.3. Not all methods converge to the solution in this case, since New-

ton, K4 and K8 methods do not converge considering as initial estimation x0 = 1.5, as can be

seen in the dynamical planes associated to these methods for the equation arctan (x) = 0.

Among the 4-th order methods, we can see that the results for the number of iterations, com-

putational time and the value of the function at the last iteration are similar.

By comparing the results of the 8-th order methods, we can see that M8 method performs fewer

iterations and also has the shortest computational time. Also, the value of the ACOC of the M8

method has increase to 11 instead of 8, although it is true that J8 method also increases to 9

and has the smallest value of the absolute value of the equation evaluated in the last iteration,

although by performing one more iteration than the M8 method it is reasonable that this hap-

pens.

In conclusion, we obtain similar results between the converging methods, although we would like

to highlight methods M4 and M8 due to the dynamical planes associated with both methods.

Table 3.3: Results for the function arctan (x)

Method |xk+1 − xk| |f (xk+1)| Iteration ACOC Time

N n.c. n.c. n.c. n.c. n.c.

M4 2.55693×10−252 2.42873×10−1259 6 5 0.2250

K4 n.c. n.c. n.c. n.c. n.c.

J4 7.27099×10−263 1.80085×10−1270 6 5 0.2594

M8 5.654×10−126 1.11859×10−1379 4 10.9979 0.1891

K8 n.c. n.c. n.c. n.c. n.c.

J8 1.98863×10−777 0 5 9 0.2672

The results that have been obtained by solving the equation arctan (x) − 2x
x2+1

= 0 are shown

in Table 3.4. As we can see, Newton’s method is the one that performs the most iterations to

reach the same tolerance, although in this example the ACOC increases by one unit.

Similarly to the previous problem, examining the results obtained by the methods of order 4, we

can see that in all of them the value of the ACOC is 5, when the expected value would be 4.
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Chapter 3. Multi-step iterative methods with derivatives to solve nonlinear equations

Comparing the results of schemes M4 and J4, we see that the results are similar although M4

method obtains a better approximation in this case with the same number of iterations, and also

takes less computational time, so that for this example, the most convenient method of order 4

would be M4 method.

We observe in the results obtained for the 8 order methods that method K8 performs more

iterations than the rest of the methods, as well as being one of the methods that requires more

computational time. The results of the M8 method show that it requires less computational

time, although what stands out most in this table is the value of the ACOC of the M8 method,

since for this case it increases to 11 instead of 8, although it is true that methods J8 and K8

also increase to 9. We also see that M8 method obtains a more accurate approximation than

the rest of the 8-th order methods.

As a conclusion of this numerical experiment, we obtain that there are notable differences between

the methods, the most convenient methods we emphasise for their results, and for their dynamical

planes, methods M4 and M8, but especially M8 method.

Table 3.4: Results for the function arctan (x)− 2x
x2+1

Method |xk+1 − xk| |f (xk+1)| Iteration ACOC Time

N 9.24306×10−282 2.63224×10−843 14 3 0.5891

M4 4.96455×10−427 1.67544×10−2131 6 5 0.3359

K4 9.73169×10−441 4.84918×10−2200 11 5 0.6359

J4 9.05734×10−438 2.27536×10−1445 6 5 0.4297

M8 1.33304×10−219 6.46592×10−2102 4 11 0.2797

K8 2.25726×10−269 3.25561×10−1343 7 9 0.5328

J8 4.84986×10−136 5.74708×10−1218 4 9.00019 0.3141

After performing these experiments we conclude that the most recommendable methods in these

cases are M4 and M8 because they are the only ones, together with J4, that converged to the

solution in all the cases, as well as the ones that performed remarkably well for their numerical

results in all the examples, although the one that stands out most is the M8 method.

3.6 Conclusions

In this chapter, we have designed a family of optimal iterative methods with n steps and conver-

gence order 2n for n = 1, 2, .... From this class, we are able to select infinitely optimal iterative

schemes with the desired order of convergence. Also, some classical methods are members of this

family such as Newton’s and Ostrowski’s method. We worked, from the dynamical and numerical

point of view, with the elements of this family of orders 4 and 8, comparing the results obtained

with those of other known methods. The results provided by the two elements of the family
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3.6 Conclusions

are very satisfying, both numerically (number of iterations, error bounds, etc.) and in terms of

stability (width of the convergence basins, existence of strange fixed points, etc.).
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equations

Based on [Cordero, A.; Garrido, N.; Torregrosa, JR.; Triguero-

Navarro, P. (2023). Memory in the iterative processes for non-
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Chapter 4. Derivative-free iterative methods for solving nonlinear equations

4.1 Introduction

As mentioned above in Chapter 3, one of the most frequently used methods for solving nonlinear

equations is Newton’s method (3.1). Based on Newton’s scheme, a large number of other

iterative methods have emerged. A well-known one is Traub’s procedure, which is structured as
yk = xk − f(xk)

f ′(xk)
,

xk+1 = yk − f(yk)

f ′(xk)
, k = 0, 1, 2, . . .

(4.1)

When we use Newton’s or Traub’s scheme, one of the problems we can encounter is not being

able to obtain the derivative of the function f . For this reason, derivative-free methods have

arisen.

When the derivative in Newton’s scheme is replaced by the divided difference f [xk + f(xk), xk],

we obtain the Steffensen’s method, see [11], which is a derivative-free and also optimal scheme.

Many other optimal schemes appearing in the literature can be found, for example, [27] (Kumar

et al) and [28] (Cordero et al) the references therein. The existence of derivatives in the iterative

expression of a method can be a drawback when the function to be studied cannot be derived

or its derivative is too costly to calculate. For this reason, derivative-free methods have arisen in

the literature; see, for example, (Chun and Neta) [26] and (Kumar et al) [29].

In this chapter, we modify Traub’s scheme to obtain a derivative-free method, and to increase

the order of the method and obtain a parametric family of optimal schemes, we introduce a

parameter and a weight function.

We can generate other procedures by modifying the original procedure in several ways. One

of them is to modify the schemes that use derivatives in their iterative expression in order to

obtain derivative-free methods, as we have already mentioned, which is what we are going to

do in this chapter. Another way is to introduce memory to the iterative scheme. When we

introduce memory in a procedure, the aim is to improve the order of convergence of the original

procedure without introducing new functional evaluations. One way to obtain iterative schemes

with memory is to start from a parametric family of iterative schemes without memory and replace

the parameter, depending on the error equation of the iterative family, by an expression that is

a combination of the iterations and functional evaluations already performed. In this chapter,

we propose different approximations for the proposed parametric family and study the order of

convergence for the obtained methods with memory.

Not only is it important to study the convergence of a scheme, also it is important to know how

the method behave according to an initial estimation. This is why it is important to analyse the

dynamical behaviour of iterative procedures. It allows to visualise graphically the neighbourhood

of initial approximations that converge to a given root of the equation. It provides information on

the stability and reliability of the iterative method. Usually, this analysis is performed by applying

complex dynamical concepts, but in our case we are going to study the real dynamics in order

to be able to compare the results of the proposed schemes without memory and their variants

with memory. By using at least two previous iterates in the iterative expression of a method with
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4.2 Design of the family of methods and convergence analysis

memory, in order to be able to graphically represent the behaviour of methods with memory, it

is necessary to study the real dynamics.

In this chapter, we discuss the following sections. In Section 4.2, we derive the iterative expression

of the proposed parametric family and prove its convergence order depending on the parameter. In

Section 4.3, we add memory to the parametric family proposed in the previous section and analyse

the convergence of the schemes with memory obtained with the parameter approximations. In

Section 4.4, we study the real dynamical behaviour of the proposed family on the basins of

quadratic polynomials x2 − c, when c ∈ {0, 1}. We also study the real dynamical behaviour of

the memory procedures to be proposed and the quadratic polynomial x2− c where c ∈ R, c ≥ 0.

In Section 4.5, we add an iterative step to the proposed family and study how to add memory

to the new parametric family of derivative-free iterative methods, and we analyse the order of

convergence without memory and of the schemes obtained by introducing memory. In Section

4.6, several numerical experiments are carried out in order to show the behaviour of the different

procedures discussed and, finally, in Section 4.7, some conclusions are drawn.

4.2 Design of the family of methods and convergence analysis

To obtain a parametric family of derivative-free iterative methods from Traub’s scheme, the first

thing to do is to replace the derivative of the function by another expression. One way to do

this is to replace the derivative by a divided difference operator. In Traub’s first step, instead of

using the derivative we use the divided difference operator f [wk, xk] where wk = xk + βf(xk).

We can observe that this operator has a parameter β which must be different from 0.

To avoid the derivative in the second step, we replace it with the divided difference operator

f [yk, xk]. We use this divided difference operator instead of the previous one in order to obtain

a higher order of convergence.

We obtain the following parametric family with the above changes
yk = xk − f(xk)

f [wk, xk]
, where wk = xk + βf(xk),

xk+1 = yk − f(yk)

f [yk, xk]
k = 0, 1 . . .

(4.2)

This family has order 3, it is not a family of optimal methods because we perform 3 functional

evaluations. For this reason we have introduced a weight function in the second iterative step,

thus proposing the following parametric family of derivative-free schemes
yk = xk − f(xk)

f [wk, xk]
, where wk = xk + βf(xk),

xk+1 = yk −H(µk)
f(yk)

f [yk, xk]
, where µk =

f(yk)

f(wk)
, k = 0, 1 . . .

(4.3)

being H(t) a real function.

We denote by M4 the parametric family (4.3), and prove below that this family of schemes has

order 4.
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Convergence analysis

We prove next that the order of the parametric family M4 is 4 under certain conditions.

Theorem 4.2.1. Let f : D ⊂ R −→ R be a sufficiently differentiable function in a neighbourhood

of α, denoted by D ⊂ R, such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a real function

satisfying H(0) = 1, H ′(0) = 1 and |H ′′(0)| < ∞. Then, taking an estimation x0 sufficiently

close to α, the sequence of iterates {xk}k≥0 generated by proposed family (4.3) converges to α

with order 4, and its error equation is

ek+1 =
1

2
c2
(
1 + βf ′(α)

) (
−2c3

(
1 + βf ′(α)

)
+ c22

(
6 + 4βf ′(α)−H2

))
e4k +O

(
e5k

)
,

(4.4)

being cj = 1
j!

f(j)(α)
f ′(α)

for j = 2, 3, . . ., where ek = xk − α and denoting by H2 = H ′′(0) to

simplify the notation.

Proof. We use the Taylor development of f(xk) around α,

f(xk) = f ′(α)
(
ek + c2e

2
k + c3e

3
k + c4e

4
k + c5e

5
k +O

(
e6k

))
. (4.5)

We also consider the Taylor development of f(wk) around α,

f(wk) = f ′(α)
(
ew + c2e

2
w + c3e

3
w + c4e

4
w + c5e

5
w +O

(
e6w

))
, (4.6)

being ew = wk − α.

Now, we calculate the expansion of the divided difference operator f [wk, xk] by definition using

equations (4.5) and (4.6)

f [wk, xk] =
f(wk)− f(xk)

wk − xk
=

f(wk)− f(xk)

wk − α+ α− xk
=
f(wk)− f(xk)

ew − ek

=
f ′(α)

(
(ew − ek) + c2

(
e2w − e2k

)
+ c3

(
e3w − e3k

)
+ c4

(
e4w − e4k

)
+O5(ek, ew)

)
ew − ek

= f ′(α)

(
1 + c2(ew + ek) + c3

(e3w − e3k)

ew − ek
+ c4

(e4w − e4k)

ew − ek
+O4(ek, ew)

)
,

where Os(ek, ew) denotes all terms in where the sum of exponents of ek and ew is at least s.

Given that wk = xk + βf(xk), then we have

ew = ek + βf(xk) = ek + βf ′(α)
(
ek + c2e

2
k + c3e

3
k + c4e

4
k +O

(
e5k

))
=
(
1 + βf ′(α)

)
ek + βf ′(α)

(
c2e

2
k + c3e

3
k

)
+O

(
e4k

)
.

It follows

f [wk, xk] =f
′ (α)

(
1 + c2

(
2 + βf ′(α)

)
ek +

(
βc22f

′(α) + c3

(
3 + 3βf ′(α) + β2f ′(α)2

))
e2k

+
(
2 + βf ′(α)

) (
2βc2c3f

′(α) + c4

(
2 + 2βf ′(α) + β2f ′(α)2

))
e3k

)
+O

(
e4k

)
.
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From this, we obtain

yk − α = ek − f(xk)

f [wk, xk]

=
c2
(
1 + βf ′(α)

)
e2k +

(
βc22f

′(α) + c3
(
2 + 3βf ′(α) + β2f ′(α)2

))
e3k +O

(
e4k
)

f [wk, xk]

= c2
(
1 + βf ′(α)

)
e2k +

(
−c22

(
1 + (1 + βf ′(α))2

)
+ c3

(
2 + 3βf ′(α) + β2f ′(α)2

))
e3k

+O
(
e4k

)
.

We consider the Taylor development of f(yk) around α

f(yk) = f ′(α)
(
ey + c2e

2
y + c3e

3
y + c4e

4
y + c5e

5
y +O

(
e6y

))
, (4.7)

being ey = yk − α.

So, the Taylor expansion of divided difference operator f [yk, xk] is

f [yk, xk] =
f ′(α)

(
(ey − ek) + c2

(
e2y − e2k

)
+ c3

(
e3y − e3k

)
+ c4

(
e4y − e4k

)
+O5(ek, ey)

)
ey − ek

.

As ey = c2
(
1 + βf ′(α)

)
e2k +O

(
e3k
)
, then

f [yk, xk] =f
′(α)

(
1 + c2ek +

(
c3 + c22

(
1 + βf ′(α)

))
e2k

)
+O

(
e3k

)
.

We now calculate µk =
f(yk)
f(wk)

,

f(yk)

f(wk)
=c2ek +

(
c3
(
2 + βf ′(α)

)
− c22

(
3 + 2βf ′(α)

))
e2k +O

(
e3k

)
.

From which we obtain

H(µk) = H0 +H1µk +
1

2
H2µ

2
k +O(µ3k) = 1 + µk +

H2

2
µ2k +O(µ3k)

= 1 + c2ek +
(
c3
(
2 + βf ′(α)

)
− c22

(
3 + 2βf ′(α)

))
e2k +

H2

2
c22e

2
k +O

(
e3k

)
= 1 + c2ek +

(
c3
(
2 + βf ′(α)

)
+

1

2
c22
(
−6− 4βf ′(α) +H2

))
e2k +O

(
e3k

)
.

We then calculate the error equation

ek+1 =
1

2
c2
(
1 + βf ′(α)

) (
−2c3

(
1 + βf ′(α)

)
+ c22

(
6 + 4βf ′(α)−H2

))
e4k +O

(
e5k

)
.

Thus it is proven that parametric family (4.3) has order of convergence 4.

According to the Kung and Traub conjecture, defined in [7], in order to be optimal, an iterative

method without memory that performs d functional evaluations per iteration must satisfy that

the order of convergence of the method coincides with 2d−1. In this case, our proposed family

performs 3 evaluations, since we compute the image of f in the approximations xk, wk and yk.

For this reason, we have that the proposed family of schemes (4.3) is optimal.

Then, we have a family of optimal procedures whatever parameter β, other than β ̸= 0.
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4.3 Introducing memory

The first iterative class with memory that includes accelerating parameters in its iterative expres-

sion was designed by Traub in [2] from transformations on Steffensen’s method [11]. There are

many other iterative methods with memory, such as those presented in [30].

We note that if β = − 1
f ′(α)

, then our family of methods would increase its order by at least one

unit. Since the value of α is unknown, we approximate the value of f ′(α) in order to increase

the order of the iterative scheme. We approximate this derivative by an expression in which we

use the previous iterates and their functional evaluations. In this way we obtain a method with

memory.

If we consider Newton’s interpolating polynomial of degree 1 at nodes xk and xk−1, then we

can approximate the derivative of f evaluated at the solution as follows

f ′(α) ≈ N ′
1(xk) =

f(xk)− f(xk−1)

xk − xk−1
.

Therefore, we choose

βk = − 1

N ′
1(xk)

,

and thus, substituting the parameter for this expression we obtain a method with memory, which

we denote by M4N1.

Theorem 4.3.1. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a

real function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| < ∞. Then, taking an

estimation x0 close enough to α, the sequence of iterates {xk}k≥0, generated by method M4N1

converges to α with order p = 2 +
√
6 ≈ 4.4495.

Proof. From the error equation (4.4) and H2 = H ′′(0) = 2,

ek+1 ∼
(
1 + βf ′(α)

)2
c2

(
2c22 − c3

)
e4k +O

(
e5k

)
.

Using Taylor developments around α, we obtain

f(xk) = f ′(α)
(
ek + c2e

2
k +O

(
e3k

))
, (4.8)

f(xk−1) = f ′(α)
(
ek−1 + c2e

2
k−1 +O

(
e3k−1

))
. (4.9)

This results in

βk = −
xk − xk−1

f(xk)− f(xk−1)

= −
ek − ek−1

f ′(α)(ek − ek−1 + c2

(
e2k − e2k−1

)
+O3(ek−1, ek)

= − 1

f ′(α) (1 + c2 (ek + ek−1) +O2(ek−1, ek))
.
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4.3 Introducing memory

Therefore

1 + βkf
′(α) = 1− 1

1 + c2 (ek + ek−1) +O2(ek−1, ek)

=
c2 (ek + ek−1) +O2(ek, ek−1)

1 + c2 (ek + ek−1) +O2(ek−1, ek)
.

Thus, 1 + βkf
′(α) ∼ c2ek−1. From the error equation (4.4) and the above relation we get

ek+1 ∼ (c2ek−1)
2 c2

(
2c22 − c3

)
e4k ∼ e2k−1e

4
k. (4.10)

On the other hand, suppose that the R-order of the method is at least p. Therefore, it is satisfied

that

ek+1 ∼ Dk,pe
p
k,

where Dk,p tends to the asymptotic error constant, Dp, when k −→ ∞. Analogously,

ek ∼ Dk−1,pe
p
k−1.

Then one has

ek+1 ∼ Dk,p

(
Dk−1,pe

p
k−1

)p
= Dk,pD

p
k−1,pe

p2

k−1. (4.11)

In the same way as relation (4.10) is obtained,

ek+1 ∼ e2k−1

(
Dk−1,pe

p
k−1

)4
= D4

k−1,pe
4p+2
k−1 . (4.12)

Then by equating the exponents of ek−1 of (4.11) and (4.12), one has

p2 = 4p+ 2,

whose only positive solution is the order of convergence of method M4N1, that is p ≈ 4.4495,

according to Theorem 2.1.1.

In the previous case, we approximated the parameter using the divided difference operator

f [xk, xk−1]. What we do next is to use the Kurchatov’s divided difference operator at nodes xk
and xk−1. Therefore, we choose

βk = − 1

f [2xk − xk−1, xk−1]
,

and thus, substituting the parameter for this expression we obtain a method with memory, which

we denote by M4K1.

Theorem 4.3.2. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a

real function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| < ∞. Then, taking an

estimation x0 close enough to α, the sequence of iterates {xk}k≥0, generated by methodM4K1

converges to α with order p = 2 + 2
√
2 ≈ 4.83.
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Proof. From the error equation (4.4) and H2 = H ′′(0) = 2,

ek+1 ∼
(
1 + βf ′(α)

)2
c2

(
2c22 − c3

)
e4k +O

(
e5k

)
.

Using Taylor developments of f(xk−1) around α, we obtain

f(xk−1) = f ′(α)
(
ek−1 + c2e

2
k−1 + c3e

3
k−1 +O

(
e4k−1

))
. (4.13)

By definition of divided difference operator, f [2xk − xk−1, xk−1] has the following expansion

f [2xk − xk−1, xk−1] = f ′(α)
(
1 + 2c2ek + 4c3e

2
k + c3e

2
k−1 − 2c3ekek−1

)
+O3(ek, ek−1).

This results in

1 + βkf
′(α) = 1− 1

1 + 2c2ek + 4c3e
2
k + c3e

2
k−1 − 2c3ekek−1 +O3(ek, ek−1)

=
2c2ek + 4c3e

2
k + c3e

2
k−1 − 2c3ekek−1 +O3(ek, ek−1)

1 + 2c2ek + 4c3e
2
k + c3e

2
k−1 − 2c3ekek−1 +O3(ek, ek−1)

.

Thus, 1 + βkf
′(α) ∼ 2c2ek + 4c3e

2
k + c3e

2
k−1 − 2c3ekek−1.

It is known that ek converges faster to 0 than e2k and ekek−1, hence the behaviour of 1+βkf
′(α)

is either like the behaviour of ek or like the behaviour of e2k−1.

Suppose that the R-order of the method is at least p. Therefore, it is satisfied that

ek+1 ∼ Dk,pe
p
k,

where Dk,p tends to the asymptotic error constant, Dp, when k −→ ∞. Analogously,

ek
e2k−1

∼ Dk−1,pe
p−2
k−1.

Thus we obtain that 1 + βkf
′(α) ∼ e2k−1 if p > 2.

From the error equation (4.4) and the above relation we obtain

ek+1 ∼
(
e2k−1

)2
e4k ∼ e4k−1e

4
k. (4.14)

On the other hand, assuming that the R-order of the method is at least p, we have

ek+1 ∼ Dk,p

(
Dk−1,pe

p
k−1

)p
= Dk,pD

p
k−1,pe

p2

k−1. (4.15)

In the same way as relation (4.14) is obtained,

ek+1 ∼ e4k−1

(
Dk−1,pe

p
k−1

)4
= D4

k−1,pe
4p+4
k−1 . (4.16)
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Then by equating the exponents of ek−1 of (4.15) and (4.16) one has

p2 = 4p+ 4,

whose only positive solution is the order of convergence of method M4K1, that is p ≈ 4.83,

according to Theorem 2.1.1.

For the first approximation of the parameter we chose to use a Newton interpolating polynomial

of degree 1. In this case we also choose another Newton interpolating polynomial of degree 1 at

nodes xk and yk−1. Then we can approximate the derivative of f evaluated at the solution in

the following way

f ′(α) ≈ N ′
1y(xk) =

f(xk)− f(yk−1)

xk − yk−1
.

Therefore, we choose

βk = − 1

f [xk, yk−1]
,

and thus, substituting the parameter for this expression we obtain a method with memory, which

we denote by M4N1Y .

Theorem 4.3.3. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a

real function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| < ∞. Then, taking

an estimation x0 close enough to α, the sequence of iterates {xk}k≥0, generated by method

M4N1Y converges to α with order p = 5.

Proof. From the error equation (4.4) and H2 = H ′′(0) = 2,

ek+1 ∼
(
1 + βf ′(α)

)2
c2

(
2c22 − c3

)
e4k +O

(
e5k

)
.

Using Taylor developments around α, we obtain

f(xk) = f ′(α)
(
ek + c2e

2
k +O

(
e3k

))
, (4.17)

f(yk−1) = f ′(α)
(
ey,k−1 + c2e

2
y,k−1 +O

(
e3y,k−1

))
. (4.18)

This results in

βk = −
xk − yk−1

f(xk)− f(yk−1)

= −
ek − ey,k−1

f ′(α)
(
ek − ey,k−1 + c2

(
e2k − e2y,k−1

))
+O3(ey,k−1, ek)

= − 1

f ′(α)
(
1 + c2

(
ek + ey,k−1

)
+O2(ey,k−1, ek)

) .
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Therefore,

1 + βkf
′(α) = 1− 1

1 + c2(ek + ey,k−1) +O2(ey,k−1, ek)

=
c2(ek + ey,k−1) +O2(ek, ey,k−1)

1 + c2(ek + ey,k−1) +O2(ey,k−1, ek)
.

Thus, 1 + βkf
′(α) ∼ ek + ey,k−1.

Assume that the R-order of the method is at least p. Consider sequence {yk}k≥0 generated by

the first step of the method, and suppose that the R-order is at least p1. Therefore, it is satisfied

ek+1 ∼ Dk,pe
p
k and ey,k ∼ Dk,p1

ep1

k ,

where Dk,p tends to the asymptotic error constant, Dp, and where Dk,p1
tends to the asymptotic

error constant, Dp1 , when k −→ ∞. Since ek ∼ Dk−1,pe
p
k−1, then

ek
ey,k−1

∼
Dk−1,pe

p
k−1

ey,k−1
∼

Dk−1,pe
p
k−1

Dk−1,p1
ep1

k−1

.

Then if p ≥ p1, we have

1 + βkf
′(α) ∼ ey,k−1. (4.19)

From error equation (4.4) and the above relation we get

ek+1 ∼ e2y,k−1e
4
k ∼ e2y,k−1e

4
k. (4.20)

We assume that the R-order of the method is at least p we obtain relation (4.11).

Assuming that sequence {yk}k≥0 converges to R-order at least p1, we obtain the following

relation

ey,k ∼ Dk,p1
ep1

k ∼ Dk,p1

(
Dk−1,pe

p
k−1

)p1

∼ Dk,p1
Dp1

k−1,pe
pp1

k−1. (4.21)

Therefore,

ek+1 ∼
(
Dk−1,p1

ep1

k−1

)2 (
Dk−1,pe

p
k−1

)4
= D2

k−1,p1
D4

k−1,pe
2p1

k−1e
4p
k−1. (4.22)

On the other hand, we have

ek,y ∼
(
1 + βkf

′(α)
)
e2k ∼ ey,k−1e

2
k ∼ ep1

k−1

(
epk−1

)2
∼ e2p+p1

k−1 . (4.23)

Then by equating the exponents of ek−1 of (4.11) and (4.22), and by equating the exponents of

(4.21) and (4.23), one has

p2 = 4p+ 2p1,

pp1 = 2p+ p1,

whose only positive solution is the order of convergence of method M4N1Y , that is p = 5 and

p1 = 2.5, according to Theorem 2.1.1.
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In the previous case, we approximated the parameter by the divided difference operator f [xk, yk−1].

What we do next is to use the Kurchatov divided difference operator at nodes xk and yk−1.

Therefore, we choose

βk = − 1

f [2xk − yk−1, yk−1]
,

and thus, substituting the parameter for this expression we obtain a method with memory, which

we denote by M4K1Y .

Theorem 4.3.4. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a

real function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| < ∞. Then, taking

an estimation x0 close enough to α, the sequence of iterates {xk}k≥0, generated by method

M4K1Y converges to α with order 6.

Proof. From the error equation (4.4) and H2 = H ′′(0) = 2,

ek+1 ∼
(
1 + βf ′(α)

)2
c2

(
2c22 − c3

)
e4k +O

(
e5k

)
.

Using Taylor’s series developments of f(xk−1) around α we obtain

f(yk−1) = f ′(α)
(
ee,k−1 + c2e

2
e,k−1 + c3e

3
e,k−1 +O

(
e4e,k−1

))
. (4.24)

By definition of divided difference operator, f [2xk − yk−1, yk−1] has the following expansion

f [2xk − yk−1, yk−1] = f ′(α)
(
1 + 2c2ek + 4c3e

2
k + c3e

2
y,k−1 − 2c3ekey,k−1

)
+O3(ek, ey,k−1).

Thus, 1 + βkf
′(α) ∼ 2c2ek + 4c3e

2
k + c3e

2
y,k−1 − 2c3ekey,k−1.

It follows that ek converges faster to 0 than e2k and ekey,k−1, hence the behaviour of 1+βkf
′(α)

is either like the behaviour of ek or like the behaviour of e2y,k−1.

Suppose that the R-order of the method is at least p. Consider sequence {yk}k≥0 generated by

the first step of the method, and suppose that the R-order is at least p1. Therefore, it is satisfied

ek+1 ∼ Dk,pe
p
k and ey,k ∼ Dk,p1

ep1

k ,

where Dk,p tends to the asymptotic error constant, Dp, and where Dk,p1
tends to the asymptotic

error constant, Dp1 , when k −→ ∞.

Since ek ∼ Dk−1,pe
p
k−1, then

ek
ey,k−1

∼
Dk−1,pe

p
k−1

e2y,k−1

∼
Dk−1,pe

p
k−1

Dk−1,p1
e2p1

k−1

.

Then if p ≥ 2p1, we have therefore

1 + βkf
′(α) ∼ e2y,k−1. (4.25)
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From error equation (4.4) and the above relation we obtain

ek+1 ∼
(
e2y,k−1

)2
e4k ∼ e4y,k−1e

4
k. (4.26)

We assume that the R-order of the method is at least p we obtain relation (4.11).

Assuming that sequence {yk}k≥0 converges to R-order at least p1, we obtain the relation (4.21).

In the same way as relation (4.26) is obtained,

ek+1 ∼
(
Dk−1,p1

ep1

k−1

)4 (
Dk−1,pe

p
k−1

)4
= D2

k−1,p1
D4

k−1,pe
4p1

k−1e
4p
k−1. (4.27)

On the other hand, we have

ek,y ∼ (1 + βkf
′(α))e2k ∼ e2y,k−1e

2
k ∼

(
ep1

k−1

)2 (
epk−1

)2
∼ e2p+2p1

k−1 . (4.28)

Then by equating the exponents of ek−1 of (4.11) and (4.27), and by equating the exponents of

(4.21) and (4.28), one has

p2 = 4p+ 4p1,

pp1 = 2p+ 2p1,

whose only positive solution is the order of convergence of method M4K1Y , that is p = 6 and

p1 = 3, according to Theorem 2.1.1.

In the case of M4N1, we applied a Newton interpolating polynomial of degree 1 at nodes xk and

xk−1 to approximate the parameter.

In what follows, we approximate f ′(α) to increase the degree of Newton’s interpolating polyno-

mial, in this case to an interpolating polynomial of degree 2, at nodes xk, xk−1 and yk−1.

If we define N2(t) = f(xk) + f [xk, xk−1](t − xk) + f [xk, xk−1, yk−1](t − xk)(t − xk−1), an

approximation of the derivative would be

f ′(α) ≈ N ′
2(xk).

Therefore, we choose

βk = − 1

N ′
2(xk)

,

and thus, substituting the parameter for this expression we obtain a method with memory, which

we denote by M4N2.

Theorem 4.3.5. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a

real function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| < ∞. Then, taking an

estimation x0 close enough to α, the sequence of iterates {xk}k≥0, generated by method M4N2

converges to α with order p = 1
2 (5 +

√
33) ≈ 5.37228.
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Proof. From the error equation (4.4) and H2 = H ′′(0) = 2,

ek+1 ∼ (1 + βf ′(α))2c2
(
2c22 − c3

)
e4k +O

(
e5k

)
.

Using Taylor’s series developments around α, we obtain

f(xk) = f ′(α)
(
ek + c2e

2
k +O

(
e3k

))
, (4.29)

f(yk−1) = f ′(α)
(
ey,k−1 + c2e

2
y,k−1 +O

(
e3y,k−1

))
, (4.30)

f(xk−1) = f ′(α)
(
ek−1 + c2e

2
k−1 +O

(
e3k−1

))
. (4.31)

This results in

f [xk, xk−1] = f ′(α)(1 + c2(ek + ek−1) +O2(ek−1, ek)).

f [yk−1, xk−1] = f ′(α)(1 + c2(ey,k−1 + ek−1) +O2(ey,k−1, ek−1)).

Therefore,

f [xk, xk−1, yk−1] =
f [yk−1, xk−1]− f [xk, xk−1]

yk−1 − xk
.

From this we obtain

f [xk, xk−1, yk−1] = f ′(α)
c2(ey,k−1 − ek) +O2(ey,k−1, ek−1, ek)

ey,k−1 − ek
.

Thus,

N ′
2(xk) = f [xk, xk−1] + f [xk, xk−1, yk−1](xk − xk−1)

= f ′(α) + 2c2f
′(α)ek + c3f

′(α)ekey + c3f
′(α)(ek − ey,k−1)ek−1 +O

(
e2k−1

)
+O2(ey,k−1, ek, ek−1).

This means that 1 + βkf
′(α) can behave in the same way as ek, as ekey,k−1, as ek−1ek or as

ek−1ey,k−1.

We have that ekey,k−1 converges faster to zero than ek when k → ∞, and we also have that

ek−1ek converges faster to zero than ek−1ey,k−1. For this reason we have to look at if it behaves

like ek or like ek−1ey,k−1.

Suppose that the R-order of the method is at least p. Consider sequence {yk}k≥0 generated by

the first step of the method, and suppose that the R-order is at least p1. Therefore, it is satisfied

ek+1 ∼ Dk,pe
p
k and ey,k ∼ Dk,p1

ep1

k ,

where Dk,p tends to the asymptotic error constant, Dp, and where Dk,p1
tends to the asymptotic

error constant, Dp1 , when k −→ ∞.

Since ek ∼ Dk−1,pe
p
k−1, then

ek
ek−1ey,k−1

∼
Dk−1,pe

p
k−1

ek−1ey,k−1
∼

Dk−1,pe
p
k−1

Dk−1,p1
ek−1e

p1

k−1

.
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Then if p ≥ p1 + 1, we have therefore

1 + βkf
′(α) ∼ −c3ek−1ey,k−1. (4.32)

From error equation (4.4) and the above relation we obtain

ek+1 ∼ (−c3ek−1ey,k−1)
2c2

(
2c22 − c3

)
e4k ∼ e2k−1e

2
y,k−1e

4
k. (4.33)

Assuming that the R-order of the method is at least p we obtain relation (4.11).

We assume that sequence {yk}k≥0 converges to R-order at least p1, we obtain

ey,k ∼ Dk,p1
ep1

k ∼ Dk,p1
(Dk−1,pe

p
k−1)

p1 ∼ Dk,p1
Dp1

k−1,pe
pp1

k−1. (4.34)

In the same way as relation (4.33) is obtained,

ek+1 ∼ e2k−1

(
Dk−1,p1

ep1

k−1

)2 (
Dk−1,pe

p
k−1

)4
= D2

k−1,p1
D4

k−1,pe
2p1

k−1e
4p+2
k−1 . (4.35)

On the other hand, we have

ek,y ∼ (1+βkf
′(α))e2k ∼ ek−1ey,k−1e

2
k ∼ ek−1

(
Dk−1,p1

ep1

k−1

)(
Dk−1,pe

p
k−1

)2
∼ e2p+1+p1

k−1 .

(4.36)

Then by equating the exponents of ek−1 of (4.11) and (4.35), and by equating the exponents of

(4.34) and (4.36), one has

p2 = 4p+ 2 + 2p1,

pp1 = 2p+ 1 + p1,

whose only positive solution is the order of convergence of method M4N2, that is p ≈ 5.37228

and p1 ≈ 2.68614, according to Theorem 2.1.1.

Finally, we increase by another unit the degree of the polynomial with which we approximate the

derivative of the equation to be solved. In this case, to approximate f ′(α) we use the following

Newton interpolating polynomial of degree 3. If we define N3(t) = f(xk)+f [xk, xk−1](t−xk)+
f [xk, xk−1, yk−1](t − xk)(t − xk−1) + f [xk, xk−1, yk−1, wk−1](t − xk)(t − xk−1)(t − yk−1),

then an approximation of the derivative would be

f ′(α) ≈ N ′
3(xk).

Therefore, we choose

βk = − 1

N ′
3(xk)

,

and thus, substituting the parameter for this expression we obtain a method with memory, which

we denote by M4N3.
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Theorem 4.3.6. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a

real function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| < ∞. Then, taking an

estimation x0 close enough to α, the sequence of iterates {xk}k≥0, generated by method M4N3

converges to α with order p = 6.

Proof. From the error equation (4.4) and H2 = H ′′(0) = 2,

ek+1 ∼ (1 + βf ′(α))2c2
(
2c22 − c3

)
e4k +O

(
e5k

)
.

Using Taylor’s developments of f(xk), f(yk−1), f(xk−1) and f(wk−1) around α, we can cal-

culate N ′
3(xk), which has the following expression

N ′
3(xk) = f [xk, xk−1] + f [xk, xk−1, yk−1](xk − xk−1)

+ f [xk, xk−1, yk−1, wk−1](xk − xk−1)(xk − yk−1).

We therefore have

1 + βk ∼ 2c2ek + c4ey,k−1ek−1ew,k−1.

This means that 1 + βkf
′(α) will behave as ek or as ekey,k−1ew,k−1, as the other terms

converge faster than these two. We now check that the behaviour of 1 + βkf
′(α) is like that of

ekey,k−1ew,k−1.

Suppose that the R-order of the method is at least p. Therefore, it is satisfied

ek+1 ∼ Dk,pe
p
k,

where Dk,p tends to the asymptotic error constant, Dp, when k −→ ∞. Moreover, if we as-

sume that sequence {yk}k≥0 generated by the first step of the method and sequence {wk}k≥0,

converge with R-order at least p1 and at least p2, respectively. Then

ek
ek−1ey,k−1ew,k−1

∼
Dk−1,pe

p
k−1

Dk−1,p1
Dk−1,p2

ek−1e
p1

k−1e
p2

k−1

,

where Dk,p1
and Dk,p2

tend to the asymptotic error constants, Dp1 and Dp2 , respectively, when

k −→ ∞. Then if p ≥ p1 + p2 + 1, we have therefore

1 + βkf
′(α) ∼ c4ek−1ey,k−1ew,k−1.

From error equation (4.4) and the above relation we obtain

ek+1 ∼
(
c4ek−1ey,k−1ew,k−1

)2
c2

(
2c22 − c3

)
e4k ∼ e2k−1e

2
y,k−1e

2
w,k−1e

4
k. (4.37)

We assume that the R-order of the method is at least p we obtain relation (4.11). Assuming

that sequence {yk}k≥0 and sequence {wk}k≥0 converge with R-order at least p1 and at least

p2, respectively. Then, we obtain the relation defined in (4.34) and the following relation

ew,k ∼ Dk,p2
ep2

k ∼ Dk,p2

(
Dk−1,pe

p
k−1

)p2

∼ Dk,p2
Dp2

k−1,pe
pp2

k−1. (4.38)
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In the same way as relation (4.37) is obtained,

ek+1 ∼ e2p1+2p2+4p+2
k−1 . (4.39)

On the other hand, we have

ek,y ∼ (1 + βkf
′(α))e2k ∼ e2p+1+p1+p2

k−1 . (4.40)

And we also have

ew,y ∼ (1 + βkf
′(α))ek ∼ ep+1+p1+p2

k−1 . (4.41)

Then by equating the exponents of ek−1 of (4.11) and (4.39), by equating those of (4.34) and

(4.40) and by equating the exponents of (4.38) and (4.41), one has

p2 = 4p+ 2 + 2p1 + 2p2

pp1 = 2p+ 1 + p1 + p2

pp2 = p+ 1 + p1 + p2,

whose only positive solution is the order of convergence of method M4N3, that is p = 6, p1 = 3

and p2 = 2, according to Theorem 2.1.1.

4.4 Dynamical analysis

In this section, we analyze the dynamics of the proposed parametric family (4.3) and of methods

M4N1 and M4N2. We are going to study only the dynamics of these methods with memory

because the rational operators of the rest of the schemes with memory coincide with the rational

operator of some of the procedures that we are going to study. We study the stability of

these schemes depending on the initial approximations, that is, we apply the methods to simple

nonlinear functions and analyse the fixed points of operator obtained. In this case, we choose

the quadratic polynomials pc(x) = x2 − c, for the case of the methods with memory, and for the

methods without memory we use the same polynomial when c ∈ {0, 1}. The weight function for

all them used is the polynomial H(µk) = µ2k + µk + 1.

Parametric family

We study the operator obtained by applying parametric family (4.3) to the polynomial p1(x) =

x2 − 1. We denote the rational operator by O1, which has the following expression

O1(x, β) =
β4
(
x2 − 1

)4 (
β2
(
x2 − 1

)2 (
x2 + 1

)
+ β

(
11x4 + 2x2 − 13

)
x+ 49x4 + 72x2 − 1

)
(β (x2 − 1) + 2x)

5
(2β (x2 − 1)x+ 3x2 + 1)

+
2β2

(
x2 − 1

)2 (
β
(
57x6 + 49x4 − 109x2 + 3

)
x+ 73x6 + 175x4 − 9x2 + 1

)
(β (x2 − 1) + 2x)

5
(2β (x2 − 1)x+ 3x2 + 1)

+
−1 + 8x2 − 18x4 + 112x6 + 27x8 + βx(−6 + 32x2 − 332x4 + 208x6 + 98x8)

(β (x2 − 1) + 2x)
5
(2β (x2 − 1)x+ 3x2 + 1)

.
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4.4 Dynamical analysis

Next, we calculate the fixed points of operator depending on the parameter β and analyse for

which values of the parameter we obtain real strange fixed points and their asymptotic behavior.

Recall that the fixed points are obtained by solving O1(x, β) = x. We define

r(x) =β6x12 + 12β5x11 + (61β4 − 6β6)x10 + (166β3 − 60β5)x9 + (15β6 − 245β4 + 254β2)x8

+ (120β5 − 504β3 + 206β)x7 + (−20β6 + 370β4 − 524β2 + 69)x6

+ (−120β5 + 516β3 − 226β)x5 + (15β6 − 250β4 + 288β2 − 11)x4

+ (60β5 − 184β3 + 26β)x3 + (−6β6 + 65β4 − 20β2 + 7)x2

+ (−12β5 + 6β3 − 6β)x+ β6 − β4 + 2β2 − 1.

Proposition 4.4.0.1. The fixed points of operator O1(x, β) are the roots of the polynomial

p1(x), that is, −1 and 1, with superattracting behaviour, for any value of β and

• if |β| ≤ 0.73847, two roots of r(x) will be strange fixed points.

• if 0.73847 < |β| < 16.1039, four roots of r(x) will be strange fixed points.

• if |β| ≥ 16.1039, six roots of r(x) will be strange fixed points.

In the following, we illustrate by means of dynamical lines the basins of attraction of the roots of

polynomial p1(x) for the values of the parameter that satisfy |β| = 0.73847 and |β| = 16.1039. In

Figure 4.1a we show the dynamical line for β = −16.1039, in Figure 4.1b we show the dynamical

line for β = −0.73847, in Figure 4.1d we show the dynamical line for β = 0.73847 and in Figure

4.1c we show the dynamical line for β = 16.1039. In this case, in blue are represented the initial

guesses that converge to the root 1 and in orange the initial points that converge to the root

−1. In Figure 4.1a, it seems that there are no initial points attracted by strange fixed points.
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Chapter 4. Derivative-free iterative methods for solving nonlinear equations

Figure 4.1: Some dynamical lines

(a) β = −16.1039 (b) β = −0.73847

(c) β = 16.1039 (d) β = 0.73847

Studying the character of the strange fixed points obtained is complicated, for this reason we

have drawn a stability line in Matlab, Figure 4.2 for the roots of r(x) in the case that they are

real values. On the abscissa axis we have represented the parameter β. On this line we represent

in black the values of the parameter β for which some of the roots of r(x) is a strange attracting

fixed point, and in white the values of the parameter for which all the roots are repulsive or are

not strange fixed points. We obtain the stability line, Figure 4.2

Figure 4.2: Stability of the roots of r(x)
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As can be seen in Figure 4.2, the only values for which any of the roots of r(x) have an attracting

character are β = −16.14039 and β = 16.14039. We calculate the strange fixed points for these

values and draw the dynamical lines to see how they behave in these cases.

• If β = −16.14039, we have that operator O1(z, x) has 5 fixed strange repelling points,

which are as follows {−0.949066,−0.938044,−0.924546, 1.04658, 1.06196}, and an at-

tracting strange fixed point {−0.924061}. We see the dynamical line for this parameter

value in Figure 4.3a.

• If β = 16.14039, we have that operator O1(z, x) has 5 fixed strange repelling points,

which are as follows {0.949066, 0.938044, 0.924546,−1.04658,−1.06196}, and an attract-

ing strange fixed point {0.924061}. We see the dynamical line for this parameter value in

Figure 4.3b. In this case, in blue are represented the initial guesses that converge to the

root 1 and in orange the initial points that converge to the root −1.

Figure 4.3: Dynamical lines for |β| = 16.14039

(a) β = −16.14039 (b) β = 16.14039

In these dynamical lines no other basins of attraction are visible, but if we zoom in near the

attracting strange fixed points we can see how the dynamics change. In Figures 4.4a and 4.4b it

can be seen that the basins of attraction for the strange fixed points are small.
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Figure 4.4: Zoom on certain region of the dynamical lines for |β| = 16.14039

(a) β = −16.14039

(b) β = 16.14039

We study now the critical points of operator, in order to analyse to which basins of attraction

they belong depending on the parameter β. If we define

q(x) =2β8x12 + 30β7x11 + (197β6 − 12β8)x10 + (724β5 − 150β7)x9

+ (30β8 − 793β6 + 1620β4)x8 + (300β7 − 2240β5 + 2244β3)x7

+ (−40β8 + 1202β6 − 3612β4 + 1868β2)x6 + (−300β7 + 2376β5 − 3276β3 + 852β)x5

+ (30β8 − 818β6 + 2364β4 − 1548β2 + 162)x4+

+ (150β7 − 928β5 + 1068β3 − 328β)x3 + (−12β8 + 217β6 − 372β4 + 180β2 − 24)x2+

+ (−30β7 + 68β5 − 36β3 − 12β)x+ 2β8 − 5β6 + 12β2 − 10.

The derivative of operator O1(x, β) is

O′
1(x, β) =

(x2 − 1)3q(x)

(β(x2 − 1) + 2x)6(2β(x2 − 1)x+ 3x2 + 1)2
.

We study now the critical points, which we remember are those that, by evaluating them in the

derivative of the rational operator, we obtain the value 0. It is obvious that the roots of p1, that

is, −1 and 1, are critical points. According to the values of β we have the following free critical

points, that is to say, the critical points that are not roots of p1(x).

Proposition 4.4.0.2. The number of critical points of operator O1(x, β) depending on parameter

β are
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• If 0 < |β| < 0.327212, then four roots of q(x) will be free critical points.

• If |β| = 0.327212, then five roots of q(x) will be free critical points.

• If 0.327212 < |β| < 0.528315 and |β| ̸= 1
2 , then six roots of q(x) will be free critical

points.

• If |β| = 1
2 , then four roots of q(x) will be free critical points.

• If |β| = 0.528135, then five roots of q(x) will be free critical points.

• If 0.528315 < |β| and |β| ̸= 2.20183, then four roots of q(x) will be free critical points.

• If |β| = 2.20183, then three roots of q(x) will be free critical points.

To analyse these free critical points we observe Figure 4.5. It shows when any of the free critical

points does not converge to any of the roots of p1(x). On the abscissa axis we have represented

the parameter β. On this line we represent in black the values of the parameter β for which some

of the critical points do not converge to 1 or −1, and in white the values of the parameter for

which all the critical points converge to the roots of p1(x). We obtain the following line

Figure 4.5: Behaviour of the critical points

As in the case of the strange fixed points, it can be seen that the value of the parameter for which

some of the critical points do not converge to the roots of p1(x) is −16.14039 and 16.14039. In

this case, one of the critical point converges to the attracting strange fixed point seen above.

We now study the operator obtained by applying to the polynomial p0(x) = x2 the parametric

family (4.3). We denote the rational operator by O0(x), which has the following expression

O0(x, β) =
x(βx+ 1)

(
β5x5 + 10β4x4 + 39β3x3 + 75β2x2 + 71βx+ 27

)
(βx+ 2)5(2βx+ 3)

.

Proposition 4.4.0.3. For operator O0(x) we obtain a single real fixed point, which is 0, that is,

the root of the polynomial, so there are no strange fixed points.
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Proof. We calculate the fixed points of operator O0(x, β) depending on β. The fixed points are

obtained by solving O0(x, β) = x, and in this case, the only fixed point is x = 0.

Proposition 4.4.0.4. The fixed point z = 0 of operator O0(x) is an attractor.

Proof. We calculate the derivative of operator O0(x, β) to analyse the character of the fixed

point 0 and then obtain the critical points.

If we denote

q0(x) = 162+852βx+1868β2x2+2244β3x3+1620β4x4+724β5x5+197β6x6+30β7x7+2β8x8,

then

O′
0(x, β) =

q0(x)

(βx+ 2)6(2βx+ 3)2
.

Since O′
0(0, β) =

9
32 < 1, it follows that x = 0 is an attracting fixed point.

Let us now look at the real free critical points. In this case, we have that the free critical points

are the roots of q0(x). We have that only two of them are real, which we denote by Eq0,1 and

Eq0,2. Therefore we study the asymptotic behaviour of the free critical points.

We draw a line showing whether the free critical points Eq0,1 and Eq0,2 converge to the fixed

point 0 or not. As can be seen in the following image, see Figure 4.6, in this case we have

convergence of the critical points to the fixed point for any value of the parameter β shown.

In black are represented the values of the parameter when one of the free critical points do not

converge to fixed point 0, and in white are represented the values when all the critical points

converge to 0.

Figure 4.6: Behaviour of critical points of O0
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We also show the dynamical line obtained for operator O0(x, β) when β = −0.1, see Figure 4.7.

In orange are represented the initial guesses that converge to the root 0.

Figure 4.7: Real dynamical line of O0(x, β) when β = −0.1

Methods with memory

We are now going to study the real dynamics of the method with memory M4N1. This study is

multidimensional since it is a method with memory. In this case, the polynomial pc(x) = x2 − c

is chosen, when c is a positive real value.

The operator obtained by applying M4N1 method to this polynomial is denoted by ON1
, and

has the following expression, where xk−1 = z and xk = x

ON1
(z, x) = (x, ϕN1

(z, x)) ,

where

ϕN1
(z, x) =

(
c− x2

)3 (
c− z2

)
(x+ z)

(
(c−x2)2(x+z)4

(c+x(x+2z))4
− (c−x2)(x+z)2

(c+x(x+2z))2
+ 1

)
(c+ x(x+ 2z))3

(
(c(2x+z)+x2z)2

(c+x(x+2z))2
− x2

) +
2cx+ cz + x2z

c+ x2 + 2xz
.

We calculate the fixed points of operator ON1
(z, x).

Proposition 4.4.0.5. The only fixed points of operator ON1
(z, x) are vectors whose compo-

nents are the roots of the polynomial pc(x), that is, (
√
c,
√
c) and (−

√
c,−

√
c), and both are

superattracting fixed points.

Proof. To calculate the fixed points we simultaneously do z = x and ON1
(z, x) = (x, x), which

gives us the following operator

ON1
(x, x) =

x, 2x
(

16x4(c−x2)2

(c+3x2)4
− 4x2(c−x2)

(c+3x2)2
+ 1

)(
c− x2

)4
(c+ 3x2)

3
(
(3cx+x3)2

(c+3x2)2
− x2

) +
3cx+ x3

c+ 3x2

 .
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From this, the fixed points are z = x =
√
c and z = x = −

√
c. Now, we are going to study

the character of the fixed points. To do this, we evaluate the two fixed points in the Jacobian

matrix and obtain that for both, the matrix obtained is

O′
N1

(±
√
c,±

√
c) =

(
0 1

0 0

)
,

thus, obtaining that their associated eigenvalues are both 0, and therefore, they are superattract-

ing fixed points.

It can also be checked that for any value of c > 0 operator ON1
will have no free critical points.

We now draw the dynamical line when c = 1, Figure 4.8, in order to compare it with the dynamical

lines of the family. In this case, in blue are represented the initial guesses that converge to the

root 1 and in orange the initial points that converge to the root −1.

Figure 4.8: Dynamical line of M4N1 for c = 1

We are now going to study the real dynamics of scheme M4N2. This study is also multidimen-

sional since it is a method with memory.

The operator obtained by applying M4N2 method to pc(x) = x2 − c is denoted by ON2
. If we

define

ϕN2
(x) = 2659c2x10 + 2291c3x8 + 781c4x6 + 189c5x4 + 17c6x2 + c7 + 2063cx12 + 191x14,

then operator ON2
has the following expression, being xk−1 = z, yk−1 = zy, xk = x and

yk = xy

ON2
(z, zy, x) =

(
x, xy,

ϕN2
(x)

4x (c+ x2) (c+ 3x2)
5

)
.

We calculate the fixed points of the resulting operator.

66



4.4 Dynamical analysis

Proposition 4.4.0.6. The only fixed points of ON2
(z, zy, x) are vectors whose components are

the roots of the polynomial pc(x), that is, (
√
c,
√
c,
√
c) and (−

√
c,−

√
c,−

√
c), and both are

superattracting fixed points.

Proof. To calculate the fixed points we simultaneously do z = x, zy = x, which gives us the

following operator

ON2
(x, x, x) =

(
x, x,

ϕN2
(x)

4x (c+ x2) (c+ 3x2)
5

)
.

Now, we are going to study the character of the fixed points. To do this, we evaluate the two

fixed points in the Jacobian matrix and we obtain that for both the matrix obtained is

O′
N2

(±
√
c,±

√
c,±

√
c) =

0 0 1

0 0 0

0 0 0

 ,

thus obtaining that their associated eigenvalues are both 0, and therefore, they are superattrac-

tors.

It can also be checked that for any value of c > 0 operator ON2
will have no free critical points.

We now draw the dynamical line when c = 1, Figure 4.9, in order to compare it with the dynamical

lines of the family. In this case, in blue are represented the initial guesses that converge to the

root 1 and in orange the initial points that converge to the root −1.

Figure 4.9: Dynamical line of M4N2 for c = 1

In this case, we do not study the dynamics of methods M4N3, M4K1 and M4K1Y , since the

rational operator of these methods coincides with method M4N2 for the polynomial pc(x) =

x2 − c, so the study is the same for those schemes.
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If we compare the dynamics of the procedures with memory to that of the proposedM4 parametric

family, we can clearly see that the real dynamics of the methods with memory is much simpler

than in the case without memory.

4.5 Adding a new step to the family of iterative methods

In this section we add a step to the parametric family (4.3). We want this new step to be similar

to the second step of the already proposed family, that is why the parametric family of 3 steps

that we propose is the following

yk = xk − f(xk)

f [wk, xk]
, where wk = xk + βf(xk), k = 0, 1, . . . ,

zk = yk −H(µk)
f(yk)

f [yk, xk]
, where µk =

f(yk)

f(wk)
,

xk+1 = zk −G (νk)
f(zk)

f [zk, yk]
, where νk =

f(zk)

f(yk)
,

(4.42)

where H(t) and G(t) are real functions.

We denote this parametric family by M6. We have proven that the parametric family (4.3) has

order 4 under certain conditions, see Theorem 4.2.1. What we are going to see next is that the

family (4.42) has order 6 under the same conditions and adding others on function G.

Theorem 4.5.1. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a

real function satisfying H(0) = 1, H ′(0) = 1, and |H ′′(0)| < ∞ and G(t) be a real function

satisfying G(0) = 1 and |G′(0)| < ∞. Then, taking an estimation x0 close enough to α, the

sequence of iterates {xk}k≥0, generated by family of iterative methods (4.42) converges to α

with order 6.

Proof. From Theorem 4.3.1 it follows that

ez =
1

2
c2
(
1 + βf ′(α)

) (
−2c3

(
1 + βf ′(α)

)
+ c22

(
6 + 4βf ′(α)−H2

))
e4k +O

(
e5k

)
, (4.43)

where ez = zk − α and H2 = H ′′(0).
We consider the Taylor development of f(yk) and of f(zk) around α

f(yk) = f ′(α)
(
ey + c2e

2
y + c3e

3
y + c4e

4
y + c5e

5
y +O

(
e6y

))
, (4.44)

f(zk) = f ′(α)
(
ez + c2e

2
z + c3e

3
z + c4e

4
z + c5e

5
z +O

(
e6z

))
, (4.45)
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where ey = yk − α and ez = zk − α.

We now calculate the expansion of f [zk, yk] using (4.44) and (4.45),

f [zk, yk] =
f(zk)− f(yk)

zk − yk
=

f(zk)− f(yk)

zk − α+ α− yk
=
f(zk)− f(yk)

ez − ey

=
f ′(α)

(
(ez − ey) + c2

(
e2z − e2y

)
+ c3

(
e3z − e3y

)
+ c4

(
e4z − e4y

)
+O5(ez , ey)

)
ez − ey

.

Substituting the known expressions for ey and ez , it follows that

f [zk, yk] =f
′(α)

(
1 + c22

(
1 + βf ′(α)

)
e2k

+c2f
′(α)

(
−c22

(
2 + 2βf ′(α) + β2f ′(α)2

)
+ c3

(
2 + 3βf ′(α) + β2f ′(α)2

)))
e3k

+
(
e4k

)
.

We compute now the expansion of νk =
f(zk)
f(yk)

,

f(zk)

f(yk)
=

(
−c3

(
1 + βf ′(α)

)
+ c22

(
3 + 2βf ′(α)− H2

2

))
e2k +O

(
e3k

)
.

We denote G0 = G(0), G1 = G′(0) and G2 = G′′(0). It follows that

G(νk) = G0 +G1νk +
1

2
G2ν

2
k +O

(
ν3k

)
= 1 +G1νk +

G2

2
ν2k +O

(
ν3k

)
= 1 +G1

(
−c3

(
1 + βf ′(α)

)
+ c22

(
3 + 2βf ′(α)− H2

2

))
e2k +O(e3k).

Let us then calculate ek+1 = ez −G(νk)
f(zk)

f [zk,yk]
using the above results

ek+1 =
−c2
4

(
1 + βf ′(α)

) (
−2c3(1 + βf ′(α)) + c22(6 + 4βf ′(α)−H2)

)
(4.46)(

−2c3(1 + βf ′(α))G1 + c22(−2 + 6G1 + 2βf ′(α)(−1 + 2G1)−G1H2)
)
e6k +O

(
e7k

)
.

(4.47)

Thus it is proven that method (4.42) has order 6 under these conditions.

In particular, if H2 = H ′′(0) = 2, then

ek+1 = c2

(
2c22 − c3

)(
c22 (1− 2G1) + c3G1

)
(1 + βf ′(α))3e6k +O

(
e7k

)
. (4.48)

Now, we approximate the parameter in order to obtain a new method with memory. In the first

case, we apply the same approximation that was done for the M4 family, that is, we choose

βk = −
xk − xk−1

f(xk)− f(xk−1)
,
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and replace the parameter of family (4.42) by this expression, thus obtaining a method with

memory, which we denote by M6N1.

Theorem 4.5.2. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a real

function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| < ∞ and G(t) be a real

function satisfying G(0) = 1 and |G′(0)| < ∞. Then, taking an estimation x0 close enough to

α, the sequence of iterates {xk}k≥0, generated by method M6N1 converges to α with order

p = 3 + 2
√
3 ≈ 6.4641.

Proof. From the error equation (4.48)

ek+1 ∼ (1 + βkf
′(α))3e6k.

Using the Taylor series developments of f(xk) and f(xk−1) in the same way as in Theorem 4.3.1

we obtain

1 + βkf
′(α) ∼ c2ek−1.

From the error equation (4.48) and the above relation we obtain

ek+1 ∼ (c2ek−1)
3e6k ∼ e3k−1e

6
k. (4.49)

Assuming that the R-order of the method is at least p, the relation (4.11) is obtained. In the

same way as relation (4.49) is obtained,

ek+1 ∼ e3k−1(Dk−1,pe
p
k−1)

6 = D6
k−1,pe

6p+3
k−1 . (4.50)

Then by equating the exponents of ek−1 of (4.11) and (4.50), one has

p2 = 6p+ 3,

whose only positive solution is the order of convergence of theM6N1 method, that is p ≈ 6.4641,

according to Theorem 2.1.1.

Just as the M4K1 method is defined, we now define the M6K1 method, that is, we choose

βk = − 1

f [2xk − xk−1, xk−1]
,

and replace the parameter of family (4.42) by this expression, thus obtaining a method with

memory, which we denote by M6K1.

Theorem 4.5.3. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a real

function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| < ∞ and G(t) be a real

function satisfying G(0) = 1 and |G′(0)| < ∞. Then, taking an estimation x0 close enough to

α, the sequence of iterates {xk}k≥0, generated by method M6K1 converges to α with order

p = 3 +
√
15 ≈ 6.873.
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Proof. From the error equation (4.48)

ek+1 ∼ (1 + βkf
′(α))3e6k.

Using the Taylor series developments of f(xk) and f(xk−1) in the same way as in Theorem

4.3.2, one has

1 + βkf
′(α) ∼ e2k−1.

From error equation (4.48) and the above relation, the following is obtained

ek+1 ∼
(
e2k−1

)3
e6k ∼ e6k−1e

6
k. (4.51)

Assuming that the R-order of the method is at least p yields relation (4.11). In the same way as

relation (4.51) is obtained,

ek+1 ∼
(
e2k−1

)3 (
Dk−1,pe

p
k−1

)6
= D6

k−1,pe
6p+6
k−1 . (4.52)

Then by equating the exponents of ek−1 of (4.11) and (4.52), one has

p2 = 6p+ 6,

whose only positive solution is the order of convergence of the M6K1 method, that is p =

3 +
√
15 ≈ 6.873, according to Theorem 2.1.1.

Just as the M4N1Y method is defined, we now define the M6N1Y method, that is, we choose

βk = − 1

f [xk, yk−1]
,

and we substitute the parameter of family (4.42) by this expression, thus obtaining a method

with memory, which we denote by M6N1Y .

Theorem 4.5.4. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a real

function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| < ∞ and G(t) be a real

function satisfying G(0) = 1 and |G′(0)| < ∞. Then, taking an estimation x0 close enough to

α, the sequence of iterates {xk}k≥0, generated by method M6N1Y converges to α with order

p = 7.

Proof. From the error equation (4.48)

ek+1 ∼ (1 + βkf
′(α))3e6k.

Using the Taylor series developments of f(xk), f(xk−1) and f(yk−1) in the same way as in

Theorem 4.3.3, we obtain

1 + βkf
′(α) ∼ ey,k−1.
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From error equation (4.48) and the above relation we obtain

ek+1 ∼ (ey,k−1)
3e6k ∼ e3y,k−1e

6
k. (4.53)

Assuming that the R-order of the method is at least p yields relation (4.11), and assuming that

sequence {yk}k≥0 converges with R-order at least p1 yields relation (4.34).

In the same way as relation (4.67) is obtained, we get

ek+1 ∼
(
Dk−1,p1

ep1

k−1

)3 (
Dk−1,pe

p
k−1

)6
∼ e3p1

k−1e
6p
k−1. (4.54)

On the other hand, we have

ek,y ∼ (1 + βkf
′(α))e2k ∼ ey,k−1e

2
k ∼

(
ep1

k−1

)(
epk−1

)2
∼ e2p+p1

k−1 . (4.55)

Then by equating the exponents of ek−1 of (4.11) and (4.54), and by equating the exponents of

(4.34) and (4.55), one has

p2 = 6p+ 3p1,

pp1 = 2p+ p1,

whose only positive solution is the order of convergence of method M6N1Y , that is p = 7 and

p1 ≈ 2.333, according to Theorem 2.1.1.

Just as the M4K1Y method is defined, we now define the M6K1Y method, that is, we choose

βk = − 1

f [2xk − yk−1, yk−1]
,

and we replace the parameter of family (4.42) by this expression, thus obtaining a method with

memory, which we denote by M6K1Y .

Theorem 4.5.5. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a real

function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| < ∞ and G(t) be a real

function satisfying G(0) = 1 and |G′(0)| < ∞. Then, taking an estimation x0 close enough to

α, the sequence of iterates {xk}k≥0, generated by method M6K1Y converges to α with order

p = 8.

Proof. From the error equation (4.48)

ek+1 ∼ (1 + βkf
′(α))3e6k.

Using the Taylor series developments of f(xk), f(xk−1) and f(yk−1) in the same way as in

Theorem 4.3.4, one has

1 + βkf
′(α) ∼ e2y,k−1.
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By error equation (4.48) and the above relation we obtain

ek+1 ∼
(
e2y,k−1

)3
e6k ∼ e6y,k−1e

6
k. (4.56)

Assuming that the R-order of the method is at least p we obtain relation (4.11), and assuming

that sequence {yk}k≥0 converges to R-order of at least p1 we obtain the relation (4.34).

In the same way as relation (4.56) is obtained, we get

ek+1 ∼
(
Dk−1,p1

e2p1

k−1

)3 (
Dk−1,pe

p
k−1

)6
∼ e6p1

k−1e
6p
k−1. (4.57)

On the other hand, we have

ek,y ∼ (1 + βkf
′(α))e2k ∼ e2y,k−1e

2
k ∼

(
e2p1

k−1

)(
epk−1

)2
∼ e2p+2p1

k−1 . (4.58)

Then by equating the exponents of ek−1 of (4.11) and (4.57), and by equating the exponents

(4.34) and (4.58), one has

p2 = 6p+ 6p1,

pp1 = 2p+ 2p1,

whose only positive solution is the order of convergence of method M6K1Y , that is p = 8 and

p1 ≈ 2.666, according to Theorem 2.1.1.

Now, we approximate the parameter by a Newton interpolating polynomial of degree 1 at nodes

xk and zk−1, we choose

βk = − 1

f [xk, zk−1]
,

and we replace the parameter of family (4.42) by this expression, thus obtaining a method with

memory, which we denote by M6N1Z .

Theorem 4.5.6. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a real

function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| < ∞ and G(t) be a real

function satisfying G(0) = 1 and |G′(0)| < ∞. Then, taking an estimation x0 close enough to

α, the sequence of iterates {xk}k≥0, generated by method M6N1Z converges to α with order

p = 8.

Proof. From error equation (4.48)

ek+1 ∼ (1 + βkf
′(α))3e6k.

Using the Taylor series developments of f(xk), f(xk−1) and f(zk−1) in the same way as in the

Theorem 4.3.3, we obtain

1 + βkf
′(α) ∼ ez,k−1,
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provided that p > p1 where p is the R-order of the method and p1 is the R-order of sequence

{zk}k≥0.

From the error equation (4.48) and the above relation we obtain

ek+1 ∼ (ez,k−1)
3e6k ∼ e3z,k−1e

6
k. (4.59)

Let us assume that the R-order of the method is at least p gives the relation (4.11), and assuming

that sequence {zk}k≥0 converges to R-order of at least p1 gives the relation

ez,k ∼ Dk,p1
ep1

k ∼ Dk,p1

(
Dk−1,pe

p
k−1

)p1

∼ Dk,p1
Dp1

k−1,pe
pp1

k−1. (4.60)

In the same way as relation (4.59) is obtained,

ek+1 ∼
(
Dk−1,p1

ep1

k−1

)3 (
Dk−1,pe

p
k−1

)6
∼ e3p1

k−1e
6p
k−1. (4.61)

On the other hand, we have

ez,k ∼ (1 + βkf
′(α))2e4k ∼ e2z,k−1e

4
k ∼ e4p+2p1

k−1 . (4.62)

Then by equating the exponents of ek−1 of (4.11) and (4.61), and by equating the exponents of

(4.60) and (4.62), one has

p2 = 6p+ 3p1,

pp1 = 4p+ 2p1,

whose only positive solution is the order of convergence of method M6N1Z , that is p = 8 and

p1 ≈ 5.333, according to Theorem 2.1.1.

Instead of using the previous divided difference operator, which was the divided difference operator

at nodes xk and zk−1, we apply Kurchatov’s divided difference operator at same nodes, therefore

we choose

βk = − 1

f [2xk − zk−1, zk−1]
,

and we substitute the parameter of family (4.42) by this expression, thus obtaining a method

with memory, which we denote by M6K1Z .

Theorem 4.5.7. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a real

function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| < ∞ and G(t) be a real

function satisfying G(0) = 1 and |G′(0)| < ∞. Then, taking an estimation x0 close enough to

α, the sequence of iterates {xk}k≥0, generated by method M6K1Z converges to α with order

p = 9.
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Proof. From error equation (4.48)

ek+1 ∼ (1 + βkf
′(α))3e6k.

Using the Taylor series developments of f(xk), f(xk−1) and f(zk−1) in the same way as in

Theorem 4.3.4, we obtain

1 + βkf
′(α) ∼ e2z,k−1,

provided that p > 2p1 where p is the R-order of the method and p1 is the R-order of sequence

{zk}k≥0. Otherwise we have that

1 + βkf
′(α) ∼ ek.

From error equation (4.48) and the above relation we obtain

ek+1 ∼
(
e2z,k−1

)3
e6k ∼ e6z,k−1e

6
k. (4.63)

Let us assume that the R-order of the method is at least p we obtain relation (4.11), and assuming

that sequence {zk}k≥0 converges to R-order of at least p1 we obtain the relation 4.71.

In the same way as the relation (4.63) is obtained, we get

ek+1 ∼ (Dk−1,p1
e2p1

k−1)
3(Dk−1,pe

p
k−1)

6 ∼ e6p1

k−1e
6p
k−1. (4.64)

On the other hand, we have

ez,k ∼ (1 + βkf
′(α))2e4k ∼ (e2z,k−1)

2e4k ∼ e4p+4p1

k−1 . (4.65)

Then by equating the exponents of ek−1 of (4.11) and (4.64), and by equating the exponents of

(4.60) and (4.65), one has

p2 = 6p+ 6p1,

pp1 = 4p+ 4p1,

whose only positive solution is p = 10 and p1 ≈ 6.67, therefore that p > 2p1 is not satisfied,

and thus

1 + βkf
′(α) ∼ ek.

From this it follows from the error equation that

ek+1 ∼ e3ke
6
k ∼ e9k, (4.66)

and therefore method M6K1Z has order of convergence 9, according to Theorem 2.1.1.

In the same way as M4N2 method is defined, we define the M6N2 method, that is to say, we

choose

βk = − 1

N ′
2(xk)

,

and we substitute the parameter of family (4.42) by this expression, thus obtaining a method

with memory, which we denote by M6N2.
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Theorem 4.5.8. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a real

function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| < ∞ and G(t) be a real

function satisfying G(0) = 1 and |G′(0)| < ∞. Then, taking an estimation x0 close enough to

α, the sequence of iterates {xk}k≥0, generated by method M6N2 converges to α with order

p = 1
2 (7 +

√
61) ≈ 7.4051.

Proof. From the error equation (4.48)

ek+1 ∼ (1 + βkf
′(α))3e6k.

Using the Taylor series developments of f(xk), f(xk−1) and f(yk−1) in the same way as in

Theorem 4.3.5, we obtain

N ′
2(xk) =f

′(α) + 2c2f
′(α)ek + c3f

′(α)ekey + c3f
′(α)(ek − ey,k−1)ek−1

+O2(ey,k−1, ek, ek−1).

Thus, 1 + βkf
′(α) can behave as ek, as ekey,k−1, as ek−1ek or as ek−1ey,k−1.

It is obvious that ekey,k−1 ends faster to zero than ek when k → ∞, and that ek−1ek tends

faster to zero than ek−1ey,k−1. For this reason we have to look at if ek converges faster to zero

than ek−1ey,k−1 does.

Suppose the R-order of the method is at least p. Consider sequence {yk}k≥0 generated by the

first step of the method, and suppose that it converges with R-order at least p1.

Therefore, it is satisfied

ek+1 ∼ Dk,pe
p
k and ey,k ∼ Dk,p1

ep1

k ,

where Dk,p tends to the asymptotic error constant, Dp, and where Dk,p1
tends to the asymptotic

error constant, Dp1 , when k −→ ∞.

Then,

ek
ek−1ey,k−1

∼
Dk−1,pe

p
k−1

Dk−1,p1
ek−1e

p1

k−1

.

Then if p ≥ p1 + 1, it follows that

1 + βkf
′(α) ∼ ek−1ey,k−1.

From error equation (4.48) and the above relation, we obtain

ek+1 ∼ (ek−1ey,k−1)
3e6k ∼ e3k−1e

3
y,k−1e

6
k. (4.67)

Assuming that the R-order of the method is at least p we obtain relation (4.11), and assuming

that sequence {yk}k≥0 converges to R-order of at least p1 we obtain the relation (4.34).

In the same way as relation (4.67) is obtained, we get

ek+1 ∼ e3k−1

(
Dk−1,p1

ep1

k−1

)3 (
Dk−1,pe

p
k−1

)6
∼ e3p1

k−1e
6p+3
k−1 . (4.68)
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On the other hand, we have

ek,y ∼ (1 + βkf
′(α))e2k ∼ ek−1ey,k−1e

2
k ∼ e2p+1+p1

k−1 . (4.69)

Then by equating the exponents of ek−1 of (4.11) and (4.68), and by equating those of (4.34)

and (4.69), one has

p2 = 6p+ 3 + 3p1,

pp1 = 2p+ 1 + p1,

whose only positive solution is the order of convergence of method M6N2, that is p ≈ 7.4051

and p1 ≈ 2.468, according to Theorem 2.1.1.

We now apply Newton’s interpolating polynomial of degree 2 at nodes xk, xk−1 and zk−1, which

is

N2z(t) = f(xk) + f [xk, xk−1](t− xk) + f [xk, xk−1, zk−1](t− xk)(t− xk−1).

Therefore, we choose

βk = − 1

N ′
2z(xk)

,

and we replace the parameter of family (4.42) by this expression, thus obtaining a method with

memory, which we denote by M6N2Z .

Theorem 4.5.9. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a real

function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| < ∞ and G(t) be a real

function satisfying G(0) = 1 and |G′(0)| < ∞. Then, taking an estimation x0 close enough to

α, the sequence of iterates {xk}k≥0, generated by method M6N2Z converges to α with order

p = 4 +
√
19 ≈ 8.3589.

Proof. From the error equation (4.48)

ek+1 ∼ (1 + βkf
′(α))3e6k.

Using the Taylor series developments of f(xk), f(xk−1) and f(zk−1) in the same way as in

Theorem 4.3.5, we obtain

N ′
2z(xk) =f

′(α) + 2c2f
′(α)ek + c3f

′(α)ekez,k−1 + c3f
′(α)(ek − ez,k−1)ek−1

+O2(ez,k−1, ek, ek−1).

Thus, 1 + βkf
′(α) will behave like ek, as ekez,k−1, as ek−1ek or as ek−1ez,k−1.

It is obvious that ekez,k−1 tends faster to zero than ek when k → ∞, and that ek−1ek tends

faster to zero than ek−1ez,k−1. For this reason we have to look at if ek converges faster to zero

than ek−1ez,k−1 does.

Suppose the R-order of the method is at least p. Consider sequence {zk}k≥0 generated by the
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second step of the method, and suppose that it converges to R-order at least p1. Therefore, it

satisfies

ek+1 ∼ Dk,pe
p
k and ez,k ∼ Dk,p1

ep1

k ,

where Dk,p tends to the asymptotic error constant, Dp, and where Dk,p1
tends to the asymptotic

error constant, Dp1 , when k −→ ∞.

Then
ek

ek−1ez,k−1
∼

Dk−1,pe
p
k−1

Dk−1,p1
ek−1e

p1

k−1

.

Then if p ≥ p1 + 1, we have that

1 + βkf
′(α) ∼ ek−1ez,k−1.

From the error equation (4.48) and the above relation we obtain

ek+1 ∼ (ek−1ez,k−1)
3e6k ∼ e3k−1e

3
z,k−1e

6
k. (4.70)

Assuming that the R-order of the method is at least p gives relation (4.11), and assuming that

sequence {zk}k≥0 converges to R-order of at least p1 gives the relation

ez,k ∼ Dk,p1
ep1

k ∼ Dk,p1

(
Dk−1,pe

p
k−1

)p1

∼ Dk,p1
Dp1

k−1,pe
pp1

k−1. (4.71)

. In the same way as relation (4.70) is obtained,

ek+1 ∼ e3k−1

(
Dk−1,p1

ep1

k−1

)3 (
Dk−1,pe

p
k−1

)6
∼ e3p1

k−1e
6p+3
k−1 . (4.72)

On the other hand, we have

ez,k ∼ (1 + βkf
′(α))2e4k ∼ e2k−1e

2
z,k−1e

4
k ∼ e4p+2+2p1

k−1 . (4.73)

Then by equating the exponents of ek−1 of (4.11) and (4.72), and by equating the exponents of

(4.71) and (4.73), one has

p2 = 6p+ 3 + 3p1,

pp1 = 4p+ 2 + 2p1,

whose only positive solution is the order of convergence of method M6N2Z , that is p ≈ 8.3589

and p1 ≈ 5.5726, according to Theorem 2.1.1.

In the same way as M4N3 method is defined, we define the M6N3 method, that is, we choose

βk = − 1

N ′
3(xk)

,

and replace the parameter of family (4.42) by this expression, thus obtaining a method with

memory, which we denote by M6N3.
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Theorem 4.5.10. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neigh-

bourhood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be

a real function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| < ∞ and G(t) be a

real function satisfying G(0) = 1 and |G′(0)| <∞. Then, taking an estimation x0 close enough

to α, the sequence of iterates {xk}k≥0, generated by method M6N3 converges to α with order

p = 8.

Proof. From the error equation (4.48)

ek+1 ∼ (1 + βkf
′(α))3e6k.

Using the Taylor series developments of f(xk), f(yk−1), f(xk−1) and f(wk−1) as was done in

Theorem 4.3.6 we have then that

1 + βk ∼ 2c2ek + c4ey,k−1ek−1ew,k−1.

Thus 1 + βkf
′(α) may behave as ek or as ek−1ey,k−1ew,k−1, since the other terms con-

verge faster than these two. We now prove that the behaviour of 1 + βkf
′(α) is like that

of ek−1ey,k−1ew,k−1.

Suppose that the R-order of the method is at least p. Therefore, it is satisfied

ek+1 ∼ Dk,pe
p
k,

where Dk,p tends to the asymptotic error constant, Dp, when k −→ ∞. Moreover, if we as-

sume that sequence {yk}k≥0 generated by the first step of the method and sequence {wk}k≥0,

converge with R-order at least p1 and at least p2, respectively. Then

ek
ek−1ey,k−1ew,k−1

∼
Dk−1,pe

p
k−1

Dk−1,p1
Dk−1,p2

ek−1e
p1

k−1e
p2

k−1

,

where Dk,p1
and Dk,p2

tend to asymptotic error constants, Dp1 and Dp2 , respectively, when

k −→ ∞.

Then if p ≥ p1 + p2 + 1, therefore

1 + βkf
′(α) ∼ c4ek−1ey,k−1ew,k−1.

From error equation (4.48) and the above relation we obtain

ek+1 ∼ (c4ek−1ey,k−1ew,k−1)
3e6k ∼ e3k−1e

3
y,k−1e

3
w,k−1e

6
k. (4.74)

Assuming that the R-order of the method is at least p we obtain relation (4.11). We assume

that sequence {yk}k≥0 and sequence {wk}k≥0 converge with R-order at least p1 and at least

p2, respectively. Then, we obtain the relations defined in (4.34) and (4.38).

In the same way as relation (4.74) is obtained, we get

ek+1 ∼ e3k−1

(
Dk−1,p1

ep1

k−1

)3 (
Dk−1,p2

ep2

k−1

)3 (
Dk−1,pe

p
k−1

)6
∼ e3p1+3p2

k−1 e6p+3
k−1 . (4.75)
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On the other hand, we have

ey,k ∼ (1 + βkf
′(α))e2k ∼ ek−1ey,k−1ew,k−1e

2
k ∼ e2p+1+p1+p2

k−1 . (4.76)

And we also have that

ew,k ∼ (1 + βkf
′(α))ek ∼ ek−1ey,k−1ew,k−1ek ∼ ep+1+p1+p2

k−1 . (4.77)

Then by equating the exponents of ek−1 of (4.11) and (4.75), and by equating those of (4.34)

and (4.76) and by equating the exponts of (4.38) and (4.77), one has

p2 = 6p+ 3 + 3p1 + 3p2

pp1 = 2p+ 1 + p1 + p2

pp2 = p+ 1 + p1 + p2,

whose only positive solution is the order of convergence of method M6N3, that is p = 8,

p1 ≈ 2.6667 and p2 ≈ 1.6667, according to Theorem 2.1.1.

As in the previous case a Newton interpolating polynomial of degree 3 was used, we now apply

another interpolating polynomial, in this case also of degree 3, but at nodes xk, xk−1, zk−1

and wk−1. Thus the polynomial is N3z(t) = N2z(t) + f [xk, xk−1, zk−1, wk−1](t − xk)(t −
xk−1)(t− zk−1) In the following case we choose

βk = − 1

N ′
3z(xk)

,

and we replace the parameter of family (4.42) by this expression, thus obtaining a method with

memory, which we denote by M6N3Z .

Theorem 4.5.11. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neigh-

bourhood of α denoted by D ⊂ R such that f(α) = 0. We assume f ′(α) ̸= 0. Let H(t) be a

real function satisfying H(0) = 1, H ′(0) = 1, H ′′(0) = 2 and |H ′′′(0)| <∞ and G(t) be a real

function satisfying G(0) = 1 and |G′(0)| < ∞. Then, taking an estimation x0 close enough to

α, the sequence of iterates {xk}k≥0, generated by method M6N3Z converges to α with order

9.

Proof. From the error equation (4.48)

ek+1 ∼ (1 + βkf
′(α))3e6k.

Using the Taylor series developments of f(xk), f(xk−1), f(zk−1) and f(wk−1) around α in the

same way as in Theorem 4.3.6, we obtain

1 + βk ∼ 2c2ek + c4ek−1ez,k−1ew,k−1.

Thus 1 + βkf
′(α) may behave as ek or as ek−1ez,k−1ew,k−1, since the other terms converge

faster than these two. We now prove that the behaviour of 1 + βkf
′(α) is like the behaviour of
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4.5 Adding a new step to the family of iterative methods

ek−1ez,k−1ew,k−1.

Suppose that the R-order of the method is at least p. Therefore, it is satisfied

ek+1 ∼ Dk,pe
p
k,

where Dk,p tends to the asymptotic error constant, Dp, when k −→ ∞. Moreover, we assume

that sequence {zk}k≥0 generated by the second step of the method and sequence {wk}k≥0,

converge with R-order at least p1 and at least p2, respectively. Then

ek
ek−1ez,k−1ew,k−1

∼
Dk−1,pe

p
k−1

Dk−1,p1
Dk−1,p2

ek−1e
p1

k−1e
p2

k−1

,

where Dk,p1
and Dk,p2

tend to the asymptotic error constants, Dp1 and Dp2 , respectively, when

k −→ ∞.

Then if p ≥ p1 + p2 + 1, one has

1 + βkf
′(α) ∼ c4ek−1ez,k−1ew,k−1.

From error equation (4.48) and the above relation we obtain

ek+1 ∼ (ek−1ez,k−1ew,k−1)
3e6k ∼ e3k−1e

3
z,k−1e

3
w,k−1e

6
k. (4.78)

We assume that the R-order of the method is at least p we obtain relation (4.11). Assuming

that sequence {zk}k≥0 and sequence {wk}k≥0 converge with R-order at least p1 and at least

p2, respectively. Then, we obtain the relations defined in (4.71) and (4.38).

In the same way as relation (4.78) is obtained,

ek+1 ∼ e3k−1

(
Dk−1,p1

ep1

k−1

)3 (
Dk−1,p2

ep2

k−1

)3 (
Dk−1,pe

p
k−1

)6
∼ e3p1+3p2

k−1 e6p+3
k−1 . (4.79)

On the other hand, we have

ez,k ∼ (1 + βkf
′(α))2e4k ∼ e2k−1e

2
z,k−1e

2
w,k−1e

4
k ∼ e4p+2+2p1+2p2

k−1 . (4.80)

And we also have that

ew,k ∼ (1 + βkf
′(α))ek ∼ ek−1ez,k−1ew,k−1ek ∼ ep+1+p1+p2

k−1 . (4.81)

Then by equating the exponents of ek−1 of (4.11) and (4.79), and by equating those of (4.71)

and (4.80) and by equating the exponents of (4.38) and (4.81), one has

p2 = 6p+ 3 + 3p1 + 3p2

pp1 = 4p+ 2 + 2p1 + 2p2

pp2 = p+ 1 + p1 + p2,

whose only positive solution is the order of convergence of methodM6N3Z , that is p = 9, p1 = 6

and p2 = 2, according to Theorem 2.1.1.
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Next, we show Table 4.1 where we have a collection of the different convergence orders obtained

by introducing memory to families M4 and M6.

Table 4.1: Collection of the different orders of convergence

Parameter approximation Method Order

M4 4

f [xk, xk−1] M4N1 2 +
√
6 ≈ 4.4495

f [2xk − xk−1, xk−1] M4K1 2 + 2
√
2 ≈ 4.8284

f [xk, yk−1] M4N1Y 5

f [2xk − yk−1, yk−1] M4K1Y 6

N ′
2(xk) M4N2

1
2 (5 +

√
33) ≈ 5.37228

N ′
3(xk) M4N3 6

M6 6

f [xk, xk−1] M6N1 3 + 2
√
3 ≈ 6.4641

f [2xk − xk−1, xk−1] M6K1 2 +
√
15 ≈ 6.873

f [xk, yk−1] M6N1Y 7

f [2xk − yk−1, yk−1] M6K1Y 8

f [xk, zk−1] M6N1Z 8

f [2xk − zk−1, zk−1] M6K1Z 9

N ′
2(xk) M6N2

1
2 (7 +

√
61) ≈ 7.4051

N ′
2Z(xk) M6N2Z 4 +

√
19 ≈ 8.3589

N ′
3(xk) M6N3 8

N ′
3Z(xk) M6N3Z 9

Let us remark that the highest order of convergence is reached by M6K1Z and M6N3Z , but the

computational cost of the first one is much lower than those of the later one.

4.6 Numerical experiments

In this section, we perform several numerical experiments in order to show the behaviour of the

methods proposed in the chapter.

We use Matlab R2020b with variable precision arithmetic with 2000 digits for the computational

calculations, iterating from an initial estimation x0 until the following stopping criterion is satisfied

|xk+1 − xk|+ |f(xk+1)| < 10−100.

The numerical results we are going to compare the methods in these examples are as follows

• the estimation to the solution obtained,

• the absolute value of the nonlinear function evaluated in that estimation (which we denote

by |f(xk+1)| in the tables),
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• the absolute value of the distance between the last two estimations (which we denote by

|xk+1 − xk| in the tables),

• the number of iterations needed to satisfy the required tolerance (which we denote by

Iteration in the tables) in seconds,

• the computational time (which we denote by Time in the tables)

• and the approximate computational order of convergence (ACOC).

The functions we used are as follows

• f1(x) = cos (x)− x, which has a root α ≈ 0.73908513.

• f2(x) = arctan (x), which has a root α = 0.

• f3(x) = arctan (x)− 2x
x2+1

, which has a root α ≈ −1.39175.

• f4(x) = (x− 1)3 − 1, which has a root α = 2.

We use the quadratic polynomial H(µk) = µ2k + µk + 1 as the weight function for all methods

because is the easiest polynomial that satisfy the conditions to ensure the convergence of the

different methods. As the parameter β we use in all the cases β = −1. Table 4.2 lists the initial

estimates that are used for each equation.

Table 4.2: Initial estimations

Function x0 x−1 w−1 y−1 z−1

f1(x) 1 2 1.75 1.5 1.3

f2(x) 0.75 1.5 1.25 1 0.9

f3(x) −1 −0.25 −0.5 −0.75 -0.85

f4(x) 1.5 0 0.5 1.1 1.3

We show the results obtained for the different methods presented in the chapter for equation

cos(x) − x = 0 in Table 4.3. As can be seen in the ACOC column, in this case, the theoretical

convergence order coincides with the ACOC.

Among the methods of two steps, similar results can be seen in terms of number of iterations

and the value of the function at the last iteration. We observe that the method without memory,

in this case, requires one more iteration to satisfy the stopping criterion.

Among the methods of three steps, we can see that same number of iterations is required to satisfy

the stopping criterion, but the computational time required by each method differs considerably.

We observe that the method with memory that requires the least time is also the one that

obtains the best approximation and the highest ACOC, that is, method M6K1Z , although time
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of M6N3Z us better with similar ACOC.

As a conclusion of this numerical experiment it is obtained that all the methods obtain similar

results, although it would be advisable in this case to use method M6N3Z , since it is one of the

methods with the highest ACOC and obtains a great approximation as we can see in Table 4.3.

The recommended method among the two step methods, is M4K1Y because it obtains a better

approximation and higher ACOC with the same number of iterations as the other schemes, with

similar performance as M4N3, with the same order of convergence.

Table 4.3: Results for the equation cos(x)− x = 0

Method |xk+1 − xk| |f(xk+1)| Iteration ACOC Time

M4 7.98384×10−225 1.76651×10−897 5 4 0.2547

M4N1 6.36668×10−125 6.52553×10−555 4 4.4822 0.2172

M4K1 3.88156×10−171 3.96378×10−824 4 4.95099 0.5188

M4N1Y 9.72756×10−165 3.46507×10−823 4 4.99744 0.2813

M4K1Y 6.84252×10−270 2.18741×10−1618 4 6.00073 0.3875

M4N2 2.43352×10−190 8.10487×10−1022 4 5.3755 0.2500

M4N3 8.22231×10−257 5.63335×10−1540 4 5.99732 0.2891

M6 2.42699×10−192 2.75185×10−1151 4 6.0 0.2625

M6N1 3.48199×10−391 2.99111×10−2527 4 6.48815 0.3281

M6K1 6.00966×10−530 2.4162×10−3638 4 6.97266 0.6937

M6N1Y 5.69681×10−476 3.77689×10−3331 4 6.99725 0.6750

M6K1Y 1.61818×10−721 6.53861×10−5772 4 7.98899 0.6594

M6N1Z 1.32316×10−627 1.93001×10−5019 4 7.99805 0.7203

M6K1Z 1.89884×10−855 4.48316×10−7697 4 9.0 0.6828

M6N2 6.99999×10−533 4.91149×10−3945 4 7.41158 0.4219

M6N2Z 3.23046×10−693 5.69868×10−5793 4 8.36077 0.3250

M6N3 4.52655×10−681 4.6994×10−5448 4 7.99385 0.3844

M6N3Z 4.45028×10−838 6.87813×10−7544 4 8.99977 0.3172

We show now the results obtained by the different methods proposed in the chapter for the

equation arctan(x) = 0 in Table 4.4. As can be seen in the ACOC column, in this case, the

theoretical order of convergence is lower than the ACOC for all methods.

Among the methods of two steps, we can see that the methods with memory increase their order

by one unit, but the method without memory increases it by 5 units, which makes this method

more suitable in this case, and also needs less time and requires the fewest iterations to satisfy

the tolerance, as can be seen in Table 4.4.

Among the methods of three steps, we can see that the method without memory increases its

ACOC order by one unit for this numerical example, and that the methods with memory increase

it by more than one unit, resulting in methodM6K1Z being the method with the highest ACOC.

In this case all the methods perform the same number of iterations. The method that gives the

best approximation is method M6K1Z followed by methods M6N1Z and M6N3Z , although the
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rest of the methods are not very different from them.

As a conclusion of this numerical experiment, the recommended methods in this case, with three

and two steps, would be method M6K1Z and method M4, respectively.

Table 4.4: Results for the equation arctan(x) = 0

Method |xk+1 − xk| |f(xk+1)| Iteration ACOC Time

M4 1.73764×10−292 1.783×10−2628 4 9.0 0.3266

M4N1 6.26995×10−560 2.31762×10−3190 5 5.6937 0.4484

M4K1 4.87295×10−556 3.55754×10−3168 5 5.69382 0.4469

M4N1Y 1.92116e×10−156 4.14261×10−1135 4 7.2191 0.2625

M4K1Y 3.09301×10−163 1.72471×10−1184 4 7.25542 0.3031

M4N2 6.4109×10−126 2.48132×10−811 4 6.44746 0.4531

M4N3 9.83907×10−160 1.2967×10−1158 4 7.2503 0.5250

M6 9.63399×10−303 2.88138×10−2122 4 7 0.3594

M6N1 2.40435×10−233 6.78309×10−1810 4 7.81347 0.3203

M6K1 7.26769×10−255 5.77411×10−1977 4 7.82898 0.3422

M6N1Y 1.10005×10−357 4.06924×10−3367 4 9.36642 0.2656

M6K1Y 1.54723×10−383 1.25996×10−3610 4 9.39834 0.3141

M6N1Z 3.96266×10−481 2.54191×10−4789 4 11.1413 0.2766

M6K1Z 2.60934×10−544 1.81813×10−4890 4 11.1632 0.3187

M6N2 2.76956×10−308 2.72641×10−2642 4 8.5653 0.3531

M6N2Z 7.34124×10−375 8.011×10−2937 4 9.40829 0.3312

M6N3 1.13781×10−375 7.5513×10−2939 4 9.3993 0.4094

M6N3Z 2.53673×10−448 7.51537×10−4609 4 10.2653 0.3438

We show the results obtained by the different methods proposed for the equation f3(x) = 0 in

Table 4.5. As can be seen in the ACOC column, in this case, the theoretical convergence order

coincides with the ACOC.

Among the methods of two steps, we can see that there are differences in the number of iter-

ations required and the computational time taken. If we analyse which method obtain better

approximation with fewer iterations, we have that in this case it is method M4N3.

Among the methods of three steps, the only method that performs one more iteration to satisfy

the stopping criterion is method M6N1. We observe that the method that obtains a better

approximation in this case is method M6N3Z .

As a conclusion, it is obtained that in this case it is more advisable to use method M4N3 than

the rest of the two step methods and it would be advisable to use method M6N3Z since it is one

of the methods that obtains the highest order, and by far the method that obtains the closest

approximation to the solution as can be seen in the third column of Table 4.5.
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Table 4.5: Results for the equation arctan(x)− 2x
(x2+1)

= 0

Method |xk+1 − xk| |f(xk+1)| Iteration ACOC Time

M4 3.83003×10−287 4.31925×10−1149 5 4 0.2484

M4N1 4.49563×10−177 2.0329×10−788 6 4.4329 0.3578

M4K1 1.08803×10−451 2.69748×10−2008 5 4.82737 0.3422

M4N1Y 3.16171×10−164 7.17119×10−823 4 4.95602 0.2625

M4K1Y 1.46333×10−220 6.63869×10−1325 4 6.07599 0.2844

M4N2 1.69774×10−171 6.23524×10−921 4 5.38703 0.2734

M4N3 7.11925×10−222 9.37588×10−1330 4 5.99633 0.3063

M6 1.81148×10−213 7.02595×10−1281 4 6 0.2344

M6N1 6.11018×10−297 1.72607×10−1919 5 6.48618 0.3625

M6K1 8.81864×10−256 2.90803×10−1756 4 6.87588 0.5313

M6N1Y 5.10933×10−416 1.31614×10−2914 4 6.95424 0.5047

M6K1Y 7.28593×10−552 2.87494×10−4416 4 7.96108 0.5781

M6N1Z 4.60816×10−521 8.7338×10−4170 4 7.98726 0.5047

M6K1Z 1.076×10−684 2.39326×10−6162 4 9.00003 0.5406

M6N2 2.04398×10−453 6.47836×10−3357 4 7.41241 0.3063

M6N2Z 3.6637×10−692 4.99673×10−5784 4 8.37841 0.3109

M6N3 8.71194×10−555 2.15171×10−4436 4 7.98899 0.3391

M6N3Z 2.88326×10−675 4.75202×10−6180 4 8.99721 0.3297

We show the results obtained by the different methods for the equation (x − 1)3 − 1 = 0 in

Table 4.6. As can be seen in the ACOC column, in this case, the theoretical order of convergence

coincides with the ACOC in all methods except in M6N3 where the order increases by one unit.

Among the two step methods, the methods M4K1Y and M4N3 require one less iteration to

satisfy the tolerance. If we compare which of them obtains a better approximation, we can see

that method M4N2 is the one that obtains a better approximation, but it performs one more it-

eration thanM4K1Y , so the recommended one in this case isM4K1Y as we can see on Table 4.6.

Among the three step methods, almost all of them perform 5 iterations. We observe in column

3 that the method that obtains a better approximation is method M6K1Z .

The conclusion of this numerical experiment is that the most recommended methods are method

M4K1Y and M6K1Z , since they obtain a better approximation and are ones of the methods

that require the fewest iterations to satisfy the stopping criteria.
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Table 4.6: Results for the equation (x− 1)3 − 1 = 0

Method |xk+1 − xk| |f(xk+1)| Iteration ACOC Time

M4 1.067×10−181 2.59228×10−723 6 4 0.2906

M4N1 2.03723×10−285 7.96453×10−1267 6 4.44956 0.3859

M4K1 2.69898×10−346 4.85264×10−1669 6 4.8361 0.4453

M4N1Y 4.33709×10−318 4.60379×10−1587 6 5.00014 0.3719

M4K1Y 1.39248×10−181 7.13286×10−1085 5 6.00027 0.3750

M4N2 1.5561×10−416 1.49505×10−2234 6 5.4087 0.3875

M4N3 6.26407×10−151 4.83317×10−901 5 6 0.3625

M6 1.28999×10−225 1.2288×10−1348 5 6 0.3016

M6N1 1.07719×10−218 4.0404×10−1409 5 6.47927 0.3063

M6K1 3.78521×10−242 1.62794×10−1660 5 6.85364 0.5469

M6N1Y 8.79934×10−361 1.22538×10−2520 6 7.0162 0.6266

M6K1Y 1.38495×10−584 1.35351×10−4672 5 7.98531 0.5766

M6N1Z 7.76951×10−186 1.65981×10−1480 5 7.98009 0.5500

M6K1Z 8.21326×10−537 2.26765×10−4824 5 8.99996 0.5609

M6N2 2.44389×10−303 2.62354×10−2242 6 7.36596 0.4422

M6N2Z 2.2108×10−192 1.54585×10−1602 5 8.53031 0.3656

M6N3 9.73317×10−479 1.04526×10−4301 5 9.0 0.4281

M6N3Z 9.73317×10−479 1.04526×10−4301 5 9.0 0.3984

4.7 Conclusions

In this work, two parametric families of iterative methods with orders of convergence 4 and 6,

respectively, for solving nonlinear equations, have been designed from Traub’s scheme.

Memory has been introduced, in different ways, to these two families in order to obtain iterative

methods with higher order of convergence without the need to increase the number of functional

evaluations per iteration. These methods with memory have managed to increase the order by

up to 2 units for the family of order 4 and up to 3 units for the family of order 6.

But not only does the introduction of memory improve the order of convergence, we study the

stability of these schemes with memory for the sake of comparison. We conclude that, in general,

the behaviour of these methods is similar, and that wide convergence zones are obtained for the

function analyzed. Finally, we also perform numerical experiments, and it can be seen that the

introduction of memory helps to obtain better results in general, than those obtained by their

partners without memory.
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Chapter 5

Iterative methods to obtain
solutions simultaneously

Based on [Cordero, A.; Garrido, N.; Torregrosa, JR.; Triguero-

Navarro, P. (2022). Iterative schemes for finding all roots simul-

taneously of nonlinear equations. Applied Mathematics Letters.

https://doi.org/10.1016/j.aml.2022.108325]
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5.1 Introduction

In the most of applied mathematics problems we analytically solve nonlinear equations of the

form f(x) = 0, f : D ⊆ C → C, but in general, solving these equations is usually not possible.

Iterative methods are useful because, given an initial estimation of the solution, they generate

a sequence of iterations that, under certain conditions, converge to a solution of the nonlinear

equation f(x) = 0.

Usually iterative methods focus on obtaining a single solution to the problem, but sometimes we

need to obtain more than one solution. This is the reason why, iterative methods that obtain

roots simultaneously arise, which, given a set of initial estimations, obtain a set of sequences of

iterations that, under certain conditions, converge to all the roots of the equation simultaneously.

We want to emphasise that when we say that we obtain all the roots simultaneously, we are re-

ferring to obtaining as many roots as we wish or as possible depending on the problem, since

sometimes we can have infinite solutions or not as many as we imagine. Some iterative methods

for simultaneous roots are designed by Proinov et al. [31, 32, 33, 34] and Petković et al. [35,

36]. Most methods that obtain roots simultaneously found in the literature focus on polynomial

problems rather than arbitrary problems.

In [37], Ehrlich presented an iterative method of order 3 for polynomials that simultaneously

computes all the zeros of a polynomial p(x). It is defined by the fixed point iteration

x(k+1) = Ψ(x(k)) =
(
ψ1(x

(k)), ψ2(x
(k)), . . . , ψn(x

(k))
)
,

where Ψ : D ⊆ Cn → Cn and

ψi(x
(k)) = x

(k)
i −

p(x
(k)
i )

p′(x
(k)
i )− p(x

(k)
i )

∑
j ̸=i 1/

(
x
(k)
i − x

(k)
j

) , i = 1, 2, . . . , n.

and where x(k) denotes x(k) = (x
(k)
i , x

(k)
2 , . . . , x

(k)
n ).

The chapter is structured as follows. In Section 5.2, given a fixed point iterative scheme of order p

and by using an Ehrlich-type method, we set out the structure of the iterative method and prove

that 2p convergence order is obtained when solving nonlinear equations, which is not usually

done, and that 3p convergence order is obtained when solving polynomial equations. In Section

5.3, several numerical experiments are performed to compare the results obtained by methods

with the proposed structure and other known methods that obtain all roots simultaneously. This

section also analyses the dynamical planes obtained by different known iterative methods and

compare their behaviour with that of their modified partner that obtains the roots simultaneously.
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5.2 Design and convergence analysis

Let us consider a nonlinear equation f(x) = 0 with n simple roots, which we denote by αi for

i = 1, . . . , n.

We consider the iterative fixed point method of the form x(k+1) = ϕ(x(k)).

From the idea of Ehrlich’s scheme, we consider the following two-step iterative method to simul-

taneously approximate the roots of f(x) = 0. This is denoted by ϕS , using ϕ as a predictor,

whose iterative expression is the following
y
(k)
i = ϕ(x

(k)
i ), i = 1, . . . , n

x
(k+1)
i = y

(k)
i −

f(y
(k)
i )

f ′(y
(k)
i )− f(y

(k)
i )

∑n
j=1,j ̸=i

1

y
(k)
i −y

(k)
j

, i = 1, 2, . . . , n.
(5.1)

Next, we prove that, if the iterative method ϕ has order of convergence p, then the iterative

method ϕS has order of convergence 2p, being f an arbitrary nonlinear function.

Theorem 5.2.1. Let f : D ⊆ C −→ C be a sufficiently differentiable function in a neighbourhood

D of αi for i = 1, . . . , n, such that f(αi) = 0 for i = 1, . . . , n. We also assume that f ′(αi) ̸= 0

for i = 1, . . . , n. If ϕ is an iterative method with order p, then, taking an initial estimation x(0)

close enough to α = (α1, α2, . . . , αn), the sequence of iterates {x(k)}k≥0 generated by method

ϕS , with iterative expression (5.1), converges to α with order 2p.

Proof. We denote by ei,k = x
(k)
i − αi, the error of ith component of iterate x(k) and by

ey,i,k = y
(k)
i − αi, the error of ith component of iterate y(k). Since ϕ is an iterative scheme

that has order of convergence p, then we know that ey,i,k+1 ∼ epi,k.

Applying Taylor’s developments of f(y
(k)
i ) and f ′(y

(k)
i ) around αi, we obtain

f(y
(k)
i ) = f ′(α)

(
ey,i,k+1 + C2e

2
y,i,k+1

)
+O

(
e3y,i,k+1

)
.

f ′(y
(k)
i ) = f ′(α)

(
1 + 2C2ey,i,k+1

)
+O

(
e2y,i,k+1

)
.

To simplify the expressions, we denote Si(y
(k)) as

Si(y
(k)) =

n∑
j=1,j ̸=i

1

y
(k)
i − y

(k)
j

.

From the above expressions

f ′(y
(k)
i )− f(y

(k)
i )Si(y

(k)) ∼ f ′(α)
(
1 +

(
2C2 − Si(y

(k))
)
ey,i,k+1

)
.
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Then,

x
(k+1)
i − αi = y

(k)
i − αi −

f(yk+1
i )

f ′(y
(k)
i )− f(y

(k)
i )Si(y(k))

= ey,i,k+1 −
ey,i,k+1 + C2e

2
y,i,k+1 +O

(
e3y,i,k+1

)
1 +

(
2C2 − Si(y(k))

)
ey,i,k+1 +O

(
e2y,i,k+1

)
=
ey,i,k+1

(
1 +

(
2C2 − Si(y

(k))
)
ey,i,k+1

)
−
(
ey,i,k+1 + C2e

2
y,i,k+1

)
1 +

(
2C2 − Si(y(k))

)
ey,i,k+1 +O

(
e2y,i,k+1

)
+O

(
e3y,i,k+1

)
=

(
C2 − Si(y

(k))
)
e2y,i,k+1 +O

(
e3y,i,k+1

)
1 +

(
2C2 − Si(y(k))

)
ey,i,k+1 +O

(
e2y,i,k+1

)
∼
(
C2 − Si(y

(k))
)
e2y,i,k+1 +O

(
e3y,i,k+1

)
.

Therefore,

ei,k+1 ∼
(
C2 − Si(y

(k))
)
e2y,i,k+1 +O

(
e3y,i,k+1

)
. (5.2)

Thus, by relation (5.2) and since ϕ has order p, we obtain that

ei,k+1 ∼ e2y,i,k+1 ∼
(
epi,k

)2
∼ e2pi,k.

Therefore, it is proven that method ϕS has order of convergence 2p.

The above theorem has been proved for any nonlinear function, being, to the best of our knowl-

edge, the first result in this line. However, the order of convergence obtained can be increased if

the function is polynomial. We prove in the following result that the order increases to 3p when

we are dealing with polynomial equations.

Theorem 5.2.2. Let f : D ⊆ C −→ C be a polynomial function in a neighbourhood D of αi

for i = 1, . . . , n, such that p(αi) = 0 for i = 1, . . . , n, and p(x) is a polynomial function. We

assume that p′(αi) ̸= 0 for i = 1, . . . , n. If ϕ is an iterative method with order p, then, taking

an estimate x(0) close enough to α = (α1, α2, . . . , αn), the sequence of iterates {x(k)}k≥0

generated by method ϕS converges to α with order 3p.

Proof. Since ϕ is an iterative scheme that has order of convergence p, then we know that

ey,i,k+1 ∼ epi,k, being ei,k = x
(k)
i − αi and ey,i,k = y

(k)
i − αi.

If the iterates y
(k)
i are close to αi, for i = 1, . . . , n, we can approximate function p(x) by the
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following expression

p(y
(k)
i ) ≈

n∏
j=1

(
y
(k)
i − αj

)
.

It also follows that the derivative of p(x) can be approximated by

p′(y
(k)
i ) ≈

n∑
r=1

n∏
j=1,j ̸=r

(
y
(k)
i − αj

)
.

Thus, the following expression is obtained

p′(y
(k)
i )

p(y
(k)
i )

≈

∑n
r=1

∏n
j=1,j ̸=r

(
y
(k)
i − αj

)
∏n

j=1

(
y
(k)
i − αj

) =

n∑
j=1

1

y
(k)
i − αj

.

Thus,

p′(y
(k)
i )

p(y
(k)
i )

−
n∑

j=1,j ̸=i

1

y
(k)
i − y

(k)
j

≈
n∑

j=1

1

y
(k)
i − αj

−
n∑

j=1,j ̸=i

1

y
(k)
i − y

(k)
j

≈ 1

y
(k)
i − αi

+

n∑
j=1,j ̸=i

 1

y
(k)
i − αj

− 1

y
(k)
i − y

(k)
j


≈ 1

y
(k)
i − αi

+

n∑
j=1,j ̸=i

y
(k)
i − y

(k)
j −

(
y
(k)
i − αj

)
(
y
(k)
i − αj

)(
y
(k)
i − y

(k)
j

)
≈ 1

y
(k)
i − αi

+

n∑
j=1,j ̸=i

αj − y
(k)
j(

y
(k)
i − αj

)(
y
(k)
i − y

(k)
j

) .

(5.3)

Since method y
(k)
j = ϕ(x

(k)
j ) has order of convergence p, this means that y

(k)
k satisfies

y
(k)
j − αj =Mj,ke

p
j,k +O

(
ep+1
j,k

)
, where Mj,k is a constant, for j = 1, . . . , n.

If we replace this error in (5.3), we obtain

p′(y
(k)
i )

p(y
(k)
i )

−
n∑

j=1,j ̸=i

1

y
(k)
i − y

(k)
j

≈ 1

y
(k)
i − αi

+

n∑
j=1,j ̸=i

αj − y
(k)
j(

y
(k)
i − αj

)(
y
(k)
i − y

(k)
j

)
≈ 1

ey,i,k+1
+

n∑
j=1,j ̸=i

Mj,ke
p
j,k +O

(
ep+1
j,k

)
(
y
(k)
i − αj

)(
y
(k)
i − y

(k)
j

) .
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If we denote by Ej,k =
(
y
(k)
i − αj

)(
y
(k)
i − y

(k)
j

)
, then

p′(y
(k)
i )

p(y
(k)
i )

−
n∑

j=1,j ̸=i

1

y
(k)
i − y

(k)
j

& ≈ 1

ey,i,k+1
+

n∑
j=1,j ̸=i

Mj,ke
p
j,k +O

(
ep+1
j,k

)
Ej,k

.

To simplify the notation, we denote Ri(y
(k)) as

Ri(y
(k)) =

n∑
j=1,j ̸=i

Mj,ke
p
j,k +O

(
ep+1
j,k

)
Ej,k

.

Thus, the error equation can be expressed as

x
(k+1)
i − αi = y

(k)
i − αi −

1

p′(y
(k)
i )

p(y
(k)
i )

−
∑n

j=1,j ̸=i

1

y
(k)
i − y

(k)
j

= ey,i,k+1 − 1
1

ey,i,k+1
+Ri(y(k))

= ey,i,k+1 −
ey,i,k+1

1 + ey,i,k+1Ri(y(k))

=
ey,i,k+1

(
1 + ey,i,k+1Ri(y

(k))
)
− ey,i,k+1

1 +Mi,ke
p
i,kRi(y(k))

=
e2y,i,k+1Ri(y

(k))

1 +Mi,ke
p
i,kRi(y(k))

.

By applying that ey,i,k+1 =Mi,ke
p
i,k +O

(
ep+1
i,k

)
, we have

x
(k+1)
i − αi =

(
e2pi,k +O

(
e2p+1
i,k

))
Ri(y

(k))

1 +Mi,ke
p
i,kRi(y(k))

=
e2pi,kRi(y

(k)) +O3p+1 (ek)

1 +Mi,ke
p
i,kRi(y(k))

,

where O3p+1 (ek) denotes terms where the sum of the orders of the error product of ek is at

least 3p+ 1, since the order of Ri(y
(k)) is p.
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Then,

x
(k+1)
i − αi ∼ e2pi,kRi(y

(k))

∼ e2pi,k

n∑
j=1,j ̸=i

Mj,ke
p
j,k

Ej,k

∼ e2pi,k

n∑
j=1,j ̸=i

epj,k.

Thus, it is proven that ϕS method has order of convergence 3p when p(x) = 0 is a polynomial

equation.

5.3 Numerical experiments

In this section, we perform different numerical test in order to observe the behavior of the pro-

posed methods. In this case, we use as predictors, as discussed in the previous section, Newton’,

Steffensen’ [11], N4 and N8 methods designed in [28], and M4 and M6 schemes constructed

in [38]. We denote these procedures in the same way as in the previous section, that is, if the

method is denoted by ϕ, then its variant with the added step is denoted by ϕS . Furthermore, we

compare the results obtained by these modified schemes with those of the following well-known

methods for simultaneous roots: Ehrlich’s method [37] (denoted by E), Shams’ method [39]

(denoted by SH) and Petkovic’s method [35] (denoted by P ), all with order of convergence 3

when they are applied on polynomials.

Matlab 2020b has been used to carry out the numerical experiments, with variable precision

arithmetics with 6000 digits. As stopping criterion we choose∥∥∥x(k+1) − x(k)
∥∥∥
2
+
∥∥∥F (x(k+1))

∥∥∥
2
< 10−200,

where F (x(k+1)) =
(
f(x

(k+1)
1 ), . . . , f(x

(k+1)
n )

)
.

We use also a maximum of 100 iterations.

In the different tables we show the following data

• the norm of the function evaluated in the last iteration,
∥∥∥F (x(k+1)

∥∥∥
2
,

• the norm of the distance between the last two approximations,
∥∥∥x(k+1) − x(k)

∥∥∥
2
,

• the number of iterations needed to satisfy the required tolerance,

• and the approximated computational order of convergence (ACOC).
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The first numerical experiment we perform is to solve all the roots of the polynomial of degree

10, x10 − 1 = 0. As initial estimate we choose vector

x(0) = (−2, 2, 0.5 + i, 0.5− i,−0.5 + i,−0.5− i,−1 + 0.5i,−1− 0.5i, 1 + 0.5i, 1− 0.5i) .

In Table 5.1, we show the results obtained by proposed and known iterative methods for the

polynomial of 10th-degree. We can see that P scheme is the only method that does not converge

to the roots for this set of initial estimations. In addition, ACOC matches the expected results

for the designed methods.

According to the number of iterations, most of the proposed methods require fewer iterations

than known ones, with method N8,S performing the fewest iterations. In the second and third

columns, we can see that methods N8,S and M6,S provide the best results taking into account

the number of iterations needed.

Table 5.1: Results for equation x10 − 1 = 0

Method
∥∥∥x(k+1) − x(k)

∥∥∥
2

∥∥∥F (x(k+1))
∥∥∥
2

Iteration ACOC

NS 1.5372×10−1001 4.5113×10−6016 6 6.025

SS 3.5248×10−530 4.6789×10−3177 15 6.020

N4,S 2.5614×10−207 3.4721×10−2482 4 12.026

N8,S 5.0785×10−710 1.1834×10−8007 4 23.988

M4,S β = 0.01 3.2734×10−1775 7.3494×10−8008 5 12.087

M6,S β = 0.01 3.3994×10−327 9.0694×10−5945 4 18.504

P n.c. n.c n.c n.c

SH 7.9468×10−511 2.0186×10−2007 6 4.9999

E 2.9015×10−553 3.1822×10−1657 8 3.0

Now, we calculate all the roots of the nonlinear equation ex
2

− x = 0. As initial estimations we

choose x(0) = (−i, i). The results obtained by the proposed and known iterative methods are

shown in Table 5.2.

We see that for this initial estimation all the methods converge to the roots. Furthermore, that

the ACOC of the designed schemes is identical to the expected one, which is twice as high as

the original method. According to the number of iterations, all the proposed methods require

significantly fewer iterations than known ones. In Table 5.2, we can see that the best results are

obtained by N8,S and M6,S methods, taking into account how many iterations they perform.
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Table 5.2: Results for equation ex
2

− x = 0

Method
∥∥∥x(k+1) − x(k)

∥∥∥
2

∥∥∥F (x(k+1))
∥∥∥
2

Iteration ACOC

NS 1.2767×10−427 1.3179×10−1708 6 4

SS 1.0824×10−224 1.9281×10−896 6 4

N4,S 6.4008×10−215 6.6603×10−1716 4 8.0

N8,S 8.9419×10−1739 1.9074×10−2008 4 16.0

M4,S β = 0.01 7.756×10−274 1.9074×10−2008 4 8

M6,S β = 0.001 4.4876×10−829 1.9074×10−2008 4 12

P 1.8968×10−217 5.0848×10−434 12 2.0

SH 2.3099×10−274 7.5408×10−548 12 2.0

E 2.6495×10−371 9.9211×10−742 12 2.0

An example of dynamics

In the following, we generate several dynamical planes for some of the methods discussed to

compare them from the additional perspective of the wideness of their basins of attraction.

What we draw in these cases is whether or not the initial points converge to the roots of our

problems. We apply this idea on Newton’, Steffensen’s and M4 method, both the original and

the variants by adding the step to obtain all the roots simultaneously.

In this case, we only show the dynamical planes associated with each of the methods when they

are applied to a simple quadratic polynomial, p(x) = x2 − 1, whose roots are 1 and −1.

To generate the dynamical planes, we have chosen a mesh of 400× 400 points, and what we do

is apply our methods to each of these points, taking them as the initial estimate.

For the non-simultaneous methods, one of the axes is the real part of the initial point, and the

other is the imaginary part. For methods that are simultaneous, one of the axes is the initial

estimate x
(0)
1 and the other is the initial estimate x

(0)
2 , being both real.

We have also defined that the maximum number of iterations each initial estimate must do is

80, and that we determine that the initial point converges to one of the solutions if the distance

to that solution is lower than 10−3.

For the original methods, we represent in orange the initial points that converge to the root −1,

in green the initial points that converge to the root 1 and in blue the initial points that do not

converge to any root.

For the modified schemes, we represent the initial point green if the part of the point on the

x
(0)
1 axis converges to the −1 roots and the part on the x

(0)
2 axis converges to the 1 root, we

represent the point orange if the part on the x
(0)
1 axis converges to the 1 root and the part on

the x
(0)
2 axis converges to the −1 root. In case of non-convergence we represent the initial point

blue.
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In Figure 5.1, we show the dynamical planes obtained for the quadratic polynomial of Newton’

and NS methods. As we can see, the basins of attraction show global convergence in Newton’s

procedure, as they do for its variant to find roots simultaneously.

Figure 5.1: Dynamical planes of NS ans Newton’ methods

(a) NS

(b) Newton

In Figure 5.2, we show the dynamical planes obtained for the quadratic polynomial of Steffensen

and SS methods. In this case, Steffensen’s scheme does not converge in some areas, as for

example at the point z = −5, although we can observe that its variant SS does converge to the

roots at any point of this mesh, except in a small area around x
(0)
1 = x

(0)
2 = 0.
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5.3 Numerical experiments

Figure 5.2: Dynamical planes of SS and Steffensen’ methods

(a) SS

(b) Steffensen

Also,in Figure 5.3, we show the dynamical planes obtained for the quadratic polynomial of M4

and M4,S methods. As we can observe, in this case we obtain that the dynamical plane of M4,S

has blue zones of non-convergence to the roots. This behavior corresponds to the higher order

of convergence, as the denominator of the second step is closer to zero. This is solved by using

more digits in the calculation, but the conditions have been held, for the sake of consistency.

99



Chapter 5. Iterative methods to obtain solutions simultaneously

Figure 5.3: Dynamical planes of M4,S and M4’ methods

(a) M4,S

(b) M4

In the figures shown above we can see, for example, that in the non-simultaneous case, the

initial estimations z = 2 and z = 5 both converge to the same root, 1, but if we take the

simultaneous variant where one of the components of the estimation is 2 and the other is 5, we

obtain convergence to both roots simultaneously.

5.4 Conclusions

In this chapter, we have defined a general procedure that can be used in any iterative scheme

for scalar nonlinear problems. This process introduces an iterative step to any iterative method

in such a way that the new iterative scheme is able to find the roots simultaneously. Moreover,

this new method increases the order of convergence of the original scheme twice and even three
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times when a polynomial equation is being solved.

We have selected a number of known iterative methods to which we applied this procedure, and

we performed different numerical experiments to test the behavior of these new iterative meth-

ods. We found that the ACOC is similar to the theoretical order of convergence. The results

obtained from these iterative methods have also been compared with other methods that find

the roots simultaneously, and it has been observed that the proposed methods generally perform

less iterations, because the order is higher, therefore they reach the stopping criterion earlier,

particularly for the non-polynomial nonlinear equation.

It has also been concluded, by means of a qualitative study, that adding this iterative step

modifies the basins of attraction. In general, however, the basins of attraction generally are

similar or better than in the original schemes, in terms of the width of the basins of attraction

of the roots.
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Chapter 6

Iterative methods for multiple
roots

Based on [Cordero, A.; Garrido, N.; Torregrosa, JR.; Triguero-

Navarro, P. (2022). Modifying Kurchatov’s method to find mul-

tiple roots of nonlinear equations. Applied Numerical Mathemat-

ics. Submitted] and on [Cordero, A.; Garrido, N.; Torregrosa,

JR.; Triguero-Navarro, P. (2023). An iterative scheme to ob-

tain multiple roots simultaneously. Applied Mathematics Letters.

Submitted]
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6.1 Introduction

Many problems in engineering or applied mathematics, require to solve nonlinear equations f(x) =

0. They cannot always be solved exactly, which is why iterative methods appear to solve them.

As we have discussed in previous chapters, one of the most well-known methods is Newton’s

method.

To ensure the convergence of Newton’s method, the derivative of the function evaluated in the

solution must be non-zero, that is, the solution must be a simple root of f(x) = 0. This is not

always the case. If the root is multiple instead of simple, what usually happens to this method

is divergence or linear convergence instead of quadratic one. For this reason, iterative methods

appear that allow us to obtain roots with a multiplicity greater than 1.

Numerous iterative schemes, without memory, involving or not derivatives, are designed for

approximating the multiple roots of a nonlinear equation f(x) = 0. For this reason, there appear

iterative methods that allow us to obtain solutions with a multiplicity greater than 1, for example

[40, 29, 27, 41, 42, 43, 44] contain a collection of iterative schemes created to approximate the

multiple roots of a nonlinear equation f(x) = 0. In the most of them, the authors assume that

the multiplicity is known and it appears in the iterative expression of the method. In order to be

able to apply this methods, we must know the multiplicity of the solution in advance. But the

multiplicity is not always known in advance, and for this reason, iterative methods for multiple

roots that do not use the multiplicity in their iterative expression are designed.

It is known that Schröder scheme, see [45], whose scheme is

xk+1 = xk − f(xk)f
′(xk)

f ′(xk)2 − f(xk)f ′′(xk)
, for k = 0, 1, . . .

has order of convergence 2 for multiple roots of the f(x) = 0. This method was designed from

Newton’s scheme applied to g(x) =
f(x)

f ′(x)
. Its main feature is that you do not need to know in

advance the multiplicity of the solution, which does not appear in the iterative expression.

In a similar way, in paper [46], an iterative method with memory is constructed to approximate

the multiple roots, which avoids the need to know the multiplicity in advance.

In this chapter, we modify Kurchatov’s method to obtain an iterative scheme for finding multiple

roots of nonlinear equations. Kurchatov’s procedure is an iterative scheme second-order of

convergence, obtained from Newton’s scheme by replacing the derivative by the divided difference

of Kurchatov at nodes xk and xk−1, that is f [2xk − xk−1, xk−1].

The iterative method has the following structure

xk+1 = xk − f(xk)

f [2xk − xk−1, xk−1]
, k = 1, 2, . . .
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6.2 Convergence analysis

Applying the same idea that is applied in [45] and [46], we define the following method, denoted

by KM, to estimate the solutions of f(x) = 0

xk+1 = xk − g(xk)

g[2xk − xk−1, xk−1]
, k = 0, 1, 2, . . .

where g(x) =
f(x)
f ′(x)

and g[y, z] =
g(y)− g(z)

y − z
.

To calculate the expression of g(x) in the previous method we use the derivative of the function

to be solved. We can replace this derivative by a divided difference operator, so that to estimate

the solutions of f(x) = 0, we define the following method, denoted by KMD,

xk+1 = xk − g(xk)

g[2xk − xk−1, xk−1]
, k = 0, 1, 2, . . .

where g(x) =
f(x)

f [x+f(x),x]
and g[y, z] =

g(y)− g(z)

y − z
.

This chapter is structured as follows. In Section 6.2, we perform the convergence analysis of

the iterative method KM with memory, to find multiple roots without the knowledge of its

multiplicity. A dynamical analysis of the rational function obtained by applying the proposed

scheme on low-degree polynomials is presented in Section 6.3. In Section 6.4, we perform the

convergence analysis of the iterative scheme KMD with memory, to find multiple roots without

the knowledge of its multiplicity. Finally, in Section 6.5, we apply the iterative step presented

in Chapter 5, to approximate all the solutions simultaneously to the iterative procedure KM to

obtain an iterative method that calculates all the solutions with multiplicity equal or greater than

1 simultaneously. In Section 6.6, we perform several numerical experiments with the Kurchatov

scheme for multiple roots and compare the results obtained by this scheme with other known

ones designed of the same kind. We conclude this chapter in Section 6.7 with some conclusions

and future work.

6.2 Convergence analysis

We are going to prove that the scheme KM maintains the order of convergence of Kurchatov’s

scheme, that is, its order of convergence is 2.

Theorem 6.2.1. Let f : D ⊂ R −→ R be a sufficiently differentiable function in a neighbourhood

of α which we denote by D ⊂ R such that α is a multiple root of f(x) = 0 with unknown

multiplicity m ∈ N\{1}. Then, taking an estimate x0 close enough to α, the sequence of

iterates {xk}k≥0 generated by method KM converges to α with order 2, and the error equation

is

ek+1 =

(
−1

m
C1e

2
k +

(m+ 1)C2
1 − 2mC2

m2

(
−5e3k + 2e2kek−1 − eke

2
k−1

))
+O4(ek, ek−1),

being Cj = m!
(m+j)!

f(m+j)(α)
f(m)(α)

for j = 1, 2, . . .
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Proof. We first obtain the Taylor development of f(xk) around α,

f(xk) =
f (m)(α)

m!

(
emk + C1e

m+1
k + C2e

m+2
k + C3e

m+3
k

)
+O(em+4

k ),

where ek = xk − α. Now we obtain the Taylor development of f ′(xk) around α,

f ′(xk) =
f (m)(α)

m!

(
mem−1

k + (m+ 1)C1e
m
k + (m+ 2)C2e

m+1
k + (m+ 3)C3e

m+2
k

)
+O(em+3

k ).

Then,

g(xk) =
f(xk)

f ′(xk)

=
1

m

(
ek − 1

m
C1e

2
k +

(m+ 1)C2
1 − 2mC2

m2
e3k

)
+O(e4k).

Similarly, it is proven

g(xk1
) =

f(xk−1)

f ′(xk−1)

=
1

m

(
ek−1 − 1

m
C1e

2
k−1 +

(m+ 1)C2
1 − 2mC2

m2
e3k−1

)
+O(e4k−1),

and

g(2xk − xk−1) =
f(xk)

f ′(2xk − xk−1)

∼ 1

m

(
2ek − ek−1 − 1

m
C1(2ek − ek−1)

2 +O3(ek, ek−1)
)
,

with ek−1 = xk−1 − α and ek = xk − α.

Thus

g[2xk − xk−1, xk−1] =
g(2xk − xk−1)− g(xk−1)

2(xk − xk−1)

∼ 1

m

(
1− 2

m
C1ek +

(m+ 1)C2
1 − 2mC2

m2

(
4e2k − 2ejek−1 + e2k−1

))
.

Therefore,

xk+1 − α = xk − α− g(xk)

g[2xk − xk−1, xk−1]

= ek −

(
ek − 1

mC1e
2
k +

(m+1)C2
1−2mC2

m2 e3k

)
+O

(
e4k
)(

1− 2
mC1ek +

(m+1)C2
1−2mC2

m2

(
4e2k − 2ejek−1 + e2k−1

))
+O3(ek, ek−1)

=

(
−1

m
C1e

2
k +

(m+ 1)C2
1 − 2mC2

m2

(
−5e3k + 2e2kek−1 − eke

2
k−1

))
+O4(ek, ek−1).
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Then, we have several possibilities for the term that determines the convergence order of the

method, ek+1, with respect to ek and ek−1. By its expression we only consider if the behaviour

is as e2k or as eke
2
k−1, since e

3
k and e2kek−1 tend faster to 0 than e2k.

• If ek+1 ∼ e2k, then the order of convergence is 2.

• We assume now that ek+1 ∼ eke
2
k−1. Then, assuming that the method has R-order p,

this means that

ek+1 ∼ Dk,pe
p
k,

where Dk,p tends to the asymptotic error constant, Dp, when k −→ ∞.

Analogously, ek ∼ epk−1. Thus, we obtain

ek+1 ∼ ep
2

k−1.

From the error equation it is also obtained

ek+1 ∼ eke
2
k−1 ∼ ep+2

k−1.

If we equate simultaneously the exponents of these last two equations, using Theorem

2.1.1 what we obtain is

p2 − p− 2 = 0,

whose only positive solution is p = 2, which is the order of convergence of the iterative

method KM , so it is proven that the order of the method is 2.

6.3 Dynamical analysis

In this section, we study the stability of the fixed points of the rational operator obtained when

KM scheme is applied on the polynomial pm(x) = (x+1)(x−1)m, when m is a positive integer

greater than 1.

The theoretical concepts to perform the dynamical analysis of an iterative method with memory

are explained in Chapter 2. First, we calculate the auxiliar vectorial operator Op(z, x) where

z = xk−1 and x = xk

Op(z, x) =

(
x, x−

(
x2 − 1

)
(mz +m+ z − 1)(2mx−mz +m+ 2x− z − 1)

(mx+m+ x− 1)(m(z + 1)(2x− z + 1) + (z − 1)(2x− z − 1))

)
.
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Theorem 6.3.1. The fixed points of operatorOp(z, x) are (1, 1), (−1,−1) and
(
1−m

1 +m
,
1−m

1 +m

)
.

The fixed points coming from the solutions of polynomial pm(x) have superattracting character

and
(
1−m

1 +m
,
1−m

1 +m

)
is an unstable strange fixed point.

Proof. To calculate the fixed points we simultaneously do z = x and Op(z, x) = (x, x). First,

we compute Op(x, x)

Op(x, x) =

(
x,
m(x+ 1)2 − (x− 1)2

m(x+ 1)2 + (x− 1)2

)
.

By equating Op(x, x) = (x, x), we obtain that the fixed points satisfy

m(x+ 1)2 − (x− 1)2

m(x+ 1)2 + (x− 1)2
= x,

m(x+ 1)2 − (x− 1)2 = xm(x+ 1)2 + x(x− 1)2,

m(1− x)(x+ 1)2 = (x+ 1)(x− 1)2.

If x = 1 or x = −1, then it is obvious that the above equation is satisfied.

Suppose that x ̸= 1 and x ̸= −1. Then, the above equation can be rewritten as

−m(x− 1)(x+ 1)2 = (x+ 1)(x− 1)2,

−m(x+ 1) = x− 1,

(−m− 1)x = −1 +m,

x =
−1 +m

−m− 1
=

1−m

1 +m
.

So, we obtain two fixed point coming from the solutions of the equation, that is, z = x = 1 and

z = x = −1, and one strange fixed point whose components are defined by z = x =
1−m

1 +m
.

Now, we analyze the stability of the fixed points coming from the solutions are superattractors.

First, we calculate the Jacobian matrix Op′(z, x).

Op′(z, x) =

(
0 1

dOpz(z, x) dOpx(z, x)

)
,
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where

dOpz(z, x) =−
8m(m+ 1)

(
x2 − 1

)
(x− z)

(mx+m+ x− 1)(m(z + 1)(2x− z + 1) + (z − 1)(2x− z − 1))2
,

dOpx(z, x) =−
4m3(z + 1)

(
x2(5z + 1) + x

(
−4z2 + 2z − 2

)
+ z3 − z2 − 2

)
(mx+m+ x− 1)2(m(z + 1)(2x− z + 1) + (z − 1)(2x− z − 1))2

+
8m2

(
x2
(
5z2 − 3

)
− 4xz3 + z4 − z2 + 2

)
(mx+m+ x− 1)2(m(z + 1)(2x− z + 1) + (z − 1)(2x− z − 1))2

−
4m(z − 1)

(
x2(5z − 1)− 2x

(
2z2 + z + 1

)
+ z3 + z2 + 2

)
(mx+m+ x− 1)2(m(z + 1)(2x− z + 1) + (z − 1)(2x− z − 1))2

.

The eigenvalues of Op′(x, x) are 0 and −
8m
(
x2 − 1

)
(m(x+ 1)2 + (x− 1)2)

2
.

Then, both eigenvalues are 0 when x2 − 1 = 0, that is, x = 1 or x = −1, so we find that the

fixed points coming from the solutions are superattracting fixed points.

In the case x =
1−m

1 +m
, we obtain that the second eigenvalue is 2, the strange fixed point has

an unstable character (repelling or saddle).

Theorem 6.3.2. Operator Op(z, x) does not have free critical points, that is, it has only two

critical points that are the superattracting fixed points.

Proof. First, we calculate the determinant of Op′(z, x), because when the determinant is 0, it

means that at least one of the eigenvalues is 0,

det(Op′(z, x)) =
8m(m+ 1)

(
x2 − 1

)
(x− z)

(mx+m+ x− 1)(m(z + 1)(2x− z + 1) + (z − 1)(2x− z − 1))2
.

By equating that expression to 0, we obtain 3 types of possible critical points

• Points (z, x) where x = −1. The eigenvalues of Op′(z,−1) are 0 and

− m(1 +m)(1 + z)2

−3 + 2z + z2 +m(1 + z)2
.

The second eigenvalue is 0 if z = −1. Therefore, there is only one critical point with this

structure which is the fixed point (−1,−1).

• The points (z, x) where x = 1. The eigenvalues of Op′(z, 1) are 0 and

− (1 +m)(−1 + z)2

m((z − 1)2 +m(z2 − 2z − 3))
.

The second eigenvalue is 0 if z = 1. Therefore, (1, 1) is only one critical point with this

structure which.
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• The points (z, x) where z = x. The eigenvalues of Op′(z, z) are 0 and

− 8m(−1 + z2)

((−1 + z)2 +m(1 + z)2)2
.

The second eigenvalue is 0 if z = ±1. Therefore, the critical points that satisfy this

structure are the non strange fixed points, that is, (1, 1) and (−1,−1).

Then, the operator does not have free critical points.

From Theorem 6.3.2, the only feasible performance is to converge to the roots, both simple and

multiple.

Below we show some real dynamical planes to see the behaviour of the method and the basins

of attraction for the function pm by varying the value of m.

These planes have been generated by making a mesh of 400 points by 400 points, where each

point of the mesh is considered as the set of initial estimations of the iterative method, on the

abscissa axis we have the component x1 and on the ordinate axis the component x0.

If the distance between iterations of the method to one of the solutions of the function is less than

10−3, then we say that the initial point converges to that solution. Moreover, this convergence

must happen before 100 iterations.

We represent the initial point in different colours according to its convergence. In orange the

initial points that converge to the fixed point (1, 1) and in green the initial points that converge

to the fixed point (−1,−1). We would also represent in black those initial points that do not

converge to any of the solutions, but in this case, that does not happens.
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Figure 6.1: Real dynamical planes with different values of m

(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 4

As we can see in Figure 6.1, the wideness of the basin of attraction of (1, 1) increases if we

increase the value of m, which is the multiplicity of the root 1. As can be seen in all the

dynamical planes, all the initial points converge to one of the solutions. With this study we show

what happens with a family of polynomials with one simple solution and one multiple solution.

Now we perform a dynamical analysis to see what happens when we have two multiple roots.

The polynomial is fm,n(x) = (x+ 1)n(x− 1)m where m > 1 and n > 1.

Now, we calculate the auxiliar vectorial operator

Of(z, x) =
(
x,Φf (z, x)

)
,

where

Φf (z, x) =
m2(x+ 1)(z + 1)(2x− z + 1) + 2mn

(
2xz − z2 − 1

)
− n2(x− 1)(z − 1)(2x− z − 1)

(m(x+ 1) + n(x− 1))(m(z + 1)(2x− z + 1) + n(z − 1)(2x− z − 1))
.

Theorem 6.3.3. The fixed points of operator Of(z, x) are those coming from the solutions of

polynomial fm,n(x), that is, (1, 1) and (−1,−1), and
(
n−m

n+m
,
n−m

n+m

)
. Those fixed points

coming from the solutions of fm,n(x) are superattracting fixed points and the third is an unstable

strange fixed point.
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Proof. We simultaneously do z = x and Of(z, x) = (x, x) to calculate the fixed points. First,

we compute Of(x, x)

Of(x, x) =

(
x,
m(x+ 1)2 − n(x− 1)2

m(x+ 1)2 + n(x− 1)2

)
.

By solving Of(x, x) = (x, x), we obtain that the fixed points are those that satisfy

m(x+ 1)2 − n(x− 1)2

m(x+ 1)2 + n(x− 1)2
= x,

m(x+ 1)2 − n(x− 1)2 = xm(x+ 1)2 + xn(x− 1)2,

m(1− x)(x+ 1)2 = n(x+ 1)(x− 1)2.

It is obvious that the equation is satisfied if x = 1 or x = −1. Suppose that x ̸= ±1. Therefore,

the above equation is

−m(x− 1)(x+ 1)2 = n(x− 1)2,

−m(x+ 1) = n(x− 1),

(−m− n)x = −n+m,

x =
−n+m

−m− n
=
n−m

n+m
.

Therefore, there are two fixed point coming from the solutions of the equation and one strange

fixed point when z = x =
n−m

n+m
.

Now, we check that the fixed points coming from the solutions are superattractors. The eigen-

values of the Jacobian matrix Of ′(x, x), that are 0 and −
8mn

(
z2 − 1

)
(m(z + 1)2 + n(z − 1)2)

2
.

Both eigenvalues are 0 when x2 − 1 = 0, therefore, the fixed points coming from the solutions

are superattractors.

If z = x =
n−m

n+m
, the second eigenvalue is 2, therefore is a point with an unstable character

(repelling or saddle).

Theorem 6.3.4. Operator Of(z, x) does not have free critical points, that is, it has only two

critical points that are the superattracting fixed points.

Proof. First, we analyze the determinant of Of ′(z, x), because when the determinant is 0, it

means that at least one of the eigenvalues is 0,

det
(
Of ′(z, x)

)
=

8mn
(
x2 − 1

)
(m+ n)(x− z)

(m(x+ 1) + n(x− 1))(m(z + 1)(2x− z + 1) + n(z − 1)(2x− z − 1))2
.

By equating that expression to 0, we obtain 3 types of possible critical points
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• The points (z, x) where x = −1. The eigenvalues of Of ′(z,−1) are 0 and

− m(z + 1)2(m+ n)

n (m(z + 1)2 + n (z2 + 2z − 3))
.

The second eigenvalue is 0 if z = −1. Therefore, there is only one critical point with this

structure which is the fixed point (−1,−1).

• The points (z, x) where x = 1. The eigenvalues of Of ′(z, 1) are 0 and

− n(z − 1)2(m+ n)

m (m (z2 − 2z − 3) + n(z − 1)2)
.

The second eigenvalue is 0 if z = 1. Therefore, (1, 1) is the only critical point with this

structure.

• The points (z, x) where z = x. The eigenvalues of Of ′(z, z) are 0 and

−
8mn

(
z2 − 1

)
(m(z + 1)2 + n(z − 1)2)

2
.

The second eigenvalue is 0 if z = ±1, therefore the critical points that satisfy this structure

are (1, 1) and (−1,−1).

Then, the operator does not have free critical points.

Below we show some real dynamical planes to see the behaviour of the method and the basins

of attraction for the function fm,n varying the value of m and n.

Under the same conditions and criteria that the previous dynamical planes are performed, we

have been generated in Figure 6.2. Remember that we represent in orange the initial points that

converge to (1, 1) and in green those that converge to (−1,−1).
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Figure 6.2: Real dynamical planes with different values of n and m

(a) m = 1 and n = 2 (b) m = 2 and n = 3

(c) m = 2 and n = 4 (d) m = 3 and n = 4

As we can see in Figures 6.2 and 6.3, if the value of n is greater than the value of m, the area

of convergence to (−1,−1) is greater than the zone of convergence to (1, 1). If both values are

equal, then the basin of attraction do not change if we increase the multiplicity value.

As can be seen in all the dynamical planes, all the initial points coming from the mesh converge

to one of the solutions. With this study we show that the method is stable for that family of

polynomials that have two multiple roots.
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Figure 6.3: Real dynamical planes with different values of n and m

(a) m = 1 and n = 1 (b) m = 2 and n = 2

(c) m = 3 and n = 3 (d) m = 4 and n = 4

6.4 Convergence analysis of KMD

Now, we prove that the order of convergence of the method KMD is 2, and therefore, it is the

same order of convergence of method KM .

Theorem 6.4.1. Let f : D ⊂ R −→ R be a sufficiently differentiable function in an neighbour-

hood of α which we denote by D ⊂ R such that α is a multiple root of f(x) = 0 with unknown

multiplicity m ∈ N\{1}. Then, taking an estimate x0 close enough to α, the sequence of iterates

{xk}k≥0 generated by method KMD converges to α with order 2.

Proof. We first obtain the Taylor development of f(xk) around α, where ek = xk − α,

f(xk) =
f (m)(α)

m!

(
emk + C1e

m+1
k

)
+O

(
em+2
k

)
,

being Cj = m!
(m+j)!

f(m+j)(α)
f(m)(α)

for j = 1, 2, . . .

In the same way,

f(xk + f(xk)) =
f (m)(α)

m!

(
(ek + f(xk))

m + C1 (ek + f(xk))
m+1

)
+O

(
em+2
k

)
.
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Then,

f(xk + f(xk))− f(xk) ∼
f (m)(α)

m!

(
(ek + f(xk))

m − emk + C1

(
(ek + f(xk))

m+1 − em+1
k

))
.

Using Newton’s binomial and the Taylor expansion of f(xk) around α we obtain that

f(xk + f(xk))− f(xk)

xk + f(xk)− xk
=
f (m)(α)

m!

(
mem−1

k + (m+ 1)C1e
m
k

)
+O

(
em+1
k

)
.

Then,

g(xk) =
f(xk)

f [xk + f(xk), xk]

=
emk + C1e

m+1
k +O

(
em+2
k

)
mem−1

k + (m+ 1)C1e
m
k +O

(
em+1
k

)
=

1

m

(
ek − 1

m
C1e

2
k

)
+O

(
e3k

)
.

Similarly, it is proven that

g(xk−1) =
f(xk−1)

f [xk−1 + f(xk−1), xk−1]

=
1

m

(
ek−1 − 1

m
C1e

2
k−1

)
+O

(
e3k−1

)
.

And also

g(2xk − xk−1) =
1

m

(
2ek − ek−1 − 1

m
C1(2ek − ek−1)

2
)
+O3(ek, ek−1),

with ek−1 = xk−1 − α and ek = xk − α.

Thus,

g[2xk − xk−1, xk−1] =
g(2xk − xk−1)− g(xk−1)

2(xk − xk−1)

=
2ek − 2ek−1 − 1

mC1

(
(2ek − ek−1)

2 − e2k−1

)
2m(ek − ek−1)

+O3(ek, ek−1)

=
1

m

(
1− 2

m
C1ek

)
+O2(ek, ek−1).

Therefore,

xk+1 − α = xk − α− g(xk)

g[2xk − xk−1, xk−1]

= ek −
(
ek − 1

mC1e
2
k

)
+O

(
e3k
)(

1− 2
mC1ek

)
+O2(ek, ek−1)

= ek − 2

m
C1e

2
k + ekO2(ek, ek−1)− ek +

1

m
C1e

2
k +O

(
e3k

)
= − 1

m
C1e

2
k + ekO2(ek, ek−1).
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Then, we have several possibilities for the term that determines the convergence order of the

method, ek+1, with respect to ek and ek−1. By its expression we only consider if the behaviour

is as e2k or as eke
2
k−1, since e

3
k and e2kek−1 tend faster to 0 than e2k.

• If ek+1 ∼ e2k, then the order of convergence is 2.

• We assume ek+1 ∼ eke
2
k−1.

Then, assuming that the method has R-order p, this means that

ek+1 ∼ Dk,pe
p
k,

where Dk,p tends to the asymptotic error constant, Dp, when k −→ ∞.

Analogously, ek ∼ epk−1. Thus, we obtain

ek+1 ∼ ep
2

k−1.

By the error equation we also obtain

ek+1 ∼ eke
2
k−1 ∼ ep+2

k−1.

If we equate simultaneously the exponents of these last two equations, using Theorem

2.1.1 what we obtain is

p2 − p− 2 = 0,

whose only positive solution is p = 2, which is the order of convergence of the iterative

method KMD, so it is proven that the order of the method is 2.

6.5 Solving multiple roots simultaneously

In the previous cases we have assumed that we search an only multiple solution, but what

happens if we want to get more than one multiple solution simultaneously, maybe with different

and unknown multiplicities? Let us remark that the iterative step presented in Chapter 5 (based

on [47]) assumes that the solutions are simple.

For this reason, we combine method KM , with the iterative step defined in (5.1), in order to

find as many solutions as we wish, and if it is possible, with independence of their multiplicity.

The proposed method, which we denote by KMS, has the following expression

y
(k)
i = x

(k)
i −

g(x
(k)
i )

g
[
2x

(k)
i − x

(k−1)
i , x

(k−1)
i

] , i = 1, . . . , n k = 0, 1, . . . ,

x
(k+1)
i = y

(k)
i −

g(y
(k)
i )

g′(y
(k)
i )− g(y

(k)
i )

∑n
j=1,j ̸=i

1

y
(k)
i − y

(k)
j

, i, j = 1, . . . , n
(6.1)
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where g(x) =
f(x)
f ′(x)

.

We prove below that it has order of convergence 4 for arbitrary nonlinear equations and increases

to order 6 when we are working with polynomial equations.

Theorem 6.5.1. Let f : D ⊆ C −→ C be a sufficiently differentiable function in a neighbourhood

D of αi for i = 1, . . . , n, such that f(αi) = 0 for i = 1, . . . , n with unknown multiplicity

mi ∈ N\{1}. for i = 1, . . . , n. Then, taking an initial estimation x(0) close enough to α =

(α1, α2, . . . , αn), the sequence of iterates {x(k)}k≥0 generated by method KMS converges to

α with order 4 for arbitrary nonlinear equations and increases to order 6 for polynomial equations.

Proof. We denote Ci,j =
mi!

(mi + j)!

f (mi+j)(αi)

f (mi)(αi)
for j = 1, 2, . . . and i = 1, 2, . . . , n.

On the one hand, in Theorem 6.2.1 we have proven that the first step has order 2, that is,

ei,y,k ∼

(
−1

mi
Ci,1e

2
i,k +

(mi + 1)C2
i,1 − 2miCi,2

m2
i

(
−5e3i,k + 2e2i,kei,k−1 − ei,ke

2
i,k−1

))
.

We first obtain the Taylor development of f(y
(k)
i ) around αi where ei,y,k = y

(k)
i − αi,

f(y
(k)
i ) =

f (mi)(αi)

mi!

(
emi

i,y,k + Ci,1e
mi+1
i,y,k + Ci,2e

mi+2
i,y,k

)
+O

(
emi+3
i,y,k

)
.

In the same way, we obtain the Taylor development of f ′(y
(k)
i ) around αi

f ′(y
(k)
i ) =

f (mi)(α)

mi!

(
mie

mi−1
i,y,k + (mi + 1)Ci,1e

mi

i,y,k + (mi + 2)Ci,2e
mi+1
i,y,k

)
+O

(
emi+2
i,y,k

)
.

Then,

g(y
(k)
i ) =

f(y
(k)
i )

f ′(y
(k)
i )

=
1

mi

(
ei,y,k − 1

mi
Ci,1e

2
i,y,k +

(mi + 1)C2
i,1 − 2miCi,2

m2
i

e3i,y,k

)
+O

(
e4i,y,k

)
.

Analogously,

g′(y
(k)
i ) =

1

mi

(
1− 2

mi
Ci,1ei,y,k + 3

(mi + 1)C2
i,1 − 2miCi,2

m2
i

e2i,y,k

)
+O

(
e3i,y,k

)
.

On the other hand,

y
(k)
i − y

(k)
j = y

(k)
i − αi + αi − y

(k)
j + αj − αj = ei,y,k − ej,y,k + αi − αj .
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Moreover,

n∑
j=1,j ̸=i

1

y
(k)
i − y

(k)
j

can then be rewritten as follows

n∑
j=1,j ̸=i

1

y
(k)
i − y

(k)
j

=

n∑
j=1,j ̸=i

1

ei,y,k − ej,y,k + αi − αj
.

To simplify the notation, we denote by Si(y
(k)) the following expression

Si(y
(k)) =

n∑
j=1,j ̸=i

1

ei,y,k − ej,y,k + αi − αj
.

Then,

g′(y
(k)
i )− g(y

(k)
i )

n∑
j=1,j ̸=i

1

y
(k)
i − y

(k)
j

=

=
1

mi

(
1− 2

mi
Ci,1ei,y,k

)
− 1

mi

(
ei,k,j

)
Si(y

(k)) +O
(
e2i,y,k

)
=

1

mi
− 1

mi

(
2

mi
Ci,1 + Si(y

(k))

)
ei,y,k +O

(
e2i,y,k

)
.

Thus,

g(y
(k)
i )

g′(y
(k)
i )− g(y

(k)
i )

n∑
j=1,j ̸=i

1

y
(k)
i − y

(k)
j

=

=
mig(y

(k)
i )

1−
(

2
mi
Ci,1 + Si(y(k))

)
ei,y,k +O

(
e2i,y,k

) .
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Therefore,

ei,k+1 = ei,y,k −
g(y

(k)
i )

g′(y
(k)
i )− g(y

(k)
i )

n∑
j=1,j ̸=i

1

y
(k)
i − y

(k)
j

=

= ei,y,k −
mig(y

(k)
i )

1−
(

2
mi
Ci,1 + Si(y(k))

)
ei,y,k +O2(ei,y,k)

=
ei,y,k ·

(
1−

(
2
mi
Ci,1 + Si(y

(k))
)
ei,y,k

)
−mig(y

(k)
i )

1−
(

2
mi
Ci,1 + Si(y(k))

)
ei,y,k +O2(ei,y,k)

=
ei,y,k −

(
2
mi
Ci,1 + Si(y

(k))
)
e2i,y,k −

(
ei,y,k − 1

mi
Ci,1e

2
i,y,k

)
+O3(ei,y,k)

1−
(

2
mi
Ci,1 + Si(y(k))

)
ei,y,k +O2(ei,y,k)

=
−
(

2
mi
Ci,1 − 1

mi
Ci,1 + Si(y

(k))
)
e2i,y,k +O3(ei,y,k)

1−
(

2
mi
Ci,1 + Si(y(k))

)
ei,y,k +O2(ei,y,k)

=
−
(

1
mi
Ci,1 + Si(y

(k))
)
e2i,y,k +O3(ei,y,k)

1−
(

2
mi
Ci,1 + Si(y(k))

)
ei,y,k +O2(ei,y,k)

.

Thus,

ei,k+1 ∼ e2i,y,k.

And since ei,y,k has order of convergence 2, by Theorem 6.2.1, it is proven that KMS method

has order of convergence 4 for nonlinear equations.

In a similar way as in the case of Theorem 5.2.2, we can prove that the KMS method has order

of convergence 6 for polynomial nonlinear equations.

6.6 Numerical experiments

We use Matlab R2020b with variable precision arithmetics of 500 digits for the computational

calculations. As a stopping criterion we use that the absolute value of the function at the last

iteration is less than a tolerance of 10−25, that is,

|f(xk+1)| < 10−25.

Also, is used as a stopping criterion a maximum number of iterations that can be done, in this

case is 100. We compare the proposed methods with the method (2) from [46], which is denoted

by gTM .

The numerical elements we are going to compare in the different examples are
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• the initial estimations chosen, x0, x−1 and x−2,

• the approximation obtained, xk+1,

• the absolute value of the equation evaluated in that approximation, f(xk+1),

• the distance between the last two approximations, xk and xk+1,

• the number of iterations needed to satisfy the required tolerance,

• the computational time and the approximate computational convergence order (ACOC).

We are going to solve three nonlinear equations:

1. f1(x) = (x3 − 1)4 = 0, has three solutions with multiplicity four.

2. In [48], the authors considered the isothermal CSTR problem, with the following equation

for the transfer function of the reactor

KC2.98(x+ 2.25)/((x+ 1.45)(x+ 2.85)2(x+ 4.35)) = −1,

where KC is the gain of the proportional controller. If we choose KC = 0, the nonlinear

equation to solve is the following one

f2(x) = x4 + 11.50x3 + 47.49x2 + 86.0325x+ 51.23266875 = 0.

There is one multiple root with multiplicity 2.

3. f3(x) = (x2 − 1)ex−1 = 0, has two solutions with different multiplicities.

Table 6.1: Numerical results for equation f1(x) = 0

Method x0 x−1 x−2 |xk+1 − xk| |f1(xk+1)| Iteration ACOC

KM 0.5 0.1 1.5776×10−13 0 8 1.9994

KMD 0.5 0.1 6.1173×10−14 0 6 1.8434

gTM 0.5 0.1 -0.1 1.7764×10−15 0 42 1.5850

As we can see in Table 6.1, all the methods obtain good results for the chosen initial points. The

approximate computational convergence order coincides with the theoretical one. For the initial

points chosen, we see that the KMD method performs less iterations to satisfy the stopping

criterion than KM , but both perform far less iterations than the gTM method.
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Table 6.2: Numerical results for equation f2(x) = 0

Method x0 x−1 x−2 |xk+1 − xk| |f2(xk+1)| Iteration ACOC

KM -3 -3.25 1.9884×10−09 1.6566×10−30 4 2.2725

KMD -3 -3.25 2.4269×10−08 2.0293×10−29 4 2.0649

gTM -3 -3.25 -3.5 2.5116×10−11 1.0354×10−29 5 1.7914

From Table 6.2, it can be seen that the schemes perform well for the chosen initial points. The

ACOC coincides with the theoretical one and the number of iterations needed to satisfy the

stopping criterion is almost the same for all the methods.

Table 6.3: Numerical results for equation f3(x) = 0

Method x0 x−1 x−2 |xk+1 − xk| |f3(xk+1)| Iteration ACOC

KM 0.8 0.6 6.4120×10−12 0 6 1.9956

KMD 0.8 0.6 9.9960×10−11 0 8 1.9999

gTM 0.8 0.6 0.4 1.1768×10−14 0 14 1.5989

As shown in Table 6.3, for the chosen points, each scheme produces satisfactory results. We see

that the KM method performs less iterations to satisfy the stopping criterion than KMD, but

both perform less iterations than the gTM method.

Now we are going to perform some numerical experiments for the method KMS to find simul-

taneously all the roots of a nonlinear function, with independence of their multiplicity. These

specifications are different from the previous ones, since these methods obtain roots simulta-

neously. We use Matlab R2020b with arithmetic precision of 500 digits for the computational

calculations.

As a stopping criterion we use that∥∥∥F (x(k+1))
∥∥∥
2
< 10−200,

where F (x(k+1)) =
(
f(x

(k+1)
1 ), . . . , f(x

(k+1)
n )

)
.

Also, is used as a stopping criterion a maximum number of iterations that can be done, in this

case is 100.

In the different tables we show the following data

• the initial set of approximations used, x(0),
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• the norm of the function evaluated in the last iteration,
∥∥∥F (x(k+1))

∥∥∥
2
,

• the norm of the distance between the last two approximations,
∥∥∥x(k+1) − x(k)

∥∥∥
2
,

• the number of iterations needed to satisfy the required tolerance,

• and the approximated computational order of convergence (ACOC).

We are going to solve three nonlinear equations

1. g1(x) = (x2 − 1)2 = 0, which has two solutions with multiplicity two.

2. g2(x) = (x−1)4(x−3)2(x+2) = 0, which has three solutions with different multiplicities.

3. g3(x) = (ex
2−1 − ex

3−2x2−x+2)2 = 0, which has three solutions with multiplicity two.

We also choose x(−1) = 0.95x(0) for all the equations.

Table 6.4: Numerical results for KMS for different equations

Function x(0)
∥∥∥x(k+1) − x(k)

∥∥∥
2

∥∥∥G(x(k+1))
∥∥∥
2

Iteration ACOC

g1(x) (-1.5,1.5) 3.1386×10−22 3.9569×10−69 4 4.0326

g2(x) (0.8,3.5,-1.5) 5.1263×10−10 1.2125×10−28 4 5.6266

g3(x) (-1.2,1.2,2.8) 4.0863×10−12 2.6753×10−33 4 8.9077

As we can see in Table 6.4, the method performs correctly, getting the solutions in a small number

of iterations. If we choose a smaller tolerance, the ACOC will coincides with the theoretical one,

but with the chosen one, the ACOC is at least 4 in all cases.

We do not compare with another method because, at the moment, we do not know of any other

method in the literature that can find multiple roots simultaneously without using multiplicity in

its iterative expression.

6.7 Conclusions

In this chapter, we have modified Kurchatov’s method to make it applicable to obtain multiple

roots while maintaining its quadratic order of convergence.

We have modified this scheme so that it does not use the multiplicity of the solution in its

expression, so that it is not necessary to know this value before applying the iterative method

and also can approach different solutions with different multiplicity.
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We have performed the dynamical analysis of the iterative method for two family of functions,

one of the polynomials with one simple solution and one multiple solution, and another with two

multiple roots, showing that the method is stable in both cases.

We have also modified the method we propose to obtain the KMD method, which is a method

with memory derivative-free, with the same characteristics as the KM method, that is, it can

be applied to obtain solutions with multiplicity greater than one, and does not involve the value

of this multiplicity in its iterative expression.

We have also added the simultaneity step explained in Chapter 5 so we obtain a method for

solutions with multiplicity greater or equal to 1 that obtains all the solutions simultaneously.
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Chapter 7

Family of iterative methods with
Jacobian matrices for nonlinear

systems

Based on [Cordero, A.; Villalba, E.G.; Torregrosa, J.R.; Triguero-

Navarro, P. (2021). Convergence and Stability of a Parametric

Class of Iterative Schemes for Solving Nonlinear Systems. Math-

ematics, 9, 86. https://doi.org/10.3390/math9010086]
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Chapter 7. Family of iterative methods with Jacobian matrices for nonlinear systems

7.1 Introduction

The need to solve nonlinear equations has already been discussed in previous chapters. Just as

this need arises, so does the need to solve systems of nonlinear equations, which cannot always

be solved exactly.

For this reason, iterative methods are also used to approximate the solution of nonlinear problems

of the form

F (x) = 0 where F : Rn → Rn, n ≥ 1. (7.1)

It is well known that one of the most classic iterative methods for its simplicity and effectiveness

is Newton’s method (2.3).

In addition to its simplicity, this method has quadratic convergence under certain conditions and

great accessibility, that is, it has a wide region of initial estimations x(0) for which the method

converges.

In this chapter, a new parametric family of iterative schemes whose first step is Newton’s method

is designed. The scheme of this parametric family for nonlinear equations arises from performing

the convex combination of the iterative methods that are presented in [49] and in [50].

This chapter is structured as follow. In Section 7.2, is explained the way to extend the uni-

dimensional case to the multidimensional one. Also, the family of iterative methods in the

multidimensional case is proposed. In Section 7.3, the order of convergence of the new classes

of iterative methods for solving nonlinear systems is analysed. In Section 7.4, the dynamical

behaviour of the proposed family depending on a parameter is studied, and we also perform

some dynamical planes to visualize the dynamical behaviour for some methods of the family. In

Section 7.5, we perform some numerical experiments for confirming the theoretical results and

this chapter ends with some conclusions in Section 7.6.

7.2 Design of the parametric family

The first thing to note is that one of the most common ways to generate iterative methods that

solve multidimensional problems is to extend a unidimensional method, but in order for this to

be done, the expressions we use must be adapted.

For example, we can use f ′(x)+f(x) for the scalar case, but in the case of systems of equations

the sum is not possible since F ′(x) is a matrix and F (x) is a vector and they do not have the

same size.

As a consequence, the expressions must be adapted previously, if is possible. There are several

references in the literature that extend the applicability to systems, such as [51].
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The class of iterative method that we want to adapt is:
zk = xk − f(xk)

f ′(xk)
,

xk+1 = xk −

γ 1
2

(
3− f ′(zk)

f ′(xk)

)
− (1− γ)

 1
f(zk)
f(xk)

− 1
− f(zk)

2

f(xk)2

 f(xk)

f ′(xk)
k = 0, 1, . . .

(7.2)

In this case, to extend its applicability to nonlinear systems, we must obtain an expression of
f(y)

f(x)
with the appropriate dimension.

Since the first step is Newton’s scheme, we can write (x− y)F ′(x) = F (x).

On the other hand, F (y) = F (x) + [x, y;F ](y − x).

Thus
F (y)

F (x)
is as follows

F (y)

F (x)
=
F (x) + [x, y;F ](y − x)

F (x)
= 1 +

[x, y;F ](y − x)

F (x)

= 1 +
[x, y;F ](y − x)

(x− y)F ′(x)
= 1− [x, y;F ]

F ′(x)
.

Therefore,
F (y(k))

F (x(k))
= 1− [x(k), y(k);F ]

F ′(x(k))
,

which, rewritten for the multidimensional case, is F (y(k))−1F (x(k)) = I−F ′(x(k))−1[x(k), y(k);F ].

Therefore, the parametric family of iterative iterative methods for systems of nonlinear equations

that we are going to study is described by the following algorithm

y(k) = x(k) − [F ′(x(k))]−1F (x(k)), k = 0, 1, 2, . . . ,

x(k+1) = x(k) −H(x(k), y(k), γ)[F ′(x(k))]−1F (x(k)),
(7.3)

for γ ∈ R and being

Pk = [x(k), y(k);F ],

Bk = F ′(x(k))−1Pk,

H(x(k), y(k), γ) = I +
γ

2
I + (1− γ)B−1

k − (1− γ)Bk(2I −Bk)−
γ

2
F ′(x(k))−1F ′(y(k)),

where F is a sufficiently differentiable Fréchet function in a neighborhood of α, which we denote

by D ⊂ Rn, such that F (α) = 0 and the Jacobian matrix of the function F evaluated at iteration

x(k), denoted by F ′(x(k)), is non-singular.
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7.3 Convergence analysis

Let F : D ⊂ Rn → Rn be a differentiable function on a convex set D ⊂ Rn containing α, such

that F (α) = 0. We use Genochi-Hermite formula (2.13) to prove the following result, where we

deduce the order of the family of methods (7.3) for any γ ∈ R.

Theorem 7.3.1. Let F : D ⊂ Rn −→ Rn be a sufficiently differentiable function on a convex

neighbourhood of α, which we denote by D ⊂ Rn, such that F (α) = 0. We assume that the

Jacobian matrix F ′(x) is continuous and non-singular in α. Then, taking an initial estimation

x(0) enough close to α, the sequence of iterates {x(k)}k≥0 generated by the parametric family

(7.3) converges to α with the following error equation

ek+1 =
γ

2

(
C3 + 4C2

2

)
e3k

+
(
γC4 + (4− 13γ)C3

2 + 3γC2C3 +
(
−1 +

5

2
γ
)
C3C2

)
e4k +O

(
e5k

)
.

(7.4)

where Cj = 1
j! [F

′(α)]−1F (j)(α) ∈ Lj (Rn,Rn), where Lj (Rn,Rn) is the set of j-linear

bounded functions, for j ≥ 2.

Proof. We consider the Taylor development of F (x(k)) around α

F (x(k)) = F ′(α)
(
ek + C2e

2
k + C3e

3
k + C4e

4
k + C5e

5
k +O

(
e6k

))
. (7.5)

Then, calculating the Taylor development of the derivatives of F (x(k)) around α, one has

F ′(x(k)) = F ′(α)
(
I + 2C2ek + 3C3e

2
k + 4C4e

3
k + 5C5e

4
k

)
+O

(
e5k

)
,

F ′′(x(k)) = F ′(α)
(
2C2 + 6C3ek + 12C4e

2
k + 20C5e

3
k

)
+O

(
e4k

)
,

F ′′′(x(k)) = F ′(α)
(
6C3 + 24C4ek + 60C5e

2
k

)
+O

(
e3k

)
.

(7.6)

We calculate the expansion of the inverse

F ′(x(k))−1 =
(
I +X2ek +X3e

2
k +X4e

3
k

)
F ′(α)−1 +O

(
e4k

)
, (7.7)

with X2, X3, X4 and X5 satisfying [F ′(x(k))]−1F ′(x(k)) = I. Therefore, we obtain

X2 = −2C2,

X3 = −3C3 − 2C2X2 = 4C2
2 − 3C3,

X4 = −4C4 − 3C3X2 − 2C2X3 = −8C3
2 + 6C2C3 + 6C3C2 − 4C4.

Applying (7.5) and (7.7)

[F ′(x(k))]−1F (x(k)) = ek − C2e
2
k +

(
−2C3 + 2C2

2

)
e3k +

(
−3C4 + 4C2C3 + 3C3C2 − 4C3

2

)
e4k

+O
(
e5k

)
.

(7.8)

130



7.3 Convergence analysis

Then we obtain the error equation of the first step of the parametric family (7.3)

y(k) − α = x(k) − α− F ′(x(k))−1F (x(k)) =

= C2e
2
k +

(
2C3 − 2C2

2

)
e3k +

(
3C4 − 4C2C3 − 3C3C2 + 4C3

2

)
e4k +O

(
e5k

)
.

Replacing this expression into the Taylor expansion of F (y(k)) around α, we obtain

F (y(k)) = F ′(α)
(
C2e

2
k +

(
2C3 − 2C2

2

)
e3k +

(
3C4 − 4C2C3 − 3C3C2 + 5C3

2

)
e4k

)
+O

(
e5k

)
.

Furthermore

F ′(y(k)) ∼ F ′(α)
(
I + 2C2

2e
2
k +

(
4C2C3 − 4C3

2

)
e3k +O(e4k)

)
. (7.9)

From (7.7) and (7.9), we have

F ′(x(k))−1F ′(y(k)) ∼I − 2C2ek +
(
−3C3 + 6C2

2

)
e2k

+
(
−4C4 + 10C2C3 + 6C3C2 − 16C3

2

)
e3k +O

(
e4k

)
.

(7.10)

To obtain the development of the divided difference operator of (7.3), we use the Taylor devel-

opment of (2.13). Considering in this case x+ h = y, then h = y− x = −[F ′(x(k))]−1F (x(k)).

Therefore, replacing (7.8) and (7.6) in (2.13), we obtain

[x(k), y(k);F ] =F ′(α)
(
I + C2ek +

(
C3 + C2

2

)
e2k +

(
2C4 + C3C2 + 2C2C3 − 2C3

2

)
e3k

)
+O

(
e4k

)
.

(7.11)

To calculate the inverse of this operator, we are looking for

[x(k), y(k);F ]−1 =
(
I + Y2ek + Y3e

2
k + Y4e

3
k

)
[F ′(α)]−1 +O

(
e4k

)
, (7.12)

with Y2, Y3 and Y4 satisfying [x(k), y(k);F ]−1[x(k), y(k);F ] = I.

Then, if we denote by

P2 = C2,

P3 = C3 + C2
2 ,

P4 = 2C4 + C3C2 + 2C2C3 − 2C3
2 ,

we can write [x(k), y(k);F ] = F ′(α)
(
I + P2ek + P3e

2
k + P4e

3
k+
)
+O

(
e4k
)
, and then

Y2 = −P2 = −C2,

Y3 = −P3 − Y2P2 = −C3,

Y4 = −P4 − Y3P2 − Y2P3 = −2C4 − C2C3 + 3C3
2 .
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Now, using (7.7) and (7.11), we obtain the expansion of Bk

Bk = F ′(x(k))−1Pk

= I − C2ek +
(
−2C3 + 3C2

2

)
e2k +

(
−2C4 + 6C2C3 + 4C3C2 − 8C3

2

)
e3 +O

(
e4k

)
,

(7.13)

and using (7.6) and (7.12), we calculate

B−1
k = I + C2ek +

(
2C3 − 2C2

2

)
e2k +

(
2C4 − 4C2C3 − 2C3C2 + 3C3

2

)
e3k +O

(
e4k

)
.

(7.14)

Replacing the expressions (7.8), (7.10), (7.13) and (7.14) in (7.3), we obtain that the error

equation of the parametric family is

ek+1 = x(k+1) − α ∼ γ

2

(
C3 + 4C2

2

)
e3k

+
(
γC4 + (4− 13γ)C3

2 + 3γC2C3 +
(
5

2
− 1γ

)
C3C2

)
e4k.

Finally, from the error equation we conclude that the parametric family (7.3) has order 3 for all

γ ̸= 0 and in the particular case where γ = 0, it has order of convergence 4, being the error

equation

ek+1 =
(
4C3

2 − C3C2

)
e4k +O

(
e5k

)
.

7.4 Dynamical analysis

In this chapter, we focus on the study of the complex dynamics of the parametric family (7.3) in

the case of quadratic polynomials of the form p(z) = (z−a)(z−b), where a, b ∈ C. For this study,

we use the Scaling Theorem, since it allows us to equate the dynamical behaviour of one operator

with the behaviour associated to another, conjugated by means of an affine transformation. This

result will be of great use to us since we can apply the Möbius transformation on the operator Rp,γ

associated with our parametric family acting on p(z). We want to use the Möbius transformation

to eliminate the operator’s dependence on parameters a and b.

Theorem 7.4.1. Let f(z) be an analytic function on the Riemann sphere and let T (z) = αz+β

be an affine transformation with α ̸= 0. We consider g(z) = λ(f ◦ T )(z), λ ̸= 0. Let Rf,γ

and Rg,γ be the fixed point operators of the family (7.3) associated to the functions f and g,

respectively, that is,

Rf,γ(z) = z +

−γ
2

(
3− f ′(y)

f ′(z)

)
+ (1− γ)

 1
f(y)
f(z)

− 1
−
(
f(y)

f(z)

)2
 f(z)

f ′(z)
,
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Rg,γ(z) = z +

−γ
2

(
3− g′(y)

g′(z)

)
+ (1− γ)

 1
g(y)
g(z)

− 1
−
(
g(y)

g(z)

)2
 g(z)

g′(z)
,

where y = z− f(z)
f ′(z)

and z ∈ C. Then Rf,γ is conjugate analytically to Rg,γ through T , that is,

(T ◦Rg,γ ◦ T−1) = Rf,γ(z).

Proof. Taking into account that T (x− y) = T (x)−T (y)+β, T (x+ y) = T (x)+T (y)−β and

g′(z) = αλf ′(T (z)), then

(Rg,γ ◦ T−1)(z) = Rg,γ(T
−1(z)) =

= T−1(z) +

(1− γ)

 1
g(T−1(y))
g(T−1(z))

− 1
−
(
g(T−1(y))

g(T−1(z))

)2
− γ

2

(
3− g′(T−1(y))

g′(T−1(z))

) g(T−1(z))

g′(T−1(z))
,

where y = z − g(z)
g′(z)

, where T (T−1(z)) = z and

T
(
T−1(y)

)
= T

(
T−1(z)− g(T−1(z))

g′(T−1(z))

)
= T

(
T−1(z)− f(z)

αf ′(z)

)
= z − T

(
f(z)

αf ′(z)

)
+ β = z − f(z)

f ′(z)
= y.

Therefore, replacing these equalities and simplifying, we have

(T ◦Rg,γ ◦ T−1) =

= T

T−1(z) +

−γ
2

(
3− f ′ (y)

f ′(z)

)
+ (1− γ)

 1
f(y)
f(z)

− 1
−
(
f(y)

f(z)

)2
 f(z)

αf ′(z)


= z + T

−γ
2

(
3− f ′ (y)

f ′(z)

)
+ (1− γ)

 1
f(y)
f(z)

− 1
−
(
f(y)

f(z)

)2
 f(z)

αf ′(z)

− β

= z + T

−γ
2

(
3− f ′ (y)

f ′(z)

)
+ (1− γ)

 1
f(y)
f(z)

− 1
−
(
f(y)

f(z)

)2
 f(z)

αf ′(z)
,

then (T ◦ Rg,γ ◦ T−1)(z) = Rf,γ(z), that is, Rf,γ and Rg,γ are analytically conjugated by

T (z).

Now, we can apply the Möbius transformation on the operator associated to the parametric family

(7.3) and the polynomial p(z) = (z−a)(z− b). The Möbius transformation is h(z) = z−a
z−b . The
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rational operator that we obtain after the Möbius transformation is as follows

Oγ(z) = (h ◦Rp,γ ◦ h−1)(z) =
z3
(
2γz2 + 3γz + 2γ + z5 + 5z4 + 10z3 + 9z2 + 4z

)
2γz5 + 3γz4 + 2γz3 + 4z4 + 9z3 + 10z2 + 5z + 1

. (7.15)

We can see from the rational function (7.15) that the order of methods for quadratic polynomials

is 3 when γ ̸= 0 and the order is 4 when γ = 0.

Now, we are going to obtain the fixed points of Oγ(z).

We are going to study which are the fixed points of the operator Oγ and its character depending

on the value of the parameter γ.

Proposition 7.4.1.1. Fixed points of operator Oγ(z) are:

• z = 0 and z = ∞ are fixed points for any value of γ.

• z = 1 is a strange fixed point when γ ̸= − 29
7 .

• the roots of

k(t) = 1 + 6t+ (16− 2γ)t2 + (21− 3γ)t3 + (16− 2γ)t4 + 6t5 + t6, (7.16)

denoted by Exi(γ), where i = 1, . . . , 6, are strange fixed points also for any value of γ.

We need the expression of the derivative of the operator to analyse the stability of the fixed

points and to obtain the critical points,

O′
γ(z) =

z2(z + 1)4
(
γ
(
6z6 + 8z5 + 7z4 + 7z2 + 8z + 6

)
+ z

(
16z4 + 41z3 + 60z2 + 41z + 16

))
(2γz5 + (3γ + 4)z4 + (2γ + 9)z3 + 10z2 + 5z + 1)

2
.

It is clear that 0 and ∞ are always superattracting fixed points because they come from the roots

of the polynomial and the order of the iterative methods is greater than 2, but the stability of

the other fixed points may change depending on the parameter γ.

Proposition 7.4.1.2. The character of the strange fixed point z = 1 depending on the value of

γ is as follows

• z = 1 cannot be a superattractor.

• If γ = − 29
7 , then z = 1 is not an strange fixed point.

• If γ ∈ {γ = γ1 + γ2I ∈ C such that 0 < 49(γ21 + γ22) + 406γ1 − 8375}, then z = 1 is an

attractor.

• If γ ∈ {γ = γ1+γ2I ∈ C such that 49(γ21+γ
2
2)+406γ1 = 8375}, then z = 1 is parabolic.

• Otherwise, z = 1 is a repelling.
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Proof. We obtain

|O′
γ(1)| =

∣∣∣∣ 96

7γ + 29

∣∣∣∣ .
It is not difficult to check that |O′

γ(1)| cannot be 0, therefore z = 1 cannot be a superattractor,

and when γ = − 29
7 , z = 1 is not a fixed point.

Let us now study when z = 1 is an attractor. It is easy to check that |O′
γ(1)| < 1 is equivalent

to 962 < |29 + 7γ|2, and this expression gives the following inequation

8375 < 406Re(γ) + 49Re(γ)2 + 49Im(γ)2. (7.17)

When inequality (7.17) is satisfied, then z = 1 is an attractor.

On the other hand, z = 1 is a parabolic point when 8375− 406Re(γ)− 49Re(γ)2 = 49Im(γ)2.

In other cases, z = 1 is a repelling.

Now, we establish the stability of the strange fixed points that are roots of the polynomial (7.16).

Let us note that this polynomial is a symmetric polynomial of sixth degree, that is, a polynomial

reducible to a polynomial of third degree and that satisfies the following properties

• t = 0 is not a root;

• if α is a root, 1
α will also be a root.

Performing the reduction of (7.16), we obtain

1 + 6t+ (16− 2γ)t2 + (21− 3γ)t3 + (16− 2γ)t4 + 6t5 + t6 = 0

↔
(
1

t3
+ t3

)
+ 6

(
1

t2
+ t2

)
+ (16− 2γ)

(
1

t
+ t
)
+ 21− 3γ = 0

↔z3 + 6z2 + (13− 2γ)z + 9− 3γ = 0,

where z = 1
t + t, z2 − 2 = 1

t2
+ t2 and z3 − 3z = 1

t3
+ t3.

Now, we calculate the roots of this polynomial and we obtain

z1(γ) =

3

√
2
3 (2γ − 1)

z4(γ)
+

z4(γ)
3
√
232/3

− 2,

z2(γ) =

3

√
− 2

3 (1− 2γ)

z4(γ)
+

z4(γ)
3
√
232/3

− 2,

z3(γ) =

3

√
2
3 (2γ − 1)

z4(γ)
− z4(γ)

3
√
−18

− 2,
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where z4(γ) =
3

√
−9γ +

√
3γ((75− 32γ)γ − 78) + 93 + 9.

To calculate the roots of the polynomial (7.16) from zi(γ), i = 1, 2, 3, , we undo the change of

variable since t =
zi(γ)±

√
zi(γ)2−4
2 . Therefore, we obtain the roots of the polynomial of

sixth degree, which are conjugated two by two

Ex1(γ) =
z1(γ) +

√
z1(γ)2 − 4

2
, Ex2(γ) =

z1(γ)−
√
z1(γ)2 − 4

2
,

Ex3(γ) =
z2(γ) +

√
z2(γ)2 − 4

2
, Ex4(γ) =

z2(γ)−
√
z2(γ)2 − 4

2
,

Ex5(γ) =
z3(γ) +

√
z3(γ)2 − 4

2
, Ex6(γ) =

z3(γ)−
√
z3(γ)2 − 4

2
.

Now, we study when the roots of the polynomial (7.16) are superattractors. To do so, we solve

|O′
γ(Exi(γ))| = 0 for all i = 1, . . . , 6 and obtain the following relevant values of γ: γ1 ≈

0.8114608, γ2 ≈ 5.5908453, γ3 ≈ 0.7671009 + 0.7784254i and γ4 ≈ 0.7671009− 0.7784254i.

Next, we study the character of the fixed points by analysing those values of γ close to the param-

eter values for which some Exi(γ) is a superattractor. To do this, we study how |O′
γ(Exi(γ))|

behaves near the above four values and obtain regions where some of the roots will be attractors.

These regions are represented in Figure 7.1.
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Figure 7.1: Character of the strange fixed points Exi(γ) in the neighbourhood of γi

(a) γ1 (b) γ2

(c) γ3 (d) γ4

As shown in Figure 7.1, the areas where these are attractors are small.

Proposition 7.4.1.3. For the parametric family (7.3), the critical points are z = 0, z = −1,

z = ∞, and the roots of the polynomial

q(t) = 6γ + (16 + 8γ)t+ (41 + 7γ)t2 + 60t3 + (41 + 7γ)t4 + (16 + 8γ)t5 + 6γt6,

denoted by Zxi(γ), where i = 1, . . . , 6.

Proof. Let us observe that z = −1 is a preimage of the fixed point z = 1. We can see that

q(t) is a symmetric polynomial, so we can obtain the roots of q(t) by obtaining roots of a
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polynomial of degree 3. The reduced polynomial of q(t) is the following polynomial, which we

obtain analogously to the polynomial (7.16)

q̂(t) = 6γt3 + (16 + 8γ)t2 + (41− 11γ)t+ 28− 16γ.

To obtain the roots of q(t), we need to obtain the roots of q̂(t) and apply the following expression
z±

√
z2−4
2 . Therefore, we have that the roots of q(t) are conjugate.

Now let us study the asymptotical behaviour of the critical points to establish whether there are

convergence basins other than those generated by the roots.

For the free critical point −1 we have Oγ(−1) = 1, which is an strange fixed point, so the

parameter plane associated to this critical point is not significant, since we know the stability of

z = 1.

The other free critical points are roots of a polynomial that depends on γ, so for them we use

the parameter planes. Since we have that the free critical points are conjugate we only draw

three parameter planes generated using as an initial estimation a free critical point that depends

on γ. We establish a mesh in the complex plane of 500 × 500 points. Each point of the mesh

corresponds to a value of the parameter. At each point, the rational function is iterated to obtain

the orbit of the free critical point as a function of γ. If that orbit converges to z = 0 or z = ∞ in

less than 40 iterations, that point on the grid is represented in red; otherwise, the point is black.

Figure 7.2: Parameter planes associated the free critical points of Oγ(z)

(a) (b) (c)

As we can see in Figure 7.2, there are many values of γ parameter that would give rise to a

method of the family in which the free critical points converge to one of the two roots. These

methods are located in the red area on the right of the plane. In addition, some black areas can

be identified as the stability regions of those strange fixed points that can be attractors.

Now, we select some stable (in red in the parameter planes) and unstable values of γ (in black)

to show the behaviour of the associated methods of the family using the dynamical planes.

In the case of dynamical planes, the value of the parameter γ is fixed. Each point of the complex

plane is considered as a starting point of the iterative scheme, and is represented in different
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colours depending on the point it converged to. In this case, we represent in blue the points that

converged to ∞, and in orange the points that converged to 0. The dynamical planes of Figures

7.3 to 7.6 have been generated with a mesh of 500× 500 points and a maximum of 80 iterations

per point. We mark the strange fixed points with white circles and the free critical points with

white squares.

One value of the parameter that would be an interesting value is γ = 0, because it is the only

the only value whose corresponding scheme has order 4. In that case, we obtain the dynamical

plane shown in Figure 7.3a. Another value for the parameter we study is γ = 1 (Figure 7.3b).

As we can see, this dynamical plane is similar to γ = 0, but in this case we get 3 critical points

instead of 5 critical points and 4 fixed points instead of 7 fixed points.

Figure 7.3: Dynamical planes of Oγ(z) for γ = 0 and γ = 1

(a) γ = 0 (b) γ = 1

By Theorem 7.3.1 and Propositions 7.4.1.1, 7.4.1.3 and 7.4.1.2, the simplest dynamical methods

are those corresponding to γ = 0 and γ = 1. In Figures 7.4 to 7.6, we see the dynamical planes

associated with other values of the parameter γ. Some of these planes are not as simple as the

previous ones. This is the case of γ = 2 in Figure 7.4b, or the case of γ = 2i in Figure 7.4a.
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Figure 7.4: Dynamical planes of Oγ(z) for γ = 2i and γ = 2

(a) γ = 2i (b) γ = 2

However, there exist values of the parameter that present a dynamical plane but with more

complex dynamics and with a larger number of free critical points. We can see some of these

dynamical planes in the Figures 7.5a, 7.5b and 7.6a, corresponding to γ = −10+ i, γ = −5 and

γ = − 29
7 . here are also parameter values with superattracting strange fixed points, for example,

γ = 5 (Figure 7.6b). These cases should be avoided as the associated method may not converge

to the roots and may end up converging to other points.

Figure 7.5: Dynamical planes of Oγ(z) for γ = −10 + i and γ = −5

(a) γ = −10 + i (b) γ = −5
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Figure 7.6: Dynamical planes for γ = − 29
7

and γ = 5

(a) γ = − 29
7

(b) γ = 5

7.5 Numerical experiments

In this section, we are going to compare different iterative methods of the parametric family

studied throughout this chapter, solving two classical problems of applied mathematics: a Ham-

merstein integral equation and the Fisher partial derivative equation. The methods we are going

to use for solving the nonlinear problems are those corresponding to the values of γ studied in

the dynamical planes.

Matlab 2020b has been used to carry out the numerical experiments, with an arithmetical precision

of 1000 digits. As stopping criterion we use∥∥∥x(k+1) − x(k)
∥∥∥
2
+
∥∥∥F (x(k))

∥∥∥
2
< ξ,

where ξ is the chosen tolerance in each numerical experiment. We use also a maximum of 100

iterations.

In the tables presented in this section we show the following data

• the approximation to the solution obtained,

• the norm of the function evaluated in the last approximation,
∥∥∥F (x(k+1))

∥∥∥
2
,

• the norm of the distance between the last two approximations,
∥∥∥x(k+1) − x(k)

∥∥∥
2
,

• the number of iterations necessary to satisfy the required tolerance,

• the computational time in seconds,
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• and the approximated computational order of convergence (ACOC).

First, we consider the well-known Hammerstein integral equation (see [3]), which is given as

follows

x(s) = 1 +
1

5

∫ 1

0

F (s, t)x(t)3dt, (7.18)

where x ∈ C[0, 1], s, t ∈ [0, 1] and the kernel F is

F (s, t) =

{
(1− s)t t ≤ s,

s(1− t) s ≤ t.

We transform the above equation into a finite-dimensional problem using the Gauss-Legendre

quadrature formula given as
∫ 1
0
f(t)dt =

7∑
j=1

ωjf(tj), where the abscissae tj and the weights

ωj are determined for n = 7 (see Table 7.1).

Table 7.1: Abscissae and weights by Gauss-Legendre quadrature

i Weight ωi Abscissa ti
1 0.0647424831 0.0254460438

2 0.1398526957 0.1292344072

3 0.1909150252 0.2970774243

4 0.2089799185 0.5000000000

5 0.1909150252 0.7029225757

6 0.1398526955 0.8707655928

7 0.0647424831 0.9745539561

Denoting the approximations of x(ti) by xi (i = 1, . . . , 7), we obtain the nonlinear equation

system

5xi − 5−
7∑

j=1

aijx
3
j = 0,

where i = 1, . . . , 7 and

aij =

{
wjtj(1− ti) j ≤ i,

wjti(1− tj) i < j.

Starting from an initial approximation x(0) = (−1, . . . ,−1)T and with a tolerance of 10−15, we

execute the schemes of the parametric family obtained for different values of the parameter γ.

The results are shown in Table 7.2.
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Table 7.2: Results for a Hammerstein’s equation for different values of γ

γ
∥∥∥x(k+1) − x(k)

∥∥∥
2

∥∥∥F (x(k+1))
∥∥∥
2

Iteration ACOC Time

0 5.40317×10−46 1.82600×10−184 4 3.99753 38.0469

1 1.10606×10−20 7.36657×10−63 4 2.85884 33.8594

-10+i 4.02251×10−45 3.70484×10−135 6 2.98801 84.8594

−29/7 1.73829×10−32 1.18363×10−97 5 2.98095 44.0781

-5 8.18771×10−29 1.48807×10−86 5 2.97987 46.2500

5 6.98712×10−28 9.02414×10−84 5 2.97222 36.3281

2i 5.87285×10−47 2.22194×10−141 5 2.98606 35.3281

2 5.36968×10−17 8.93118×10−52 4 2.93508 25.8750

In all cases we obtain as an approximation of the solution of the equation (7.18) the following

vector

x(k+1) ≈ (1.0026875, 1.0122945, 1.0229605, 1.0275616, 1.0229605, 1.0122945, 1.0026875)T .

In the case of the Hammerstein integral equation, we see that the numerical results of the

parametric family (7.3) for different values of γ are quite similar. The main difference observed

between the methods is that the ACOC for γ = 0 is 4 and for the rest of the methods it is about

3, which was theoretically expected.

On the other hand, we observe that the method with γ = −10 + i needs to perform a greater

number of iterations than the rest of the methods to satisfy the required tolerance, so the

approximation time to the solution is also greater. This is consistent with what has been obtained

in the dynamical analysis of the different elements of the class of iterative methods, given that

the best performing methods correspond to methods that have performed well in the dynamical

analysis.

Finally, taking into account the columns that measure the error of the approximation, that is, the

columns
∥∥∥F (x(k+1))

∥∥∥
2
and

∥∥∥x(k+1) − x(k)
∥∥∥
2
, we see that the iterative methods that commit

a smaller error are those associated with the parameters γ = 0 and γ = 2.

The second example we study is the Fisher equation proposed in [52] by Fisher to model the

diffusion process in population dynamics. The analytical expression of this partial derivatives

equation is as follows

ut(x, t) = Duxx(x, t) + ru(x, t)

(
1− u(x, t)

p

)
, x ∈ [a, b], t ≥ 0, (7.19)

where D ≤ 0 is the diffusion constant, r is the growth rate of the species and p is the carrying

capacity. In this case, we study the Fisher equation for the values p = 1, r = 1 and D = 1 in the

spatial interval [0, 1] and with the initial condition u(x, 0) = sech2(πx) and u(0, t) = u(1, t) = 0.

We transform the problem just described into a set of nonlinear systems by applying an implicit

finite difference method, providing the estimated solution at time tk from the one estimated at
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tk−1.

We denote the spatial step by h = 1
nx

and the time step by k = Tmax
nt

, where Tmax is the final

instant and nx and nt are the number of subintervals in x and t, respectively. Therefore, we

define a mesh of the domain [0, 1]× [0, Tmax], consisting of points (xi, tj), as follows

xi = 0 + ih, i = 0, . . . , nx, tj = 0 + jk, j = 0, . . . , nt.

Our aim is to approximate the solution of the problem (7.19) at these points of the grid, solving

as many nonlinear systems as there are tj time nodes in the grid. To do this, we use the following

finite differences to approximate the partial derivatives

ut(x, t) ≈
u(x, t)− u(x, t− k)

k

uxx(x, t) ≈
u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2
.

We note that for the time step we use first-order backward divided differences and for the spatial

step we use second-order centred divided differences.

We denote ui,j as the approximation of the solution in (xi, tj), and replacing it into the Cauchy

problem, we obtain the system

kui+1,j +
(
kh2 − 2k − h2

)
ui,j − kh2u2i,j + kui−1,j = −h2ui,j−1,

for i = 1, 2, . . . , nx − 1 and j = 1, 2, . . . , nt.

The unknowns of this system are u1,j , u2,j , . . . , unx−1,j , that is, the approximations of the

solution at each spatial node for the fixed time tj .

In this example, we are going to work with the parameters Tmax = 10, nx = 10 and nt = 50.

As we have said, it is necessary to solve as many systems as tj time nodes, for each of these

systems we use the parametric family (7.3) to approximate its solution.

Thus, starting from the initial condition ui,0 = sech2(πxi), i = 0, . . . , nx, with a tolerance of

10−6, we execute the parametric family for different values of γ so that we obtain Table 7.3.

Table 7.3: Results for Fisher’s equation with different values of γ

γ
∥∥∥x(k+1) − x(k)

∥∥∥
2

∥∥∥F (x(k+1))
∥∥∥
2

Iteration ACOC Time

0 1.00166×10−8 1.12488×10−35 3 4.21099 213.4219

1 1.9199×10−16 5.88036×10−50 4 2.99609 248.7344

-10+i 8.08037×10−9 4.65282×10−26 5 3.01506 352.6563

-29/7 1.8002×10−7 2.00583×10−22 4 2.86978 247.9844

-5 1.89574×10−19 2.9985×10−58 5 2.99569 267.2969

5 2.4177×10−17 6.2774×10−52 5 2.99654 275.7344

2i 2.27659×10−11 1.96645×10−34 4 2.97846 252.8438

2 9.67264×10−12 1.50906×10−35 4 3.00948 231.2188
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In all cases, we obtain as an approximation to the solution of the problem (7.19) the following

vector

x(k+1) ≈ (0, 0.4326, 0.7087, 0.8534, 0.9188, 0.9373, 0.9188, 0.8534, 0.7087, 0.4326, 0)T .

It can be observed in Table 7.3 that the results are very similar, although there are some differ-

ences. For example, method γ = 0 uses a smaller number of iterations than the rest to satisfy

the required tolerance, although this does not make it much faster than the rest of the methods

as the time difference is seconds, due to the fact that this method has order 4. On the other

hand, if we look at the time column, we can see that there is one method that stands out for its

slowness, this is the case of γ = −10 + i. This is consistent with what has been obtained in the

dynamical analysis of the different elements of the class of iterative methods. Again, we can see

that the ACOC of the methods is approximately the theoretical one.

Looking at the error columns we also find similar results and that in this case, having a larger

tolerance than in the first example, we do not observe large differences in these results.

7.6 Conclusions

In this chapter, we have presented a parametric family of iterative methods for solving nonlinear

systems based on the iterative methods that are presented in [49] and in [50], obtaining a family

with order 3, with one element of order 4.

A dynamical analysis is performed on quadratic polynomials in order to determine which members

of the parametric family have the best stability properties. It is demonstrated that there is a wide

range of values of the parameter both real and complex for which the corresponding methods are

stable.

The theoretical results concerning the convergence and stability of the proposed class have been

confirmed by numerical examples related to the Hammerstein equation and the Fisher equation.
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Chapter 8

Jacobian-free iterative methods

Based on [Cordero, A.; Garrido, N.; Torregrosa, JR.; Triguero-

Navarro, P. (2023). Design of iterative methods with memory

for solving nonlinear systems. Mathematical Methods in Applied

Science, 4145- 4158. https://doi.org/10.1002/mma.9182]
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8.1 Introduction

As mentioned above in Chapter 7 and in other parts of the Thesis, one of the most frequently used

methods for solving nonlinear systems F (x) = 0, F : D ⊂ Rn → Rn, is Newton’s method (2.3).

The inverse of the Jacobian matrix in the iterative expression of a method can be a drawback

when the function to be studied cannot be derived, its derivative is too expensive to calculate or

the Jacobian matrix is singular. When the derivative in (2.3) is replaced by the divided difference

[x(k)+F (x(k)), x(k);F ] we obtain the Steffensen’s scheme [11], which is Jacobian-free and also

has quadratic convergence.

Different techniques have been used to design Newton-like iterative schemes, as direct compo-

sition, weight functions, estimations of the Jacobian matrix by means of the divided difference

operator, etc. So, some high-order methods for computing the solutions of F (x) = 0 have been

proposed in the literature. These new schemes are proposed with the aim of accelerating the

convergence or improving the computational efficiency. For example, recently Cordero et al.,

Amiri et al. and Chicharro et al. proposed in [53, 54, 55], respectively, new parametric families

of iterative methods and a fast algorithm for solving nonlinear systems. Other researchers have

published iterative methods that avoid the Jacobian matrix with interesting orders of conver-

gence, see, for instance [56, 57, 58]. In these manuscripts the Jacobian matrix is replaced by

the divided difference operator [·, ·;F ]. The procedure of weight functions (in this case, matrix

functions) plays also an important role for designing schemes for solving systems F (x) = 0, as

we can see in [59, 60].

All the papers cited, and many others that appear in the literature, present iterative methods

with high order of convergence but considerably increasing the computational cost. To avoid this

increase, we may resort to schemes with memory, that is, iterative schemes in which one iteration

is obtained from several of the previous ones. Iterative processes with memory for systems are

also beginning to appear in the literature. These are methods in which the new iteration is

obtained from at least the previous two. In general, the convergence order is increased without

adding functional evaluations, [61, 62, 63].

In order to increase the quadratic convergence of Newton’s method, Traub [2] proposed the

following scheme {
y(k) = x(k) − [F ′(x(k))]−1F (x(k)),

x(k+1) = y(k) − [F ′(x(k))]−1F (y(k)), k = 0, 1, . . .
(8.1)

In Chapter 4, the unidimensional Traub method was modified in order to obtain a derivative-free

method family where the elements of the family were optimal. In this chapter, we extend this

scalar family to the multidimensional case. We also add memory to this family in order to increase

the order of convergence without the need to perform new functional evaluations as was done in

the unidimensional variant.

This chapter is structured as follows. In Section 8.2, we explain the way to extend the scalar case

to the vectorial one. Also, we propose the families of iterative methods in the multidimensional
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case and analyse their order of convergence. We also study in Section 8.2 how to introduce

memory to these parametric families in order to increase the order of convergence without per-

forming new functional evaluations. In Section 8.3, we perform some numerical experiments for

confirming the theoretical results, including some dynamical planes to illustrate the behaviour of

the different methods on a given polynomial system. This chapter ends with some conclusions.

8.2 Design of iterative scheme and convergence analysis

In Chapter 4, we studied two parametric families of iterative methods for nonlinear equations.

We now develop how we have modified these two families of iterative methods so that they can

be applied to nonlinear systems as well.

It is easy to extend
f(xk)

f [wk, xk]
to systems, since the divided difference operator is a matrix

in the case of systems, so the modification would be [w(k), x(k);F ]−1F (x(k)). The same

applies to terms
f(yk)

f [yk, xk]
and

f(zk)

f [zk, yk]
which can be extended to systems with expressions

[y(k), x(k);F ]−1F (y(k)) and [z(k), y(k);F ]−1F (z(k)), respectively.

The terms that cause some problems with extension to systems are
f(yk)

f(wk)
and

f(zk)

f(yk)
. Using

the expression of the iterates yk, zk and wk as well as the divided difference operators, we obtain

compatible expressions for systems of nonlinear equations. We are going to do this in a similar

way as it was firstly done in [51] and [64].

Let us then calculate
F (yk)
F (wk)

F (yk)

F (wk)
=
F (wk)

F (wk)
+

[wk, yk;F ](yk − wk)

F (wk)
= 1 +

[wk, yk;F ](yk − wk)

F (wk)
.

Then, yk − wk can be expressed as

yk − wk = −(1 + γ[wk, xk;F ])
F (xk)

[wk, xk;F ]
.

It then follows

F (yk)

F (wk)
= 1 +

[wk, yk;F ](yk − wk)

F (wk)

= 1− [wk, yk;F ](1 + γ[wk, xk;F ])F (xk)

[wk, xk;F ]F (wk)
.

On the other hand, one has

F (wk) = F (xk) + [wk, xk;F ](wk − xk)

= (1 + F [wk, xk]γ)F (xk).
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Therefore,

F (yk)

F (wk)
= 1− [wk, yk;F ](1 + γ[wk, xk;F ])F (xk)

[wk, xk;F ]F (wk)

= 1− [wk, xk;F ]−1[wk, yk;F ].

Then,

µ(k) = I − [w(k), x(k);F ]−1[w(k), y(k);F ]. (8.2)

In a similar way, we calculate
F (zk)
F (yk)

F (zk)

F (yk)
= 1 +

[zk, yk;F ](zk − yk)

F (yk)

= 1− [zk, yk;F ]H(µ)

[wk, xk;F ]
.

Then,

ν(k) = I − [w(k), x(k);F ]−1[z(k), y(k);F ]H(µ(k)). (8.3)

Modifying the expression of µ by expression (8.2) in the parametric family M4 of Chapter 4, we

obtain a Jacobian-free variant of Traub’s method which we denote by M4{
y(k) = x(k) − [w(k), x(k);F ]−1F (x(k)),

x(k+1) = y(k) −H(µ(k))[y(k), x(k);F ]−1F (y(k)), k = 0, 1, . . .
(8.4)

where w(k) = x(k) + γF (x(k)), γ ̸= 0, γ ∈ R and the variable of the weight function is µ(k) =

I − [w(k), x(k);F ]−1[y(k), w(k);F ]. The first step of this method corresponds to Steffensen’s

scheme when γ = 1.

On the other hand, the following parametric family is obtained, starting from the parametric

family M6 of Chapter 4 by modifying the expressions of µ and ν by expressions (8.2) and (8.3),

which as we see below is a class of iterative methods of seventh order, which we denote by M7.
y(k) = x(k) − [w(k), x(k);F ]−1F (x(k)),

z(k) = y(k) −H(µ(k))[y(k), x(k);F ]−1F (y(k)),

x(k+1) = z(k) −G(µ(k), ν(k))[z(k), y(k);F ]−1F (z(k)), k = 0, 1, . . .

(8.5)

where the new variable of weight functionG is ν(k) = I−[w(k), x(k);F ]−1[z(k), y(k);F ]H(µ(k)).

Now, we remember and introduce some theoretical concepts necessary for the development of

the chapter. Let F : D ⊂ Rn → Rn be a differentiable function on a convex set D ⊂ Rn

containing α, such that F (α) = 0. We will use Genochi-Hermite formula (2.13) to prove the

order of convergence of designed class.

Let X = Rn×n be the Banach space of real square matrices of size n × n, and H : X → X a

function defined in the way that its Fréchet derivatives satisfy
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• H ′(u)(v) = H1uv, where H
′ : X → L(X) and H1 ∈ R,

• H ′′(u, v)(w) = H2uvw, where H
′′ : X ×X → L(X) and H2 ∈ R,

where L(X) denotes the set of linear operators defined in X. When k tends to infinity, variable

µ(k) tends to the zero matrix 0. So, there exist real numbers H0, H1, H2 such that H can be

expanded around 0 as

H(µ(k)) = H0I +H1µ
(k) +

1

2
H2(µ

(k))2 +O
(
(µ(k))3

)
,

where I is the identity matrix. In the same way, we define a multivariable matrix function

G(µ(k), ν(k)), so, there exist real numbers G0, G11, G12, G2i for i = 1, 2, 3 and G3j for

j = 1, 2, 3, 4 such that G can be expanded around (0, 0) as

G(µ(k), ν(k)) = G0I +G11µ
(k) +G12ν

(k) +
1

2

(
G21(µ

(k))2 +G22µ
(k)ν(k) +G23(ν

(k))2
)

+
G31(µ

(k))3 +G32(µ
(k))2ν(k) +G33µ

(k)(ν(k))2 +G34(ν
(k))3

6
+O4(µ

(k), ν(k)),

where O4

(
µ(k), ν(k)

)
denotes all terms in where the sum of exponents of µ(k) and ν(k) is at

least 4.

Convergence analysis of M4

Now we prove that the order of convergence of the parametric family M4 is four for each γ ̸= 0

under certain conditions for the weight function.

Theorem 8.2.1. Let F : Rn −→ Rn be a sufficiently differentiable function in a convex neigh-

bourhood of α which we denote by D ⊂ Rn such that F (α) = 0. We assume that F ′(α) is non
singular. Let H(t) be a real matrix function satisfying that H0 = 1, H1 = 1 and ∥H2∥ < ∞,

where I is the identity matrix of size n × n. Then, taking an estimation x(0) close enough to

α, the sequence of iterates {x(k)}k≥0 generated by proposed family (8.4) converges to α with

order 4, and its error equation is

ek+1 =

(
−C3(I + γF ′(α)) + C2

(
3I − H2

2
I + γF ′(α)

)
C2 + γC2

2F
′(α)

)
C2

(
I + γF ′(α)

)
e4k

+O
(
e5k

)
,

(8.6)

where Cj = 1
j!F

′(α)−1F (j)(α) for j = 2, 3, . . ., where ek = x(k) − α.

Proof. Let us consider the Taylor development of F (x(k)) and F (w(k)) around α

F (x(k)) = F ′(α)
(
ek + C2e

2
k + C3e

3
k + C4e

4
k +O

(
e5k

))
, (8.7)
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F (w(k)) = F ′(α)
(
ew + C2e

2
w + C3e

3
w + C4e

4
w +O

(
e5w

))
, (8.8)

being ew = w(k) − α.

By using Genochi-Hermite formula,

[w(k), x(k);F ] = F ′(x(k)) +
1

2
F ′′(x(k))h+

1

6
F ′′′(x(k))h2 +O

(
h3
)

= F ′(α)
(
I + Y2ek + Y3e

2
k

)
+O

(
e3k

)
,

being

Y2 = C2

(
2I + γF ′(α)

)
,

Y3 = γC2F
′(α)C2 + C3

(
3I + 3γF ′(α) + γ2F ′(α)F ′(α)

)
.

We obtain below the inverse of the divided difference operator [w(k), x(k);F ].

The inverse of the operator has the following expression

[w(k), x(k);F ]−1 =
(
I +X2ek +X3e

2
k +O

(
e3k

))
F ′(α)−1,

so we have to determine X2 and X3.

If we have [w(k), x(k);F ] = F ′(α)
(
I + Y2ek + Y3e

2
k +O

(
e3k
))
, then

[w(k), x(k);F ]−1[w(k), x(k);F ] =
(
I +X2ek +X3e

2
k

)(
I + Y2ek + Y3e

2
k

)
+O

(
e3k

)
= I + (X2 + Y2)ek + (X3 + Y3 +X2Y2)e

2
k +O

(
e3k

)
.

Since one also has [w(k), x(k);F ]−1[w(k), x(k);F ] = I, it follows that the terms X2 and X3

must be

X2 = −Y2,
X3 = −Y3 −X2Y2.

replacing then the values of Y2 and Y3, one has

X2 = −C2(2I + γF ′(α)),

X3 = 4C2
2 + γC2F

′(α)C2 + 2γC2
2F

′(α) + γ2(C2F
′(α))2 − C3

(
3I + 3γF ′(α) + γ2F ′(α)F ′(α)

)
.
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Let us calculate y(k). Starting from the above relations, one has

y(k) − α =ek − [w(k), x(k);F ]−1F (x(k))

=ek −
(
I +X2ek +X3e

2
k

)
F ′(α)−1F ′(α)

(
ek + C2e

2
k + C3e

3
k

)
+O

(
e4k

)
=ek − ek − C2e

2
k − C3e

3
k −X2e

2
k −X2C2e

3
k −X3e

3
k +O

(
e4k

)
=− (C2 +X2)e

2
k − (C3 +X2C2 +X3)e

3
k +O

(
e4k

)
= C2(I + γF ′(α))e2k

−
(
2C2

2 + 2γC2
2F

′(α) + γ2(C2F
′(α))2 − C3

(
2I + 3γF ′(α) + γ2F ′(α)F ′(α)

))
e3k

+O
(
e4k

)
.

Let us calculate ek+1. Firstly, we must calculate µ(k) = I − [w(k), x(k);F ]−1[y(k), w(k);F ].

One has

[y(k), w(k);F ] = F ′(w(k)) +
1

2
F ′′(w(k))(y(k) − w(k)) +

1

6
F ′′′(w(k))(y(k) − w(k))2

+O
(
(y(k) − w(k))3

)
= F ′(α)

(
I + C2(I + γF ′(α))ek

+
(
γC2

2F
′(α) + γC2F

′(α)C2 + C2
2 + C3

(
I + 2γF ′(α) + γ2F ′(α)2

))
e2k

)
+O

(
e3k

)
.

Thus

µ(k) = I − [w(k), x(k);F ]−1[y(k), w(k);F ]

= C2ek +
(
−C2

(
C2

(
3 + γF ′(α)

)
+ γF ′(α)C2

)
+ C3

(
2 + γF ′(α)

))
e2k +O

(
e3k

)
.

We denote M3 = −C2

(
C2

(
3 + γF ′(α)

)
+ γF ′(α)C2

)
+ C3

(
2 + γF ′(α)

)
, therefore

µ(k) = C2ek +M3e
2
k +O

(
e3k
)
, and one has

H(µ(k)) = H0 +H1µ
(k) +

1

2
H2(µ

(k))2 +O
(
µ3
)
= I + µ(k) +

H2

2
(µ(k))2 +O

(
(µ(k))3

)
= I + C2ek +M3e

2
k +

H2

2
C2
2e

2
k +O

(
e3k

)
= I + C2ek +

(
M3 +

H2

2
C2
2

)
e2k +O

(
e3k

)
.

We calculate [y(k), x(k);F ] using the Genochi-Hermite formula we have

[y(k), x(k);F ] =F ′(x(k)) +
1

2
F ′′(x(k))h1 +

1

6
F ′′′(x(k))h21 +O

(
h31

)
.
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where h1 = y(k) − x(k) = −[w(k), x(k);F ]−1F (x(k)).

Replacing appropriately, one has

[y(k), x(k);F ] =F ′(x(k)) +
1

2
F ′′(x(k))h1 +

1

6
F ′′′(x(k))h21 +O

(
h31

)
= F ′(α)

(
I + C2ek +

(
C3 + C2

2

(
I + γF ′(α)

)
e2k

))
+O

(
e3k

)
.

Calculating the inverse of this divided difference operator as we have done above, one has

[y(k), x(k);F ]−1 =
(
I − C2ek −

(
C3 − C2

(
I + γF ′(α)C2 − γC2F

′(α)
))
e2k +O

(
e3k

))
[F ′(α)]−1.

Denoting byR2 = −C2 andR3 = −
(
C3 − C2

(
I + γF ′(α)C2 − γC2F

′(α)
))

we have [y(k), x(k);F ]−1 =(
I +R2ek +R3e

2
k +O

(
e3k
))

[F ′(α)]−1.

Then, we calculate ek+1 = ey −H(µ(k))[y(k), x(k);F ]−1F (y(k)), where ey = y(k) − α

ek+1 = ey −
(
I + C2ek +

(
M3 +

H2

2
C2
2

)
e2k

)(
I +R2ek +R3e

2
k

)(
ey + C2e

2
y

)
+O3 (ek, ey) .

As ey = −(C2 +X2)e
2
k − (C3 +X2C2 +X3)e

3
k +O

(
e4k
)
, then we obtain

ek+1 = ey −
(
I + C2ek +

(
M3 +

H2

2
C2
2

)
e2k

)(
I +R2ek +R3e

2
k

)(
ey + C2e

2
y

)
+O5 (ek)

= ey −
(
I + (C2 +R2) ek +

(
M3 +

H2

2
C2
2 +R3 + C2R2

)
e2k

)(
ey + C2e

2
y

)
+O5 (ek)

= −
(
(C2 +R2) ek +

(
M3 +

H2

2
C2
2 +R3 + C2R2

)
e2k

)
ey − C2e

2
y +O5 (ek)

= −
(
(C2 − C2) ek +

(
M3 +

H2

2
C2
2 +R3 − C2C2

)
e2k

)
ey − C2 (C2 +X2)

2 e4k +O5 (ek)

= −C2 (C2 +X2)
2 e4k −

(
M3 +

H2

2
C2
2 +R3 − C2C2

)
e2key +O5 (ek)

=

(
−C3

(
I + γF ′ (α)

)
+ C2γF

′ (α)C2 + C2
2

(
6−H2

2
I + γF ′ (α)

))
C2

(
I + γF ′ (α)

)
e4k

+O
(
e5k

)
.

Thus it is proven that family (8.4) has order of convergence 4.

If we assume that H2 = 2, then the error equation is obtained as follows

ek+1 =
(
−C3(I + γF ′(α)) + C2

((
I + γF ′(α)

)
C2 + C2(I + γF ′(α))

))
C2

(
I + γF ′(α)

)
e4k)

+O
(
e5k

)
.

154



8.2 Design of iterative scheme and convergence analysis

Introducing memory to M4

As it was done in Chapter 4, we are going to introduce memory to the multidimensional parametric

family M4.

As we can see in the error equation (8.6), if it were satisfied that I + γF ′(α) = 0, then we

would increase the order of convergence to at least 5. But as in the unidimensional case, we do

not know α or F ′(α), so we cannot define γ = −[F ′(α)]−1. What we do, then, is to obtain an

approximation of F ′(α) based on the functional evaluations already performed.

In the first case, we use the inverse of the divided difference operator at nodes x(k) and x(k−1),

that is, we choose γk = −[x(k), x(k−1), F ]−1. If we replace the parameter of family M4 by the

above approximation, we obtain a method with memory, which we denote by M4D.

Theorem 8.2.2. Let F : Rn −→ Rn be a sufficiently differentiable function in a convex neigh-

bourhood of α which we denote by D ⊂ Rn such that F (α) = 0. We assume that F ′(α) ̸= 0.

Let H(t) be a real matrix function satisfying that H0 = 1, H1 = 1, H2 = 2 and ∥H3∥ < ∞,

where I is the identity matrix of size n × n. Then, taking an estimation x(0) close enough to

α, the sequence of iterates {x(k)}k≥0 generated by method M4D converges to α with order

p = 2 +
√
6 ≈ 4.449.

Proof. The error equation of M4 under the above conditions, proven in Theorem 8.2.1, is

ek+1 =
(
−C3(I + γF ′(α)) + C2

((
I + γF ′(α)

)
C2 + C2(I + γF ′(α))

))
C2

(
I + γF ′(α)

)
e4k

+O
(
e5k

)
.

(8.9)

Let us consider now the Taylor expansion of F (x(k−1)), F ′(x(k−1)) and F ′′(x(k−1)) around α

F (x(k−1)) = F ′(α)
(
ek−1 + C2e

2
k−1 + C3e

3
k−1 + C4e

4
k−1 + C5e

5
k−1 +O

(
e6k−1

))
,

F ′(x(k−1)) = F ′(α)
(
I + 2C2ek−1 + 3C3e

2
k−1 + 4C4e

3
k−1 + 5C5e

4
k−1 +O

(
e5k−1

))
,

F ′′(x(k−1)) = F ′(α)
(
2C2I + 6C3ek−1 + 12C4e

2
k−1 + 20C5e

3
k−1 +O

(
e4k−1

))
.

Let us calculate [x(k), x(k−1);F ] using the Genochi-Hermite formula.

[x(k), x(k−1);F ] = F ′(x(k−1)) +
1

2
F ′′(x(k−1))h2 +O

(
h22

)
,

being h2 = ek − ek−1. Then,

[x(k), x(k−1);F ] = F ′(α) (I + C2(ek + ek−1)) +O2 (ek, ek−1) .
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We then calculate the inverse of this divided difference operator

[x(k), x(k−1);F ]−1 = (I − C2(ek + ek−1))F
′(α)−1 +O2 (ek, ek−1) .

Then, γk = −(I − C2(ek + ek−1))[F
′(α)]−1 +O2 (ek, ek−1).

Therefore,

I + γkF
′(α) = I − (I − C2(ek + ek−1)) +O2(ek−1, ek)

= C2(ek + ek−1)) +O2(ek−1, ek).

Thus I + γkF
′(α) ∼ ek−1.

By error equation (8.9) and the above relation, one has

ek+1 ∼ e2k−1e
4
k. (8.10)

We assume that the R-order of the method is at least p. Therefore, it is satisfied that

ek+1 ∼ Dk,pe
p
k,

where Dk,p tends to the asymptotic error constant, Dp, when k −→ ∞. Analogously,

ek ∼ Dk−1,pe
p
k−1.

Then, we have

ek+1 ∼ Dk,p(Dk−1,pe
p
k−1)

p = Dk,pD
p
k−1,pe

p2

k−1. (8.11)

In the same way as relation (8.10) is obtained, one has

ek+1 ∼ e2k−1(Dk−1,pe
p
k−1)

4 = D4
k−1,pe

4p+2
k−1 . (8.12)

Then, by equating the exponents of ek−1 of (8.11) and (8.12), one has

p2 = 4p+ 2,

whose only positive solution is the order of convergence of method M4D, that is p ≈ 4.449,

according to Theorem 2.1.1.

We have previously seen in Chapter 4 that the Kurchatov divided difference operator obtains

better approximations to the Jacobian than the usual divided difference operator at same nodes.

For that reason in this case we also use the Kurchatov operator at nodes x(k) and x(k−1), that

is, we choose γK = −[2x(k) − x(k−1), x(k−1), F ]−1. If we substitute the parameter of family

M4 by the above approximation, we obtain a method with memory, which we denote by M4K.

Theorem 8.2.3. Let F : Rn −→ Rn be a sufficiently differentiable function in a convex neigh-

bourhood of α which we denote by D ⊂ Rn such that F (α) = 0. We assume that F ′(α) ̸= 0.

Let H(t) be a real matrix function satisfying that H0 = 1, H1 = 1, H2 = 2 and ∥H3∥ < ∞,

where I is the identity matrix of size n × n. Then, taking an estimation x(0) close enough to

α, the sequence of iterates {x(k)}k≥0 generated by method M4K converges to α with order

p = 2 + 2
√
2 ≈ 4.8284.
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Proof. We consider the Taylor development of F (x(k−1)), F ′(x(k−1)), F ′′(x(k−1)) and

F ′′′(x(k−1)) around α.

Let us calculate [2x(k) − x(k−1), x(k−1);F ] using the Genochi-Hermite formula.

[2x(k) − x(k−1), x(k−1);F ] = F ′(x(k−1)) +
1

2
F ′′(x(k−1))h3 +

1

6
F ′′′(x(k−1))h23 +O

(
h33

)
,

being h3 = 2(ek − ek−1). Then

[2x(k) − x(k−1), x(k−1);F ] ∼ F ′(α)
(
I + 2C2ek − 2C3ek−1ek + C3e

2
k−1 + 4C3e

2
k

)
.

We then calculate the inverse of this divided difference operator

[2x(k) − x(k−1), x(k−1);F ]−1 ∼ (I − 2C2ek − C3e
2
k−1 + 2C3ek−1ek + e2k)F

′(α)−1.

Therefore,

I + γkF
′(α) = I − (I − 2C2ek − C3e

2
k−1 + 2C3ek−1ek + 4(C2

2 − C3)e
2
k) +O3 (ek, ek−1)

= 2C2ek + C3e
2
k−1 − 2C3ek−1ek − 4(C2

2 − C3)e
2
k)F

′(α)−1

+O3 (ek, ek−1) .

Thus I + γkF
′(α) can behave as ek, as ekek−1, as e

2
k or as e2k−1.

Obviously the factors ekek−1 and e2k tend faster to zero than ek. Then we have to see if the

behaviour is like ek or like e2k−1.

On the other hand, we assume that the R-order of the method is at least p. Therefore, it is

satisfied that

ek+1 ∼ Dk,pe
p
k,

where Dk,p tends to the asymptotic error constant, Dp, when k −→ ∞. Analogously,

ek ∼ Dk−1,pe
p
k−1.

Then, we have

ek
e2k−1

∼
Dk−1,pe

p
k−1

e2k−1

∼ ep−2
k−1.

Then if p ≥ 2, we will have that the behaviour is like e2k−1. Thus I + γkF
′(α) ∼ e2k−1.

By error equation (8.9) and the above relation, one has

ek+1 ∼ e4k−1e
4
k. (8.13)

On the other hand, by assuming that the R-order of the method is at least p we have

ek+1 ∼ Dk,p(Dk−1,pe
p
k−1)

p = Dk,pD
p
k−1,pe

p2

k−1. (8.14)
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In the same way as relation (8.13) is obtained, one has

ek+1 ∼ e4k−1(Dk−1,pe
p
k−1)

4 = D4
k−1,pe

4p+4
k−1 . (8.15)

Then, by equating the exponents of ek−1 of (8.14) and (8.15), one has

p2 = 4p+ 4,

whose only positive solution is the order of convergence of method M4K, that is p ≈ 4.8284,

according to Theorem 2.1.1.

In the previous cases we used nodes x(k) and x(k−1), but we have also carried out the functional

evaluation of y(k−1), so what we do next is to use the same divided difference operators replacing

the node x(k−1) by the node y(k−1).

That is, we choose γk = −[x(k), y(k−1), F ]−1. If we substitute the parameter of family M4 by

the above approximation, we obtain a method with memory, which we denote by M4DY .

Theorem 8.2.4. Let F : Rn −→ Rn be a sufficiently differentiable function in a convex neigh-

bourhood of α which we denote by D ⊂ Rn such that F (α) = 0. We assume that F ′(α) ̸= 0.

Let H(t) be a real matrix function satisfying that H0 = 1, H1 = 1, H2 = 2 and ∥H3∥ < ∞,

where I is the identity matrix of size n × n. Then, taking an estimation x(0) close enough to

α, the sequence of iterates {x(k)}k≥0 generated by method M4DY converges to α with order

p = 5.

Proof. Let us consider the Taylor development of F (y(k−1)), F ′(y(k−1)) and F ′′(y(k−1)) around

α

F (y(k−1)) = F ′(α)
(
ey,k−1 + C2e

2
y,k−1 + C3e

3
y,k−1 + C4e

4
y,k−1 + C5e

5
y,k−1 +O

(
e6y,k−1

))
,

F ′(y(k−1)) = F ′(α)
(
I + 2C2ey,k−1 + 3C3e

2
y,k−1 + 4C4e

3
y,k−1 + 5C5e

4
y,k−1 +O

(
e5y,k−1

))
,

F ′′(y(k−1)) = F ′(α)
(
2C2I + 6C3ey,k−1 + 12C4e

2
y,k−1 + 20C5e

3
y,k−1 +O

(
e4y,k−1

))
.

Let us calculate [x(k), y(k−1);F ] using the Genochi-Hermite formula.

[x(k), y(k−1);F ] = F ′(y(k−1)) +
1

2
F ′′(y(k−1))h4 +O

(
h24

)
,

where h4 = ek − ey,k−1. Then

[x(k), y(k−1);F ] = F ′(α)
(
I + C2(ek + ey,k−1)

)
+O2

(
ek, ey,k−1

)
.

We then calculate the inverse of this divided difference operator

[x(k), y(k−1);F ]−1 = (I − C2(ek + ey,k−1))F
′(α)−1 +O2

(
ek, ey,k−1

)
.
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Therefore, γk = −(I − C2(ek + ey,k−1))F
′(α)−1 +O2

(
ek, ey,k−1

)
. Thus,

I + γkF
′(α) = I − (I − C2(ek + ey,k−1)) +O2(ey,k−1, ek)

= C2(ek + ey,k−1)) +O2(ey,k−1, ek).

Therefore I + γkF
′(α) ∼ ey,k−1.

By error equation (8.9) and the above relation, one has

ek+1 ∼ e2y,k−1e
4
k.

We assume that the R-order of the method is at least p. Therefore, it is satisfied that

ek+1 ∼ Dk,pe
p
k,

where Dk,p tends to the asymptotic error constant, Dp, when k −→ ∞. On the other hand, we

assume that sequence {y(k)}k≥0 has R-order, at least, p1. Therefore, it is satisfied

ey,k ∼ Dk,p1
ep1

k ,

where Dk,p1
tends to the asymptotic error constant, Dp1 , when k −→ ∞. Then, we have

ek
ey,k−1

=
epk−1

ep1

k−1

= ep−p1

k−1 .

Thus I + γkF
′(α) ∼ ey,k−1, if it is satisfied that p ≥ p1. By error equation (8.9) and the above

relation, one has

ek+1 ∼ e2y,k−1e
4
k. (8.16)

On the other hand, by assuming that the R-order of the method is at least p we have

ek+1 ∼ Dk,p(Dk−1,pe
p
k−1)

p = Dk,pD
p
k−1,pe

p2

k−1. (8.17)

In the same way as relation (8.16) is obtained, and assuming that sequence {y(k)}k≥0 has

R-order at least p1, one has

ek+1 ∼ e2y,k−1e
4
k ∼ (ep1

k−1)
2(epk−1)

4 ∼ e4p+2p1

k−1 . (8.18)

On the other hand, by error equation of ey,k one has

ey,k ∼ (I + γF ′(α))e2k ∼ ey,k−1e
2
k. (8.19)

By assuming that sequence {y(k)}k≥0 has R-order at least p1, one has

ey,k ∼ ep1

k ∼ epp1

k−1. (8.20)
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Then, by equating the exponents of ek−1 of (8.17) and (8.18), and by equating the exponents

of ek−1 of (8.19) and (8.20), one has

p2 = 4p+ 2p1,

pp1 = 2p+ p1

whose only positive solution is the order of convergence of method M4DY , that is p = 5 and

p1 = 2.5, according to Theorem 2.1.1.

In the next case, we choose γ = −[2x(k) − y(k−1), y(k−1), F ]−1, that is, the Kurchatov divided

difference operator at nodes x(k) and y(k−1). If we substitute the parameter of family M4 by

the above approximation, we obtain a method with memory, which we denote by M4KY .

Theorem 8.2.5. Let F : Rn −→ Rn be a sufficiently differentiable function in a convex neigh-

bourhood of α which we denote by D ⊂ Rn such that F (α) = 0. We assume that F ′(α) ̸= 0.

Let H(t) be a real matrix function satisfying that H0 = 1, H1 = 1, H2 = 2 and ∥H3∥ < ∞,

where I is the identity matrix of size n × n. Then, taking an estimation x(0) close enough to

α, the sequence of iterates {x(k)}k≥0 generated by method M4KY converges to α with order

p = 6.

Proof. Let us consider the Taylor development of F (y(k−1)), F ′(y(k−1)),F ′′(y(k−1)) and F ′′′(y(k−1))

around α as we have done before in Theorem 8.2.4. Let us calculate [2x(k) − y(k−1), y(k−1);F ]

using the Genochi-Hermite formula.

[2x(k) − y(k−1), y(k−1);F ] = F ′(y(k−1)) +
1

2
F ′′(y(k−1))h5 +

1

6
F ′′′(y(k−1))h25 +O

(
h35

)
,

being h5 = 2(ek − ey,k−1). Then

[2x(k) − y(k−1), y(k−1);F ] ∼ F ′(α)
(
I + 2C2ek − 2C3ey,k−1ek + C3e

2
y,k−1 + 4C3e

2
k

)
.

We then calculate the inverse of this divided difference operator

[2x(k) − y(k−1), y(k−1);F ]−1 ∼ (I − 2C2ek − C3e
2
y,k−1 + 2C3ey,k−1ek + 4(C2

2 − C3)e
2
k)F

′(α)−1.

Then,

I + γkF
′(α) = I − (I − 2C2ek − C3e

2
y,k−1 + 2C3ey,k−1ek + 4(C2

2 − C3)e
2
k) +O3

(
ek, ey,k−1

)
= 2C2ek + C3e

2
y,k−1 − 2C3ey,k−1ek − 4(C2

2 − C3)e
2
k +O3

(
ek, ey,k−1

)
.

Thus I + γkF
′(α) can behave as ek, as ekey,k−1, as e

2
k or as e2y,k−1.

Obviously the factors ekey,k−1 and e2k tend faster to zero than ek. Then we have to see if the

behaviour is like ek or like e2y,k−1.
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On the other hand, we assume that the R-order of the method is at least p. Therefore, it is

satisfied that

ek+1 ∼ Dk,pe
p
k,

where Dk,p tends to the asymptotic error constant, Dp, when k −→ ∞. On the other hand, we

assume that sequence {y(k)}k≥0 has R-order, at least, p1. Therefore, it is satisfied

ey,k ∼ Dk,p1
ep1

k ,

where Dk,p1
tends to the asymptotic error constant, Dp1 , when k −→ ∞. Then, we have

ek
e2y,k−1

∼
Dk−1,pe

p
k−1

e2p1

k−1

∼ ep−2p1

k−1 .

If p ≥ 2p1, we will have that the behaviour is like the behaviour of e2y,k−1, otherwise the

behaviour will be like the behaviour of ek.

Thus, if we assume that p ≥ 2p1, one has I + γkF
′(α) ∼ e2k−1.

By error equation (8.9) and the above relation, one has

ek+1 ∼ e4y,k−1e
4
k. (8.21)

On the other hand, by assuming that the R-order of the method is at least p we have

ek+1 ∼ Dk,p(Dk−1,pe
p
k−1)

p = Dk,pD
p
k−1,pe

p2

k−1. (8.22)

In the same way as relation (8.21), is obtained, and assuming that sequence {y(k)}k≥0 has

R-order at least p1, one has

ek+1 ∼ e4y,k−1(e
p
k−1)

4 ∼ e4p1k−1 + e4pk−1 ∼ e4p+4p1

k−1 . (8.23)

On the other hand, by error equation of ey,k one has

ey,k ∼ (I + γF ′(α))e2k ∼ e2y,k−1e
2
k. (8.24)

By assuming that sequence {y(k)}k≥0 has R-order at least p1, one has

ey,k ∼ ep1

k ∼ epp1

k−1. (8.25)

Then, by equating the exponents of ek−1 of (8.22) and (8.23), and by equating the exponents

of ek−1 of (8.24) and (8.25), one has

p2 = 4p+ 4p1,

pp1 = 2p+ 2p1

whose only positive solution is p = 6 and p1 = 3, which coincides with the R-order of convergence,

thus proving that the order of method M4KY is 6, according to Theorem 2.1.1.

In this case, by extending the iterative methods proposed in Chapter 4 to systems, we obtain the

same order of convergence as in the unidimensional case, both with the parametric family and

with the different schemes with memory obtained.
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Convergence analysis of M7

In the following result, we establish the order of convergence of parametric family M7, which is

independent of the value of parameter γ, γ ̸= 0.

In the unidimensional case, we obtained that the three-step family had order 6. In this case,

since we have defined the function G differently to make sense in the multidimensional case, we

have that this three-step family has order 7, as we are going to see below.

Theorem 8.2.6. Let F : D ⊆ Rn −→ Rn be a sufficiently differentiable function in a convex

neighbourhood D of α, which is a root of F (α) = 0. We assume that F ′(α) is non singular. Let

H(t) be a real matrix function that satisfies H0 = 1, H1 = 1 and ∥H2∥ < ∞, where I is the

identity matrix of size n × n. Let us also consider a multivariate matrix function G(p, q) such

that G0 = 1, G11 = G12 = 0, G2,1 = 0, G2,2 = 2, G2,3 = 0 and ∥G3,i∥ < ∞ for i = 1, . . . , 4.

Then, taking an estimate x(0) close enough to α, the sequence of iterates {x(k)}k≥0 generated

by family M7 converges to α with order 7.

Proof. We have already proven

y(k) − α ∼ C2(I + γF ′(α))e2k

−
(
2C2

2 + 2γC2
2F

′(α) + γ2(C2F
′(α))2 − C3(2I + 3γF ′(α) + γ2F ′(α)F ′(α))

)
e3k.

We denote by

Z1 =

(
−C3(I + γF ′(α)) + C2

((
3I − H2

2
I + γF ′(α)

)
C2 + γC2F

′(α)

))
C2

(
I + γF ′(α)

)
.

Then, we have already proven

z(k) − α = Z1e
4
k +O

(
e5k

)
.

Applying the Genochi-Hermite formula, we obtain

[z(k), y(k);F ] = F ′(α)
(
I + C2

2 (I + γF ′(α))e2k +D3e
3
k

)
+O

(
e4k

)
,

being

D3 = −(2C2
2+2γC2

2F
′(α)+γ2((C2F

′(α))2−C3(2I+3γF ′(α)+γ2F ′(α))2)+C4
2 (I+γF

′(α)).

Calculating the inverse of this divided difference operator as we have done above in Theorem

8.2.4, we obtain

[z(k), y(k);F ]−1 =
(
I − C2

2 (I + γF ′(α))e2k + J3e
3
k +O

(
e4k

))
[F ′(α)]−1,
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being J3 = ((C2
2 (I + γF ′(α))2 −D3). Now, we calculate ν(k) and obtain

ν(k) = I − [w(k), x(k);F ]−1[z(k), y(k);F ]H(µ(k))

= I −
(
I +X2ek +X3e

2
k

)(
I + C2

2

(
I + γF ′(α)

)
e2k

)(
I + C2ek +

(
M3 +

H2

2

)
e2k

)
= −(X2 + C2)ek −

(
X3 − C2

(
I + γF ′(α)

)
+X2C2 +

(
M3 +

H2

2

))
e2k +O

(
e3k

)
= I − (X2 + C2)ek − V2e

2
k +O

(
e3k

)
,

being V2 = X3 − C2(I + γF ′(α)) +X2C2 +
(
M3 + H2

2

)
.

By denoting

R = −M3(X2 + C2)− C2V2

+
1

6

(
G31C

3
2 −G32C

2
2 (X2 + C2) +G33C2(X2 + C2)

2 −G34(X2 + C2)
3
)
.

Then,

G(µ(k), ν(k)) ∼ I + µ(k)ν(k) +

(
G31(µ

(k))3 +G32(µ
(k))2ν(k) +G33µ

(k)(ν(k))2 +G34(ν
(k))3

)
6

= I − C2(X2 + C2)e
2
k +Re3k +O

(
e4k

)
.

From that, the error equation can be expressed as

x(k+1) − α = ez −G(µ(k), ν(k))[z(k), y(k);F ]−1F (z(k))

= ez −
(
I + (−C2(X2 + C2)− C2

2 (I + γF ′(α)))e2k + (R+ J3)e
3
k

)
(ez + C2e

2
z)

+O
(
e8k

)
.

As X2 = −C2(2I + γF ′(α)), then X2+C2 = −C2(I + γF ′(α)). So, −C2(X2+C2)−C2
2 (I +

γF ′(α)) = 0. From this,

ek+1 = ez −G(µ(k), ν(k))[z(k), y(k);F ]−1F (z(k))

= ez −
(
I + (R+ J3)e

3
k

)
(ez + C2e

2
z) +O

(
e8k

)
= −(R+ J3)e

3
kez +O

(
e8k

)
= −(R+ J3)Z1e

7
k +O

(
e8k

)
.

Thus, it is proven that parametric family M7 has order of convergence 7. In particular, if

G31 = G32 = G34 = 0 and G33 = 13, then ek+1 ∼ (I + γF ′(α))4e7k.
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Introducing memory to M7

As we did with class M4, in this section we introduce memory, in different ways, to family M7.

• If we choose γk = −[x(k), x(k−1), F ]−1, then replacing the parameter of family M7 by

this value, we obtain a method with memory, denoted by M7D.

• Choosing γ = −[2x(k) − x(k−1), x(k−1), F ]−1 and replacing it in family M7, yields a

method with memory, denoted by M7K.

• If we choose γk = −[x(k), y(k−1), F ]−1 and replacing it in M7, a new scheme with

memory, M7DY , is obtained.

• Finally, choosing γ = −[2x(k) − y(k−1), y(k−1), F ]−1 and replacing it in M7, a new

scheme with memory, M7KY , is obtained.

The order of convergence of all these methods with memory is established in the next result,

whose proof is similar to that of the previous results.

Theorem 8.2.7. Let F : D ⊆ Rn −→ Rn be a sufficiently differentiable function in a convex

neighbourhood D of α such that F (α) = 0. We assume that F ′(α) is non singular. Let H and G

be real matrix functions that satisfy H0 = 1, H1 = 1 and H2 = 2, and G0 = 1, G11 = G12 = 0,

G2,1 = 0, G2,3 = 0, G2,2 = 2, G3,3 = 13 and G3,i = 0 for i = 1, 2, 3, 4, where I is the identity

matrix of size n× n. Then, taking an estimate x(0) close enough to α, we have

• the sequence of iterates {x(k)}k≥0 generated by method M7D converges to α with order

p =
7 +

√
65

2
≈ 7.5311.

• the sequence of iterates {x(k)}k≥0 generated by scheme M7K converges to α with order

p =
7 +

√
78

2
≈ 7.9159.

• the sequence of iterates {x(k)}k≥0 generated by methodM7DY converges to α with order

p = 4 +
√
17 ≈ 8.1231.

• the sequence of iterates {x(k)}k≥0 generated by schemeM7KY converges to α with order

p =
9 +

√
89

2
≈ 9.21699.

In these methods with memory, we could also use variable z(k−1) in order to obtain a better

approximation of the parameter. Thus, if we choose γk = −[x(k), z(k−1), F ]−1, and replace the

parameter of family M7 by this expression, we obtain a new method with memory, denoted by

M7DZ .

In the same way, the approximation by the Kurchatov divided difference at nodes x(k) and
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z(k−1), γ = −[2x(k) − z(k−1), z(k−1), F ]−1, gives us a scheme with memory, M7KZ , whose

convergence we are going to establish. In the following, we prove the order of convergence using

these parameter approximations because for the previous cases, it was carried out in a similar

way to what was done with family M4.

Theorem 8.2.8. Let F : D ⊆ Rn −→ Rn be a sufficiently differentiable function in a convex

neighbourhood D of α such that F (α) = 0. We assume that F ′(α) is non singular. Let H(t)

and G(t) be real matrix functions that satisfy H0 = 1, H1 = 1 and H2 = 2, and that G0 = 1,

G11 = G12 = 0, G2,1 = 0, G2, 3 = 0, G2,2 = 2, G3,3 = 13 and G3,i = 0 for i = 1, 2, 3, 4,

where I is the identity matrix of size n × n. Then, taking an estimate x(0) close enough to

α, the sequence of iterates {x(k)}k≥0 generated by method M7DZ converges to α with order

9 +
√
89

2
≈ 9.21699, and the sequence of iterates {x(k)}k≥0 generated by method M7KZ

converges to α with order 11.

Proof. Let us consider the Taylor development of F (z(k−1)), F ′(z(k−1)) and F ′′(z(k−1)) around

α as was done in theorem 8.2.2. Applying the Genochi-Hermite formula we obtain

[x(k), z(k−1);F ] = F ′(α)
(
I + C2(ek + ez,k−1)

)
+O2

(
ek, ez,k−1

)
.

Then, we calculate the inverse of this divided difference operator.

[x(k), z(k−1);F ]−1 = (I − C2(ek + ez,k−1))F
′(α)−1 +O2

(
ek, ez,k−1

)
.

Therefore

I + γkF
′(α) = C2(ek + ez,k−1)) +O2(ez,k−1, ek).

Let us suppose that the R-order of the method is at least p and sequence {z(k)}k≥0 has R-order

p1. Then, it follows

ek
ez,k−1

∼
epk−1

ep1

k−1

∼ ep−p1

k−1 .

Thus I + γkF
′(α) ∼ ez,k−1 if it is satisfied that p ≥ p1. By error equation (8.6) and the above

relation we have

ek+1 ∼ e4z,k−1e
7
k. (8.26)

Assuming that the R-order of the method is at least p, we have (8.11). In the same way as

relation (8.26) is obtained, and supposing that sequence {z(k)}k≥0 has R-order at least p1 we

obtain

ek+1 ∼ e4z,k−1e
7
k ∼ (ep1

k−1)
4(epk−1)

7 ∼ e7p+4p1

k−1 . (8.27)

By other way, from the error equation of ez,k, we have

ez,k ∼
(
I + γF ′(α)

)
e4k ∼ e2z,k−1e

4
k ∼ e4p+2p1

k−1 . (8.28)
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Chapter 8. Jacobian-free iterative methods

Assuming that sequence {z(k)}k≥0 has R-order at least p1, we assure

ez,k ∼ ep1

k ∼ epp1

k−1. (8.29)

Then, by equaling the exponents of ek−1 of (8.11) and (8.27), and by equaling the exponents

of ek−1 of (8.28) and (8.29), it follows

p2 = 7p+ 4p1,

pp1 = 4p+ 2p1,

whose only positive solution is p =
9 +

√
89

2
≈ 9.21699 and p1 ≈ 5.1085, that is the order of

convergence of method M7DZ , according to Theorem 2.1.1.

Now, we calculate [2x(k) − z(k−1), z(k−1);F ] by using the Genochi-Hermite formula

[2x(k) − z(k−1), z(k−1);F ] ∼ F ′(α)
(
I + 2C2ek − 2C3ez,k−1ek + C3e

2
z,k−1 + 4C3e

2
k

)
.

Then, the inverse of this divided difference operator is

[2x(k) − z(k−1), z(k−1);F ]−1 ∼ (I − 2C2ek − C3e
2
z,k−1 + 2C3ez,k−1ek + e2k)F

′(α)−1.

Therefore,

I + γkF
′(α) ∼ 2C2ek + C3e

2
z,k−1 − 2C3ez,k−1ek − 4(C2

2 − C3)e
2
k)F

′(α)−1.

Thus, I + γkF
′(α) can have the behaviour of ek or e2z,k−1, since the factors ekez,k−1 and e2k

tend to have higher speed at 0 than ek, so we have to see whether ek or e2z,k−1 converges faster.

Suppose the R-order of the method is at least p. As sequence z(k) has R-order p1, we have

ek
e2z,k−1

∼
Dk−1,pe

p
k−1

e2p1

k−1

∼ ep−2p1

k−1 .

Then, if we assume that p ≥ 2p1, we have that the behaviour will be like that of e2z,k−1, that

is, I + γkF
′(α) ∼ e2z,k−1.

From the error equation and the above relation the following relation is obtained

ek+1 ∼ e8z,k−1e
7
k. (8.30)

In addition, relation (8.11) holds since the R-order of the method is at least p.

In the same way as relation (8.30) is obtained, and taking into account that sequence z(k) has

R-order p1, we obtain

ek+1 ∼ e8z,k−1(e
p
k−1)

7 ∼ e8p1

k−1e
7p
k−1 ∼ e7p+8p1

k−1 . (8.31)
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On the other hand, by error equation of ez,k it is obtained

ez,k ∼ e4z,k−1e
4
k. (8.32)

Then by equaling the exponents of ek−1 of (8.11) and (8.31), and by equaling the exponents of

ek−1 of (8.32) and (8.29) it is obtained

p2 = 7p+ 8p1,

pp1 = 4p+ 4p1,

whose only positive solution is p ≈ 11.3523 and p1 ≈ 6.17, therefore it does not satisfy the

property for which I + γkF
′(α) ∼ e2z,k−1, thus I + γkF

′(α) ∼ ek, and therefore

ek+1 ∼ e4ke
7
k ∼ e11k . (8.33)

Thus, we conclude that the order of method M7KZ is p = 11, according to Theorem 2.1.1.

As we can see, by introducing memory to families M4 and M7 we have managed to increase the

order up to 2 and 4 units, thus obtaining methods with memory up to order 6 and 11, respectively.

Next, we show Table 8.1 where we have a collection of the different convergence orders obtained

by introducing memory to families M4 and M7.

Table 8.1: Collection of the different orders of convergence

Parameter approximation using Method Name Order

M4 4

[x(k), x(k−1);F ] M4D 2 +
√
6 ≈ 4.4495

[2x(k) − x(k−1), x(k−1);F ] M4K 2 + 2
√
2 ≈ 4.8284

[x(k), y(k−1);F ] M4DY 5

f [2x(k) − y(k−1), y(k−1)] M4KY 6

M7 7

[x(k), x(k−1);F ] M7D
1
2 (7 +

√
65) ≈ 7.5311

[2x(k) − x(k−1), x(k−1);F ] M7K
1
2 (7 +

√
65) ≈ 7.9159

[x(k), y(k−1);F ] M7DY 4 +
√
17 ≈ 8.1231

[2x(k) − y(k−1), y(k−1);F ] M7KY
1
2 (9 +

√
89) ≈ 9.21699

[x(k), z(k−1);F ] M7Dz
1
2 (9 +

√
89) ≈ 9.21699

[2x(k) − z(k−1), z(k−1);F ] M7Kz 11
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8.3 Numerical experiments

In this section, we perform several numerical experiments in order to see the behaviour of families

M4, M7 and the partners derived from them with memory. We present two numerical experi-

ments, one of them is to solve the Hammerstein equation and other is an academical nonlinear

system, in which we also make a comparison with two known methods with order of convergence

8. These schemes are method CCGT1, which can be found in [65], and method NM8, which

can be found in [66]

We would like to point out that in this case Matlab 2020b has been used to carry out the

numerical experiments, with an arithmetical precision of 1000 digits. As stopping criterion we

choose that ∥∥∥x(k+1) − x(k)
∥∥∥
2
+
∥∥∥F (x(k))

∥∥∥
2
< 10−50.

We use also a maximum of 100 iterations.

For all methods and all numerical experiments the following matrix functions have been selected

as weight functions

• H(t) = t2 + t+ I,

• G(t, r) = I + t r +
13

6
t r2,

where I is the identity matrix.

In the different tables we show the following data

• the norm of the function evaluated in the last approximation,
∥∥∥F (x(k+1))

∥∥∥
2
,

• the norm of the distance between the last two approximations,
∥∥∥x(k+1) − x(k)

∥∥∥
2
,

• the number of iterations necessary to satisfy the required tolerance,

• and the approximated computational order of convergence (ACOC).

In this example, we consider the well-known Hammerstein integral equation (see [3]), which is

given as follows

x(s) = 1 +
1

5

∫ 1

0

F (s, t)x(t)3dt, (8.34)

where x ∈ C[0, 1], s, t ∈ [0, 1] and the kernel F is

F (s, t) =

{
(1− s)t, t ≤ s,

s(1− t), s ≤ t.
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We transform the above equation into a finite-dimensional problem by using Gauss–Legendre

quadrature formula given as
∫ 1
0
f(t)dt ≈

7∑
i=1

ωif(ti), where the abscissas ti and the weights ωi

are determined for n = 7 (see Table 7.1)

By denoting the approximations of x(ti) by xi, i = 1, . . . , 7, one gets the system of nonlinear

equations

5xi − 5−
7∑

j=1

aijx
3
j = 0,

where i = 1, . . . , 7 and

aij =

{
wjtj(1− ti) j ≤ i,

wjti(1− tj) i < j.

We start from the initial approximation x(0) = (0.5, . . . , 0.5)T , we choose as initial approxima-

tions for x(−1), y(−1) and z(−1) vector (0.4, . . . , 0.4)T . In Table 8.2, the results obtained by

each method for the Hammerstein’s equation are shown.

Table 8.2: Numerical results of Hammerstein’s equation

Method
∥∥∥x(k+1) − x(k)

∥∥∥
2

∥∥∥F (x(k+1))
∥∥∥
2

Iteration ACOC

M4,−1 1.01573×10−166 2.41351×10−666 5 3.99986

M4D 2.05575×10−154 4.58506×10−688 4 4.4952

M4K 7.31331×10−177 2.37182×10−853 4 4.9600

M4DY 7.12038×10−204 1.62192×10−1021 4 4.9971

M4KY 1.31159×10−295 3.12493×10−1776 4 5.9975

M7,−1 4.53896×10−171 9.75609×10−1027 4 6.9996

M7D 2.42252×10−79 3.32054×10−516 3 7.5291

M7K 2.45812×10−82 3.43156×10−571 3 7.8613

M7DY 2.35271×10−88 4.7518×10−622 3 8.1898

M7KY 3.16092×10−101 7.79194×10−813 3 9.1692

M7DZ 3.17456×10−99 2.21039×10−796 3 9.2162

M7KZ 2.85847×10−114 1.65181×10−1032 3 10.9981

We can see that in all cases the ACOC is close to the theoretical convergence order demonstrated

in Section 2 and that the number of iterations required is similar for the methods of the same

family, being one unit higher in the case of the methods without memory.

It can be seen that the best results for these numerical experiments are given by methods with

memory that use the Kurchatov divided difference operator to approximate the parameter of

family. These methods give the closest approximations to the solution and the biggest ACOC.

We also approximate the solution of the following academic system of nonlinear equations. In this

case, we compare the results obtained with the different methods proposed with those provided
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by two known schemes without memory, both of order 8. These schemes are method CCGT1

and method NM8.

The system that we use in our experiment, denoted by System F, is

{
Fi(x) = x2i xi+1 − 1 = 0,

F200(x) = x2200x1 − 1 = 0,

a system with 200 unknowns and 200 equations.

For this example we use an initial estimation x(0) = (0.9, . . . , 0.9)T , and as initial approximations

for x(−1), y(−1) and z(−1) vector (0.7, . . . , 0.7)T .

Table 8.3: Numerical results for System F

Method
∥∥∥x(k+1) − x(k)

∥∥∥
2

∥∥∥F (x(k+1))
∥∥∥
2

Iteration ACOC

M4,−1 2.61975×10−71 2.275×10−102 5 3.92262

M4D 1.84221×10−51 6.63527×10−83 4 4.36222

M4K 5.58564×10−57 5.32079×10−89 4 4.71234

M4DY 3.72943×10−54 1.45955×10−85 4 5.1739

M4KY 1.51937×10−63 1.46077×10−95 4 5.9701

M7,−1 4.32096×10−77 1.40986×10−123 4 6.93731

M7D 1.10549×10−89 2.70395×10−137 4 7.53147

M7K 8.76112×10−51 6.9915×10−401 3 7.85679

M7DY 1.52107×10−94 1.2392×10−139 4 8.19609

M7KY 8.76112×10−51 6.9915×10−401 3 9.18679

M7DZ 5.21322×10−97 8.1106×10−144 4 9.22566

M7KZ 8.76112×10−51 6.9915×10−401 3 10.9754

CCGT1 2.64372×10−64 1.59087×10−516 3 8.09479

NM8 2.81063×10−292 3.0869×10−2337 4 8.0

The results obtained for system F and for each method are shown in Table 8.3. We can see

that the number of iterations change for the family M7 and their partners with memory. In this

case the iterations are between 3 and 4, making the methods that perform 4 iterations have the

ACOC closer to the theoretical convergence order.

It can be seen that the best results for these numerical experiments are given by the partners

with memory that use Kurchatov’s divided difference operator, although these are also the ones

that perform the fewest iterations, which means that they are still closer to the solution than the

rest.

As we can see in the tables, our methods M7K, M7KY and M7KZ are quite similar to the

results obtained by method CCGT1, and that method NM8 performs one more iteration than
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them to satisfy the tolerance, so it would be more advisable in practice to use the methods

derived from the parametric family.

Real dynamics on an uncoupled polynomial system

In the previous sections we have introduced memory to two parametric families and studied

the order of convergence of the proposed methods. These are important concepts of iterative

methods, but not the only ones. Another important concept is the behaviour of the method

according to the initial estimate chosen, since we would like to know in advance if the method

converge to any of the solutions according to the estimate taken. This study let us know the

stability of the method. In this case, the method is analyzed for a given function and the

behaviour shown graphically with dynamical planes. This procedure is explained in many papers,

for example, see [19].

The system of nonlinear equations of which we analyse the behaviour is the following

{
x21 − 1 = 0,

x22 − 1 = 0,

where (x1, x2)
T ∈ R2.

We now that the roots of this system are (−1,−1)T , (−1, 1)T , (1,−1)T and (1, 1)T .

For all methods the following matrix functions have been selected as weight functions because

they are the easiest polynomial functions that satisfy the conditions:

• H(µ(k)) = (µ(k))2 + µ(k) + I,

• G(µ(k), ν(k)) = I,

where I is the identity matrix of size 2× 2.

To generate the dynamical planes, we have chosen a mesh of 400× 400 points, and what we do

is apply our methods to each of these points, taking the point as the initial estimate. We have

also defined that the maximum number of iterations that each initial estimate must do is 80,

and that we determine that the starting point converges to one of the solutions if the distance

to that solution is less than 10−3. We represented in orange the initial points that converge to

the root (1, 1)T , in green the initial points that converge to the root (1,−1)T , in blue the initial

points that converge to the root (−1, 1)T , in red the initial points that converge to the root

(−1,−1)T and in black the initial points that do not converge to any root.
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Chapter 8. Jacobian-free iterative methods

Figure 8.1: Dynamical planes of M4 and their partners with memory

(a) M4,γ=−1 (b) M4,γ=−0.1

(c) M4D (d) M4K and M4Ky (e) M4DY
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Figure 8.2: Dynamical planes of M7 and their partners with memory

(a) M7,γ=−1 (b) M7,γ=−0.1 (c) M7D

(d) M7K, M7Ky and M7Kz (e) M7DY (f) M7DZ

In addition to having increased the convergence order by introducing memory, it can be noticed

in Figures 8.1 and 8.2, that for the selected system, the introduction of memory has also helped

to obtain a more stable behaviour and wider sets of converging initial guesses to the roots.

8.4 Conclusions

In this chapter, two parametric families of iterative methods with orders of convergence 4 and 7,

respectively, for solving systems of nonlinear equations, have been designed.

Memory has been introduced, in different ways, to these two families in order to obtain iterative

methods with higher order of convergence without the need to increase the number of functional

evaluations per iteration. These methods with memory have managed to increase the order by

up to 2 units for the family of order 4 and up to 4 units for the family of order 7.

But not only does the introduction of memory improves the order of convergence, but as we

have seen in the dynamical planes that have been carried out, it has also improved the behaviour

of the method, since we obtain that more points converge when it comes to the methods with

memory, or else the attraction zones of the roots are simpler.
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In the numerical experiments, the theoretical results are confirmed, and when comparing our

methods with other known ones of high order (order of convergence 8) it can be seen that most

of the proposed methods obtain a closer approximation to the solution than known methods, and

it also can see that the partners with memory obtain better results in these cases.
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Chapter 9. Iterative methods for simultaneous solutions of nonlinear systems

9.1 Introduction

In a large number of problems in applied mathematics, we need to solve a system of equations,

and in many cases these systems are nonlinear. We cannot always solve these systems exactly,

due to the complexity of the problem. For this reason, we obtain an approximation to the solution

of the problem.

One way to obtain these approximations is by using iterative methods. What iterative schemes

do is that, starting from an initial approximation, they generate a succession of approximations

that, under certain conditions, converge to that solution. Some known iterative methods to solve

nonlinear systems are designed in: [53] by Cordero et al, [62] by Chicharro et al and [25] by Neta

and Johnson.

But what if instead of wanting only one of the solutions, we want to obtain more than one

of them simultaneously? One option would be, by using two different initial approximations,

to obtain the approximate solutions. But with this we have a problem, what happens if both

estimates converge to the same root?

In what follows, we generate several dynamical planes for Newton’ and Steffensen’s methods, [2]

and [11], in order to illustrate this problem. What we draw in these cases is if the initial points

converge or not to the roots of our problems in the same way as we have done in Chapter 5.

We show the dynamical planes associated with each of the procedures when applied to a simple

quadratic polynomial, p (x) = x2 − 1, whose roots are 1 and -1.

To generate the dynamical planes (see [14]), we have chosen a mesh of 400 × 400 points, and

what we do is to apply our methods to each of these points, taking the point as the initial

estimate. Each of the axes corresponds to the real and the imaginary part of the initial guess,

respectively.

We have also defined that the maximum number of iterations for each initial estimate is 80,

and we determine that the initial point converges to one of the solutions if the distance to that

solution is less than 10−3.

We represent in orange the initial points that converge to root −1, in green the initial points

converging to root 1, and in black the initial points that do not converge to any root.
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Figure 9.1: Dynamical planes of Newton’ and Steffensen’s scheme

(a) Newton

(b) Steffensen

In this case, if we take two different initial approximations and both are in the same basin of

attraction, in the end we will obtain that the sequences converge to the same solution.

However, if we design a scheme that calculates both sequences of approximations at the same

time, taking into account who is the other iterate, we will avoid this problem.

In Chapter 5, we have designed an iterative step that can be added to any iterative method that

solves nonlinear equations, so if the initial iterative scheme has order of convergence p, the new

scheme will have order of convergence 2p (3p if the nonlinear function is polynomical), but in

addition, the new iterative procedure will obtain the solutions of the equation simultaneously.

In Figures 9.2 and 9.3, we generate the dynamical planes of the Modified Newton and Steffensen

schemes, applied to the same equation and with the same convergence criterion.
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Chapter 9. Iterative methods for simultaneous solutions of nonlinear systems

In this case, one of the axes is the initial estimate x
(0)
1 and the other is x

(0)
2 . We represent the

initial point in purple if component of the iterate of the point on the x
(0)
1 converges to the root

−1 and the component in the axis x
(0)
2 converges to the root 1. We represent the initial point

in yellow if component of the iterate of the point on the x
(0)
1 converges to the root 1 and the

component in the axis x
(0)
2 converges to the root −1. In case of non convergence, we represent

the starting point blue.

In Figure 9.2, we show the dynamical planes obtained for Newton’s and Modified Newton’s

methods applied to the quadratic polynomial. As we can see, the basins of attraction occupy the

whole space in Newton’s scheme, as well as for its variant for finding roots simultaneously.

Figure 9.2: Dynamical planes of Newton and Modified Newton

(a) Newton

(b) Modified Newton

In Figure 9.3, we show the dynamical planes obtained for Steffensen’s and Modified Steffensen’s

methods applied to the quadratic polynomial. As we can observe in this case, Steffensen’s scheme

does not converge in some areas, for example at the point z = -5, although we can observe that
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its variant does converge to the roots at any point of this mesh, except a small area where

x
(0)
1 = x

(0)
2 = 0.

Figure 9.3: Dynamical planes of Steffensen and Modified Steffensen

(a) Steffensen

(b) Modified Steffensen

As we can see in Figure 9.1, now taking initial estimations x
(0)
1 = 2 and x

(0)
2 = 5 we converge

to both roots, something that iterating both non simultaneous methods in parallel we did not

achieve, since both were in the basin of attraction of the root 1.

What we do in this chapter is modify the step presented in Chapter 5 so it can be applicable to

systems, thus designing an iterative step that can be added to any iterative procedure that solves

systems of nonlinear equations, so that we duplicate the order, and we can apply this method to

obtain solutions simultaneously.

This chapter is structured as follows. In Section 9.2, we modify the step and study the order of

convergence of this step. In Section 9.3, we carry out several numerical experiments with known

iterative schemes to which we add the simultaneous step, to see their behaviour, and we finish

the work in Section 9.4 with conclusions derived from the study.

181



Chapter 9. Iterative methods for simultaneous solutions of nonlinear systems

9.2 Convergence analysis

Let F (x) = 0, F : Rm → Rr, be a system of nonlinear equations, where the number of

unknowns is m and the number of equations is r. Let us notice that the system is written as a

column vector of size r × 1.

Suppose that this system has n solutions, which we denote by αi = (αi1 , αi2 , . . . , αim) for

i = 1, . . . , n.

We are going to design an iterative step to obtain all the solutions simultaneously. Therefore,

we take a set of n initial approximations which we denote by x
(0)
i =

(
x
(0)
i1
, x

(0)
i2
, . . . , x

(0)
im

)
,

i = 1, .., n.

If we define
1

x
(k)
i − x

(k)
j

:=

 1

x
(k)
i1

− x
(k)
j1

,
1

x
(k)
i2

− x
(k)
j2

, . . . ,
1

x
(k)
im

− x
(k)
jm

.

We then design the iterative step in the following way:

x
(k+1)
i = x

(k)
i −

F ′
(
x
(k)
i

)
− F

(
x
(k)
i

)∑
j ̸=i

1

x
(k)
i − x

(k)
j

−1

F
(
x
(k)
i

)
. (9.1)

As we can see, the size of matrix F ′
(
x
(k)
i

)
is r ×m which matches the size of the product of

F
(
x
(k)
i

)
and

1

x
(k)
i − x

(k)
j

, j ̸= i, as the above vectors are a column vector of size r × 1 and a

row vector of size 1×m, respectively.

We denote this point-to-point method by PS. We are going to prove that its order of convergence

is 2.

Theorem 9.2.1. Let F : Rm −→ Rr be a sufficiently differentiable function in a convex neigh-

bourhood of αi which we denote by Di ⊂ Rm such that F (αi) = 0 for i = 1, ..., n. We assume

that F ′(αi) is non singular for i = 1, ..., n. Then, taking an estimate x
(0)
i ∈ Rm close enough

to αi for i = 1, ..., n, the sequences of iterates {x(k)i }k≥0 generated by method PS converges

to αi with order 2.

Proof. Let us denote F = (F1, F2, . . . , Fr) where Fp : Rm → Rq are the coordinate functions

of F for p = 1, 2, . . . , r.

Consider now the Taylor development of Fp

(
x
(k)
i

)
around α for p = 1, 2, . . . , r:

Fp

(
x
(k)
i

)
=

m∑
j1=1

∂Fp (α)

∂xj1
ei,kj1

+

m∑
j1=1

m∑
j2=1

∂2Fp (α)

∂xj1∂xj2
ei,kj1

ei,kj2
+O3

(
ei,k
)
, (9.2)
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where ei,kj1
= x

(k)
ij1

− αij1
for j1 ∈ {1, 2, . . . ,m} and i ∈ {1, . . . , n}, and where O3

(
ei,k
)

the elements where the sums of the exponents of ei,kj1
is greater than or equal to 3 with

j1 ∈ {1, 2, . . . ,m}.

If we derive this with respect to variable xiq , with q = 1, 2, . . . ,m, we get

∂Fp

(
x
(k)
i

)
∂xiq

=
∂Fp (α)

∂xiq
+

m∑
j1=1

∂2Fp (α)

∂xiq∂xj1
ei,kj1

+O2

(
ei,k
)
. (9.3)

To simplify notation, we denote by Ei,kq
the following

Ei,kq
=

m∑
j ̸=i

1

ei,kq
− ej,kq

+ αiq − αjq
.

Then,

∂Fp

(
x
(k)
i

)
∂xiq

− Fp

(
x
(k)
i

) m∑
j ̸=i

1

x
(k)
iq

− x
(k)
jq

=
∂Fp (α)

∂xiq
+

m∑
j1=1

∂2Fp (α)

∂xiq∂xj1
ei,kj1

−
m∑

j1=1

∂Fp (α)

∂xj1
ei,kj1

Ei,kq
+O2

(
ei,k
)
.

(9.4)

We simplify as follows

m∑
j1=1

∂2Fp (α)

∂xiq∂xj1
ei,kj1

−
m∑

j1=1

∂Fp (α)

∂xj1
ei,kj1

Ei,kq
=

m∑
j1=1

(
∂2Fp (α)

∂xiq∂xj1
− ∂Fp (α)

∂xj1
Ei,kq

)
ei,kj1

.

Then, we can rewrite (9.4) as

∂Fp

(
x
(k)
i

)
∂xiq

− Fp

(
x
(k)
i

) m∑
j ̸=i

1

x
(k)
iq

− x
(k)
jq

=
∂Fp (α)

∂xiq
+

m∑
j1=1

Aiq,j1ei,kj1
+O2

(
ei,k
)
,

being Aiq,j1 :=

(
∂2Fp (α)

∂xiq∂xj1
− ∂Fp (α)

∂xj1
Ei,kq

)
for j1 ∈ {1, 2, . . . ,m}.

We denote Aiq :=
(
Aiq,1, Aiq,2, . . . , Aiq,m

)
, and then define matrix A that is composed by rows

Ai1 , Ai2 , . . ., Aim we obtain

F ′
(
x
(k)
i

)
− F

(
x
(k)
i

)∑
j ̸=i

1

x
(k)
i − x

(k)
j

= F ′ (α)
(
I + F ′ (α)−1Aei,k

)
+O2

(
ei,k
)
. (9.5)
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From (9.5), it followsF ′
(
x
(k)
i

)
− F

(
x
(k)
i

)∑
j ̸=i

1

x
(k)
i − x

(k)
j

−1

=
(
I − F ′ (α)−1Aei,k

)−1
F ′ (α)−1 +O2

(
ei,k
)
.

(9.6)

Then, by using (9.6), the error equation is

ei,k+1 = ei,k −
(
I − F ′ (α)−1Aei,k

)(
ei,k + C2e

2
i,k

)
+O3

(
ei,k
)

=
(
F ′ (α)−1A− C2

)
e2i,k +O3

(
ei,k
)
.

It is therefore proven that method PS has convergence order 2.

Let ϕ be the non-simultanous fixed point function of a known iterative method, we define PSϕ
as follows

y
(k)
i = ϕ

(
x
(k)
i

)
,

x
(k+1)
i = PS

(
y
(k)
1 , . . . , y

(k)
n

)
,

in other words, an iterative method in which we use ϕ as a predictor and then scheme PS as a

simultaneous corrector.

Theorem 9.2.2. Let F : Rm −→ Rr be a sufficiently differentiable function in a convex neigh-

bourhood of αi which we denote by Di ⊂ Rm such that F (αi) = 0 for i = 1, ..., n. We assume

that F ′(αi) is non singular for i = 1, ..., n. Then, taking an estimate x
(0)
i ∈ Rm close enough

to αi for i = 1, ..., n, the sequences of iterates {x(k)i }k≥0 generated by method PSϕ converges

to αi with order 2p, where p is the order of convergence of ϕ.

Proof. By Theorem 9.2.1,

ei,k+1 =
(
F ′ (α)−1A− C2

)
e2i,y,k +O3

(
ei,y,k

)
, (9.7)

where ei,y,k = y
(k)
i − αi and ei,k = x

(k)
i − αi. Since we have that ϕ has order of convergence

p, this means that ei,y,k ∼ epi,k.

Substituting the last relation into equation (9.7) we obtain that

ei,k+1 ∼ e2i,y,k ∼
(
epi,k

)2
∼ e2pi,k.

Thus it is proven that iterative method PSϕ duplicates the order of convergence of the predictor

non-simultaneous scheme ϕ.
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9.3 Numerical experiments

We use Matlab R2020b with variable precision arithmetics of 1000 digits for the computational

calculations. As a stopping criterion we use that the mean of the norm of function F evaluated

at the last iterations is less than a tolerance of 10−50, that is, if we try to find n solutions,

1

n

n∑
i=1

∥∥∥F (x(k+1)
i

)∥∥∥ < 10−50.

We denote this mean by
∥∥∥F (x(k+1)

)∥∥∥ :=
1

n

∑n
i=1

∥∥∥F (x(k+1)
i

)∥∥∥. We also denote by x(k+1) =(
x
(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
n

)
. We also use a maximum of 100 iterations as a stopping criterion.

For the numerical experiments we use three different methods. The first one is procedure PS,

that we have defined in (9.1). The others two schemes are PSN and PSN2 that are the

composition of PS with N and N2, where N denote Newton’s method and N2 denotes double

Newton, that is

y
(k)
i = x

(k)
i − F ′

(
x
(k)
i

)−1
F
(
x
(k)
i

)
, for i = 1, . . . , n

x
(k+1)
i = y

(k)
i − F ′

(
y
(k)
i

)−1
F
(
y
(k)
i

)
, for i = 1, . . . , n.

The numerical results we are going to compare the methods in the different examples are:

• the approximation obtained,

• the mean of the norm of the system evaluated in that set of approximations,

• the norm of the distance between the last two sets of approximations,

• the necessary number of iterations to satisfy the required tolerance,

• the computational time and the approximate computational convergence order (ACOC).

We are going to solve two nonlinear problems.

The first one is to find the points of intersection of the circle centred at the (0, 0) with radius√
2 and the ellipse {(x, y) ∈ R2 : 3x2 + 2xy + 3y2 = 5}, that is, find the points (x, y) that are

solutions of the following system: {
x2 + y2 = 2,

3x2 + 2xy + 3y2 = 5.
(9.8)

The exact solutions of this problem are{
±

(√
1 +

√
3

2
,

−1√
4 + 2

√
3

)
,±

(√
1−

√
3

2
,

−1√
4− 2

√
3

)}
.
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Then, we take as initial estimations x
(0)
1 = (1,−0.5), x

(0)
2 = (−1, 0.5), x

(0)
3 = (0.5,−1) and

x
(0)
4 = (−0.5, 1).

Table 9.1: Results for intersection of ellipse and circle

Method
∥∥∥x(k+1) − x(k)

∥∥∥ ∥∥∥F (x(k+1)
)∥∥∥ Iteration ACOC

PS 2.1809×10−39 1.5874×10−77 8 1.9993

PSN 1.6021×10−94 5.635×10−188 4 3.5975

PSN2 2.5749×10−45 2.6135×10−362 3 9.2015

As we can see in Table 9.1, all the methods converge to all the roots and obtain good results for

the chosen initial points. The approximate computational convergence order coincides with the

theoretical one or is greater than that one. The methods using predictor obtain better results in

terms of the number of iterations needed to satisfy the stopping criterion, but this is expected

given that the order of convergence is higher.

The second academical problem to be solved is obtaining all the critical points of function

g (x, y) = 1
3x

3 + y2 + 2xy − 6x− 3y + 4.

To calculate the critical points we calculate the gradient of the function, and solve approximately

when this gradient is 0, that is, ∇g (x, y) = 0.

As initial estimations we choose x
(0)
1 = (0, 1) y x

(0)
2 = (2,−1).

Table 9.2: Results for equation ∇g (x, y) = 0

Method
∥∥∥x(k+1) − x(k)

∥∥∥ ∥∥∥F (x(k+1)
)∥∥∥ Iteration ACOC

PS 3.7423×10−40 5.5804×10−80 8 2.0003

PSN 6.7853×10−61 1.151×10−121 4 4.0

PSN2 2.3299×10−30 8.2801×10−244 3 8.2457

In this case, for all methods, vectors
(
−1, 52

)
and

(
3,− 3

2

)
are obtained as approximations to the

solutions.

As we can see in Table 9.2, the approximate computational convergence order also coincides with

the theoretical one in this numerical experiment. The methods obtain solutions very close to the

solution of this problem as can be seen in the third column of Table 9.2.

Now, we solve the following nonlinear system with size 200× 200{
Fi(x) = (x2i − 1)(x2i+1 − 1) = 0, i = 1, . . . , 199,

F200(x) = (x21 − 1)(x2200 − 1) = 0.
(9.9)
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where x = (x1, x2 . . . , x199, x200) ∈ R200.

As initial points we choose x
(0)
1 = 0.8(1, 1, . . . , 1) and x

(0)
2 = −0.8(1, 1, . . . , 1). In this case, we

use Matlab2020 with variable precision arithmetics of 10 digits and 10−5 as the tolerance. The

tolerance has been lowered as the system was larger than the previous ones.

The results obtained for the proposed methods and the system F are shown in Table 9.3.

Table 9.3: Results for system F (x) = 0

Method
∥∥∥x(k+1) − x(k)

∥∥∥ ∥∥∥F (x(k+1))
∥∥∥ Iteration ACOC

PS 3.637×10−4 3.3385×10−7 17 2.0777

PSN 4.2398×10−4 4.5234×10−7 3 3.2312

PSN2 6.605×10−5 0 2 —

In this case, the importance of using a predictor method is shown since the number of iterations

needed to satisfy the stopping criterion has been considerably reduced compared to the number

of iterations needed by method PS, but all of them converge to two solutions of the problem.

9.4 Conclusions

In this chapter, we have defined an iterative step that can be added to any iterative method for

systems of nonlinear equations in such a way that a new iterative scheme for finding the roots

simultaneously is obtained, and this new obtained procedure has double the order of convergence

of the original iterative method.

We have selected different known iterative schemes to which we have added this step, and we

have carried out different numerical experiments to see the behaviour of these new iterative

methods which coincides with the results obtained theoretically.
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Analysis of Iterative Methods with Memory. Symmetry, 14, 442.
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10.1 Introduction

As was discussed in Chapters 7 and 8, in applied mathematics, iterative methods for solving

systems of nonlinear equations are an essential instrument for solving problems, as in most of

these problems it is often complicated or impossible to solve these systems. This is why iterative

schemes are employed since, by giving an initial approximation which is close enough to the

solution, an approximation of a solution is obtained with the required precision.

As we have already mentioned, the initial point needs to be close to the solution to guarantee

convergence, which is why dynamical analysis is increasingly important, as it allows us to see

how the initial approximations behave.

The stability of iterative fixed point methods can be studied by using real or complex dynamical

tools applied to a rational operator resulting from the application of the iterative scheme to low-

degree polynomials. Such dynamical techniques allow to compare or deepen in known iterative

schemes, as can be seen in [67, 68, 69], and to analyse the qualitative properties of new iterative

procedures without memory (see [15, 70, 71, 72]) or with memory (see, for example, [73, 74]).

It also changes if the scheme is multidimensional, as we can see in [73, 75, 76, 18, 77, 78, 79].

Before, it was only possible to study the stability of vectorial schemes without memory or scalar

methods with memory. In both cases using multidimensional discrete dynamical systems. That

is the reason in this chapter, we are going to lay the foundations for our future work in the study

of the dynamics of iterative methods with memory to approximate the solutions of nonlinear

systems.

This chapter is structured as follows. In Section 10.2, we present the necessary theoretical

concepts and some results obtained. In Section 10.3, we apply the theoretical results obtained in

Section 10.2 to some well-known multidimensional iterative methods with memory. We choose

different types of systems to see the behaviour of these iterative schemes. Finally, in Section

10.4 we draw some conclusions about this chapter.

10.2 Theoretical concepts

We begin with F : Rn → Rn that defines a system of nonlinear equations, for which we want

to obtain an approximation to the solution.

It has been already stated that the standard form of an iterative method with memory that uses

only two previous iterations to calculate the next one is:

x(k+1) = ϕ
(
x(k−1), x(k)

)
, k ≥ 1,

where x(0) and x(1) are the initial approximations.
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From here on, we assume that when introducing memory to the iterative method, operator ϕ

depends not only on x(k) but also depends on the previous iterate, x(k−1), since otherwise a

study of the dynamics of a iterative method without memory for systems would be carried out.

A function defined from Rn ×Rn to Rn cannot have fixed points since to be a fixed point of a

operator, the point and its image by the function must coincide. Therefore, an auxiliary function

O is defined as follows:

O
(
x(k−1), x(k)

)
=
(
x(k), x(k+1)

)
=
(
x(k), ϕ

(
x(k−1), x(k)

))
, k = 1, 2, . . .

If
(
x(k−1), x(k)

)
is a fixed point of O, then

O
(
x(k−1), x(k)

)
=
(
x(k−1), x(k)

)
,

and by the definition of O, one has(
x(k−1), x(k)

)
=
(
x(k), x(k+1)

)
,

thus, the discrete dynamical system O : Rn ×Rn → Rn ×Rn is defined as

O(z, x) = (x, ϕ(z, x)) ,

where ϕ is the operator associated with the vectorial iterative method with memory.

To simplify the notation, we denote by x = x(k) and z = x(k−1).

Then, a point (z, x) is a fixed point of O if z = x and x = ϕ(z, x). If (z, x) is a fixed point of

operator O that does not satisfy F (x) = 0, it is called a strange fixed point.

The basin of attraction of a fixed point (z∗, x∗) is defined as the set of pre-images of any order

such that

A(z∗, x∗) = {(w, y) ∈ Rn×n : Om(w, y) → (z∗, x∗), m→ ∞}.

To study the character of the fixed points, we use Theorem 2.2.4.

If one eigenvalue λ of G′(x) satisfies |λ| = 1, then x is not hyperbolic and we cannot conclude

anything about the character of this fixed point.

We want to deduce a more specific result for determining the character of the fixed points (z, x)

of operator O. To do this, we calculate the Jacobian matrix of O, denoted by O′ which has size

2n× 2n. The result is matrix

O′(z, x) =


0n×n In×n

∂ϕ1
∂z1

. . .
∂ϕ1
∂zn

∂ϕ1
∂x1

. . .
∂ϕ1
∂xn

...
...

...
...

∂ϕn
∂z1

. . .
∂ϕn
∂zn

∂ϕn
∂x1

. . .
∂ϕn
∂xn

 .
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We denote by
∂ϕ

∂z
and

∂ϕ

∂x
matrices

∂ϕ

∂z
=


∂ϕ1
∂z1

. . .
∂ϕ1
∂zn

...
...

∂ϕn
∂z1

. . .
∂ϕn
∂zn

 ,

and

∂ϕ

∂x
=


∂ϕ1
∂x1

. . .
∂ϕ1
∂xn

...
...

∂ϕn
∂x1

. . .
∂ϕn
∂xn

 .

Therefore, the Jacobian matrix O′(z, x) is defined as a block matrix

O′(z, x) =

(
0n×n In×n
∂ϕ

∂z

∂ϕ

∂x

)
.

We need to calculate the eigenvalues of the Jacobian matrix O′(z, x) evaluated at the fixed

points for determining their character. To do this we need to use the following result that can

be found in [80].

Theorem 10.2.1. IfM =

(
A B

C D

)
, where A,B,C,D are matrices of size n×n and AB = BA,

then ,

det(M) = det(DA− CB).

Theorem 10.2.2. The eigenvalues of O′(z, x) are those satisfying:

det

(
λ2In×n − λ

∂ϕ

∂x
− ∂ϕ

∂z

)
= 0.

Proof. It is easy to see that

λI2n×2n −O′(z, x) =

(
λIn×n −In×n

−∂ϕ
∂z

λIn×n − ∂ϕ

∂x

)
.

By applying Theorem 10.2.1 for calculating the determinant of a block matrix, we obtain

det
(
λI2n×2n −O′(z, x)

)
= det

(
λ

(
λIn×n − ∂ϕ

∂x

)
− ∂ϕ

∂z

)
.
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Then, λ is an eigenvalue of O′(z, x) if

det

(
λ

(
λIn×n − ∂ϕ

∂x

)
− ∂ϕ

∂z

)
= 0,

which is the same as

det

(
λ2In×n − λ

∂ϕ

∂x
− ∂ϕ

∂z

)
= 0.

In particular, λ = 0 is an eigenvalue of O′(z, x) if 0 is an eigenvalue of ∂ϕ
∂z since

0 = det
(
−O′(z, x)

)
= det

(
−∂ϕ
∂z

)
.

To study the eigenvalues of O′(z, x), we use Theorem 10.2.2. In particular, for at least one of

the eigenvalues to be 0, it must be satisfied that det
(
O′(z, x)

)
= 0. For this reason, we present

the following result.

Theorem 10.2.3. The determinant of O′(z, x) is zero if, and only if, it satisfies

det

(
∂ϕ

∂z
(z, x)

)
= 0.

Proof. The determinant of O′ can be calculated as follows

det(O′(z, x)) = det

(
0n×n In×n
∂ϕ

∂z

∂ϕ

∂x

)
= det

(
−∂ϕ
∂z

)
= (−1)n det

(
∂ϕ

∂z

)
.

Therefore, det(O′(z, x)) = 0 if, and only if, det

(
∂ϕ

∂z
(z, x)

)
= 0.

Another relevant concept in a dynamical study is the critical point. In this case, we use definition

10 as definition of critical point.

This is a restrictive definition of a critical point since it is usually sufficient that the determinant

of the Jacobian matrix cancels out, but in this case, if we do not use the above definition, we

obtain critical point surfaces because of the form of the operator.
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10.3 On the qualitative analysis of some vectorial iterative
schemes with memory

In this section, we present the dynamical study of two simple vectorial methods with memory:

Kurchatov’s scheme, see [12], whose expression is as follows

x(k+1) = x(k) − [2x(k) − x(k−1), x(k−1);F ]−1F
(
x(k)

)
, k = 1, 2, . . . , (10.1)

and Steffensen’s method with memory, see [2], whose expression is

x(k+1) = x(k) − [x(k) + γ(k)F
(
x(k)

)
, x(k);F ]−1F

(
x(k)

)
, k = 1, 2, . . . , (10.2)

where γ(k) = −[x(k), x(k−1);F ]−1.

This study is performed on two polynomial systems of different degrees. To see a range of

behaviours, we choose an uncoupled system of degree 3 and a coupled system of degree 2. The

reason of choosing different degrees is because for the uncoupled system if we use polynomials

of degree 2, the operator does not depend on the previous iteration.

10.3.1 Uncoupled Third Order System

We perform this dynamical study on a system with size 2 × 2 in order to use graphical tools.

However, these results can be easily extended to higher-dimension systems. The system, denoted

by p(x) = 0, is as follows:

{
x31 − 1 = 0,

x32 − 1 = 0,
(10.3)

where (x1, x2) ∈ R2. The only root with real components of this system is (1, 1).

To make the study simpler, we denote x(k−1) by z and x(k) by x as was done in the theoretical

study.

10.3.1.1 Kurchatov’s Method

Operator ϕK of Kurchatov’s method on the cubical system is

ϕK(z, x) =

x1 +
1−x3

1

4x2
1−2x1z1+z2

1

x2 +
1−x3

2

4x2
2−2x2z2+z2

2

 . (10.4)

Theorem 10.3.1. The only fixed point of operator OK(z, x) = (x, ϕK(z, x)) has equal compo-

nents z = x = (1, 1) and has superattracting character.
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Proof. We calculate matrices ∂ϕK

∂z and ∂ϕK

∂x appearing in the dynamical study,

∂ϕK
∂z

(z, x) =

− 2(x3
1−1)(x1−z1)

(4x2
1−2x1z1+z2

1)
2 0

0 − 2(x3
2−1)(x2−z2)

(4x2
2−2x2z2+z2

2)
2

 ,

and

∂ϕK
∂x

(z, x) =

 9x2
1z

2
1−12x3

1z1+12x4
1−4x1(z3

1+2)+z1(z3
1+2)

(4x2
1−2x1z1+z2

1)
2 0

0
9x2

2z
2
2−12x3

2z2+12x4
2−4x2(z3

2+2)+z2(z3
2+2)

(4x2
2−2x2z2+z2

2)
2

 .

If we evaluate these matrices at the fixed point, we get

∂ϕK
∂z

((1, 1), (1, 1)) =

(
0 0

0 0

)
,

and
∂ϕK
∂x

((1, 1), (1, 1)) =

(
0 0

0 0

)
.

By Theorem 10.2.2, it follows that det(λI − O′
K((1, 1), (1, 1))) = det(λ2I). From the above

relation it follows that the only eigenvalue associated with the fixed point is λ = 0. So, fixed

point x = z = (1, 1) is a superattracting point.

Regarding the critical points of operator OK(z, x), we have

Theorem 10.3.2. Operator OK(z, x) has four categories of critical points, denoted by Ci(z, x)

i = 1, 2, 3, 4, defined in Table 10.1. The notation of Table 10.1 is understood in such a way that,

for example, the points C2(z, x) are those that satisfy that x1 = 1 and z2 = x2, and the other

components are arbitrary.

Table 10.1: Categories of critical points of operator OK

x1 = 1 z1 = x1
x2 = 1 C1(z, x) C3(z, x)

z2 = x2 C2(z, x) C4(z, x)

Proof. To do this, we calculate the eigenvalues of O′
K(z, x) for any point (z, x) and obtain those

satisfying the condition that all their eigenvalues are 0.

It is obtained that the critical points are those z = (z1, z2) and x = (x1, x2) that satisfy these

two expressions (
x31 − 1

)
(x1 − z1) = 0 and

(
x32 − 1

)
(x2 − z2) = 0. (10.5)

195



Chapter 10. Dynamical analysis of multidimensional iterative methods with memory

It follows that the four categories of points defined in Table 10.1 are critical points of operator

OK(z, x).

It can be checked that the points of category C1(z, x) are a preimage of the only fixed point since

ϕK(z, (1, 1)) = (1, 1). We are only going to study the orbit of the points of category C2(z, x)

and C4(z, x) since the points C1(z, x) converge to the fixed point for any value of z, and the

fixed points of category C3(z, x) have a symmetrical study to that of the fixed points of category

C2(z, x).

• Operator ϕK evaluated at the critical points of category C2(z, x) has the following form

ϕK(C2(z, x)) =

(
1

x2 +
1−x3

2

3x2
2

)
.

The convergence of these points only depends on x2 and z1, as we can see in the expression

of ϕK . For this reason, we draw planes to see the convergence of these points with these

two variables.

To draw these planes of the points of the category C2(z, x), what we are going to do is

see which of these points belong to the basins of attraction of the attracting fixed points,

that is, which of these points converge to the attractor.

We make a mesh of 400× 400 points of the set [−2, 2]× [−2.2]. On one of the axes, we

have x2, and on the other, z1, and with them we construct our points of category C2(z, x).

We take each of these points C2(z, x) and apply operator ϕK on it. If it converges to the

only attracting fixed point, which is (1, 1), then we represent it in orange. As convergence

criterion, we have used that the distance from the iteration to the fixed point is less than

10−3 in less than 40 iterations. If this is not satisfied, the mesh point is represented black.

As can be seen in Figure 10.1, we have a slower convergence when x2 approaches the

value 0 because of the shape of the operator, but we still have convergence. In the rest of

the cases, the convergence to the point (1, 1) is clear.
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Figure 10.1: Behaviour of critical points C2(z, x)

• Next, we evaluate operator ϕK at the critical points of category C4(z, x). In this case,

the operator is

ϕK(C4(z, x)) =

 x1 +
1−x3

1

3x2
1

x2 +
1−x3

2

3x2
2

 .

In this case, the critical points of category C4(z, x) depend on variables x1 and x2. For this

reason, we draw the convergence plane of the critical points depending on these variables.

As in the previous case, it is shown in Figure 10.2 that if any of the variables approach

the value 0 we have slow convergence but that in the rest of the points the convergence

to the point (1, 1) is clear.

Figure 10.2: Behaviour of critical points C4(z, x)

To conclude the dynamical study of Kurchatov’s method for this system, let us draw some

dynamical planes in order to see the behaviour of the points in general (to see how we

generate the planes of convergence see [15]).
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To draw these planes, given that we have an operator with 4 variables, what we have done is to

select a parameter a, so that z = x− (a, a). We try different values of a to see which one gives

the best results. Usually, testing with small values of a gives good results. Thus, our variables

would be x1 and x2, and the variables z are a variation of these.

To make the dynamical planes, we have chosen a mesh of 400 × 400 points, where the chosen

point of the mesh is the starting point. We study the orbit of the initial point. If the seed

converges to (1, 1), it is represented orange, and if it does not converge, it is represented black.

We define convergence to the point (1, 1) because the distance of the iteration is less than 10−3,

and this convergence is realised in, at most, 40 iterations.

We have tested with different values of a over a wide range and obtained that there are the same

dynamical plane for different values of a. As we can see in Figure 10.3, all initial points converge

to the root (1, 1) showing the good stability properties of this iterative scheme with memory,

even in this multidimensional case.

Figure 10.3: Dynamical plane of Kurchatov’s scheme for a = −0.1

10.3.1.2 Steffensen’s Scheme

In this section, we perform the dynamical study of Steffensen’s scheme with memory for system

p(x) = 0. Operator ϕS obtained by Steffensen’s method is

ϕS(z, x) =


x1 +

(x3
1−1)2

(x2
1+x1z1+z2

1)

((
1−x3

1
x2
1+x1z1+z21

+x1

)3

−x3
1

)
x2 +

(x3
2−1)2

(x2
2+x2z2+z2

2)

((
1−x3

2
x2
2+x2z2+z22

+x2

)3

−x3
2

)

 . (10.6)

Theorem 10.3.3. Operator OS(z, x) = (x, ϕS(z, x)) has four fixed points, which are

• fixed point (z, x) = (S1, S1), with S1 = (1, 1),
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• strange fixed point (z, x) = (S2, S2), being S2 = (0, 0),

• strange fixed point (z, x) = (S3, S3), being S3 = (1, 0),

• strange fixed point (z, x) = (S4, S4), with S4 = (0, 1).

The strange fixed points are not hyperbolic and the fixed point (S1, S1) is a superattracting fixed

point.

Proof. In order to study the character of these fixed points, we need to obtain matrices ∂ϕS

∂z and
∂ϕS

∂x . We denote by GZi(z, x) for i = 1, 2 the following expression:

GZi(z, x) =

(
x3i − 1

)2
(xi + 2zi)

(
x2i + xizi + z2i

) (
3x2i zi + x3i + 3xiz

2
i + 2

)(
6x4i z

2
i + x3i

(
6z3i + 1

)
+ 3x2i

(
z4i + zi

)
+ 3x5i zi + x6i + 3xiz

2
i + 1

)2 . (10.7)

Thus,

∂ϕS
∂z

(z, x) =

GZ1(z, x) 0

0 GZ2(z, x)

 .

We denote by GXi(z, x) for i = 1, 2 expression:

GXi(z, x) =
36x4i z

2
i + x3i

(
39z3i + 7

)
+ 12x2i

(
2z4i + zi

)
+ 18x5i zi(

6x4i z
2
i + x3i

(
6z3i + 1

)
+ 3x2i

(
z4i + zi

)
+ 3x5i zi + x6i + 3xiz

2
i + 1

)2
+

4x6i + 6xiz
2
i

(
z3i + 2

)
+ 3z3i + 1(

6x4i z
2
i + x3i

(
6z3i + 1

)
+ 3x2i

(
z4i + zi

)
+ 3x5i zi + x6i + 3xiz

2
i + 1

)2 .
(10.8)

Thus,

∂ϕS
∂x

(z, x) =

((
x31 − 1

) (
z31 − 1

)
GX1(z, x) 0

0
(
x32 − 1

) (
z32 − 1

)
GX2(z, x)

)
.

Let us now deduce the character of the fixed points (Si, Si), for i = 1, . . . , 4.

• For the point associated to S1, the related matrices are

∂ϕS
∂z

(S1, S1) =

(
0 0

0 0

)
,

and
∂ϕS
∂x

(S1, S1) =

(
0 0

0 0

)
.

We can see that both eigenvalues are 0 and, from Theorem 10.2.2, we conclude that the

fixed point is superattracting point.
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• For the point associated to S2, we obtain

∂ϕS
∂z

(S2, S2) =

(
0 0

0 0

)
,

and
∂ϕS
∂x

(S2, S2) =

(
1 0

0 1

)
.

By applying Theorem 10.2.2, the eigenvalues of this point are the values λ satisfying

0 = det(λI −O′
S(S2, S2)) = det

(
λ2I − λ∂ϕS

∂x (S2, S2)− ∂ϕS

∂z (S2, S2)
)

= λ2(λ− 1)2.
(10.9)

It follows that the eigenvalues are 0 and 1, so we cannot conclude anything about the

character of this strange fixed point as it is not hyperbolic.

• For the fixed point associated to S3, the matrices are

∂ϕS
∂z

(S3, S3) =

(
0 0

0 0

)
,

and
∂ϕS
∂x

(S3, S3) =

(
0 0

0 1

)
.

The eigenvalues associated with this fixed point are those λ values that satisfy

0 = det(λI −O′
S(S3, S3)) = det

(
λ2I − λ∂ϕS

∂x (S3, S3)− ∂ϕS

∂z (S3, S3)
)

= λ3(λ− 1).
(10.10)

It follows that the eigenvalues are 0 and 1, so again the point is not hyperbolic.

• Finally, let us study the character of the fixed point associated with S4. The matrices for

this fixed point are
∂ϕS
∂z

(S4, S4) =

(
0 0

0 0

)
,

and
∂ϕS
∂x

(S4, S4) =

(
1 0

0 0

)
.

So the eigenvalues of the fixed point associated with S4 are the values that satisfy

0 = det(λI −O′
S(S4, S4)) = det

(
λ2I − λ∂ϕS

∂x (S4, S4)− ∂ϕS

∂z (S4, S4)
)

= λ3(λ− 1).
(10.11)

It follows that the eigenvalues are 0 and 1, so again the point is not hyperbolic.
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Now, let us calculate the critical points.

Theorem 10.3.4. The critical points of operator OS(z, x) are vectors z = (z1, z2) and x =

(x1, x2), which satisfy that they are of one of the following 16 categories, which we denote by

CSi(z, x) for i = 1, . . . , 16. Table 10.2 is a summary of the different categories of critical points

we obtain.

Table 10.2: Categories of critical points of operator OS

x1 = 1 z1 = − 1
2x1 z1 =

±
√

−3x41 − 24x1 − 3x21
6x1

x2 = 1 CS1 CS5 CS9 CS13
z2 = − 1

2x2 CS2 CS6 CS10 CS14

z2 =

√
−3x42 − 24x2 − 3x22

6x2
CS3 CS7 CS11 CS15

z2 =
−
√

−3x42 − 24x2 − 3x22
6x2

CS4 CS8 CS12 CS16

Proof. We are working in real multidimensional dynamics, so it is assumed that the critical points

have real numbers as their components.

If we define DGXi(z, x), i = 1, 2, as

DGXi(z, x) = λ2 − λ(x31 − 1)(z31 − 1)GXi(z, x)−GXi(z, x),

then, we can check that

det(λI −O′
S(x, z)) = det

(
λ2I − λ

∂ϕS
∂x

− ∂ϕS
∂z

)
= det

(
DGX1(z, x) 0

0 DGX2(z, x)

)
.

(10.12)

Additionally, it follows that all eigenvalues are zero if the point (z, x) can be expressed as one of

the forms given in Table 10.2.

As we can see on Table 10.2, there exists a certain symmetry relation in the components of the

following CSi(z, x).
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Table 10.3: Symmetry relation between CSi(z, x)

CS2(z, x) CS5(z, x)

CS3(z, x) CS9(z, x)

CS4(z, x) CS13(z, x)

CS7(z, x) CS10(z, x)

CS8(z, x) CS14(z, x)

CS12(z, x) CS15(z, x)

For that reason, and because the operator also satisfies certain symmetry with the components,

we only study the behaviour of certain categories of critical points.

• The behaviour of the critical points CS2(z, x) is analysed with the following plane where

the convergence to the fixed points is shown in different colours. In this case, if the distance

from the iteration to the fixed point is less than 10−3, we say that the iteration is in the

basin of attraction of the fixed point. In this case, it is represented orange if the critical

point converges to (S1, S1), blue if it converges to the strange fixed point (S3, S3), red

if it converges to the strange fixed point (S4, S4) and green if it converges to the point

(S2, S2). If the points are represented black, they have not converged to any of the fixed

points in less than 40 iterations. In this case, we have that x1 = 1, and the value z2
depends on x2, so the variables of the axes are x2 and z1 as shown in Figure 10.4.

Figure 10.4: Convergence of the critical points of category CS2(z, x)

• In a similar way to the previous case, we study the convergence of the critical points of

category CS3(z, x) and of category CS4(z, x). In these cases, the value x1 is also fixed

as 1 and the value z2 depends on x2; for this reason, the variables of the axes are x2 and

z1 as in the previous cases and as can be seen in Figure 10.5. In this case, we have that

the behaviour of both categories of critical points is the same; for that reason, we only

show one dynamical plane.
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Figure 10.5: Convergence of the critical points of category CS3(z, x) and CS4(z, x)

• For the critical points of category CS6(z, x), the convergence study is similar to the

previous ones, but in this case none of the variables are fixed, and it is z1 and z2 that

depend on x1 and x2, respectively; for this reason, the dynamical plane has as axis variables

the values of x1 and x2, as shown in Figure 10.6.

Figure 10.6: Convergence of the critical points of category CS6(z, x)

• For the critical points of category CS7(z, x) and CS8(z, x), we also have as variables on

the axes the values of x1 and x2, as shown in Figure 10.7. In this case, we have decided to

show only one dynamical plane because the behaviour of both categories of critical points

is the same.
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Figure 10.7: Convergence of the critical points of category CS7(z, x) and CS8(z, x)

• For the critical points of category CS11(z, x), CS12(z, x) and CS16(z, x), we also have

as variables on the axes the values of x1 and x2. In this case, we have that the behaviour

of these 3 categories of critical points is the same; for that reason, we only show one

dynamical plane (Figure 10.8).

Figure 10.8: Convergence of the critical points of category CS11(z, x), CS12(z, x) and
CS16(z, x)

10.3.2 Coupled Second-Order System

Now, we are going to perform the dynamical analysis of these method applied to other system

that has a more complicated aspect since the variables cannot be separated, that is to say, we

do not have that the first component of the operator only depends on the first components of

the variables of x and z and the same with the second component; instead, in this case, we have

that both components of the operator depend on both components of the vectors. The next

system we solve, denoted by q(x) = 0, is
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{
x1x2 + x1 − x2 − 1 = 0,

x1x2 − x1 + x2 − 1 = 0,
(10.13)

where (x1, x2) ∈ R2. The real roots of this system are (−1,−1) and (1, 1).

10.3.2.1 Kurchatov’s Scheme

We then study the stability of vectorial Kurchatov’s scheme applied to this system. If we apply

Kurchatov’s scheme to the proposed system, we obtain the following operator:

φK(z, x) =

(
1−x2z1+x1(x2+z2)

2x1−z1+z2
1−x2z1+x1(x2+z2

2x1−z1+z2

)
. (10.14)

Theorem 10.3.5. The only fixed points of operator OK(z, x) = (z, φK(z, x)) are z = x =

(−1,−1) and z = x = (1, 1), and both have superattracting character.

Proof. Now, we calculate the matrices ∂φK

∂z and ∂φK

∂x to obtain the character of these fixed

points.

∂φK

∂z
(z, x) =

x1(z2−x2)−x2z2+1
(2x1−z1+z2)2

2x2
1−x1(x2+z1)+x2z1−1

(2x1−z1+z2)2

x1(z2−x2)−x2z2+1
(2x1−z1+z2)2

2x2
1−x1(x2+z1)+x2z1−1

(2x1−z1+z2)2

 ,

and

∂φK

∂x
(z, x) =

x2(z1+z2)−z1z2+z2
2−2

(2x1−z1+z2)2
x1−z1

2x1−z1+z2
x2(z1+z2)−z1z2+z2

2−2
(2x1−z1+z2)2

x1−z1
2x1−z1+z2

 .

If we evaluate the previous matrices in the fixed points, we obtain in both cases that

∂ϕ

∂z
(±((1, 1), (1, 1))) =

(
0 0

0 0

)
,

and
∂ϕ

∂x
(±((1, 1), (1, 1))) =

(
0 0

0 0

)
.

Therefore, by Theorem 10.2.2, both eigenvalues are 0 for all the fixed points. For that reason,

both fixed points are superattracting points.

Theorem 10.3.6. Operator OK(z, x) = (z, φK(z, x)) has two categories of critical points. They

have one of the following two structures:

• C+(z, x) = (z1, z2, x1, x1) where z2 = −x1 +
√

2− x21 + z1.
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• C−(z, x) = (z1, z2, x1, x1) where z2 = −x1 −
√

2− x21 + z1.

Proof. From Theorem 10.2.2 and the form of ∂φK

∂x and ∂φK

∂x , we can see that the eigenvalues

are all of them zero if

x1 − x2 = 0 and (z2 − z1 + x1)
2 = 2− x21.

Let us draw the orbit of these critical points. In this case, we draw on the abscissa axis the values

of x1, which is the same value as x2, and we draw on the other axis the value of z1 since z2 is

obtained from x1 and z2.

To generate these convergence planes of the points of category C+(z, x), we are going to see

which of these points belong to the basins of attraction of the attracting fixed points, that is,

which them converge to the attracting fixed points.

To do this, we make a mesh of 400 × 400 points in the set [−2, 2] × [−2, 2]. We made sure

that increasing the set did not alter the behaviour. On one of the axes, we have the variable x1,

and on the other, the variable z1, and with these variables we construct our points of category

C+(z, x). We take each of these points of category C+(z, x), and we apply our operator φK on

them.

If this initial point converges to (1, 1), we represent it in orange, and if converges to (−1,−1),

we represent it in blue. As convergence criteria, we have that the distance from the iteration to

the fixed point is less than 10−3 in less than 40 iterations. If this is not satisfied, we represent

it in black.

Figure 10.9 shows the plane of convergence for the points of category C+(z, x).

Figure 10.9: Convergence of the critical points of category C+(z, x)
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In the same way that the plane of convergence of the points of category C+(z, x) is generated,

we generate the plane of convergence of the points of category C−(z, x), which is shown in

Figure 10.10.

Figure 10.10: Convergence of the critical points of category C−(z, x)

We observe in this planes of convergence, Figures 10.9 and 10.10, that global convergence to

the roots of the system exists.

To conclude the dynamical study of the Kurchatov method for this system, we draw some

dynamical planes in order to see the behaviour of the points in general. To draw these planes,

given that we have an operator with 4 variables, what we have done is to select a parameter a, so

that z = x− (a, a). Thus, our variables would be x1 and x2, and the variables z are a variation

of these.

To make the dynamical planes, we have chosen a mesh of 400× 400 points. If the initial point

converges to the point (1, 1), it is represented orange; if it converges to point (−1,−1), it is

represented blue; and if it does not converge to any point, is represented black.

We have tested with different values of a over a wide range and obtained that there are similar

dynamical planes for different values of a; for that reason, in Figures 10.11, 10.12 and 10.13 we

show how they behave differently from each other. As we can see on this figure, we have that

all initial approximation converge to the roots of the polynomial.
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Figure 10.11: Dynamical plane of Kurchatov’s scheme with a = 0.1

Figure 10.12: Dynamical plane of Kurchatov’s scheme with a = −1

Figure 10.13: Dynamical plane of Kurchatov’s scheme with a = 1
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10.3.2.2 Steffensen’s Scheme

We now continue with the study of the stability of Steffensen’s vectorial method on the coupled

system presented. If we apply Steffensen’s scheme with memory to system q(x) = 0, we obtain

the following operator

θS(z, x) =

 2x2
1x2+x1x2z2+x1−x2+z2

2x2
1+x1(x2+z2)+x2z2−1

2x2
1x2+x1x2z2+x1−x2+z2

2x2
1+x1(x2+z2)+x2z2−1

 . (10.15)

Theorem 10.3.7. Operator O(z, x) = (x, θS(z, x)) has three fixed points, that is,

• z = x = (−1,−1), which is a superattracting fixed point.

• z = x = (1, 1), which is a superattracting fixed point.

• z = x = (0, 0), which is a non-hyperbolic strange fixed point.

Proof. Let us calculate the matrices ∂θS
∂z and ∂θS

∂x to obtain the character of the fixed points.

∂θS
∂z

(z, x) =

0 − (x2
1−1)(x2

2−1)
(2x2

1+x1(x2+z2)+x2z2−1)2

0 − (x2
1−1)(x2

2−1)
(2x2

1+x1(x2+z2)+x2z2−1)2

 , (10.16)

∂θS
∂x

(z, x) =

 (x2
2−1)(2x2

1+4x1z2+z2
2+1)

(2x2
1+x1(x2+z2)+x2z2−1)2

(x2
1−1)(4x2

1+4x1z2+z2
2−1)

(2x2
1+x1(x2+z2)+x2z2−1)2

(x2
2−1)(2x2

1+4x1z2+z2
2+1)

(2x2
1+x1(x2+z2)+x2z2−1)2

(x2
1−1)(4x2

1+4x1z2+z2
2−1)

(2x2
1+x1(x2+z2)+x2z2−1)2

 . (10.17)

For the fixed points associated with the roots, both matrices are the zero matrix. So, by Theorem

10.2.2, both eigenvalues are 0. Then, the fixed points associated with the roots are superattract-

ing points. Let see what happens to the strange fixed point. The matrices are

∂θS
∂z

((0, 0), (0, 0)) =

(
0 −1

0 −1

)
, (10.18)

∂θS
∂x

((0, 0), (0, 0)) =

(
−1 1

−1 1

)
. (10.19)

By Theorem 10.2.2, the eigenvalues for that strange fixed point are the values λ that satisfy the

following equation:

det(λI −O′
S((0, 0), (0, 0)) = det

(
λ2I − λ

∂θS
∂x

− ∂θS
∂z

)
((0, 0), (0, 0)) = λ2(λ2 + 1) = 0.

(10.20)

So, the eigenvalues are ±i and 0. We cannot determine the character of that non-hyperbolic

fixed point.
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Theorem 10.3.8. Operator OS(z, x) = (x, θS(z, x)) has six categories of critical points. These

categories of points are preimages of one of the fixed points and are described in Table 10.4.

Table 10.4: Categories of critical points of operator OS

x1 = 1 x1 = −1 z2 = −x2 − 2x1
x2 = 1 CP1(z, x) if

z2 ̸= −3

CP5(z, x) if

|x1| ≠ 1

x2 = −1
CP2(z, x) if z2 ̸= 3 CP6(z, x) if

|x1| ≠ 1

z2 = −1− 2x1 CP3(z, x) if

x2 ̸= −1

z2 = 1− 2x1 CP4(z, x) if x2 ̸= 1

Proof. Since

det(λI −O′
S(z, x)) = λ4 + λ2

(−1 + x21)(−1 + x22)− λx22
(−1 + 2x21 + x2z2 + x1(x2 + z2))2

+λ3
x21(7− 4x21 − 2x22)− 4x1(−2 + x21 + x22)z2 − (−2 + x21 + x22)z

2
2

(−1 + 2x21 + x2z2 + x1(x2 + z2))2
,

then, all the eigenvalues are zero, if (z, x) has one of the categories shown in Table 10.4.

1. Since θS evaluated at the CP2(z, x), CP4(z, x) and CP6(z, x) points is (−1,−1), then

those categories of critical points belong to the basin of attraction of (−1,−1).

2. Since θS evaluated at the CP1(z, x), CP3(z, x) and CP5(z, x) points is (1, 1), then those

categories of critical points belong to the basin of attraction of (1, 1).

Below, we draw a dynamical plane of Steffensen’s scheme with memory in the same way as was

done for the Kurchatov’s scheme. In Figure 10.14, we can see a black region; that is because we

have slow convergence to the roots in that region since there are no critical points outside the

basins of attraction of the roots, so there cannot be convergence to any point other than the

roots. Here, we also tried different values for the parameter a, and similar results were obtained,

although the larger the parameter was, the slow convergence zone was increased.
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Figure 10.14: Dynamical plane of Steffensen’s method with a = −0.1

Figure 10.15: Dynamical plane of Steffensen’s method with a = −1

Figure 10.16: Dynamical plane of Steffensen’s method with a = 1
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10.4 Conclusions

In recent years, the design of new vectorial iterative schemes with memory for solving nonlinear

problems is an expanding area in Numerical Analysis. Although it is possible to test these methods

numerically, there was no possibility to analyse their performance qualitatively so far, since all

existing techniques, including both complex and real discrete dynamical ones, were not designed

to handle the high dimension of the rational functions involved.

We have tested this proposed procedure by analysing the behaviour of Kurchatov’ and Steffensen’s

multidimensional schemes on coupled and uncoupled nonlinear polynomial systems. Results

shown the applicability of our procedure and offer many opportunities for research in the future.
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Chapter 11

Conclusions and future work

”No human enquiry can be a science unless it pursues its path through

mathematical exposition and demonstration.”

Leonardo da Vinci

11.1 Conclusions

The results obtained during the course of this Doctoral Thesis are summarised below.

In Chapter 3, a family of optimal multi-step iterative methods for solving nonlinear equations is

designed as a variant of n-times compose Newton’s scheme. The order of convergence of the

n-steps element of the class is 2n, only performing n + 1 functional evaluations per iteration,

therefore, that method is an optimal procedure. We perform the dynamical analysis for the

elements of order 2, 4 and 8 and compare the dynamical behaviour of these schemes and other

known procedures of similar order.

In Chapter 4, based on Traub’s method, two parametric families of derivative-free iterative

schemes with weight function for nonlinear equations are designed, denoted by M4 and M6.

Under certain conditions, this families have order 4 and 6, respectively and the family M4 is a

class of optimal iterative procedures. Memory is introduced to both families in order to increase

the order of convergence without performing more functional evaluations per iteration, increasing

the order by up to two units for the family of order 4, and increasing it by up to three units for the
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family of order 6. This introduction of memory is performed by using Newton interpolating poly-

nomial of different degrees. A complex dynamical analysis is performed for class M4, obtaining

for which parameter values, the class of iterative schemes show more stable performance, making

parameter planes as a graphical representation. At the same time that this analysis is performed,

a real multidimensional dynamical analysis is also performed for certain memory variants of this

family, in order to make comparisons between the iterative class and its memory variants, beyond

the order of convergence. We observe that procedures with memory show a more stable and

predictable behaviour.

In Chapter 5, we have designed of an iterative step for obtaining simple roots of a nonlinear

equation simultaneously. It is obtained that the order of convergence of this step is 2, and

it is also analysed that it can be added to any other method ϕ, thus generating a predictor-

corrector scheme, denoted by ϕS , that approximates roots simultaneously with twice the order of

convergence of the predictor procedure used for arbitrary equations and three times the order of

convergence in the case of polynomial equations. How the behaviour of the schemes is modified

by adding this step of simultaneity is graphically represented in this chapter for Newton’s method,

Steffensen’s scheme and others, illustrating that non-convergence points of the original procedure

becomes convergence in the simultaneous case.

In Chapter 6, iterative methods, based on Kurchatov’s scheme, for obtaining roots of equations

with multiplicity greater than 1 are presented, denoted by KM , KMD and KMS. This schemes

do not require the value of this multiplicity in their iterative expression, because to know this

value, it is necessary to know the solutions of the problem, and if we want to obtain all the roots,

we must change the value of the multiplicity depending on which root we want to converge to.

The proposed procedures KM and KMD have second-order of convergence. Method KM has

derivatives in its iterative expression, but it can be seen through the dynamical analysis that has

wider zones of convergence for roots with different multiplicities. Method KMD is a variant

derivative-free of KM and scheme KMS is procedure KM combined with the iterative step

defined in Chapter 5, thus obtaining an iterative scheme that converges simultaneously to several

roots without the need to take into account whether they are single or multiple or whether they

have different multiplicities. This method has convergence order four for arbitrary equations and

order 6 in the case of polynomial equations.

In Chapter 7, based on two known iterative methods for nonlinear equations, a parametric class

of iterative schemes for the approximation of nonlinear systems of equations is designed. This

class has derivatives in its iterative expression. The schemes of this class has convergence order

3, and increases to order 4 when the parameter has null value. By performing a unidimensional

complex dynamical study for this family, we find out for which parameter values the most stable

procedures are obtained.

In Chapter 8, the iterative classes proposed in Chapter 4 are extended to the resolution of nonlinear

systems. In this case, the family M4 of order 4 maintains the order, but the family M6 of order

6 manages to increase the order of convergence by one unit, thus obtaining a parametric class of

iterative schemes of order 7 for nonlinear systems, denoted by M7. As in Chapter 4, memory is

introduced to these families, increasing the order by two units and four units, respectively, that
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is, schemes of up to order 6 are obtained for the case of the iterative class of order 4 and methods

of up to order 11 for the case of the iterative class of order 6. This introduction of memory is

made by using divided difference operators. In this chapter, in one of the numerical experiments

there are dynamical planes to obtain a graphical representation of the behaviour of the iterative

procedures presented in this chapter.

Chapter 9 focuses on the modification of the iterative step proposed in Chapter 5 in order

to adapt it to the resolution of nonlinear systems. The obtained step maintains the order of

convergence that we had for nonlinear equations, and it is also proved that it can be added to

any iterative method for systems obtaining a predictor-corrector procedure that doubles the order

of the predictor scheme.

In Chapter 10, some theoretical results are obtained to carry out the dynamical study for iterative

schemes with memory that solve systems of nonlinear equations. Once these theoretical concepts

have been defined, the dynamical analysis of Steffensen’ and Kurchatov’s method for two different

systems of nonlinear equations, is carried out. On the one hand, we study what happens in the

case where the system is uncoupled, that is, the components do not interact with each other,

while on the other hand, we study what happens in the case of a coupled system, where the

behaviour of each component involves both components. It is shown in the dynamical analysis,

that the theoretical results obtained are useful for the realisation of the analysis.

11.2 Future work

In the following, we describe the future lines of research that emerge from the research carried

out and the results obtained.

• In this Thesis, we have proposed how to study the dynamics of vectorial methods with mem-

ory and we have developed the study for vectorial Kurchatov’s and Steffensen’s schemes

applied to several nonlinear problems. Thus, one of the future lines is to apply this tool to

other vectorial iterative procedures.

• An iterative method has been proposed that simultaneously obtains several roots with

different multiplicities for nonlinear equations, therefore one of the future lines will be to

extend this to the case of nonlinear systems. It is also planned to modify the schemes that

obtain simultaneous roots or multiple roots in order to increase the order of convergence

by use different techniques such as the introduction of weight functions, the introduction

of memory, etc., and to study the dynamical analysis of the iterative procedures.

• The q-calculus (quantum calculus) area has been an important research interest in math-

ematics for the last few decades. The q-analogue of the ordinary derivative has wide

applications so that some of the recently developed iterative methods use q-derivatives

instead of the usual derivatives. Thus, designing and analysing iterative methods using

this technique is one of the lines of research that we intend to pursue in the coming years.
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• Throughout the Thesis, it has been distinguished if it was a nonlinear equation or a

nonlinear system, but not the case of matrix equations. Therefore, another of the future

lines of research will be the study and development of iterative methods that allow the

approximation of the solution of matrix equations.
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Aplicada (CEDYA/CMA). July, 2022. Zaragoza, Spain.

• Mathematical Modelling in Engineering & Human Behaviour (IMM 2022). ISBN:978-84-

09-47037-2. July, 2022. Universitat Politècnica de València, Spain.

• XV Jornadas de Analisis Numérico y Aplicaciones (XV JANA). November, 2022. Univer-

sidad de la Rioja, Spain.
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A.3 Others

A.3.1 Related to the area of Mathematics

• Degree in Mathematics (2019), by Universitat de València.

• University Master’s Degree in Mathematical Research (2020), by Universitat de València

and Universitat Politècnica de València.

A.3.2 Teaching merits

• Type of teaching: Official teaching

– Name of the subject/course: Fundamentos matemáticos II

– University degree: Doble Titulación. Grado en Ingenieŕıa Forestal y del Medio Natural

y Grado en Ciencias Ambientales (itinerario Valencia-Gand́ıa); Grado en Ingenieŕıa

Forestal y del Medio Natural

– Year: 2022-2023

– Type of hours/credits ECTS: Hours

– No. of hours/credits ECTS: 26

– Entity: Universitat Politècnica de València

• Type of teaching: Official teaching

– Name of the subject/course: Matemáticas

– University degree: Grado en Biotecnoloǵıa

– Year: 2022-2023

– Type of hours/credits ECTS: Hours

– No. of hours/credits ECTS: 34

– Entity: Universitat Politècnica de València

• Type of teaching: Official teaching

– Name of the subject/course: Matemáticas

– University degree: Grado en Biotecnoloǵıa
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– Year: 2021-2022

– Type of hours/credits ECTS: Hours

– No. of hours/credits ECTS: 60

– Entity: Universitat Politècnica de València

A.3.3 Contracts and grants

• Superior Research Technician at Instituto de Matemática Multidisciplinar, Universitat

Politècnica de València (BECA FPI-UPV 2020). Period: 01/03/2021 - up to date.

• Aid for mobility within the Programme for the Training of Research Staff (FPI) of the

UPV 2021.

A.3.4 Research stay

• Research stay at Arts et Metiers Institute of Technology-ENSAM.

– Supervisor of the stay: Francisco Chinesta Soria.

– Period: 1 March 2022–6 June 2022.

A.3.5 Related to the area of languages

• English: Aptis General (C), British Council, 2022.
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Pures et Appliquées 1 (1918), pp. 47–246.

[17] P. Fatou. “Sur les équations fonctionnelles Premier mémoire”. Bulletin de la Société
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On numerous occasions, when an applied mathematics problem is
being solved, it is necessary to solve a nonlinear problem. It is
not always possible to solve these nonlinear problems analytically,
so iterative methods are used in order to obtain an approximation
to the solution of the problem.

The work developed in this doctoral thesis is based on the study
and design of iterative methods to obtain approximations to the
solution of nonlinear equations and systems of nonlinear equations.

In this dissertation, the composition of iterative schemes, the
introduction of weight functions or the introduction of memory
are used. These techniques are used to design methods with a
higher order of convergence or to modify existing methods in order
to be applied to problems that cannot be solved by the original
methods, such as obtaining solutions with a multiplicity greater
than one, obtaining solutions simultaneously or the applicability
to non differentiable problems. Dynamical analysis is performed
to obtain the behaviour of the initial estimations by real, complex
or multidimensional dynamical techniques, focusing one of the
chapters of the memory on how to perform the dynamical analysis
of multidimensional iterative methods with memory.
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