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By varying the degree of correlation in stealthy hyperuniform (SHU) materials, the continuous evolution from un-
correlated disorder to periodic media is possible and allows, as such, to study the fate of the bimodal distribution,
characteristic of a diffusive transport. Considering the wave transport through a SHU distribution of a given number
of scatterers and at a given frequency, the transition from a diffusive to a transparent medium is clearly observed only
below the Bragg frequency. This transition is characterized by a threshold value of the stealthiness, at the vicinity of
which the material abruptly changes from diffusive to transparent. Contrastingly, no such clear transition is observed at
or above the Bragg frequency and, surprisingly, a seemingly-bimodal distribution of the transmission eigenvalues still
characterizes the SHU materials, even when strongly correlated.

Interferences play an essential role in wave transport
through complex heterogeneous media. They give rise to phe-
nomena that prevail in the scattering properties of such me-
dia and open up numerous applications for wave control. En-
hanced backscattering, conductance fluctuations, or the An-
derson localization in disordered media1–3, as well as the band
structure of the transmission spectrum in periodic media4,5,
are well-known examples of interference induced phenomena.
Another striking example is the bimodal distribution of the
transmission eigenvalues (TEV) in the transport through a dif-
fusive disordered medium6–14. The TEV distribution P(τ) in-
deed exhibits two peaks corresponding to closed, almost fully
reflected, eigenchannels (τ→ 0) and open, almost fully trans-
mitted, eigenchannels (τ → 1). Of particular interest are the
latter, which existence implies, that, given a sufficiently con-
trolled pattern of the incident wave, it can be transmitted with
almost no energy loss through an otherwise opaque medium.
This counter-intuitive effect has given rise to the wavefront
shaping technique, following a first experimental evidence by
Vellekoop and Mosk15.

Between the limit cases of fully disordered or perfectly
crystalline media, correlated materials, that is, scattering
systems which disorder displays spatial correlations, have
emerged as new possibilities to control waves16–19 and design
functional materials20,21. Also, one may wonder about the
fate of the bimodal property when introducing correlations,
especially since this property will no longer be observed in
strongly correlated, crystalline, structures, which will rather
be fully opaque or transparent due to Bragg scattering.

A good candidate to investigate the continuous transition
from diffusive to transparent materials is the class of hy-
peruniform materials22. Hyperuniform materials are made
of a discrete distribution of scatterers on a correlated point
pattern, the long-range density fluctuations of which vanish.
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FIG. 1. Schematic representation of the scattering of a wave imping-
ing on a random distribution of scatterers in a quasi-one-dimensional
waveguide. For the sake of simplicity and computational efficiency,
the scatterers (red squares) are located on a regular grid, and a full
wave numerical solution37 gives the scattering matrix of the L-length
disordered slab.

In Fourier space, this translates in a vanishing structure factor
S(q) when |q| → 0. A particular class of hyperuniform
materials, which we will consider in this paper, is that
of stealthy hyperuniform (SHU) materials, for which the
structure factor vanishes on a finite domain |q| < qc, the
bound of which depends on a stealthiness parameter, χ (see
below), that allows us to continuously tune the material from
fully disordered to perfectly ordered23–35. As a consequence,
the material is transparent to long-wavelength incident waves
under the assumption of single scattering. Experimental
evidences of this kind of structures has been recently shown
for airborne acoustic36,37 as well as for electromagnetic
waves17,32,38

In this work, we investigate the transition from uncorrelated
disorder to periodic media by considering the transmission of
waves in a quasi-one-dimensional disordered waveguide. On
a L-length segment of an otherwise homogeneous waveguide
with unit width (Fig. 1), local heterogeneities are created by
changing the material parameters on a set of randomly chosen
sites of a regular grid (red squares).

Namely, the wave equation reads

div(a(r)∇ψ)+ k2b(r)ψ = 0, (1)

with a = b = 1 in the background medium of wavenumber k
and a� 1, b� 1 in the scatterers. Small values of a and b
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FIG. 2. (a,b,c) typical configurations of two-dimensional SHU point patterns for increasing values of the stealthiness (χ = 0.2, 0.48, and 0.6),
obtained as detailed in Ref.28. (d,e,f) corresponding structure factor S(q), as estimated by the spatial Fourier transform of a pattern having the
dimensions (L,1) of the slab in Fig. 1, with L = 3 (it is thus made of approximately 2000 scatterers). On each plot, the pink, red and dark red
circumferences represent the chosen observation frequencies, k/kB = 0.6, 1.08, and 1.28, see Fig. 3.

are chosen so that the scatterers behave as acoustically rigid
obstacles (or as perfectly conducting obstacles if ψ is a TM-
polarized magnetic field travelling in the waveguide), hence
without resonant behaviour. With the waveguide supporting
N propagating modes, the N×N transmission matrix T of the
disordered slab is computed and used to characterize the wave
transport (see37 for details on the numerical computation).

The scatterers are located on the grid as follows: (i) a 2D
SHU distribution of Ns points on a Ls×Ls square area is first
generated following the procedure proposed by Froufe-Pérez
et al.28 (see below), (ii) this distribution is then scaled to a
L× L area, so as to keep constant the characteristic length
d = L/

√
Ns, that is, the typical distance between the points,

(iii) a subset of the point distribution that belongs to a L× 1
rectangular area is extracted, (iv) the distribution of the nearest
square sites on the grid is associated to the point distribution.
Note that the mesh size is taken small enough (typically, 10−2)
to ensure that this shifting of the points on the regular grid has
no significant effect on the SHU pattern properties.

The algorithm proposed in28 starts from a random distri-
bution of points {r j}, j ∈ [1,Ns], in a square box and uses a
simulated annealing relaxation scheme to find a pattern with a

minimized structure factor in the reciprocal domain |q|< qc:

S(q) =
1
Ns

∣∣∣∣∣ Ns

∑
j=1

eiq·r j

∣∣∣∣∣
2

< ε, (2)

with, typically, ε = 10−6. The degree of positional correlation
of the generated pattern can be encoded by the stealthiness χ:

χ =
M(qc)

2(Ns−1)
, M(qc) =

1
2

πq2
c

(2π/Ls)2 , (3)

which is the ratio of the number of constrained degrees of
freedom, M(qc), over the total number of degrees of freedom,
2(Ns − 1) (upon removing the translational degrees of free-
dom). The lower bound χ = 0 corresponds to an uncorrelated
disordered distribution. Figures 2(a-c) show typical patterns
of SHU points distributions at low (χ = 0.20), mid (χ = 0.48),
and higher (χ = 0.60) values of the stealthiness, revealing a
gradually increasing order. The SHU system crystallizes into
a square lattice when qc = qB = 2π/d, corresponding to a
maximum value of the stealthiness χmax ' π/4 for large Ns
(sets of approximately 6000 points were generated for the fol-
lowing numerical results).

Figures 2(d-f) show the corresponding structure factor S(q)
as estimated by the spatial Fourier transform of the L×1 dis-
tribution of scatterers aligned to the grid, with L = 3 (it is
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FIG. 3. Transmission through a slab of scatterers with correlated disorder, at a frequency below the Bragg frequency kB (first row, a-d), at
kB (second row, e-h), and above kB (third row, i-l). First (left) column: conductance, averaged over 100 realizations, as a function of the
stealthiness χ . Second column: TEV distribution P(τ) (normalized) for selected values of χ , shown as dashed blue lines in the first column
plots. The black solid line shows the theoretical bimodal distribution 5. Third column: TEV τ2

n for the same values of χ , ordered by decreasing
values, with comparison to the bimodal relation 6. Fourth column: TEV τ2

n , as a function of the stealthiness χ and index n.

thus made of approximately 2000 scatterers). For a low de-
gree of correlation (χ = 0.20), the constrained region |q|< qc
clearly appears and the surrounding region displays a global
isotropy. SHU structures remain isotropic up to χ ' 0.5, while
S(q) locally increases around |q| = qB, as a precursor signa-
ture of the Bragg scattering characteristic of periodic media,
see Fig. 2(e). A second local increase near |q| = 2qB is ob-
served. Above χ = 0.5, the structures are no longer isotropic,
see Fig. 2(f), and a discrete pattern, characteristic of a crys-
talline structure, gradually appears.

Let us place the generated disordered distributions of scat-
terers in a waveguide, as shown in Fig. 1, and analyze how
the disorder correlation affects the transmission, depending
on the frequency of the incident wave. To do this, three fre-
quencies are chosen as depicted on Figs. 2(d-f) by the pink,
red, and dark red circumferences. Note that these circum-

ferences depict the frequencies in a reduced form k/kB, with
kB = qB/2= π/d, as a consequence of the von Laue condition
for scattering39 (see, e.g.,40 for details). For χ small enough,
the three chosen frequencies “lie” in the unconstrained re-
gion, see Fig. 2(d) and thus a classical diffusive transport is
expected. For larger values of χ , the transport in a strongly
correlated medium, and consequently the transition from dis-
order to order, is more sensitive to the frequency, and in par-
ticular to its relative value to the Bragg frequency kB.

The first frequency, k = 0.6kB (pink circumfrence), is cho-
sen below the Bragg frequency, such that, for χ large enough
(namely, above χ = 0.62χmax ' 0.3), this frequency lies in
the constrained region and the medium is then expected to be
transparent. This is indeed what is observed when plotting
the Landauer conductance g = Tr(TT†)41 as a function of the
stealthiness, see Fig. 3(a), where T represents the transmission
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FIG. 4. Averaged conductance, as shown in Fig. 3(a,e,i), compared with the inverse of the integrated structure factor F(q = αqB,χ), with (a)
α = 0.6, (b) α = 1.08, (c) α = 1.27,1.28,1.29.

matrix of the system.
The conductance is first relatively small (〈g〉/N ' 0.3, here

averaged over 100 realizations of the scatterer distribution),
as typically observed in the diffusive transport, and reaches a
high plateau for larger values of χ . Note that the conductance
does not reach its maximum value, 〈g〉/N = 1, although trans-
parency is expected. This is due to the alignment of the point
pattern on the regular grid (see above), the consequence of
which is a structure factor that is not perfectly zero in the con-
strained region, hence a non perfect transmission. Between
these two limits (diffusive and transparent), the transition is
abrupt. Note that a scale of this transition width with χ can
be deduced from the initial point pattern. Indeed, consider an
integrated structure factor

F(q,χ) = ∑
|q|=q

S(q,χ), (4)

the inverse of which is expected to be low in regions of strong
scattering and large in the regions of weak scattering, as is the
transmission. Figure 4(a) shows that F−1(q,χ) displays the
same abrupt transition for k < kB (analogously, q < qB) and
compares well with the conductance.

For a weakly correlated disorder, a characteristic property
of the diffusive transport is that the TEV follow the bimodal
distribution

P(τ) =
N`

L+ `

1
τ
√

1− τ
, (5)

with ` the transport mean free path, as shown in Fig. 3(b), or,
equivalently, in Fig. 3(c), with the TEV following

τn =
1

cosh2 (n/n̄)
, (6)

with n̄ adjusted to meet ∑
N
n=1 cosh−2(n/n̄) = 〈g〉6,11,42. Above

the threshold value χ ' 0.3 - an example is given in Figs. 3(b-
c) for χ = 0.4 - the TEV distribution no longer follows the bi-
modal distribution and no closed eigenchannel is observed, re-
sulting in the strongly increased transparency of the medium.
Figure 3(d) shows the distributions of TEV, τn, as functions of
the index n and stealthiness χ: the abrupt transition from the
diffusive to the transparent regime clearly appears.

Close to the Bragg frequency kB (red circumference in
Fig. 2), the effect of increasing the disorder correlation on the
transmission significantly differs from that observed at lower
frequencies. Figure 3(e) shows the evolution of the averaged
conductance with the stealthiness. While the medium still be-
haves as a diffusive medium for low values of χ , with the con-
ductance following the Ohm’s law 〈g〉/N = `/(L+ `)43, the
Bragg scattering, consequence of the progressive crystalliza-
tion of the medium, makes the averaged transmission decrease
near χ ' 0.5. Above χ ' 0.6, the anisotropy of the hyperuni-
form medium makes the transmission strongly dependent on
the incident field direction, or, in our case, on the realization
of the randomly generated slab in the waveguide: the medium
can be either strongly reflecting or almost transparent. This re-
lates to the structure factor shown in Fig. 2(f). Near |q| = qB
(red circumference) the structure factor may be close to zero
or have larger values (Bragg peaks), depending on the orien-
tation of the wavevector. When averaging over the angles,
the integrated structure factor F(q' qB,χ) decreases with in-
creasing χ in the crystalline regime (χ > 0.6, see Fig. 4(b)).

(a)k < kB, χ = 0.10

ψin

L = 3

(b)k < kB, χ = 0.48

ψin

FIG. 5. (a) Amplitude of a typical wavefield in a SHU medium with
low stealthiness and a a frequency below the Bragg frequency, il-
lustrating a characteristic diffusive transport. (b) At the same fre-
quency, amplitude of a typical wavefield in a SHU medium with a
larger stealthiness such that the medium is almost transparent. The
incident wave, ψin, is a plane wave.
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This decrease can be associated to the increase of the average
conductance in Fig. 3(e). Remarkably, a bimodal distribution
of the TEV is still observed when varying the stealthiness,
see Figs. 3(f-h). Regardless of the disorder correlations, the
eigenchannels are predominantly closed or open.

In the last case considered (dark red circumferences in
Fig. 2), when the frequency is higher than the Bragg fre-
quency, the wavevector always lies in the unconstrained re-
gion. A consequence is that the value of the conductance re-
mains roughly that in a fully diffusive medium, until the tran-
sition from disordered to crystalline, that is, around χ ' 0.5,
see Fig. 3(i). Then, the same averaging induced effect as dis-
cussed above leads to an increase of the transmission with
the stealthiness in crystallized SHU media. Note that, above
q = qB and for large χ , the evolution of the structure factor
no longer follows that of the conductance above k = kB, see
Figs. 4(c). Figure 2(f) might explain this: the Fourier trans-
form, performed over a finite L× 1 spatial domain with fi-
nite size scatterers, displays secondary maxima whereas the
Fourier transform of an infinite periodic distribution of points,
ideally giving the structure factor, would appear pointwise.
Consequently, the integrated structure factor, taken as an indi-
cator of the scattering by the medium, possibly overestimates
this scattering.

Note, finally, that a bimodal distribution of the TEV is still
observed when k > kB, regardless of the stealthiness. Thus, al-
though the bimodal distribution is usually known as a charac-
teristic of the diffusive transport in a fully disordered medium,
it seems that, considering SHU media, fulfilling a bimodal law
is the rule, and breaking it, the exception.

Figures 5(a) and (b) show two snapshots for k < kB of the
acoustic field through two SHU distributions with χ = 0.10
and χ = 0.48 respectively. As discussed before in Figs. 3
and 4, the random scattering for the SHU distribution with
χ = 0.10 at the k < kB makes the material almost opaque, as
the conductance and, as a consequence, the transmission is
very low. However, for the SHU distribution with χ = 0.48
at the k < kB, the material is transparent before the transition
from diffusive to transparent media.

We have analyzed the continuous transition from the diffu-
sive transport through an uncorrelated disorder to the trans-
parency or Bragg scattering in an ordered, periodic, medium.
This transition is achieved by using stealthy hyperuniform dis-
tributions of rigid scatterers in a waveguide, with a controlled
and adjustable stealthiness. A first remarkable observation is,
at sufficiently low frequency - namely, below the Bragg fre-
quency - an abrupt transition from diffusive to transparent is
observed. A threshold value of the stealthiness, frequency de-
pendent, separates media that are mostly opaque for the in-
cident wave, as illustrated in Fig. 5(a), from media that are
almost transparent, see Fig. 5(b). The mechanism and typi-
cal scale of this sharp transition, although not fully explained
with the present work, can be related to the structure factor of
the spatial distribution of the scatterer locations. The results
shown here can be used for the material design as provide el-
ements to control both the diffusivity and the transparency of
the material. It is also noticeable that the bimodal distribution

of the transmission eigenvalues appears as a general property
of the propagation through the SHU medium and not solely as
a characteristic of the diffusive transport.
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