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ABSTRACT The pandemic outbreak of COVID-19 has allowed the proliferation of an unprecedented
amount of data that must be organized and connected in a way that allows its efficient management.
Nevertheless, the speed at which all of this knowledge is being generated has highlighted the shortcomings
of the research community in creating well-organized, standardized, and structured databases. Despite the
efforts of the community to develop advanced integrative platforms such as CovidGraph, we have identified
some limitations when using these solutions that we think are derived from the lack of a sound ontological
schema to guide the collection, standardization, and integration of data. This work explores the advantages
and disadvantages for the final user of building advanced information systems using a Model Driven
Development approach to integrate heterogeneous and complex data using an ontological background as a
basis. As a proof of concept, we built a database (CovProt) to integrate data about different aspects of SARS-
CoV-2 using this approach, we analyzed the advantages and disadvantages of using this approach compared
to CovidGraph by performing a set of queries in CovProt and CovidGraph, and finally, we compared the
structure and redundancy of the retrieved data.

INDEX TERMS Conceptual model, graph data model, MDD, COVID-19, design methods.

I. INTRODUCTION
The pandemic outbreak of COVID-19, caused by the
virus SARS-CoV-2, has allowed the proliferation of an
unprecedented number of scientific results about the
genetics of the virus and the clinical manifestations of
the disease. Several projects, data sources, and consortia
have been created to understand the causes of the infection
from multiple perspectives (e.g., genetic, clinical, and
environmental) and to reduce the devastating consequences
that the pandemic is bringing to our population. To be
successful, all of the pandemic-related information must be
organized and connected so that it can be analyzed both
correctly and efficiently. Nevertheless, the speed at which
all of this knowledge is being generated has highlighted the
shortcomings of the research community in creating well-
organized, standardized, and structured databases.
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One of the many relevant approaches intended to
help researchers explore all of this knowledge from
an interconnected perspective is the CovidGraph project
(https://covidgraph.org/). CovidGraph offers a set of
advanced tools to explore papers, patents, existing treatments,
and medications related to the family of the coronaviruses,
using a knowledge graph as a basis to represent the
fundamental entities of biology (e.g., genes, proteins,
and pathways). The information stored in CovidGraph is
extracted and integrated from multiple sources such as the
COVID-19 Open Research Dataset (CORD-19), Ensembl,
Reactome, UniProt, RefSeq, and medRxiv.

CovidGraph uses a knowledge graph that provides a
basic structure to the collected data (https://covidgraph.org/).
However, we have identified some limitations when explor-
ing the database. The information is stored as it comes
from the databases, using the original format and structure.
This leads to having redundancies due to the heterogeneity
of data formats that are used by the different sources to
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represent the same information (e.g., the same gene or protein
is represented by multiple nodes, with different proper-
ties and different connections with other nodes). Another
consequence is that relevant data or data connections may
be missing because of the existing ontologically imprecise
characterization (e.g., the genes that are associated with all
of the small pathways that constitute a complex biological
process instead of being associated only to the pathwaywhere
they specifically act).

Despite the limitations mentioned above, storing the data
using its original format and structure offers advantages.
The main advantage is that integrating the information from
different sources is faster since it does not require a data
processing task to transform the different source fields into a
common data structure. Nevertheless, the process of search,
retrieval, and analysis of the collected information becomes
more complex because a deep knowledge of how each
element is represented in the integrated sources is required.

Our work aims to present how a Model-Driven Devel-
opment (MDD) can help to mitigate the impact of these
problems. To do so, we have developed a conceptually sound
and structured database called CovProt. By conceptually
sound, we mean that a precise conceptualization process is
supporting the conceptual model on which the database is
based. Then, we performed a set of queries, in both CovProt
and CovidGraph, in order to compare the structure of the
retrieved data and the complexity of the queries required to
obtain the results.

This work is not intended to present the technological
details of a new search engine, but to explore the advantages
and disadvantages for the final user of building advanced
information systems using a MDD approach to integrate
heterogeneous and complex data using an ontological back-
ground as a basis. Following this reasoning, the work intends
to go beyond mappings between databases to make queries
easier. We try to explain how the use of models improves
the development process and has a real impact on building
information systems that can be more intuitive for the user to
explore and free of redundancies.

The remainder of our work is structured as follows.
After the introduction, Section 2 describes what MDD is,
and Section 3 describes the materials and methods used to
achieve the objective of this work. Section 4 describes the
Conceptual Model (CM), and Section 5 shows the Graph
Data Model (GDM) used to implement the CovProt database.
In Section 6, we describe the population of the database. The
CovidGraph and CovProt databases are compared in Section
7. Finally, our results are presented in Section 8, and the
conclusions are presented in Section 9.

II. MODEL-DRIVEN DEVELOPMENT (MDD)
Model-Driven Development (MDD) consists of building
complex systems from models that are smaller and more
abstract representations of the different parts of the sys-
tem [1]. One of the main advantages of developing complex
systems using an MDD approach is that they are built using

concepts that are independent of the implementation tech-
nology and are closer to the problem. Having technological-
independent concepts that focus on the problem rather than
on the solution makes models easier to specify, understand,
and maintain [2]. Furthermore, they are adaptive and easily
expandible, which is a key characteristic for domains where
the knowledge evolves quickly. Examples of use in the
medical field are [3] and [4].

Different types ofmodels can be used in the different stages
of the software lifecycle. In this work, we focus on the models
that are used to develop a database to store and query data
about SARS-CoV-2: the Conceptual Model (CM) and the
Graph Data Model (GDM) or Property Graph (PG).

CMs are Platform-Independent Models (PIMs) that are
commonly supported by well-founded, precise, and accurate
ontologies. A CM can be translated into a Platform Specific
Model (PSM) to design graph databases or into a PSM
to design relational databases. An example of a translation
process that is commonly used to design relational databases
is the Entity-Relationship model [5]. Like the Entity-
Relationship model in relational databases, a GDM is a PSM
that is used to design graph databases, where data structures
are represented as graphs or generalizations of them. Despite
the ‘‘schema-less’’ philosophy behind graph databases, the
definition of a conceptually well-grounded data model is
highly encouraged in order to ensure that the data correctly
represents the domain [6], [7].

III. MATERIALS AND METHODS
Due to the complexity of the data to be represented and to
facilitate the understanding of the process, we have focused
on the fundamental elements of the genetic perspective of
COVID-19 that corresponds to the BioMedical view of the
CovidGraph knowledge graph shown in Fig. 1. Thus, the
information to be integrated is related to the host genes and
proteins that interact with the virus facilitating its entrance
into the cells, the pathways where they are involved, and the
possible variants and diseases caused by their alteration.

First, we have defined a PIM model. This model describes
the information to be integrated, making the relationships
among the concepts explicit, and facilitating the understand-
ing of the domain. Second, the model is transformed to a
PSM. The PSM is a GDM since the technology used to
store and query the data is a Neo4j database. Third, the data
is collected and stored in a database instance following the
structure defined by the GDM. Fig. 1 shows the structure of
the MDD components followed in this work.

The data is retrieved from eight data sources: NCBI
Gene [8], UniProtKB [9], NCBI Taxonomy [10], ClinVar [11],
Reactome [12], PubMed [10], Human Phenotype Ontol-
ogy [13], and GeneHancer [14]. This data is then stored in
a Neo4j database.

IV. CONCEPTUAL MODEL OF THE CovProt DATABASE
The first stage of the MDD approach used in this work
consists of defining the conceptual model representing
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FIGURE 1. Components of the MDD approach used to develop the
CovProt database.

the fundamental concepts that are associated with the
information to be stored. Therefore, the following knowledge
needs to be represented:
• Details regarding the host (Homo Sapiens) and the virus
(SARS-COV-2).

• The viral proteins that interact with the host proteins or
complexes and vice versa.

• The genes that codify the proteins.
• The regulatory elements that control the transcription
and expression of the genes.

• The pathways where the host proteins are involved.
• The diseases where the host proteins play a significant
role.

• The variants that may cause a disease.
• The evidence that supports the role of the variant in the
development of disease.

• Cross-references to the data sources.
The resulting CM, which is described using the UML
Class Diagram modeling language (https://www.uml.org/
index.htm), is shown in Fig. 2.

This model represents the basic concepts as classes. The
relationships among classes are represented as associations.
The minimum properties required to characterize the con-
cepts are represented as class attributes. The model can be
extended with additional concepts and properties to represent
as much knowledge as required.

V. GRAPH DATA MODEL OF THE CovProt DATABASE
Since the analysis done in this work focuses on identifying
relationships among the data, the technology selected to
support CovProt is a graph database. Graph databases
excel at easing the analysis of highly connected data.
Thereby, reducing the cost of doing multiple joins when
the depth of the connections is high. We have used Neo4j
(https://neo4j.com/), which is a widely used graph database
that provides mechanisms to ensure data integrity, scalability,
and ACID compliance (Atomicity, Consistency, Isolation,
and Durability). In this section, the GDM is derived from the

FIGURE 2. CovProt conceptual model.

FIGURE 3. CovProt graph data model.

previously defined CM and is adapted to the requirements of
a graph database, resulting in the model shown in Fig. 3.

Since the CM used in this work is not a complex model
in terms of number of classes, attributes, and relationships,
the CM-to-GDM transformation has been done manually.
Examples of the different approaches for mapping CMs to
GMDs can be found in [15], [16], and [17]. This GDM
represents how the data is structured in the instantiation of
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FIGURE 4. Results of the interactions between the virus and the host
proteins, along with the pathways where they are involved.

the database. Any change or improvement in the CM can be
translated into the GDM easily, adapting the structure of the
underlying database as the model evolves.

VI. POPULATING THE CovProt DATABASE
Once the GDM has been defined, the next step is to
populate the database. To do this, we used the following data
sources: NCBI Gene, UniProtKB, NCBI Taxonomy, ClinVar,
Reactome, PubMed, Human Phenotype Ontology (HPO),
GeneHancer. The information extracted from the data sources
is collected, integrated, and stored in the CovProt database
according to the structure defined in the GDM.

To do so, one of the steps to be performed in any MDD
approach is the definition of the mapping rules that allow
the representation of the raw data into the new data schema.
The mapping rules are defined using as a strict basis the
conceptual model of the domain and having in mind the
specific structure of each data source. These rules determine
how the source fields are mapped to the corresponding
concept of the conceptual schema and translated into the
corresponding field in the destination database. For example,
considering the GDM represented in Fig. 4, the mapping
rules required to populate a Gene node must define the
correspondence between each of its attributes (start, end,
strand, symbol, official_name, and component) and the data
source attribute that provides the required data. A mapping
rule also specifies if the original data requires transformation
to adapt to the destination format (e.g., adding a certain
prefix or parsing a string). In our development cycle,
the application of the mapping rules has been automated
to be included during the extraction and transformation
process.

The use of a conceptual schema of the domain along
with the definition of the mapping rules are key to solve
well-known integration problems when the data sources
have different schemas. Using a conceptual modeling-based
approach can provide semantic interoperability through a
conceptual modeling characterization that delimit concepts
even when their database representation is different in

different data sources. Nevertheless, defining the mapping
rules is not an easy task and requires a deep knowledge of the
underlying structure of each data source. Furthermore, if the
data source or the GDM structure changes, the mapping rules
must change too. In order to keep the focus of this document
in theMDD approach, the technological details about how the
mapping rules are defined and implemented has been omitted.

Once the database is populated, it can be queried to
determine that six of the 16 proteins that conform the
virus (ORF1ab, ORF1a, ORF7a, E, N, and S) interact
with eight host proteins (PHB, PHB2, DDX1, ITGGAL,
SGTA, MPP5, SH2D3C, and ACE2). Furthermore, the
host proteins are involved in 15 pathways that can be
grouped into the following categories: Transport of small
molecules, Metabolism of RNA, Immune System, Gene
expression (Transcription), Hemostasis, Extracellular matrix
organization, Protein localization, Cell-cell communication,
Disease (Oncogenic MAPK signaling), and Metabolism of
proteins. Fig. 4 shows how this data is interconnected in the
CovProt database.

A total of 258 host proteins interacts with the eight used
by the virus to infect the cells. The host proteins used by the
virus to infect the cells interact with the other 258 proteins.

Following the GDM defined in Section 5, the user can also
explore the variants that affect the genes and the regulatory
elements that codify the proteins as well as the diseases
related to these variants.

VII. COMPARING CovProt AND CovidGraph
To compare the two approaches (CovProt and CovidGraph),
we have executed a set of queries that are of interest to the
experts that work with COVID data, and we have analyzed
the structure of the results, the level of redundancy, and
the complexity of the queries required to obtain the desired
results.

When exploring the genetic implications of the response
to SARS-COV2 infection, the most important queries to be
answered are related to:

1. Retrieving information about the host genes that
interact with the virus to understand how the virus
enters the cells. In this example, we have simplified
the query to retrieve information about one of the most
well-known genes (ACE2).

2. Retrieving information about the biological pathway
where the genes are involved to identify the altered
mechanisms that can lead to cellular malfunction.

3. Identifying all the biological pathways that could be
altered based on all the host proteins that interact with
the virus to have an idea of the clinical manifestations
of the disease.

These three queries help to understand key points of the
infection such as how the virus can attack the cells, which
biological mechanisms are altered, and how these alterations
produce the characteristic symptoms of the disease. This is
the reason why we have selected these three queries for the
example.
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FIGURE 5. Cypher query and results for the ACE2 gene and the codified
protein in the CovProt database.

A. OBTAINING DATA ABOUT THE ACE2 GENE
The first query is intended to obtain the data associated with
the angiotensin I converting enzyme 2 gene (also known as
ACE2) and the protein it codifies. In the CovProt database,
the query should match the path gene – codifies – protein,
filtering by the gene symbol (ACE2) or by the gene name
(angiotensin I converting enzyme 2). As a result of the query,
two nodes are returned (one for the gene and one for the
codified protein). All of the associated information is stored
in the corresponding node as properties. The result of the
query is shown in Fig.5.

To retrieve the same data in CovidGraph, the structure
of the origin databases from where the information has
been collected must be considered. In this case, the query
should follow the path gene – codes – transcript – codes –
protein. In CovidGraph, the genes have multiple properties
to represent symbols and names such as:

• Full_name_from_nomenclature_authority
• Other_designations
• Symbol
• Symbol_from_nomenclature_authority
• Synonyms
• Acronym
• Gene_name
• Synonyms
• Name.

As can be observed, there are different attributes that seem to
represent the same concept (e.g., Synonyms and synonyms).
Furthermore, since the information is not structured and the
concepts are not ontologically well-grounded, the different
databases do not assign the same meaning to symbol and
name, which means that these terms are usually mixed,
leading to confusion. Therefore, the query to get the desired
results must consider all these options:

MATCH (g:Gene)-[:CODES]-(t:Transcript)-[:CODES]-
(p:Protein)

WHERE
g.Full_name_from_nomenclature_authority = ‘‘ACE2’’

OR
g.symbol = ‘‘ACE2’’ OR g.name = ‘‘ACE2’’ OR
g.gene_name = ‘‘ACE2’’ OR
g.Symbol_from_nomenclature_authority = ‘‘ACE2’’ OR
g.acronym = ‘‘ACE2’’
RETURN g, t, p

FIGURE 6. Cypher query and results for the pathways where the ACE2
gene is involved in the CovProt database.

FIGURE 7. Cypher query and results for the pathways where the ACE2
gene is involved in the CovidGraph database.

As a result, the database returns two gene nodes, four
transcript nodes, and 10 protein nodes. Both gene nodes
represent the same gene, with different attributes and with
attributes representing inconsistent content. For example,
ACE2 is represented as a symbol in one node and as a name
in another node.

Similarly, each gene codifies two transcripts that are
duplicated in the database. The 10 protein nodes correspond
to redundant data about the two isoforms of the same
protein. Transcripts and proteins also have a different number
of attributes. This means that in order to obtain global
knowledge about the protein, the data from all of the nodes
must be retrieved and combined, which involves removing
duplicates and fixing inconsistencies.

B. OBTAINING DATA ABOUT PATHWAYS
The second query is intended to obtain information about the
pathways where the ACE2 gene is involved. In the CovProt
database, this information can be obtained following the path
gene – codifies – protein – acts_in – pathway. The result of
the query is shown in Fig. 6.

The ACE2 gene is involved in one pathway (the
Metabolism of Angiotensinogen to Angiotensins), which is
part of the Peptide hormone metabolism pathway, which is
part of the Metabolism of proteins.

In the CovidGraph database, the same information must be
retrieved following the path gene – member – pathway. Using
the first query to find the ACE2 gene, the results returned are
shown in Fig. 7.

According to the data stored in the CovidGraph database,
the results returned are the same since the gene is duplicated.
Nevertheless, the difference with the CovProt results is that
the gene acts as a member in all of the pathways (related
to each other by the CHILD association). This means that it
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is not possible to know exactly in which specific part of a
complex pathway the gene takes part.

C. OBTAINING THE PATHWAYS WHERE THE HOST
PROTEINS ARE INVOLVED
The previous queries were intended to solve very specific
questions about a gene or a protein; however, a real
research context requires answering more general questions.
To represent such contexts, we are going to query all of the
pathways where host proteins that are used by the virus to
infect the cell are involved. The aim of this query is to get a
more complete view of the effect of the infection. As a starting
point, we are going to consider the eight proteins mentioned
in Section 6 (PHB, PHB2, DDX1, ITGGAL, SGTA, MPP5,
SH2D3C, and ACE2). In the CovProt database, the path to
follow is the same used for Query 2, but filtering by the names
of the eight genes.

Seven of the eight proteins are associated with pathways in
the database, and the PHB and PHB2 proteins are involved in
the same pathway (Processing of SMDT1). The same query
in the CovidGraph database requires extra effort to filter
the genes in order to ensure that no relevant information is
missing. Even though the results are the same, the query is
much more complex, and the number of returned nodes and
connections is higher.

VIII. RESULTS
The structure of the data returned by CovidGraph and
CovProt is easy to understand because both approaches
are based on a graph data model that helps connect
the different concepts in a way similar to how experts
understand the connections between the main concepts of the
domain. However, the lack of an ontological foundation to
integrate the results produces that the datasets obtained from
CovidGraph have redundancies that increase the number
of nodes returned and the complexity of the connections
among these nodes. For example, while CovProt returns one
node representing the protein codified by the ACE2 gene,
CovidGraph returns 10, and they have a different number
of attributes. In addition, the high degree of heterogeneity
of the nodes of CovidGraph increases the complexity of
some queries (see Subsection 7.C), and it requires a thorough
knowledge of the underlying schema of each integrated
data source in order to obtain the full benefit of the
stored data.

The strength of developing an information system with
an ontological background supporting it, is that the data are
stored and structured in a way that is conceptually consistent.
Since there is no need to deeply understand the internal
structure of each data source to query the data, the user only
requires his knowledge of the domain to navigate through
the data structure, and building queries are more natural for
the user. Furthermore, the frequent inconsistencies that can
appear in the vocabulary that is used to define the concepts,
are solved by the underlying ontology. This means that the
information is easier to retrieve.

IX. CONCLUSION
Our concrete intention in this work is to point out the
advantages and disadvantages of an MDD approach to
manage such complex data as genomics is, serving as a
guide for improving data scientists and developers’ work
when designing and developing information systems. To such
aim, we have used an MDD approach to build the CovProt
database, and we have performed a set of queries to
determine its advantages and disadvantages compared to
CovidGraph, which integrates the data without the support
of any conceptual schema. CovProt integrates information
about SARS-COV-2 and the context of the host proteins
that interact with the virus in an ontologically well-grounded
and structured way. The CovProt database presented in this
document is a proof of concept that is currently under
development to be publicly available as future work, along
with a performance benchmark to describe its advantages and
disadvantages in terms of speed, performance, and size.

The use of a CM that is independent of the techno-
logical implementation of the database allows the correct
conceptualization and representation of the information to be
stored. CovidGraph also integrates information based on a
knowledge graph that connects the fundamental entities of
the biological domain. However, without a sound ontology
as a basis, redundancies and inconsistencies in its data arise,
which hinders the data analysis process.

One of the advantages of using an MDD approach
such as CovProt is that it results in a database without
redundancies, in which all of the information is well-
organized with a structure that is intuitive to navigate
and query. In contrast, CovidGraph provides a navigational
structure that is apparently easier to query but building
accurate queries and retrieving the desired information is
more complex. The reason for this is that the data has been
stored as obtained from the original sources, and its lack of
standardization and complexity requires a deep knowledge
of the structure of each source. This lack of standardization
increases the probability of missing relevant data due to
executing a wrong or incomplete query. In addition, the
higher number of connections and nodes makes it difficult
to understand and analyze the results efficiently.

One of the disadvantages of using anMDD approach is that
it requires an extra effort to define the CM that represents the
domain in order to transform the model to a GDM. Another
difficulty to be considered is derived from the already known
complexity of integrating data coming from heterogeneous
sources that commonly have different structure (e.g., format
disparities, variable level of quality, and duplicates). These
challenges can be addressed by defining the mapping and
transformation rules that are required to represent the data
into a common format. Nevertheless, as has been mentioned
in section VI, the definition of these rules is not a trivial
task.

The storage of the data as it comes from the sources is faster
and easier thanks to the existence of ‘‘schema-less’’ databases
like Neo4j. Taking advantage of this more flexible approach
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reduces the time and effort required to integrate new data
sources into the system. Another disadvantage is that if any
external source changes its data structure, the transformation
rules must be reevaluated.

Both approaches have advantages and disadvantages that
must be carefully considered when building advanced search
systems that require the integration of multiple sources.
Important considerations that must be taken into account
include the following: the heterogeneity of the original data
source schemes from where the information is collected;
how it can complicate the creation of nodes, attributes, and
associations; and how it can affect the building of queries to
obtain the desired information. It is also necessary to consider
the impact of redundant data on both the performance when
executing queries and on the complexity of the analysis of
the results obtained. Finally, if many heterogeneous sources
are going to be integrated, the effort required to define and
implement the mapping and transformation rules of an MDD
approach must be carefully analyzed.
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