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Abstract—Currentmulti-core processors implement sophisticated hardware prefetchers, that can be configured by application (PID),

to improve the system performance.When runningmultiple applications, each application can present different prefetch requirements,

hence different configurations can be used. Setting the optimal prefetch configuration for each application is a complex task since it does

not only depend on the application characteristics but also on the interference at the sharedmemory resources (e.g., memory bandwidth).

In his paper, we proposeDeepP, a deep learning approach for the IBMPOWER8 that identifies at run-time the best prefetch configuration

for each application in a workload. To this end, the neural network predicts the performance of each application under the studied prefetch

configurations by using a set of performance events. The prediction accuracy of the network is improved thanks to a dynamic training

methodology that allows learning the impact of dynamic changes of the prefetch configuration on performance. At run-time, the devised

network infers the best prefetch configuration for each application and adjusts it dynamically. Experimental results show that the proposed

approach improves performance, on average, by 5.8%, 6.7%, and 15.8% compared to the default prefetch configuration across different 6-

, 8-, and 10-application workloads, respectively.

Index Terms—IBM POWER8 processor, prefetch configuration, inter-application interference, machine learning, deep learning
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1 INTRODUCTION

HARDWARE data prefetching is a speculative technique
that fetches data in advance to the processor. Thanks to

its performance benefits, especially in the so called prefetch
friendly applications, this technique has been widely applied
to hide the long memory latency and improve the system
performance both in single-thread processors [1], [2], [3],
[4], [5] and in multicores [6], [7], [8], [9], [10], [11].

Current high-performance processors are deployed with a
set of configurable prefetches aimed at capturing different
memory behaviors. The IBM POWER family of processors
implements the most complex and powerful prefetchers
deployed in current servers. These processors allow the user
to update the prefetch setting at run-time, which is especially
challenging in the case of multicores, where main memory
bandwidth contention can become a severe performance bot-
tleneck. Recent research has focused on dynamically selecting

the best prefetch configuration for the running workload at

run-time. Some works have concentrated on parallel work-

loads [12], [13], [14] and other approaches target multi-pro-

gram single-threaded workloads [15] which is particularly

complex because each application has differentmemory char-
acteristics and prefetch requirements.

Basically, these approaches rely on run-time heuristics to
select the best prefetch setting for the running workloads.
These heuristics measure hardware events of the target plat-
form, analyze how their values correlate to performance at
run-time, and based on experimental observations, they look
into for insights about undesired and desired behavior. For
instance, it can be found that when a given metric (e.g., the
consumed memory bandwidth) exceeds a given threshold,
the overall performance drops. To avoid this scenario, the
approachwould opt for reducing the prefetch aggressiveness
when the aggregate bandwidth consumption is above that
threshold. Heuristic-based approaches present two major
drawbacks. On the one hand, the lack of flexibility. Heuristic
approaches rely on a set of thresholds whose values are
obtained experimentally through a wide set of “trial and
error” experiments. Threshold values depend on the work-
load andunderlying hardware. Thus, these approaches select
the values that work well for the largest number of experi-
mental workloads. On the other hand, heuristics require
costly sampling when multiple settings are evaluated which
can hurt performance and become prohibitive. In fact, to be
practical, heuristic-based approaches only consider few met-
rics (e.g., IPC and memory bandwidth consumption) that
require monitoring a minimal set of hardware events. An
alternative option to dealwith this drawback is the use of arti-
ficial intelligence techniques such as deep learning as used in
this work.
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Deep neural networks act as universal approximators
and allow modeling non-linear relationships from a large
amount of data. In other words, thanks to the capability to
identify non-linear relationships between performance
events, deep learning can be used to help some microarchi-
tectural components (e.g., the branch predictor, or the cache
replacement algorithm) to improve its performance, and
hence the overall system performance.

Some tentative works have focused on machine learning
to improve the prefetch configuration of commercial pro-
cessors [16], [17], [18]. The works deal with single parallel
applications running in Intel and IBM processors. However,
to the best of our knowledge, no work has focused yet on
multi-program workloads.

In this paper, we propose DeepP (Deep learning Prefetch-
ing) which, to the best of our knowledge, is the first neural
network-based proposal aimed at estimating the perfor-
mance of an application when running on a multi-program
workload depending on its prefetch configuration.More pre-
cisely, our proposal uses the neural network to predict, for
each running application, its expected IPC for each prefetch
configuration with the aim of selecting the best performing
prefetch setting dynamically at run-time. Compared to heu-
ristic-based solutions, the proposed approach also gets
rid of exploration phases and specially-tuned hardware
thresholds.

To build a neural network, samples extracted from train-
ing executions are required. These samples are typically
obtained keeping the same prefetch configuration across the
entire execution of a given benchmark [17]. We refer to this
type of training as static-prefetch training. Static-prefetch
training requires additional executions to explore different
prefetch configurations. Moreover, this type of training can-
not catch the effect of changing the prefetch configuration at
run-time. To address these problems, we propose a method-
ology that includes one or more dynamic-prefetch trainings.
In a dynamic-prefetch training, a previously trained net-
work is used to drive additional training executions to get
more samples that help learn the effect of modifying the
prefetch configuration dynamically. This enables the final
neural network to adapt to dynamic changes along execu-
tion, leveraging the opportunities when a change of the pre-
fetch configuration can improve performance.

In thiswork, we devise two neural networks. The first, sin-
gle-core network, focuses on the execution of single applica-
tions and is built as a first step to explore the potential of
neural networks to select the best prefetch configuration.
The second, multi-core network, also takes into account the
inter-thread interference at the shared resources among co-
running applications. More precisely, it considers the mem-
ory bandwidth consumed by the co-runners, shown recently
as the main critical shared resource for prefetching in the
IBM POWER8 [15].

This paper makes three main contributions:

� We demonstrate that a neural network can be trained
to predict the performance (IPC) of co-running appli-
cations depending on the prefetch configuration with
high accuracy and minimal overhead regardless of
the number of applications, which allows scaling in
performancewith the number of applications.

� We propose a multi-program aware neural network
for the IBM POWER8 that establishes a correlation
between inter-application interference and perfor-
mance by taking as input the aggregate memory
bandwidth consumption of co-runners.

� We devise a training methodology that does not only
use executions with fixed prefetch configurations
(i.e., static-prefetch training) but also includes
dynamic-prefetch training as a way to improve tradi-
tional training methodologies.

The experimental results that DeepP provides perfor-
mance gains, on average, of 5.8%, 6.7%, and 15.8% across a
set of random 6-, 8-, and 10-application workloads com-
pared to the default prefetch configuration. We would like
to remark that the proposal can be adapted to other systems
by adjusting intra-core and interference-related events as
well as the prefetch configurations.

2 RELATED WORK

2.1 Heuristic Based Solutions

Some recent research [12], [13], [14], [15], [19], [20] has
focused on heuristic-based solutions with the aim of achiev-
ing the best performance from the prefetching capabilities of
commercial machines. All theseworks focus on IBMPOWER
processors, whose prefetcher is much more powerful and
complex, and further performance gains are expected.

In [19], authors propose AREP (Adaptive Resource-Effi-
cient Prefetching). This work focuses on finding a single best
prefetching configuration that maximizes throughput for
multi-core scenarios. This solution explores different prefetch
configurations of the intel i7 2600K processor. In [20], a spatial
bit-pattern prefetcher is proposed, which uses memory band-
width utilization to adjust prefetch aggressiveness on Intel
Skylake processors, its performance improvements are
directly related with the available memory bandwidth. In
[12], authors propose a strategy to select at run-time the best
prefetch setting with the goal of enhancing the performance
of parallel workloads when running a single application on
an IBMPOWER8 processor. In contrast, the strategy proposed
in [13] is aimed at selecting the best prefetch setting for single-
threadedmulti-programworkloads in the IBM POWER7 pro-
cessor. This approach, however, does not scale with the num-
ber of cores. This shortcoming is addressed by IBS [14] in a
simple way by activating or deactivating the prefetcher of
each individual core in the IBM POWER7. However, unlike
approach, IBS only considers two prefetch settings: the most
aggressive one and disabling the prefetcher.

Recently, Navarro et al. [15] consider different levels of
aggressiveness and the inter-thread interference to propose
a much more scalable and best performing approach for the
IBM POWER8. All these works require exploration phases
in order to check the performance of each studied configura-
tion and select the best performing one. In addition, some
thresholds need to be defined that act as a filter to apply the
devised strategy.

2.2 Machine Learning Based Solutions

Research works using machine learning can be mainly clas-
sified in two main categories depending on whether they
pursue to improve the hardware prefetcher architecture, or
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to dynamically select the best prefetch setting in commercial
processors.

Regarding the first group, a new prefetch architecture is
modeled and evaluated using simulation tools. ML can be
used as a tool to dynamically identify patterns in data
streams and capture correlations [18], [21], [22]. This way
allows identifying the memory access patterns more pre-
cisely, so improving the prefetching accuracy.

Regarding the second group, some ML based techniques
have been proposed to configure the hardware prefetchers at
run-time in commercial machines [16], [17], [23]. Some of
these works, like [23] and [16], focus on Intel processors.
These processors implement an small set (typically four: two
in the L1 cache and two in the L2 cache) of independent on-
off prefetchers. Since these prefetchers are independent and
orthogonal, the problem lies on selecting which ones should
be turned on and which ones turned off. In [23] a decision-
tree with thresholds on the hardware events is built to decide
which ones of the four prefetchers should be activated.

In [16], authors propose a strategy for effective prefetching
based onmachine-learning for parallel applications (i.e., PAR-
SEC benchmarks). The approach trains several machine-
learning algorithms to select which one of the four built-in
prefetchers should be used (i.e., switched on or switched off).

Finally, the work in [17], similarly to our work, addresses
the dynamic tuning of the best prefetch knobs in an IBM
POWER8 processor but, unlike this work, they focus on indi-
vidual parallel workloads. In other words, the work concen-
trates on individual applications, thus there is not inter-
application interference. Typically, the threads of an individ-
ual parallel application have an homogeneous behaviour,
which simplifies the approach since a single prefetching con-
figuration is adequate for the whole application (i.e., all
threads share the same prefetcher configuration). This is not
the case of multi-program workloads where each application
exhibits a different behaviour and can interfere in the prefetch
behaviour of the others. Other ML approaches for other com-
puter components can be found in [24] [25] [26] [27] [28] [29].

Related research work has also employed ML and perfor-
mance counters pursuing alternative goals. For instance, in
[30], authors use ML to model the correlation between per-
formance counters and IPC in bug-free microarchitectures
to identify performance bugs in new designs and in [31]
authors use decision trees to identify execution phases from
performance counters and estimate the performance of each
phase using linear regression.

2.3 Other Prefetching Engines

Other approaches have focused on devising a new prefetch-
ing engine. Domino prefetcher [32] is a temporal data pre-
fetching technique that logically looks up the history with
both 1 and 2 last miss addresses to find a match for prefetch-
ing. This work aims to improve the effectiveness of tempo-
ral prefetching techniques. Bingo prefetcher [33] proposes a
spatial data prefetcher in which short and long latency
events are used to select the best access pattern for prefetch-
ing. Access Map Pattern Matching [34] detects multiple pre-
fetch candidates from pattern matching of memory access
footprints. ISB [35] is a prefetcher that targets irregular
sequences of temporally correlated memory references, in
other words, a prefetcher that combines address correlation

with PC localization. SPP [36] presents a solution that can
read prefetch acces patterns using a history signature, then
it is able to detect when a data access pattern crosses a page
boundary, and quickly resume prefetching on the new
page, and is able to balance agressive prefetching using
path confidence. This implementation doesn’t use program
or core counters, only with OS physical address space, but
only improves performance for the state of the art over
6.4%. Other approaches can be found in [37] [38] [39].

3 BACKGROUND ON NEURAL NETWORKS

Artificial Neural Networks (NNs) are computing systems
resembling biological neural networks. Artificial neural net-
works are composed of artificial neurons or nodes, which per-
form a computation that is based on the behavior observed in
neurons of a biological brain. Typically, the computation per-
formed by a node in a NN follows the equation:

output ¼ activation function bþ
Xn

i¼1

xi � wi

 !
(1)

That is, the output of a node is calculated by adding the dif-
ferent inputs xi multiplied by their corresponding weights
wi and the bias b. Then, the result of the sum is fed to an acti-
vation function. The purpose of this function is twofold. On
the one hand, it determines if the output must progress as
an input to the next node. On the other hand, it normalizes
the sum result in a range, which is commonly between 0
and 1 or -1 and 1.

In an artificial neural network, nodes are organized in
rows, referred to as layers. A node in a layer gets its
weighted inputs from the previous layer and its outputs act
as inputs to the next layer. The first layer takes the inputs of
the NN, and is known as the input layer, while the last layer
provides the outputs of the NN, and is referred to as the out-
put layer. In between both layers, there can be several hidden
layers. A set of input values for the input layer is referred to
as a dataset. Artificial neural networks are usually used to
extract abstract features of the dataset that can be used to
categorize it by a given classification.

A deep neural network or deepnet is a type of NN that
includes multiple hidden layers between the input and the
output. Each hidden layer is in charge of extracting a distinct
group of dataset features, which are fed as inputs to the next
layer. In this way, each hidden layer analysis is based on the
features of the dataset found by the previous layers, and
therefore, the analysis can be more complex. For example,
the first layers of the neural network can be in charge of
detecting if the input image is a portrait of a person, while
later layers can identify the person among a set of possible
matches. This, for instance, is the basis of advanced smart
photo albums.

To detect the features of a dataset, neural networks are
trained with dataset samples. This process is known as learn-
ing and involves adjusting the weights wi and biases b for
each NN node to modify the NN output. Learning can be
supervised or unsupervised. In this work, we focus on super-
vised learning, which means that each sample includes a
label that represents the correct NN output for the sample.
The output of an untrained neural network for a given
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sample highly differs from the corresponding label. The dif-
ference between the output and the label (i.e., the error) is
passed to a cost function. A typical cost function is the mean-
squared error, which is the average squared error between
theNN output and the label for each trained sample.

Learning is an iterative process whose goal is to mini-
mize the result of the cost function. In each step of this pro-
cess, the neural network is fed with a different sample.
Then, the NN output is compared to the label to obtain the
error, and the cost function is calculated. After a given num-
ber of samples, a method known as backpropagation is used
to adjust the weights wi and biases b for each node to com-
pensate the errors and minimize the cost function. The itera-
tive process finishes when a local minimum of the cost
function is found in the trained sample space.

Once the neural network has been trained, it can be used
to estimate or infer the label for unlabeled datasets. This is
known as inference. If the NN has been properly trained,
then the NN will be capable to provide a label for the data-
set that matches or falls close to the real one.

4 EXPERIMENTAL PLATFORM

All the experiments in this work have been performed using
an IBM Power System S812L system, with a 10-core IBM
POWER8 processor [40]. Each core runs at 3.69 GHz. The
processor implements a three-level cache hierarchy. The
first level (32KB L1 I-cache and 64KB L1 D-cache) and the
second level (L2 512KB) are private per core, and the L3
80MB cache is shared among all the cores. The system has
installed a single 32GB DRAM module and runs Ubuntu
18.04 with the Linux kernel 4.15.

4.1 The IBM POWER8 Prefetch Engine

The IBM POWER8 implements one of the most sophisti-
cated prefetch engines available in recent commercial pro-
cessors. This prefetcher engine includes a stream prefetcher
that tracks streams by their effective address. This pre-
fetcher can be set through a 25-bit special purpose register,
namely Data Streams Control Register (DSCR), that admits up
to 225 prefetch configurations.

The 25 bits are divided into twelve fields [40]. Some fields
are single-bit and allow enabling or disabling a particular
feature of the prefetcher. Other fields contain two or three
bits that allow tuning the level (aggressiveness) of the field.
The values of all these twelve fields together set up the pre-
fetch configuration. The impact of the fields on the system
performance widely varies among them; moreover, the
impact of a given field depends not only on its value but on
the remaining enabled fields.

Recent work [17], [12], [15] found that depth and urgency
are the fields that impact on performance the most The for-
mer configures the level of the prefetch depth and is related
to the number of cache lines that are brought into the on-
chip caches. Urgency indicates how quickly this depth can
be reached. A high urgency value indicates that the cache
line should be prefetched as close as possible to the proces-
sor (i.e., into L1 or L2 cache).

Both fields have three bits (ranging from 0 to 7), which
allow setting the target level. Setting this field to zero repre-
sents the default configuration in both fields and is equivalent

to a medium (4) depth or urgency. Setting the depth to 1 dis-
ables prefetching and values from 2 to 7 configure different
levels of depth from shallowest to deepest. Urgency levels
vary from 1 (not urgent) to 7 (most urgent).

The names used in this work to refer to the studied pre-
fetch configurations follow the UXPY scheme, where X and
Y refer to urgency and depth, respectively. In particular, we
study the configurations U1P2, U1P4, U1P7, U2P4, U2P7,
U4P2, U4P7, U7P7. In addition, we also study the OFF (pre-
fetcher disabled), and DEF (default) configurations.

4.2 Hardware Events and Performance Counters

Most of the inputs of the neural networks devised in this
work are or are based on hardware events’ counts gathered
with performance counters. To configure and read these
counters, we have used the libpfm4 library [41].

The experimental processor allows monitoring among
more than one hundred events. However, only six events
(i.e., the number of hardware counters) can be monitored in
a single period of time or quantum. Moreover, two of these
counters are dedicated (i.e., they cannot be configured) to
measure the number of executed cycles an committed
instructions, which means that just four additional events
can be monitored at a time. If the number of events to be
monitored is higher than four, a possible solution is to dis-
tribute the monitoring along multiple quanta, each quantum
gathering a subset of the target events. For instance, in order
to monitor 22 events (including cycles and instructions) 5
quanta (ð22� 2Þ=4) are required. In other words, to read n
eventsm intervals are required so that n ¼ 2þm� 4.

Considering the low number of hardware events that can
be monitored in a single quantum, training a NN with sam-
ples containing a large amount of events requires these sam-
ples to be collected through a high number of quanta. For
instance, to gather the values corresponding to more than
one hundred events, at least 25 quanta will be required.
This fact has an important downside. Since the application
behavior (and thus its performance) is likely to change in
such a long execution interval, it would be unlikely to get a
coherent sample because the hardware events gathered at
the beginning of the sampling would be stale at the end.
Therefore, a NN considering a high number of events
would be useless to configure prefetching at run-time.

A possible solution to face the previous problem is to
reduce the duration of the quantum. However, in our experi-
ments we observed that measurements taken in short inter-
vals are less stable and prone to suffer deviations (i.e.,
sudden peaks or drops). Another alternative approach to
reduce the measurement time is using event multiplexing.
This method, supported directly by libpfm4, allows the same
counter to capture several hardware events in the same
quantum by sampling the events for short periods of time
and scaling the gathered values to the quantum length.How-
ever, this approach presents the same problems as reducing
the quantum length.

Therefore, we discarded both alternative approaches and
choose a typical 200ms quantum duration. Taken these
observations into account, the devised approach requires a
careful selection of events to avoid increasing too much the
measurement time. The selected events will be discussed in
Section 6.2.
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5 EXPERIMENTAL METHODOLOGY AND NN DESIGN

To carry out the experiments, we implement a user-level
manager that: i) performs process handling, ii) monitors
performance counters, iii) queries a prefetch configuration
approach (e.g., our devised NNs or an heuristic approach)
for the best predicted prefetch settings, and iv) configures
the prefetch engine according to the prediction.

The applications launched in the experiments are taken
from the SPEC CPU2006 and SPEC CPU2017 suites.
Depending on the specific experiment, an application can
be executed in isolation or jointly with other co-running
applications in a multi-program workload. Each application
is allocated to a different physical core in multi-program
workloads to avoid the SMT interference effect.

5.1 Manager Execution Flow

To run a multi-program mix, the manager launches its
applications and maps each one to a different core. We set
the execution of each application to the number of instruc-
tions it commits when running 180 seconds in isolation with
the default prefetch configuration. The number of instruc-
tions that each application commits in this period is referred
to as the target number of instructions for that application.
Throughout all the paper, we assume applications complete
when they commit their target number of instructions
regardless of their prefetch configuration. When an applica-
tion completes, the manager records its performance and
then relaunches such application. This way ensures the
workload is constant along its entire execution and allows
all benchmarks to be evenly represented in the performance
metric. The workload execution ends when all the applica-
tions in the workload have completed.

In the first quantum of the workload execution, the
manager sets the default prefetch configuration for all
applications.

After this quantum, the manager enters in a loop, which
it repeats until the workload completes. The main loop has
two parts. During the first part the manager collects, for
each application, the values of the inputs required by the
prefetch configuration approach to predict the best prefetch
setting for the next quantum i. As explained above, this
implies employing the m previous quanta to gather the
inputs Ii�1; Ii�2; . . . Ii�m, or simply Ii�1...i�m.

In the second part, for a given application, the input set
Ii�1...i�m is fed to the prefetch configuration approach,
which provides the prediction. If the predicted best setting
for the application differs from the current one, then the
prefetch configuration is updated.

5.2 Neural Network Design

To design the neural networks we have used the BigML plat-
form [42]. This platform provides anAPI for uploading train-
ing data, analyzing the data to find relevant inputs for the
neural network, aid in designing the network (e.g., choosing
an appropriate number of layers), training, and generating
inference code. We have uploaded the training data from
benchmark executions to the BigML platform to train and
design the networks evaluated in this work. After that, the
inference code from the designed networks is downloaded
to perform the inference in our experimental platform.

The proposed NN infers the best performing prefetch
configuration for the next quantum i. More precisely, the
NN infers the IPCi that a target application will achieve in
the next quantum i for a given prefetch configuration
DCSRi. This configuration is provided as input to the NN
together with the inputs gathered in the m previous quanta
Ii�1...i�m. Notice that multiple NN inferences, as much as
studied prefetch configurations, need to be made to find out
the best prefetch configuration for each application. Once
all the inferences are made, then the prefetch setting with
the maximum predicted IPC is applied to the target applica-
tion in the next quantum.

We measured that invoking the NN to obtain an IPC pre-
diction for a prefetch configuration just takes by 0.1ms in our
experimental platform.Overall, in a 10-benchmarkworkload
execution, the overhead accounts approximately for 0:5% of
the execution time; thus the incurred overhead can be con-
sidered negligible. This overhead can be further reduced in a
production environment since the IPC predictions can be
performed in parallel in different cores.

6 LEARNING METHODOLOGY

This section discusses the methodology followed to build
the NNmodel, which covers three main issues:

� Training benchmarks.
� Model inputs.
� Model training methodology.
In this work, we present two NNs, the first one, a more

simple NN, focuses on the execution of single threaded
applications in a single core. The second one and more com-
plex NN, predicts the performance of an application consid-
ering both its prefetch configuration and the interference
caused by the applications co-running on other cores of the
system.

In spite of the complexities of the devised NNs differ, the
training methodology for both NNs is rather similar. The
following subsections explain the three steps of the pro-
posed methodology for the single-application single-core
NN. After that, the last subsection explains the main differ-
ences to build the multi-core NN.

6.1 Training Benchmarks

To obtain the data inputs to train the neural networks, a set
of benchmarks needs to be used. These benchmarks should
be representative for the goal of study. To help choose rep-
resentative benchmarks, several approaches have been pro-
posed [14], [15] that categorize applications depending on
the prefetch behavior. In this work, we follow the approach
proposed in [15], which classifies applications into three
main categories. Below, we summarize these categories in
order to make the paper self-contained:

� Prefetch unfriendly applications. This category groups
benchmarks whose performance does not improve
with any prefetch configuration compared to no pre-
fetching. Fig. 1a presents an example (gamess) of
this type of application.

� Prefetch friendly applications. Their performance
improves when prefetching is enabled. This cate-
gory is divided into two main subcategories. Prefetch
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configuration insensitive. As long as prefetching is
enabled, minor performance differences can be appre-
ciated among the distinct prefetch configurations. This
is the case of bwaves (Fig. 1b), whose performance
improves due to prefetch, but the benefit is very simi-
lar across the studied prefetch settings. Prefetch config-
uration sensitive. Different prefetch settings result in
different performance gains. An example of this type
of application is GemsFDTD (Fig. 1c).

Since the neural network is used to predict the best per-
forming prefetch configuration, the IPC of the selected
benchmarks must be both sensitive to prefetching and to
the prefetch configuration as well. Otherwise, we found
that if the performance of a high percentage of the training
applications is not affected by prefetching or the prefetch
configuration, the training will not be able to find out a cor-
relation between the prefetch settings and the IPC, resulting
in poor NN output accuracy.

Due to this reason, in this work all the benchmarks we
selected for training the single-core NN are prefetch friendly
(both sensitive and insensitive to the prefetch configuration).
These benchmarks are shown in Table 1. From those bench-
marks a pool of samples was created taken from the execu-
tion quanta of all the applications. A random subset (80%) of
this pool was used to train the NN and the remaining 20%
was reserved to evaluate the NN accuracy. After that, six
new applications have been used to validate the proposal.
These six applications represent 20% of all applications (the
remaining 80% are used for training and testing).

In contrast, when training the multi-core NN, as
explained in Section 6.4, we consider all the types of bench-
marks in order to consider the interference among them.
This interference can mofify the benchmark behavior, for
instance, a configuration insensitive benchmark in single

core can move its behavior to configuration sensitive due to
the inter-application interference in multi-core execution.
This interference mainly rises in the main memory band-
width contention, therefore this event has been considered
as input of the multi-core NN.

6.2 Model Inputs

Once the benchmarks and workloads to train the NN have
been selected, we determine its inputs. These inputs refer to
the hardware events that are considered by the neural
network to infer the performance (IPC) of a prefetch
configuration.

As explained in Section 4.2, a key design issue is the
number of these events. If the number of the considered
events is too high, the NN would require a noticeable num-
ber of quanta to gather them, which negatively affects sam-
pling consistency. However, a too small number, the model
could miss events of interest to output an accurate IPC, thus
dropping prediction accuracy. We found that an amount of
events to 16 hardware events, which can be gathered in just
4 quanta (m ¼ 4Þ, represents a good trade-off. This time
interval is small enough to ensure that most samples are
consistent along the interval while letting the model to
achieve enough prediction accuracy.

The events that should be selected depend on the goal of
study and the target machine. The purpose of this work is
to select the best performing prefetch setting for each appli-
cation, regardless of it runs individually (single-core NN) or
it co-runs with other applications in other cores (multi-core
NN). To this aim, we should select events that a variation in
the event count represents a variation in the application’s
performance. Moreover, the selected events should also
present differences among the distinct studied prefetch set-
tings, in order to help discerning the best prefetch configu-
ration for each application.

Taking these issues into account, we select three types of
events:

� Cache hierarchy performance. These events measure the
activity of the application in the cache hierarchy.
This category basically includes (load and store)
miss events along the cache hierarchy (L1D, L1I, L2,
and L3).

� Memory bandwidth. These events are related to the
main memory bandwidth consumption, since the
available bandwidth affects the prefetch performance.

� Core. This category includes core-related events that
help the model to discern if a given prefetch configu-
ration can improve performance or not, hence
improving the NN prediction accuracy. For instance,
if the prefetcher is properly working, the number of

Fig. 1. Impact of prefetch configuration on performance of applications belonging to different prefetch sensitivity categories.

TABLE 1
Prefetch Friendly Training Benchmarks

SPEC CPU2006 SPEC CPU2017

gcc gcc_r
mcf mcf_r
libquantum xalancbmk_s
omnetpp x264_s
xalancbmk deepsjeng_r
bwaves leela_s
milc xz_r
zeusmp cactuBSSN_r
cactusADM lbm_r
leslie3d imagick_r
soplex namd_r
GemsFDTD parest_r
lbm povray_r
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execution cycles where the issue queue is full (event
PM_ DISP_HELD_IQ_FULL) will be reduced. As
another example, the amount of branch mispredic-
tions (event PM_BR_MPRED_CMPL) gives infor-
mation of whether prefetches are triggered from
wrong path instructions and thus are likely to be
useless.

Table 2 summarizes the 16 events finally considered to
build the neural network and their description, broken
down into the three mentioned categories.

Different events were considered and discarded when
they provided scarce or no contribution to prediction accu-
racy. Events were chosen in a 3-stage refinement process.
In the first stage, a subset of 12 events (3-quantum inter-
vals) were selected related to cache hierarchy, prefetch
and core related performance (event e1 to e10, event 12,
and event 15). This stage reached an average accuracy by
70%. In a second stage, we mainly checked core related
events (e14 and e16) in addition to e13 to improve accu-
racy. This supposed extending the model to 4-quantum
intervals but accuracy was improved up to 80%, that rose
up to 85% with dynamic training. Finally, we added e11
and improved training. In between these stages, we
checked the contribution to accuracy of other events. This
stage improved accuracy in some individual applications
up to 97%, and on average above 90%.

In addition to these events, we also take into account the
number of instructions and cycles executed in the 4 previ-
ous quanta. As explained in Section 4.2, obtaining these val-
ues does not require additional programmable counters
since the number of cycles and instructions is measured by
dedicated counters that are always enabled. We consider
these metrics because the purpose of the NN is to predict
the IPC (that is, the relation between instructions and cycles)
and we found that providing previous IPCs to the model
helps to increase its accuracy.

Finally, previous quanta prefetch configurations are also
used as inputs by themodel to establish correlations between
these configurations with the achieved performance and the
discussed inputs.

6.3 Model Training Methodology

To predict the IPC for the next quantum i with a given pre-
fetch configuration, say IPCi and DCSRi, the NN uses the
inputs gathered in the 4 previous quanta Ii�1...i�4. These
inputs include both event-related inputs (which comprise
the previous IPCs) and the enabled prefetch configurations
during the previous quanta. Therefore, a training sample Si

consists of IPCi, DCSRi, and Ii�1...i�4. That is, a training
sample is defined as the set Si ¼ fIPCi;DCSRi; Ii�1...i�4g.
Since the aim of the NN is to predict the IPC, we use IPCi as
the label for training.

To train the NN, a large amount of training samples is
required, which are gathered from specific executions
designed with this aim that will be referred to as training
executions. During these executions, the inputs and the
achieved IPC are obtained to compose the samples. For
example, assume a short execution consisting of 12 quanta.
These quanta would be distributed in 3 four-quantum
groups (since m ¼ 4): fQ1; Q2; Q3; Q4g, fQ5; Q6; Q7; Q8g, and
fQ9; Q10; Q11; Q12g. This execution would provide two train-
ing samples at the end of the two first four-quantum group
S5 ¼ fIPC5; DCSR5; I1::4g and S9 ¼ fIPC9; DCSR9; I5::8g.

Following the flow diagram depicted in Fig. 2, we
launched a wide range of training executions. This flow is
composed of two main training stages (dark boxes): static-
prefetch training and dynamic-prefetch training.

In the first stage, referred to as static-prefetch training,
each application is executed several times, as many as the
number of studied prefetch configurations. In each execu-
tion, the prefetch is set to a given configuration and remains
unchanged (i.e., fixed or static) for the entire execution.
Then, samples for training the NN are extracted from the
execution following the scheme discussed above. The sam-
ples collected from these experiments are stored in a sam-
ples database and then used to train the first version of the
NN referred to as static approach.

The static approach was originally devised with the aim of
studying how accurate can be the NN prediction with this
simple training method. An important shortcoming of the
static approach, however, is that since the NN is only trained

TABLE 2
Categories, Events Name, and Description

Category Event Name Description

e1. PM_L1_ICACHE_MISS Demand iCache misses
Cache e2. PERF_COUNT_HW_CACHE_L1D:READ:MISS L1 cache load misses
Hierarchy e3. PERF_COUNT_HW_CACHE_L1D:WRITE:MISS L1 cache store misses

e4. PERF_COUNT_HW_CACHE_LL:WRITE:MISS Last level cache store misses
e5. PM_DATA_FROM_L3 The processor’s data cache was reloaded from local core’s L3

due to demand loads plus prefetches
e6. PM_MEM_PREF Main memory prefetch accesses
e7. PERF_COUNT_HW_CACHE_L1I:PREFETCH:ACCESS L1I cache prefetch accesses
e8. PERF_COUNT_HW_CACHE_L1D:PREFETCH:ACCESS L1 cache prefetch accesses
e9. PM_L1_ICACHE_RELOADED_PREF Counts all Icache prefetch reloads (includes demand turned into prefetch)
e10. PM_DATA_FROM_MEMORY The processor’s data cache was reloaded from a memory location

due to demand loads plus prefetches
e11. LLC_LOADS Last level cache loads

Memory e12. PM_MEM_READ Main memory accesses
Bandwidth e13. LLC_LOAD_MISSES Last level cache load misses

e14. PM_DISP_HELD_IQ_FULL Dispatch held due to issue queue full
Core e15. PM_BR_MPRED_CMPL Number of branch mispredicts

e16. PERF_COUNT_HW_BRANCH_INSTRUCTIONS Retired branch instructions
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with samples keeping the same prefetch configuration, it
does not consider the impact on performance of changing
the prefetch setting at run-time.

To provide the NN the capability to analyze this impact,
one or more dynamic-prefetch training stages are per-
formed. In any of these stages, to obtain the samples that
will be used to train the NN, each application is executed
once with a prefetch configuration that is changed along
execution. This change is driven by the NN trained in the
previous stage, which estimates, for each quanta group the
IPC for the different studied prefetch configurations to
select the best performing one, as explained in Section 5.2.
Proceeding in this way, samples collected along an execu-
tion can be taken with different prefetch configurations;
therefore, grasping the impact of dynamic prefetch config-
uration changes. As the samples obtained during execu-
tions performed in the static-prefetch training stage,
samples obtained in a dynamic-prefetch training are
stored in the samples database to train another NN with
static and dynamic samples, which is done at the end of
the stage.

A NN that has been trained with samples collected in one
or more dynamic-prefetch trainings is referred to as
dynamic approachiter, where iter refers to the number of
dynamic-prefetch trainings performed to train the NN.
Once the dynamic approachiter has been trained, it can
be used in a next dynamic-prefetch stage to train the
dynamic approachiterþ1, and so on. This implies a loop
of multiple consecutive dynamic-prefetch trainings, as
shown in the diagram. This loop is finished when it is
detected that NN accuracy does not improve with more
iterations.

In summary, the NN is trained through two sequential
stages; the static-training prefetch stage, which is mainly
used to initialize the training flow, and the dynamic-train-
ing one, which loops for some iterations to improve the pre-
diction accuracy.

6.4 Multi-Core Neural Network

As mentioned above, in this work we devise two NNs, a sin-
gle-core NN and a multi-core NN. Both networks provide
the IPC as output. In the case of the multicore, the NN pro-
vides the predicted IPC for each application with the stud-
ied prefetch configurations. However, unlike the single-core
NN, the multi-core NN considers the interference intro-
duced by the applications co-running in the other cores. To
this end, we performed three main updates to the described
training methodology: i) the NN is trained with workload
mixes, ii) memory bandwidth is considered as input, iii)
training samples are obtained from executions of mixes.
Below, these three updates are discussed.

Regarding the first update, workload mixes composed of
multiple applications running together, each one on a differ-
ent core, are used to train the NN instead of applications
running alone. In order to study a wide diversity of inter-
application interference, we built 25 workloads composed
of 6, 8, and 10 benchmarks randomly selected that were
used only to train the NN. We gather a dataset from the exe-
cution of all the workloads. A fraction of the dataset (i.e.,
80% of the samples) was used in training and the remaining
fraction (i.e., 20%) was used for testing the NN accuracy in
the BigML platform.

Benchmarks were randomly selected from the entire
SPEC CPU 2006 and SPEC CPU 2017 benchmark suites, con-
sidering both prefetch friendly and prefetch unfriendly
benchmarks. Note that in the multi-core scenario, the per-
formance of the applications does not only depend on their
prefetch configuration but also on the dynamically varying
bandwidth utilization of the co-running applications. There-
fore, it makes sense to consider all types of co-running
applications, which also mimics realistic scenarios.

The second update refers to consider the interference at
the shared resources. In order to predict the performance of
an application in multi-program execution, the model needs
to consider both the target application’s intrinsic behavior
and the inter-application interference at the shared resour-
ces. In our experimental platform, the main memory is the
most critical resource shared among cores. Note that, in con-
trast to Intel processors, where the entire LLC can be
accessed by any core, in the POWER8 and POWER7 pro-
cessors, a core mainly accesses to its corresponding LLC
region [43]. In addition, previous work [44] has shown that
the performance of individual applications when running
in a multi-program workload is affected both by its band-
width consumption and that of the co-runners. Therefore,
we add two inputs to the multi-core NN: i) the bandwidth
consumption of the target application in the previous
quanta and ii) the sum of the bandwidth consumption of
the co-runners as a whole. The bandwidth consumed by an
application or core during a quantum is estimated consider-
ing both prefetch requests and LLC load misses.

The multi-core NN is accessed during inference with
these additional inputs to predict the IPC of each applica-
tion running on a core. Notice that this implies that to make
predictions for all running applications at the end of each
quantum group, the multi-core NN needs to be accessed
NxM times, where N is the amount of applications in the
mix and M is the number of considered prefetch configura-
tions. An alternative approach could be a NN that selects all

Fig. 2. Training flow.

LURBE ETAL.: DEEPP: DEEP LEARNING MULTI-PROGRAM PREFETCH CONFIGURATION FOR THE IBM POWER 8 2653



the prefetch settings together for all the cores. However, this
design presents three main drawbacks. First, it will be much
more complex since it needs to process in the order of N�
much more input data and generate N prefetch configura-
tions (one for each core) as output at the same time. Second,
training time will be longer, since it requires N� executions
to get the same amount of samples as the proposed approach.
This is because, in a training execution of the alternative
approach, a quantum produces just one sample while in the
proposed approach a quantum generates N samples. Third,
the trained NNwill be only applicable to a system (mix) with
a given number of cores (applications). In contrast, our
approach is independent of the number of cores of the target
system.

The third update refers to how training samples are gath-
ered. For this purpose, the multi-core NN also applies static-
and dynamic-prefetch trainings, but using executions of the
multi-program workload mixes. In the static-prefetch train-
ing, each mix is executed several times, one for each of the
studied prefetch configurations. For each execution, all the
cores hold the same prefetch configuration. The collected
samples, which are obtained for the execution of each appli-
cation running in the mix are stored in the samples database
and then used to train the (multi-core) static approach.

As in the training of the single-core NN, the flow diagram
shown in Fig. 2 is followed. In other words, once the static
approach has been trained, it is used in the first dynamic-pre-
fetch training stage. In this stage, each mix is run to obtain
training samples, but instead of setting a static prefetch con-
figuration for the whole run, the static approach dynamically

chooses each quantum a prefetch configuration for each
application. The samples collected in these executions are
stored in the samples database and used to train the first
dynamic approach (dynamic approach1). Samples collected
with the dynamic approach1 could be used later in further
dynamic training iterations.

The devised networks are composed of 5 (1 input, 3 hid-
den, and 1 output) full connected layers. Table 3 summa-
rizes the main parameters of the neural networks used in
this work. The training platform provides three metrics to
report the accuracy of the trained NN: mean absolute error,
mean squared error, and R squared value. The mean abso-
lute error, mean squared error, and R squared values for the
multi-core NN are 0.08, 0.02 and 0.94, respectively. For sin-
gle-core NN, these values are 0.05 (mean absolute error),
0.01 (mean squared error), and 0.97 (R squared value).

7 EXPERIMENTAL EVALUATION

7.1 Individual Applications

This section evaluates the performance of the NN we built
working on individual applications without considering
inter-thread interference. The main purpose of this network
is to be used as workbench to work on improving the predic-
tion accuracy for individual applications running in isolation.

To this end, two main steps were followed. In the first
step, the NN was only trained with samples obtained in the
static-prefetch trainig stage. In the second step, dynamic-
prefetch training data was used to re-train (see Section 6.3)
the NN combining static and dynamic data to improve pre-
diction accuracy when the prefetcher configuration changes.

Fig. 3 compares the prediction accuracy of both training
modes. Each bar shows the distribution of the accuracy (in
percentage) of the predicted IPC over the real value.

It can be observed that the static approach already shows
good IPC estimates across most of the applications. The
dynamic approach, however, allows improving the accu-
racy for those applications that experienced higher IPC
deviations (e.g., mcf, omnetpp, zeusmp, or gemsFDTD).

The proposed dynamic-prefetch training outperforms, in
general, the accuracy of the static one in 20 out of 23 applica-
tions. On average, the prediction accuracy of the static
approach exceeds 90% and 80% for 75% and 90% of the total
predictions made, respectively. This accuracy is significantly
improved by dynamic-training, which rises up to and nearly

TABLE 3
NN Description

Parameter Single-core NN Multi-core NN

# of inputs 21 23
# of layers 5 5
# of hidden layers 3 3
Activation function ReLU ReLU
# of neurons per layers 64,128,64 128,128,128
Optimizer ADAM algorithm ADAM algorithm
Learning rate 0.1% 0.5%
Dropout rate 25% 25%
beta1 0.9 0.9
beta2 0.999 0.999
epsilon 1e-8 1e-8

Fig. 3. Interval accuracy of the predicted IPC with respect to the reached IPC in the next quanta. The average prediction accuracy is 91.8% and
92.1%, for the Static and Dynamic approaches, respectively.
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to 90% of the predictions, respectively. We found that, in
general, the accuracy significantly improves in some applica-
tions when iterating the training phase. Then, the IPC of
these applications stabilizes in most cases and falls closer to
the real IPC achieved in the next quantum. The presented
values were obtainedwith three iterations.

7.2 Multi-Core Evaluation

This section compares the performance of DeepP to DEF
and IBS [14] prefetch approaches. DEF refers to the default
IBM POWER8 prefetch configuration, which is set across all
the execution. IBS was proposed for the IBM POWER7 pre-
fetcher, so we adapted this mechanism to work on our sys-
tem, an IBM POWER8 machine. In the IBM POWER7, IBS
uses two prefetch configurations (the most aggressive pre-
fetch setting and OFF) and therefore we selected the most

aggressive and the OFF configurations in our IBM POWER8
platform to implement IBS.

To evaluate DeepP we have used a set of 60 randomly
generated multi-program mixes of different sizes, which
help analyze a wide range of inter-application interference.
We built 24 workloads composed of 6 benchmarks, 18 8-
benchmark workloads, and 18 10-benchmark workloads.
Two workloads of each size contain applications that were
not used to train the NN. These workloads are referred to as
WK19, WK21, WK40, WK42, WK57, and WK60.

Fig. 4 shows the harmonic mean [45] of the IPC of the
benchmarks in each workload across the studied approaches
normalized to no prefetching. To simplify the analysis, the
workloads are sorted in ascending normalized performance
order of theDEF prefetch configuration.

It can be observed that the three prefetch approaches pro-
vide significant performance gains over the OFF prefetch
configuration in the 6-application and 8-application work-
loads. It can be appreciated that DeepP is the best perform-
ing approach across all the mixes with the only exception of
just a couple of them. Its performance exceeds 30% in
around 33% of the mixes (8 out of 24 in the 6-application
mixes and 6 out of 18 in the 8-application mixes). DeepP
differences rise over the DEF and IBS approaches as the
number of benchmarks in the mix rises. An interesting
observation is that no prefetching provides better perfor-
mance in about in the 6-application workloads, and this per-
centage rises in the 10-application workloads. Moreover,
performance gains achieved by the prefetch schemes dra-
matically drop in 10-application workloads, while DeepP is
the only prefetch approach that clearly outperforms OFF
across all the mix sizes.

The main reason that explains the performance results is
the inter-application interference at the main memory band-
width consumption. Fig. 5 shows the bandwidth averaged
by application of eachworkload, quantified in terms ofmem-
ory transactions per ms. We measured experimentally that
the maximum available bandwidth in the system is about
185-195 transactions per ms. This bandwidth is split in
three main components: on-demand, that is the main memory
bandwidth due to regular memory instructions, useful that
refers to bandwidth consumed by prefetches that are later
requested by the processor, and wasted that refers to useless
prefetches. As expected, the average bandwidth consumed
per application is on average barely the same when prefetch
is disabled (OFF) regardless of the number of applications in
the mix. In contrast, the average bandwidth drops as the
number of applications rises for all the remaining prefetch-
ing approaches. This fact is more accentuated in the aggres-
sive default approach (DEF), which tends to demand all the
system bandwidth (aggregated among the applications)
regardless of the number of running applications. Conse-
quently, bandwidth contention rises and adversely impacts
on performance.

By setting the best prefetch configuration predicted by the
deep network, DeepP is able to estimate which applications
will benefit themost from enabling or increasing the prefetch
aggressiveness, which allows i) reducing bandwidth utiliza-
tion (i.e., less wasted bandwidth) and hence contention, and
ii) saving prefetch bandwidth for being used by the applica-
tions that actually benefit from prefetching.

Fig. 4. Performance achieved in the multi-program workloads for the
studied prefetch configuration approaches. Performance is normalized
over OFF.
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In the case of IBS, the bandwidth consumed by this
approach, in general, falls in between the consumed by
DEF and DeepP. This is mainly due to IBS only uses pre-
fetch off and the most aggressive prefetch configuration,
thus the prefetcher is significantly switched off to reduce
the interference.

7.3 Mix Example

This section analyzes the performance and bandwidth of
individual applications composing a mix to provide further
insights in the DeepP’s performance gains. For illustrative
purposes, we analyze mix WK4. Fig. 6a depicts the percent-
age of time that each prefetch configuration has been active
for each application along the execution of workload 4 with
DeepP. The figure shows that three applications execute
most of the time with U1P7 or U2P4. These configurations
are less aggressive than the default prefetch configuration
(U4P4), which allows reducing the pressure on the main
memory bandwidth. Looking at Fig. 6b three main observa-
tions can be appreciated. First, the aggregate bandwidth
consumed among all the applications in the mix is much
lower in DeepP than in DEF which reduces the bandwidth
contention. Second, in those applications whose perfor-
mance improves significantly with prefetching (leslie3d),
DeepP consumes more bandwidth than DEF. Notice that in
these applications the aggressive U4P7 configuration is
kept for an important fraction of the execution time. This
fact, jointly with the reduced contention allows DeepP to

outperform DEF in this application. Third, in the applica-
tions where prefetching brings scarce performance gains
(e.g., the two instances of milc), DeepP consumes less band-
width than DEF. In addition, this plot also illustrates the
importance of correctly handling bandwidth, which can be
especially appreciated in xalancbmk, an application that
does not benefit from prefetch; nevertheless, the bandwidth
contention introduced by co-runners makes its performance
to drop. In other words, the higher bandwidth contention
makes memory latency of on demand memory requests to
increase. Comparing both plots of the figure, it can be
noticed the importance of handling configurations with dif-
ferent aggressiveness. If this is not considered, as in IBS,
there are less opportunities to share the memory bandwidth
in a efficient way to improve performance.

8 CONCLUSION

In this paper, we have proposed DeepP that uses a deep
neural network to select the best prefetch configuration for
each running application. To this end, the network esti-
mates the performance of each application under the stud-
ied prefetch configurations. The neural network makes
these estimates using a set of hardware events that relate to
the intrinsic application behavior and the main memory
bandwidth utilization of the co-runners.

A key design issue of DeepP is the training methodology
of the neural network, which uses dynamic-prefetch training

Fig. 5. Memory memory bandwidth consumption in the multi-program workloads for the studied prefetch configuration approaches. Bandwidth is split
in according to it is consumed by on demand processor requests or prefetch requests, which in turn is broken down in bandwidth consumed by use-
less (wasted) and useful prefetches.
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samples to improve the accuracy of the predictions. Results
show that the neural network accuracy exceeds 90% in more
than 92% of the performance estimates when selecting the
best prefetch configuration. Regarding performance, using
the network to dynamically set the best prefetch configura-
tion of the applications in multi-program workloads DeepP
achieves performance gains, on average, by 5.8%, 6.7%, and
15.8% across a set of random 6-, 8-, and 10-application work-
loads compared to the default prefetch configuration.

DeepP and its learning methodology can be easily
adapted to other systems like Intel and ARM. In this regard,
both the prefetch configurations and the set of hardware
events used by the NNs should be adapted. As for future
work, we plan to explore advanced NNs such as Convolu-
tional Neural Networks (CNNs) or Long Short-Term Mem-
ory (LSTM) to seek potential accuracy improvements. For
instance, CNNs might help find symbiosis among neigh-
bour cores, and LSTM help identify patterns along the exe-
cution to improve the prefetch configuration selection.
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