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Abstract: Several studies have assessed droughts and vegetation considering climatic factors, particu-

larly El Niño-Southern Oscillation (ENSO) at different latitudes. However, there are knowledge gaps

in the tropical Andes, a region with high spatiotemporal climatic variability. This research analyzed

the relationships between droughts, vegetation, and ENSO from 2001–2015. Meteorological drought

was analyzed using the Standardized Precipitation Evapotranspiration Index (SPEI) for 1, 3 and

6 months. Normalized Difference Vegetation Index (NDVI) was used to evaluate vegetation, and

ENSO indexes were used as climate drivers. The Wavelet coherence method was used to establish

time-frequency relationships. This approach was applied in the Machángara river sub-basin in the

Southern Ecuadorian Andes. The results showed significant negative correlations during 2009–2013

between the SPEI and NDVI, with the SPEI6 lagging by nine months and a return period of 1.5 years.

ENSO–SPEI presented the highest negative correlations during 2009–2014 and a return period of

three years, with ENSO leading the relationship for around fourteen months. ENSO-NDVI showed

the highest positive correlations during 2004–2008 and a return period of one year, with the ENSO

indexes continually delayed by approximately one month. These results could be a benchmark for

developing advanced studies for climate hazards.

Keywords: ENSO; SPEI; NDVI; Wavelet coherence; equatorial Andean basin

1. Introduction

Drought is one of the most expensive climate-related hazards. From 2001 to 2018,
worldwide drought caused more than US$ 50 billion in losses and almost 290 million
people were affected [1]. Drought is multifaceted, because it involves human activities and
ecosystem services [2]. Typically, drought refers to a natural or human-caused water scarcity
extreme event [3–5]. Due to the impact, droughts are categorized into meteorological,
hydrological, agricultural, and socioeconomic [6,7].

Meteorological drought is related to low precipitation [3] and is considered the driving
force for other droughts [8,9]. Drought indexes help to represent the water deficit. Among
several drought indexes, just a few consider precipitation and temperature together [10].
For example, the standardized precipitation evapotranspiration index (SPEI) is suitable
for studying the impact of precipitation and temperature on meteorological drought sever-
ity [11]. SPEI has demonstrated promising results in capturing variations in temperature
and evapotranspiration for assessing global drought [12–16].
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Due to a rainfall deficit, agricultural drought refers to low soil moisture and a water
supply deficiency to vegetation. Changes in vegetation can hugely impact the hydro-
logical cycle, agriculture production, and carbon cycle [17,18]. Vegetation disturbances
can influence climate variability due to photosynthesis and evapotranspiration [19,20].
Hence, monitoring drought and vegetation responses to climatic conditions can enhance
understanding of the behavior of terrestrial ecosystems to this hazard [21,22]. Remote
sensing technology has been widely used to describe vegetation on earth [23]. Normalized
Difference Vegetation Index (NDVI) is one of these products. NDVI identifies vegetation
greenness through average leaf size, vegetation type, density, and the increases in total
crops per year [19].

Climate variables such as precipitation and temperature affect droughts and veg-
etation depending on the location and season [24–27]. Drought episodes are linked to
different atmospheric factors, mainly those of the circulation regions of the Pacific and
Atlantic oceans. Several studies have been conducted to assess the relationship between
droughts and vegetation considering climatic variables, in particular, El Niño-Southern
Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation index
(NAO), Multivariate ENSO Index (MEI) [28–32]. Previously mentioned research indicated
that climatic factors exacerbate drought conditions. Among climatic phenomena, ENSO
is one of the most significant large-scale circulation patterns, which is why it causes con-
siderable variability in climate [33–35]. ENSO is critical in climate variability, especially in
areas with diverse topographies and climates [36–38]. The impact of ENSO on droughts in
dry/wet regions has been investigated globally and regionally [38–43].

As mentioned earlier, the studies concluded that the impact of ENSO on droughts
depends on regions and seasons. For this reason, inquiring about droughts at different
latitudes is relevant. It is necessary to describe the influence of ENSO on droughts and veg-
etation and disclose the relationships from the perspective of areas with special conditions.
For example, vegetation showed a negative relationship with ENSO in areas like southern
Africa, eastern Australia, and northeast Brazil [18,44,45], which denoted that during the
El Niño years, vegetation growth was restricted in the territories above. Meanwhile, in
east Africa, the Amazon basin, Midwest United States, ENSO has a positive effect on
vegetation [46–49].

The tropical Andes region is recognized because of its biodiversity and endemic vege-
tation [50,51]. Various investigations have been performed on Andean catchments [52–56],
even focusing on droughts [57–63]. However, just a few studies consider the influence of
macro-climatic phenomena on meteorological droughts. Even fewer consider precipitation,
evapotranspiration, and vegetation.

The overall aim of this study was to understand the relationship between meteorologi-
cal drought, vegetation, and ENSO in the Machángara catchment, a tropical mountainous
region. For this purpose, we obtained SPEI, NDVI and ENSO and described their relation-
ship through a wavelet approach.

2. Materials and Methods

2.1. Study Area

The study area was the upper part of the Machángara river sub-basin (Figure 1),
located in the Southern Ecuadorian Andes. This area covers approximately 270 km2

in an inter-Andean depression, and its elevation ranges between 2987 and 4420 m.a.s.l.
Temperature varies between 9 ◦C and 16 ◦C. The average annual rainfall oscillates between
877 mm in the lower and 1363 mm in the upper regions. The study area is covered
chiefly with páramo (tussock grass), which plays a vital role in hydrological processes in
Andean catchments [56]. The Andean montane páramo ecosystem consists of glacially-
formed plains and valleys with several lakes, moist grasslands, and patches of low-lying
montane forest. The Machángara river sub-basin supplies water for human consumption in
Cuenca city (the third most important in Ecuador), rural settlements, agriculture irrigation,
industrial use, and electricity generation [58].
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Figure 1. Location of the Machángara river subbasin and the meteorological stations.

2.2. Data

2.2.1. Meteorological Stations Data

Monthly data on precipitation and maximum and minimum temperature were ob-
tained from meteorological stations of the National Institute of Meteorology and Hydrology
of Ecuador (INAMHI—https://www.inamhi.gob.ec, accessed on 28 January 2021) from
1981–2015 (Figure 1).

2.2.2. Vegetation Data

The Moderate Resolution Imaging Spectroradiometer (MODIS), developed by the Na-
tional Aeronautics and Space Administration (NASA), provides satellite data for improving
the understanding of the Earth system [64]. The product used was MOD13Q1–NDVI from
MODIS-Terra (https://modis.gsfc.nasa.gov, accessed on 8 December 2022). In this research,
the monthly MODIS data configured a time series (2001–2015) of NDVI records with a
spatial resolution of 250 m and 16 days of temporal resolution.

2.2.3. ENSO Indexes

The ENSO indexes of the Pacific Ocean regions were used to explain the relation-
ships between the ENSO phenomenon and drought and vegetation. The data for ENSO
is accessible online at https://psl.noaa.gov/data/climateindexes/list, accessed on 12
March 2021.

ENSO is an alteration of the ocean-atmosphere system in the tropical Pacific that has
significant consequences on the climate around the planet. ENSO fluctuates between the
El Niño warm and La Niña cold phases [65]. Owing to the complexity of ENSO, there
are different indexes based on sea surface temperature (SST) and atmospheric pressure.
The temperature-based indexes are named according to the location in the Pacific Ocean.
According to National Oceanic and Atmospheric Administration (NOAA), the definition of
indexes are:

Niño 1 + 2 (0–10 S, 90 W–80 W): The Niño 1 + 2 region comprises a small part of the
coastal area of South America (Ecuador and part of Perú). This index shows the highest
variation of the El Niño SST indexes.

Niño 3 (5 N–5 S, 150 W–90 W): Niño 3 index occurs at the central Pacific. El Niño and
La Niña events are defined when Niño 3 index exceeds +/−0.5 ◦C for six months or more.

Niño 3.4 (5 N–5 S, 170 W–120 W): Represents the average SSTs in the equatorial Pacific
between Niño 3 and Niño 4 regions. El Niño or La Niña events occur when the Niño 3.4
SSTs exceed +/−0.4 ◦C for six months or more.

Niño 4 (5 N–5 S, 160 E–150 W): The Niño 4 index represents SST anomalies in the
central equatorial Pacific. This region shows less variation than the other El Niño regions.

https://www.inamhi.gob.ec
https://modis.gsfc.nasa.gov
https://psl.noaa.gov/data/climateindexes/list
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ONI (5 N–5 S, 170 W–120 W): The Oceanic Niño Index considers the same region as
the Niño 3.4 index. ONI classifies El Niño o La Niña events when SSTs exceed +/−0.5 ◦C
for five consecutive months. According to the ONI index classification (https://ggweather.
com/enso/oni.htm, accessed on 13 May 2022), years from 1951 to 2021 were classified as
ENSO years (El Niño and La Niña) with categories: weak, moderate, strong, or very strong.

The Southern Oscillation Index (SOI) is a result of the difference in standardized
atmospheric pressure between two islands: Tahiti (eastern-central part of the Tropical
Pacific) and Darwin (western part of the Tropical Pacific).

2.3. Methodology

2.3.1. Meteorological Drought through Standardized Precipitation and Evapotranspiration
Index (SPEI)

The SPEI considers the effect of increased temperature on droughts [66] using its
influence on both precipitation and potential evapotranspiration (PET) [67]. The SPEI index
is simple to calculate and multi-scalar, which makes it easy to link with various phases
of drought [68,69]. Three methods are commonly used for calculating PET, depending on
data availability: Penman-Monteith, which incorporates solar radiation, relative humidity,
and wind speed [70,71]. The Thornthwaite method requires the latitude and mean daily
temperature of the location [72,73]. Hargreaves method request latitude and daily minimum
and maximum temperature [74,75]. Several studies have evidenced that the choice of PET
does not affect the drought stages; however, PET computation could affect the intensity of
drought [76–78]. Although Penman-Monteith produces good results in Andean regions [79],
we apply the Hargreaves method due to the unavailability of data. The following steps
for SPEI calculations were performed: (1) The Inverse Distance Weighting (IDW) method
was used to generate a spatial distribution of precipitation, minimum and maximum
temperature, with a spatial resolution of 250 m at the same scale as the NDVI [80,81]. (2) PET
was calculated by the Hargreaves method; (3) water balance was the result of subtracting
total monthly precipitation and PET; (4) the SPEI values at time scales of 1, 3 and 6 months
were calculated using the R SPEI package (http://cran.r-project.org/web/packages/SPEI,
accessed on 17 February 2021). Further details of the SPEI calculation can be found in
Vicente-Serrano et al. (2010). Positive values denote drought absence, and negative values
(≤–0.9) represent different levels of drought. The SPEI values and category ranges are
shown in Table 1 [80,81].

Table 1. Categorization of the SPEI index.

SPEI Values Category

>2 Extremely humid
1.99–1.50 Very humid
1.49–1.00 Moderately humid

0.99–−0.99 Normal
−1.00–−1.49 Moderate drought
−1.50–−1.99 Severe drought

<−2.00 Extreme drought

2.3.2. Vegetation Index (NDVI)

Due to the presence of some unreliable pixels in the original satellite images from
MODIS, we have discarded the unreliable pixels (no data, snow, and cloudy) [82], ac-
cording to the MOD13 User Guide [83]. The moving window method was used to elim-
inate information gaps, filling these with the average of the surrounding pixels using a
3 × 3 window [84]. In addition, since the MODIS images have a temporal resolution of
16 days, the values were monthly by mean of two images per month to have comparable
series with SPEI data. Monthlyizing the NDVI data minimizes some effects of cloud cover,
atmospheric interference, and solar zenith angle [82,85]. The NDVI takes values between
−1 and 1. Water takes values near −1, and bare soil, urban areas, and rock take negative

https://ggweather.com/enso/oni.htm
https://ggweather.com/enso/oni.htm
http://cran.r-project.org/web/packages/SPEI
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values close to zero. Positive values greater than 0.2 represent areas with good vegetation
and grasslands [86,87]. We determine the final monthly value of NDVI by calculating the
average value per MODIS satellite image. The steps mentioned above were followed for all
MODIS images in the data series.

2.3.3. Wavelet Correlation

The association between SPEI, NDVI, and ENSO indexes was examined using wavelet
cross-correlation. The Wavelet methodology is a helpful tool for studying periodic phe-
nomena in time series, including the time and frequency resolution predicament, and
it is considered a shift in signal and image processing [88,89]. Wavelet provides robust
time-frequency analysis but only identifies features of a single time series [90]. Wavelet
coherence (WTC) analyzes the cross-correlation between two-time series, x and y, in the
time-frequency domain [21]. The WTC [91,92] can be defined as:
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According to Zhou [21], W
xy
n represents the cross-wavelet power spectrum. W

xy
n is the

wavelet transforms for x and y time series. S is a smoothing operator of the time series.
R2

n(a) represents a number between 0 and 1. A value of 1 denotes a significant correlation
between x and y. A value of 0 indicates there is no correlation between the two time
sequences. Detailed descriptions of the power spectrum, cross-wavelet transform, and the
S operator can be found in Torrence [92] and Grinsted [93]. WTC was calculated using the
R WaveletComp package [94].

3. Results

3.1. Meteorological Drought Events

Figure 2 shows the SPEI index with a scale of 1, 3 and 6 months. The index showed
that the most severe droughts occurred in July/2007 (−2.57/SPEI1), December/1992
(−2.36/SPEI 3), and December/1992 (−2.35/SPEI6). Most of the dry events were one
month, and the most extended duration was five months, which occurred in
August–December 1992 for SPEI 6. All the time series presented a positive trend and
a similar distribution (Figure 2).
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Figure 2. Time series, tendency and distribution of the meteorological drought in 1981–2015.

(a) SPEI1 time series, and tendency, (b) SPEI1 distribution, (c) SPEI3 time series, and tendency,

(d) SPEI3 distribution, (e) SPEI6 time series, and tendency, (f) SPEI6 distribution.

3.2. Characterization of the Vegetation

The NDVI between 2001–2019 in the upper area of the Machángara sub-basin is shown
in Figure 3. The lowest NDVI (<0.2) was presented in February, March and April in 2008,
2009, 2012, 2013 and 2014. The 67% of events were categorized as good vegetation cover,
prairies, and grasslands (NDVI > 0.2).
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˃

Figure 3. NDVI time series for the period 2001–2015.

3.3. Relations between Droughts and Vegetation

Note that for all wavelet correlation figures, significant consistencies at 5% are outlined
in white inside the cone of influence delimited by the shaded area within which colors are
most vivid. Additionally, we reported the best-averaged correlations outlined in white
(higher than 0.7). Within the boxed section are left-pointing arrows indicating a negative
relationship (x and y time series are in antiphase) and right-pointing arrows indicating a
positive relationship (x and y time series are in phase). An antiphase relationship with
an up-pointing arrow represents y is leading (ahead) the relationship, and x is lagging
(delay); a down-pointing arrow denotes x is leading, and y is lagging. A phase relationship
with an up-pointing arrow indicates that x is leading and y is lagging; a down-pointing
arrow represents that y is leading and x is lagging the relationship [91]. Phase difference
represents the time in months a variable leads or lags in significant return periods.

Our study found negative/anti-phase correlations between SPEI and NDVI at different
return periods. Figure 4a–c show good correlations (~0.8) between 2009–2013, with a return
period of around 1.5 years. SPEI1 and SPEI3 were the leading variables. Only SPEI6
was lagging by nine months. On the other hand, between 2010–2012 and 2009–2013,
with a return period of around three years and 0.35 years, respectively, correlations are
not significant.

Between 2009 and 2013, for SPEI1, five drought events with an average index of −1.27
were reported. The driest month was October 2010, with −1.43. For SPEI3, two drought
events were evidenced with an average index of −1.26. The driest month was November
2011, with −1.27. For SPEI6, the values remained within the normal range. NDVI reported
the lowest indexes in 2008, 2009, 2012, 2013 and 2014.
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Figure 4. Wavelet coherence between SPEI–NDVI in 2001–2015. (a) SPEI1–NDVI, (b) SPEI3–NDVI,

(c) SPEI6–NDVI.

3.4. Relations between ENSO and Drought

The WTC between Niño 1 + 2, Niño 3, Niño 3.4, Niño 4, ONI and SOI index, and SPEI1
is shown in Figure 5. In general, ENSO–SPEI1, SPEI3 and SPEI6 relationships showed
similar results in time and frequency.

Niño 1 + 2 and SPEI1 maintained a negative correlation of around 0.8 during 2009–2013.
The return period was approximately three years (Figure 5a).

Niño 3 and SPEI1 were negatively correlated (Figure 5b). The highest correlation (~0.9)
occurred between 2009–2014, around three years of the return period. SPEI presented a
delay of 14 months.

The Niño 3.4 and SPEI1 presented a negative relationship (Figure 5c). During
2010–2014 and around three years of the return period, SPEI1 lagged by 14 months. A
similar situation is displayed in Figure 5d; at Niño 4–SPEI1 relationship SPEI1 is delayed
around 20 months during 2009–2012.

The relationship between ONI and SPEI1 is shown in Figure 5e. In the three years of
the return period, a negative correlation (higher than 0.9 on average) was found between
2010 and 2014; ONI led the relationship by 15 months.

A positive correlation (~0.9 on average) between SOI and SPEI1 was found in the
three years return period (Figure 5f). Nevertheless, only a short section of this correla-
tion (2013–2014) was inside the cone of influence. SOI was leading the relationship for
15 months.

The correlations above showed (ENSO–SPEI1) presented typical time intervals from
2009 to 2012 and 2009 to 2014 with significant consistencies at 5%.

During 2009–2014, two El Niño years occurred, one year was categorized as moderate,
and one was weak. On the other hand, two La Niña years were presented, one year was
classified as strong, and one year was moderate. Also, two neutral years occurred.

Between 2009–2012, one moderate El Niño year occurred. In contrast, two La Niña
years presented, one year was strong, and one year was moderate. One neutral year was
also presented.
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Figure 5. Wavelet coherence between ENSO–SPEI1 in 2001–2015. (a) Niño 1 + 2–SPEI1, (b) Niño

3–SPEI1, (c) Niño 3.4–SPEI1, (d) Niño 4–SPEI1, (e) ONI–SPEI1, (f) SOI–SPEI1.

3.5. Relations between ENSO and Vegetation

The WTC between Niño 1 + 2, Niño 3, Niño 3.4, Niño 4, ONI and SOI index, and
NDVI are represented in Figure 6, from which we can notice the relationships between
ENSO and vegetation. All correlations were positive, and NDVI was the leading variable.

The relationship between Niño 1 + 2 and NDVI is represented in Figure 6a. The most
relevant correlation, around 0.7, occurred in the return period of one year. Between 2004
and 2006, Niño 1 + 2 was delayed by approximately 2.4 months.

For both relationships, Niño 3–NDVI (Figure 6b) and Niño 3.4–NDVI (Figure 6c) the
highest correlation (~0.7) occurred between 2004–2008 and around one year of the return
period. ENSO presented a delay of 1 month.

The Niño 4–NDVI relationship is shown in Figure 6d. Two time intervals were
observed: from 2009 to 2012, with a return period of ~1.5 years and a correlation of ~0.7.
From 2004 to 2006, with a return period of one year and a correlation around 0.6. Niño 4
presented a delay of approximately 3 and 2.4 months, respectively. Relationships between
ONI-NDVI and SOI-NDVI were diffuse and not significant.

Between 2004–2006, two weak El Niño years occurred, and one La Niña year was
presented. Between 2004–2008, also two weak El Niño years occurred. In contrast, two
weak La Niña years were presented, and one year was strong.
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Figure 6. Wavelet coherence between ENSO–NDVI in 2001–2015. (a) Niño 1 + 2–NDVI, (b) Niño

3–NDVI, (c) Niño 3.4–NDVI, (d) Niño 4–NDVI.

4. Discussion

In the Machángara sub-basin, a high-altitude area with a humid climate, the results
show that SPEI1 and SPEI3 lead the negative relationships with NDVI and only SPEI6
start to change by lagging. The results above agree with those reported by other au-
thors [26,27,95], who found that in high and semi-humid zones, the aggregated impacts of
meteorological drought on vegetation occurred primarily in medium terms (from five to
eight months). Lagged vegetation reaction to meteorological drought (SPEI1 and SPEI3)
refers to factors such as vegetation type or the surrounding environment (temperature, soil
moisture) [96]. Moreover, in humid zones, the NDVI is impacted by meteorological drought
in longer months (SPEI6) due to accumulated episodes of drought (one to five months).
One to three months-drought does not affect NDVI immediately [97]. Zhan et al. [26] and
Zhao et al. [27] found that accumulated drought (from five to eight months) is typical of
semi-humid regions and grasslands’ response to drought between four and six months.
Therefore, Machángara vegetation cover (mostly páramo and grassland) has soil moisture
retention effects so that it would withstand the impact of meteorological drought well; this
could be why SPEI1 and SPEI3 are advanced in the correlation, while SPEI6 is lagging.

The correlations found with ENSO and SPEI coincide in being negative with other
studies [38,41,98]. Our results corroborate the findings of Vicente-Serrano [38] that
Niño 1 + 2 index does not cause SPEI anomalies in the Andes. In addition, La Niña
provokes humid states in the Ecuadorian Andes and enhances the convective process and
moisture transport from the Amazonas basin to the Andes. Therefore, higher cloud cover
may contribute decrease evapotranspiration during La Niña years. Another coincidence
was with the study of Ávila and Ballari [39], who found that the climatic indexes lead to the
relationship between precipitation and ENSO. Nieves et al. [63] also found a negative corre-
lation between ENSO and meteorological drought in an Andean catchment simultaneously
(2009–2012) and a similar return period. Nonetheless, drought is more delayed when PET
gets involved. Contrary to our results, studies affirm that drought was positively related
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to extreme episodes during El Niño events in the Northen tropical Andes [99–101]. On
the other hand, Mo and Schemm [40] reported a seasonally dependent behavior between
ENSO and drought, where cold ENSO induces drought events in winter but probably
brings precipitations in summer.

In general, our results showed that the impact of ENSO on vegetation had a lag effect,
this agrees with Yan et al. [49], and Poveda et al. [47], who established that vegetation was
always leading the relationships. Contrary to our results Erasmi et al. [22]. Our findings
showed that the highest correlation between ENSO–NDVI was around 0.7. Only ONI
and SOI showed no significant relationships in contrast with Casa et al. [28]. However,
ENSO does not always influence vegetation. Erasmi et al. [22] found that vegetation
reacted to ENSO for moderate-strong El Niño events, and weak El Niño events showed
no clear patterns. As aforementioned, the vegetation in the tropics probably does not
respond significantly to ENSO events due to consecutive short-term changes between El
Niño and La Niña periods. Our results show that tropical vegetation maintains a positive
correlation with ENSO events. Due to El Niño (warm phase) provokes droughts in Andean
Ecuadorian regions, and La Niña (cold phase) enhances precipitations through convective
processes [38]. Therefore, vegetation reacts to El Niño and La Niña by improving or
deteriorating its greenness. However, after an El Niño event, the presence of a La Niña
event enhances vegetation in other regions [49].

5. Conclusions

This research analyzed the relationships between meteorological drought, vegetation,
and the influence of ENSO. Wavelet coherence was used to determine the value of the
correlation, the lags/leads of the variables, the return periods, and the time lapses when
the correlation occurred.

SPEI–NDVI relationship described a negative correlation with SPEI1 and SPEI3 lead-
ing; only SPEI6–NDVI presented a significant correlation, with SPEI6 delayed around nine
months. Humid conditions of the Machángara sub-basin influence the vegetation response
to meteorological drought. This tropical Andean sub-basin evidence moisture retention on
soil and vegetation, so the meteorological drought impact on vegetation is not immediate.

ENSO–SPEI relationships were always negative. In general, ENSO-SPEI1, ENSO-
SPEI3, and ENSO-SPEI6 showed similar results in time and frequency. However, only
SPEI1 evidenced a significant delay of around 14 months. Moreover, the highest correlation
(~0.9) was obtained between 2009 and 2014 in the three-year return period.

ENSO–NDVI relationships presented a positive correlation; this condition is due to
the stable conditions of tropical regions. The years between 2004 and 2008 were the most
common years, and significant correlations were registered in one year of the return period.
ENSO was constantly delayed by around 1.2 months. El Niño presented two weak years
in this time-lapse, and La Niña presented one strong and two weak years. ENSO–NDVI
relationship was more evident when a strong event occurred.

This research has enhanced our comprehension of the relationships and impacts of
drought–vegetation–ENSO on the Machángara subbasin. However, there are still unknown
issues, for instance, assessing drought considering other vegetation types in the Andean
region (different locations, climates, and humid conditions). Another excellent effort would
involve drought intensity and frequency for determining the response characteristics of
vegetation. In addition, we used 15 years, up to 2015. Hence, extending the time to capture
more robust relations between variables is necessary to clarify some knowledge gaps.
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