
Advances in the Theory of Nonlinear Analysis and its Applications 6 (2022) No. 4, 476�480.
https://doi.org/10.31197/atnaa.1090077
Available online at www.atnaa.org

Research Article

Hu's characterization of metric completeness revisited

Salvador Romagueraa

aInstituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain.

Abstract

In this note we show the somewhat surprising fact that the proof of the `if part' of the distinguished char-
acterizations of metric completeness due to Kirk, and Suzuki and Takahashi, respectively, can be deduced
in a straightforward manner from Hu's theorem that a metric space is complete if and only if any Banach
contraction on bounded and closed subsets thereof has a �xed point. We also take advantage of this approach
to easily deduce a characterization of metric completeness via �xed point theorems for α − ψ-contractive
mappings.
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1. Introduction

In a simple but appealing way, Hu presented in [9] the �rst characterization of complete metric spaces
via �xed point methods. Later, several important and renowned characterizations of metric completeness
have been obtained with the help of �xed point results. For instance, Kirk proved in [15] that the validity
of the celebrated Caristi �xed point theorem [6] provides a necessary and su�cient condition to a metric
space be complete, while Subrahmanyam [22] reached similar conclusions with respect to Kannan's �xed
point theorem [11]. In this setting are also remarkable the contributions of Park [18], Suzuki and Takahashi
[24], and more recently the characterization given by Suzuki [23] by means of a weak version of the Banach
contraction principle. Usually, the procedure to prove the `if part', i.e., the su�ciency, of these results
consists in assuming the existence of a non-convergent Cauchy sequence in the given metric space and then
constructing a suitable self mapping on it that is free of �xed points but veri�es the corresponding contraction
condition. In general, this technique is quite arduous (see for instance the proof of Theorem 4 of [24]). Our
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aim in this paper is to show the somewhat surprising fact that the proof of the `if part' of the results of
Kirk, and Suzuki and Takahashi can be directly deduced in a nice fashion from Hu's theorem. We also
take advantage of this approach to easily deduce a characterization of metric completeness via �xed point
theorems for α− ψ-contractive mappings.

2. Hu's theorem revisited

In his paper [9], Hu proved that a metric space is complete if and only if every Banach contraction on
any of its closed subsets has a �xed point. Regarding Hu's theorem, recall that Connell [7] had earlier given
an example of a non-complete metric space for which every Banach contraction has a �xed point.

An easy examination of Hu's proof shows that his theorem can be reformulated as follows.

Theorem 2.1. A metric space is complete if and only if every Banach contraction on any of its bounded
and closed subsets has a �xed point.

Caristi proved in [6] his famous theorem that every Caristi mapping on a complete metric space has a
�xed point, where a self mapping T of a metric space (X, d) is a Caristi mapping provided that there exists
a lower semicontinuous function φ : X → [0,∞) such that d(x, Tx) ≤ φ(x)− φ(Tx) for all x ∈ X.

As we point out in Section 1, Kirk showed in [15] that the validity of Caristi's theorem actually charac-
terizes the metric completeness. Thus, we get the following well-known and outstanding result.

Theorem 2.2. (Caristi-Kirk's theorem) A metric space is complete if and only if every Caristi mapping on
it has a �xed point.

Remark 2.3. We proceed to deduce the `if part' of Theorem 2.2 from Theorem 2.1.

Let (X, d) be a metric space for which every Caristi's mapping has a �xed point, and let T be a Banach
contraction on a bounded and closed subset C of (X, d). Then there exist constants M > 0 and c ∈ (0, 1)
such that d(x, y) ≤M and d(Tx, Ty) ≤ cd(x, y) for all x, y ∈ C.

Choose an a ∈ C and de�ne a self mapping S of X by Sx = Tx if x ∈ C and Sx = a if x ∈ X\C.
Put r = 1/(1 − c) and construct a function φ : X → [0,∞) as φ(x) = rd(x, Sx) if x ∈ C, and φ(x) =

rM + d(x, a) if x ∈ X\C.
We show that φ is lower semicontinuous on (X, d). Indeed, let (xn)n∈N be a sequence in X and x ∈ X

such that d(x, xn) → 0 as n→ ∞. We consider two cases.

Case 1. x ∈ X\C. Since C is closed there exists n0 ∈ N such that xn ∈ X\C for all n ≥ n0. So, from
the de�nition of φ and the triangle inequality, we deduce that φ(x) ≤ φ(xn) + d(x, xn) for all n ≥ n0.

Case 2. x ∈ C. If xn ∈ C we get, by the triangle inequality and the fact that d(Sx, Sxn) ≤ cd(x, xn),
that φ(x) ≤ φ(xn) + (r + rc)d(x, xn). If xn ∈ X\C we get φ(x) ≤ rM < φ(xn).

Therefore, in both cases, for any ε > 0 there is nε ∈ N such that φ(x) < ε+ φ(xn) for all n ≥ nε.
We conclude that φ is lower semicontinuous on (X, d).

Finally, if x ∈ C we deduce that

d(x, Sx) = (r − cr)d(x, Sx) ≤ rd(x, Sx)− rd(Sx, S2x) = φ(x)− φ(Sx);

and if x ∈ X\C,
d(x, Sx) = d(x, a) ≤ rM + d(x, a)− rd(a, Sa) = φ(x)− φ(Sx).

We have shown that S is a Caristi's mapping on (X, d), so it has a �xed point z which obviously belongs
to C. Hence z is a �xed point of T. So (X, d) is complete by Theorem 2.1.

In the seminal paper [10], Kada, Suzuki and Takahashi introduced and analyzed the notion of w -distance
in the framework of metric spaces. They showed that this concept provides an e�cient instrument to improve
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various crucial theorems as Ekeland's variational principle and its `equivalent' Caristi's �xed point theorem,
as well as Takahashi's nonconvex minimization theorem.

Let us recall that a w -distance on a metric space (X, d) is a function w : X ×X → [0,∞) satisfying the
following conditions for any x, y, z ∈ X:

(w1) w(x, y) ≤ w(x, z) + w(z, y);

(w2) w(x, ·) : X → [0,∞) is a lower semicontinuous function;

(w3) for each ε > 0 there is δ > 0 such that w(x, y) ≤ δ and w(x, z) ≤ δ imply d(y, z) ≤ ε.

Obviously, every metric d on a set X is a w-distance on the metric space (X, d) (see, for instance, [10, 24]
for more interesting examples of w-distances). At this point it is appropriate to recall that the notion of
w-distance has been extended and applied by several authors in di�erent contexts, mainly in the realm of
�xed point theory (for details, see e.g. [1, 2, 3, 12, 16, 17] and the references therein). In this direction, and
following [24], by a weakly contractive mapping on a metric space (X, d) we mean a self mapping T of X
such that there exist a w-distance w on (X, d)) and a constant r ∈ (0, 1) satisfying w(Tx, Ty) ≤ rw(x, y),
for all x, y ∈ X.

With the help of the above concept, Suzuki and Takahashi ([24, Theorem 4]) proved the following relevant
result.

Theorem 2.4. (Suzuki-Takahashi's theorem) A metric space is complete if and only if every weakly contrac-
tive mapping on it has a �xed point.

Remark 2.5. We proceed to deduce the `if part' of Theorem 2.4 from Theorem 2.1.

Let (X, d) be a metric space for which every weakly contractive mapping has a �xed point, and let T
be a Banach contraction on a bounded and closed subset C of (X, d). Then there exist constants M > 0
and c ∈ (0, 1), with M > c, such that d(x, y) ≤M and d(Tx, Ty) ≤ cd(x, y) for all x, y ∈ C.

Choose an a ∈ C and de�ne a self mapping S of X by Sx = Tx if x ∈ C and Sx = a if x ∈ X\C.
Construct a function w : X ×X → [0,∞) as w(x, y) = d(x, y) if x, y ∈ C, and w(x, y) =M/c otherwise.

Note that w(x, y) ≤M/c for all x, y ∈ X.

We show that w is a w-distance on (X, d).

In fact, condition (w1) is clearly satis�ed.

To show that condition (w2) holds, �x an x ∈ X and let (yn)n∈N be a sequence in X and y ∈ X such
that d(yn,y) → 0 as n→ ∞.

If x ∈ X\C or there is a subsequence (yn(k))k∈N of (yn)n∈N such that yn(k) ∈ X\C for all k ∈ N, we
deduce that w(x, y) ≤M/c = w(x, yn(k)) for all k ∈ N. Otherwise, we get that y ∈ C because C is closed and,
thus, w(x, y) = d(x, y), and w(x, yn) = d(x, yn) eventually.

Therefore, the function w(x, ·) : X → [0,∞) is lower semicontinuous.

To show that condition (w3) holds, choose an arbitrary ε > 0. Let δ = min{ε/2, 1}, and suppose that
w(x, y) ≤ δ and w(x, z) ≤ δ. Then w(x, y) ≤ 1 and w(x, z) ≤ 1. Since M/c > 1, we deduce that x, y, z ∈ C.
Thus w(x, y) = d(x, y) and w(x, z) = d(x, z). Consequently d(y, z) ≤ 2δ ≤ ε.

Finally, if x, y ∈ C we get

w(Sx, Sy) = w(Tx, Ty) = d(Tx, Ty) ≤ cd(x, y) = cw(x, y).

If x ∈ C and y ∈ X\C (the case x ∈ X\C and y ∈ C is identical by the symmetry of w), we get

w(Sx, Sy) = w(Tx, a) = d(Tx, a) ≤M = cw(x, y),

and if x, y ∈ X\C we get

w(Sx, Sy) = w(a, a) = d(a, a) = 0.

We have proved that S is a weakly contractive mapping on (X, d). By assumption, it has a �xed point z
which obviously belongs to C. Hence z is a �xed point of T. So (X, d) is complete by Theorem 2.1.
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In their remarkable paper [21], Samet, Vetro and Vetro introduced the notion of α−ψ-contractive mapping
and obtained several interesting and general �xed point theorems by using such a notion. Since then the
question of obtaining �xed point results involving α − ψ-contractive mappings has been the subject of a
prominent research (see e.g. [4, 5, 8, 13, 14, 19] and the references therein).

According to [21], a self mapping T of a set X is said to be α-admissible if there is a function α : X×X →
[0,∞) such that, for each x, y ∈ X, α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1.

A self mapping T of a metric space (X, d) is called an α− ψ-contractive mapping if

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)),

for all x, y ∈ X, where α : X × X → [0,∞) is a function, and ψ : [0,∞) → [0,∞) is a function satisfying
that

∑∞
n=0 ψ

n(t) <∞ for each t ≥ 0.

Then, Samet, Vetro and Vetro proved in [21, Theorem 2.2] the following general result.

Theorem 2.6. (Samet-Vetro-Vetro) Let (X, d) be a complete metric space and T : X → X be an α − ψ-
contractive mapping satisfying the following conditions:

(a) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(b) T is α-admissible;
(c) for any sequence (xn)n∈N in Xsatisfying α(xn, xn+1) ≥ 1 for all n ∈ N and such that d(xn, x) → 0

for some x ∈ X it follows that α(xn, x) ≥ 1 for all n ∈ N.
Then T has a �xed point.

In the sequel, a self mapping of a metric space satisfying conditions (a), (b) and (c) above will be said
to be an (α,ψ)-SV V -contractive mapping. If T is an (α,ψ)-SV V -contractive mapping on a metric space
(X, d) such that ψ(t) = rt (0 < r < 1, constant) for all t ≥ 0, we say that T is an (α, r)-SV V -contractive
mapping. Then, we have the following.

Theorem 2.7. For a metric space (X,d) the following conditions are equivalent.

(1) (X,d) is complete;

(2) every (α,ψ)-SVV-contractive mapping on (X,d) has a �xed point;

(3) every (α, r)-SVV-contractive mapping on (X,d) has a �xd point.

Proof. Proof. (1) =⇒ (2). Apply Theorem 2.6.

(2) =⇒ (3). It is obvious.

(3) =⇒ (1). Let T be a Banach contraction on a bounded and closed subset C of (X, d). Then, there is a
constant r ∈ (0, 1) such that d(Tx, Ty) ≤ rd(x, y) for all x, y ∈ C. Fix a ∈ C and de�ne a self mapping S of
X as Sx = Tx for all x ∈ C, and Sx = a otherwise.

Now let α : X ×X → [0,∞) given by α(x, y) = 1 whenever x, y ∈ C, and α(x, y) = 0 otherwise.
It is clear that S is an (α, r)-contractive mapping on (X, d).

Furthermore, we have the following three facts:

(f1) for any x0 ∈ C, α(x0, Sx0) = α(x0, Tx0) = 1. So, condition (a) of Theorem 2.6 is ful�lled.

(f2) S is α-admissible because condition α(x, y) ≥ 1 implies that x, y ∈ C, and hence α(Sx, Sy) =
α(Tx, Ty) = 1. So, condition (b) of Theorem 2.6 is ful�lled.

(f3) If (xn)n∈N is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N, and d(xn, x) → 0 for some
x ∈ X,then xn ∈ C for all n ∈ N, and hence x ∈ C (recall that C is a closed subset of (X, d)). Consequently
α(xn, x) = 1 for all n ∈ N. So, condition (c) of Theorem 2.6 is ful�lled.

We have shown that S is an (α, r)-SVV -contractive mapping on (X, d). From our assumption it fol-
lows that S has a �xed point z which obviously belongs to C. Therefore z is a �xed point of T. By Theorem
2.1, we conclude that (X, d) is complete.

Remark 2.8. Variants of Theorem 2.7 whose proofs do not invoke Theorem 2.1, may be found in [19,
Theorem and Corollary 1] and in [20, Theorem 6 and Corollary 2].
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