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Abstract: In this paper, we deal with the notion of fuzzy metric space (X ,M, ∗), or simply X , due to
George and Veeramani. It is well known that such fuzzy metric spaces, in general, are not completable
and also that there exist p-Cauchy sequences which are not Cauchy. We prove that if every p-Cauchy
sequence in X is Cauchy, then X is principal, and we observe that the converse is false, in general.
Hence, we introduce and study a stronger concept than principal, called strongly principal. Moreover,
X is called weak p-complete if every p-Cauchy sequence is p-convergent. We prove that if X is
strongly principal (or weak p-complete principal), then the family of p-Cauchy sequences agrees
with the family of Cauchy sequences. Among other results related to completeness, we prove that
every strongly principal fuzzy metric space whereM is strong with respect to an integral (positive)
t-norm ∗ admits completion.

Keywords: fuzzy metric; Cauchy sequence; principal fuzzy metric; p-Cauchy sequence; completeness;
completion

MSC: 54A40; 54D35; 54E50

1. Introduction

In this paper, we deal with the concept of fuzzy metric space (X ,M, ∗) due to George
and Veeramani [1,2]. These types of fuzzy metric spaces are close to probabilistic metric
spaces (PM-spaces) [3] and fuzzy metric spaces in the sense of Kramosil and Michalek [4].
In the same way as the mentioned spaces, a topology τM, deduced fromM, is defined
on X . The family of open balls {B(x, r, t) : r ∈]0, 1[, t ∈ R+} is a base for τM. In [5,6],
the authors proved that τM is metrizable, and so many metric concepts were extended to
the fuzzy context, some of them inherited from PM-spaces. Now, a significant difference
between fuzzy metric spaces and PM-spaces (or classical metric spaces) is that, in general,
fuzzy metric spaces do not admit completion [7,8]. For this reason, an interesting problem
in this fuzzy context is to find large classes of completable fuzzy metric spaces.

Several concepts of convergent sequences have been introduced in our fuzzy context
(see [9–11] and references therein). In particular, a weaker concept than convergence called
p-convergence (Definition 2) was introduced by D. Mihet in [12] devoted to fixed point
theory, which is currently a topic of high activity in this context (see, for instance, [13–19]).

In [20], the authors called principal those fuzzy metric spaces in which every p-
convergent sequence is convergent and gave the following characterization: X is principal
if and only if for each x ∈ X the family {B(x, r, t) : r ∈]0, 1[} is a local base at x for τM, for
each t ∈ R+. In addition, according to the concept of p-convergence, the authors introduced
the concepts of a p-Cauchy sequence (Definition 7) and p-complete fuzzy metric space
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which here will be called weak p-complete (Definition 10). We notice that in a principal
fuzzy metric space one can find p-Cauchy sequences that are not Cauchy.

In this paper, we approach two questions: the first one is related to those fuzzy metric
spaces in which every p-Cauchy sequence is Cauchy; the second one is to provide a wide
family of fuzzy metric spaces that admit completion. Both approaches are carried out
by introducing a stronger concept than the principal fuzzy metric, named the strongly
principal fuzzy metric. This concept arises from the observation of the characterization of
principal fuzzy metrics, above shown, but applied to a particular base of the uniformity
UM on X , compatible with τM, deduced from M, instead of the family of open balls
(Definition 9). The class of strongly principal fuzzy metric spaces is a wide family that
contains stationary fuzzy metrics (Definition 3) and a well-known fuzzy metric as the
standard one.

Concerning the first question, we prove that if every p-Cauchy sequence in X is
Cauchy then X is principal (Theorem 1). In addition, we prove that if X is strongly
principal then every p-Cauchy sequence is Cauchy (Proposition 3) and we ignore if the
converse of this proposition is true (Problem 1). On the other hand, if X is principal and
weakly p-complete then the family of p-Cauchy sequences in X agrees with the family of
Cauchy sequences in X (Proposition 5). Then, there arises a question related to Problem 1:
Does a weak p-complete principal fuzzy metric space which is not strongly principal exist
(Problem 2)?

With respect to the second question, using Proposition 6, we prove that every strongly
principal fuzzy metric space (X ,M, ∗), whereM is strong for an integral (positive) t-norm
∗, is completable (Corollary 3). Several examples throughout the paper illustrate the theory.

The structure of the paper is as follows. After preliminaries (Section 2), we introduce
and study, in Section 3, the concept of a strongly principal fuzzy metric. Section 4 is
devoted to completeness and weak p-completeness in (principal) fuzzy metric spaces and
the completion of strongly principal fuzzy metric spaces.

2. Preliminaries

In the following, R+ will denote the set of positive real numbers, i.e., R+ is the interval
]0, ∞[.

Definition 1 (Ref. [1]). A fuzzy metric space is an ordered triple (X ,M, ∗) such that X is a
(non-empty) set, ∗ is a continuous t-norm andM is a fuzzy set on X × X × R+ satisfying the
following conditions, for all x, y, z ∈ X and t, s ∈ R+:

(GV1)M(x, y, t) > 0;
(GV2)M(x, y, t) = 1 if and only if x = y;
(GV3)M(x, y, t) =M(y, x, t);
(GV4)M(x, y, t) ∗M(y, z, s) ≤M(x, z, t + s);
(GV5) The functionMxy : R+ →]0, 1] is continuous, whereMxy(t) =M(x, y, t) for each
t ∈ R+.

If (X ,M, ∗) is a fuzzy metric space, we say that (M, ∗), or simply M, is a fuzzy
metric on X . In addition, we say that (X ,M), or simply X , is a fuzzy metric space.

Let (X , d) be a metric space. Denote by · the usual product on [0, 1], and letMd be the
fuzzy set defined on X ×X ×R+ by

Md(x, y, t) =
t

t + d(x, y)
. (1)

Then, (Md, ·) is a fuzzy metric on X called the standard fuzzy metric induced by d [1].
George and Veeramani proved in [1] that every fuzzy metricM on X generates a

topology τM on X which has as a base the family of open sets of the form {BM(x, r, t) :
x ∈ X , r ∈]0, 1[, t ∈ R+}, where BM(x, r, t) = {y ∈ X :M(x, y, t) > 1− r} for all x ∈ X ,
r ∈]0, 1[ and t ∈ R+. In the case of the standard fuzzy metricMd, it is well known that the
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topology τ(d) on X deduced from d satisfies τ(d) = τMd . If confusion is not possible, we
write B instead of BM. From now on, we suppose X is endowed with the topology τM.

A t-norm ∗ is called integral (positive) if x ∗ y > 0 for all x, y ∈]0, 1].

Definition 2 (Ref. [21]). A fuzzy metric space (X ,M, ∗) is said to be strong (non-Archimedean)
if for all x, y, z ∈ X and all t ∈ R+ it satisfies

M(x, z, t) ≥M(x, y, t) ∗M(y, z, t). (2)

Definition 3 (Ref. [8]). A fuzzy metricM on X is said to be stationary ifM does not depend on
t, i.e., if for each x, y ∈ X the functionMxy defined in axiom (GV5) is constant, for all x, y ∈ X .

Proposition 1 (Ref. [1]). A sequence {xn} in a fuzzy metric space (X ,M, ∗) converges to x0 if
and only if lim

n
M(x0, xn, t) = 1, for all t ∈ R+.

Definition 4 (Ref. [20]). A fuzzy metric space (X ,M, ∗) is said to be principal (or simply,M
is principal) if {B(x, r, t) : r ∈]0, 1[} is a local base at x ∈ X, for each x ∈ X and each t ∈ R+.

If confusion is not possible, we also say, simply, that X , or M, is principal. This
terminology is applied, without mention, as usual, to other concepts.

Definition 5 (Ref. [2]). A sequence {xn} in a fuzzy metric space (X ,M, ∗) is called Cauchy if
for each ε ∈]0, 1[ and each t ∈ R+ there exists n0 ∈ N such thatM(xn, xm, t) > 1− ε for all
n, m ≥ n0, or equivalently, lim

m,n
M(xn, xm, t) = 1 for all t ∈ R+.

(X ,M, ∗) is called complete if every Cauchy sequence in X is convergent with respect to τM.

Definition 6 (Ref. [12]). A sequence {xn} in a fuzzy metric space (X ,M, ∗) is called p-
convergent to x0, or simply p-convergent, if lim

n
M(xn, x0, t0) = 1 for some t0 ∈ R+.

Definition 7. A sequence {xn} in a fuzzy metric space (X ,M, ∗) is called p-Cauchy if there
exists t0 ∈ R+ such that for each ε ∈]0, 1[ there exists n0 ∈ N such thatM(xn, xm, t0) > 1− ε
for all n, m ≥ n0, or equivalently, lim

n,m
M(xn, xm, t0) = 1 for some t0 ∈ R+.

Observe that every p-convergent sequence is p-Cauchy.

Definition 8 (Ref. [7]). Let (X ,M, ∗) and (Y ,N , �) be two fuzzy metric spaces. A mapping
f from X to Y is called an isometry if, for each x, y ∈ X and each t ∈ R+, M(x, y, t) =
N ( f (x), f (y), t) and, in this case, if f is a bijection, X and Y are called isometric. A fuzzy metric
completion of (X ,M) is a complete fuzzy metric space (X ∗,M∗) such that (X ,M) is isometric
to a dense subspace of X ∗. X is said to be completable if it admits a fuzzy metric completion.

3. Strongly Principal Fuzzy Metric Spaces

Let (X ,M, ∗) be a fuzzy metric space. Similarly to the case of metric spaces, the family
of bands {Ur,t : r ∈]0, 1[, t ∈ R+} is a natural base for a uniformity UM on X , induced byM,
which is compatible with τM [6], where Ur,t = {(x, y) ∈ X× X : M(x, y, t) > 1− r)}.

Now, according to the concept of principal fuzzy metric spaces ([20], Definition 9), we
introduce the following concept.

Definition 9. We say that the fuzzy metric space (X ,M, ∗) is strongly principal (s-principal, for
short) if {Ur,t : r ∈]0, 1[} is a base for UM, for each t ∈ R+.

Observe that if X is s-principal then, for each t ∈ R+, {Ur,t(x) : r ∈]0, 1[} is a local
base at x, for all x ∈ X , where Ur,t(x) = {y ∈ X : M(x, y, t) > 1− r} = B(x, r, t). Then, we
have the following proposition.
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Proposition 2. Every s-principal fuzzy metric space is principal.

Next, we show some examples of s-principal fuzzy metric spaces.

Example 1.

(a) Stationary fuzzy metric spaces are, obviously, s-principal.
(b) The standard fuzzy metric space is s-principal. Indeed, let d be a metric on X and consider

Md. Fix t0 ∈ R+ and let ε ∈]0, 1[ and t ∈ R+ be arbitrary. The basic band Uε,t of UMd is
Uε,t = {(x, y) ∈ X 2 : t

t+d(x,y) > 1− ε}. Choose δ ∈]0, 1[ such that t0·δ
1−δ < t·ε

1−ε . We claim

that Uδ,t0 ⊂ Uε,t. Indeed, let (x, y) ∈ Uδ,t0 . We have thatMd(x, y, t0) =
t0

t0+d(x,y) > 1− δ,

and hence d(x, y) < δ
1−δ · t0. Then, for (x, y) ∈ Uδ,t0 we have thatMd(x, y, t) = t

t+d(x,y) >
t

t+ δ
1−δ ·t0

> t
t+ t·ε

1−ε

= 1− ε, and thus (x, y) ∈ Uε,t.

(c) It is well known [22] thatM(x, y, t) = min{x,y}+t
max{x,y}+t is a fuzzy metric on X = R+ for the

product t-norm. We will see thatM is s-principal.
Fix t0 ∈ R+, and let ε ∈]0, 1[ and t ∈ R+ be arbitrary. If t0 ≤ t, it is obvious that Uε,t0 ⊂ Uε,t.
Suppose t0 > t and choose δ = t·ε

t0
< ε. Let (x, y) ∈ Uδ,t0 . Then, min{x,y}+t0

max{x,y}+t0
> 1− t·ε

t0
. An

easy computation shows that from the previous inequality we obtain the following one:

min{x, y}+ t > max{x, y}+ t− ε ·
(

max{x, y} · t
t0

+ t
)

.

Then, min{x,y}+t
max{x,y}+t > 1− ε ·

(
max{x,y}· t

t0
+t

max{x,y}+t

)
> 1− ε. Hence, Uδ,t0 ⊂ Uε,t.

The converse of Proposition 2 is false, as is shown in the following example.

Example 2. (A principal non-s-principal fuzzy metric space)

(a) Let X =]0, 1[ and define the fuzzy setM on X 2 ×R+ by

M(x, y, t) =


1 x = y

xyt x 6= y, t ≤ 1
xy x 6= y, t > 1

. (3)

In [20], Example 19, it is proven that (M, ·) is a principal fuzzy metric on X . We will see
thatM is not s-principal.
Notice that UM is the discrete uniformity, since U 1

2 , 1
2

is the diagonal ∆ of X ×X .
For t = 1, the family {Ur,1 : r ∈]0, 1[} is constituted by the bands Ur,1 = {(x, y) ∈
X 2 : xy > 1− r} ∪ ∆, where r ∈]0, 1[. Obviously, Ur,1 6= ∆ for all r ∈]0, 1[, and then
Ur,1 6⊂ U 1

2 , 1
2

for all r ∈]0, 1[, and so {Ur,1 : r ∈]0, 1[} is not a base for UM, and henceM is
not s-principal.

(b) Let {xn} and {yn} be two strictly increasing sequences of positive real numbers, which
converge to 1, with respect to the Euclidean metric, with A∩ B = ∅, where A = {xn : n ∈ N}
and B = {yn : n ∈ N}. Put X = A ∪ B and define a fuzzy setM on X 2 ×R+ as follows:

M(x, y, t) =


1 if x = y

x ∧ y ∧ t if x ∈ A, y ∈ B or x ∈ B, y ∈ A, and t < 1
x ∧ y elsewhere

. (4)

Then, (X ,M,∧) is a strong fuzzy metric space ([21], Example 41).
Let x ∈ X and, without loss of generality, suppose x = xn for some n ∈ N. Let t ∈ R+.
For y ∈ X and y 6= x, we have thatM(x, y, t) ≤ x, and so if we choose r ∈]0, 1[ such that
x < 1− r we have B(x, r, t) = {x}, and thus τM is the discrete topology on X .
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Clearly, {B(x, r, t) : r ∈]0, 1[} is a local base at x, for all x ∈ X and t ∈ R+, and thenM is
principal. We will see thatM is not s-principal.
Suppose that xn0+1 is the least element of A satisfying 1

2 < xn0+1 and yn1+1 is the least
element of B satisfying 1

2 < yn1+1. We have that

U 1
2 , 1

2
= ({(x, x) : x ∈ {x1, . . . , xn0 , y1, . . . , yn1})

⋃({xn0+1, xn0+2, . . .} × {xn0+1, xn0+2, . . .}
)⋃(

{yn1+1, yn1+2, . . .} × {yn1+1, yn1+2, . . .}
)

Now, let r ∈]0, 1[. Suppose that xm and yn are the least elements of A and B, respectively,
such that xm > 1− r and yn > 1− r. We have that

Ur,1 = ({(x, x) : x ∈ {x1, . . . , xm−1, y1, . . . , yn−1})
⋃

({xm, xm+1, . . . , yn, yn+1, . . .} × {xm, xm+1, . . . , yn, yn+1, . . .})

and then Ur,1 6⊂ U 1
2 , 1

2
for all r ∈]0, 1[. Then, {Ur,1 : r ∈]0, 1[} is not a base for UM and

henceM is not s-principal.

Proposition 3. In an s-principal fuzzy metric space, every p-Cauchy sequence is Cauchy.

Proof. SupposeM is an s-principal fuzzy metric onX and let {xn} be a p-Cauchy sequence
in X. Let ε ∈]0, 1[, t ∈ R+ and suppose that lim

m,n
M(xm, xn, t0) = 1 for some t0 ∈ R+. Now,

sinceM is s-principal there exists δ ∈]0, 1[ such that Uδ,t0 ⊂ Uε,t. On the other hand, since
lim
m,n
M(xm, xn, t0) = 1, we can find n0 ∈ N such thatM(xm, xn, t0) > 1− δ for m, n ≥ n0,

i.e., (xm, xn) ∈ Uδ,t0 for all m, n ≥ n0, and so {xn} is Cauchy.

The following corollary is obvious.

Corollary 1. In an s-principal fuzzy metric space, a sequence is Cauchy if and only if it is p-Cauchy.

Theorem 1. Let (X ,M, ∗) be a fuzzy metric space. If every p-Cauchy sequence in X is Cauchy,
thenM is principal.

Proof. Suppose M is not principal. Then, there exist x0 ∈ X and t0 ∈ R+ such that
{B(x0, r, t0) : r ∈]0, 1[} is not a local base at x0 for τM. Consequently, we can find t ∈ R+

and ε ∈]0, 1[ such that B(x0, r, t0) 6⊂ B(x0, ε, t) for all r ∈]0, 1[.
We construct, by induction, a sequence {xn} in X such that xn ∈ B(x0, 1

n , t0) \
B(x0, ε, t), for n = 2, 3, . . ., and consider the sequence {yn} defined by y2n = x0 and
y2n−1 = xn, for n ≥ 2.

By construction,M(xn, x0, t0) > 1− 1
n , so lim

n
M(xn, x0, t0) = 1 and, in consequence,

lim
n
M(yn, x0, t0) = 1, and then lim

m,n
M(yn, ym, 2t0) ≥ lim

m,n
(M(yn, x0, t0) ∗M(x0, ym, t0)) =

1, i.e., {yn} is p-Cauchy.
Now, {yn} is not Cauchy since for the above values ε ∈]0, 1[ and t ∈ R+ we have that

for each n0 ∈ N we can find 2n− 1 > n0 such thatM(y2n−1, y2n, t) =M(xn, x0, t) ≤ 1− ε,
and hence {yn} is not Cauchy.

The converse of the last theorem is false, as is shown in the following example.

Example 3. (A p-Cauchy non-Cauchy sequence in a principal fuzzy metric space)
Consider the principal fuzzy metric space (X ,M, ∗) of (b) in Example 2. We define the

sequence {zn} in X as follows: zn = xn if n is even and zn = yn if n is odd. Then, {zn} is a
p-Cauchy sequence since, for t0 = 1, we have lim

n,m
M(zn, zm, t0) = lim

n,m
(zn ∧ zm) = 1 due to

lim
n

zn = lim
n

xn = lim
n

yn = 1. Now, {zn} is not Cauchy, since lim
n,m
M(zn, zm, t) does not exist
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for all t ∈]0, 1[. Indeed, given t ∈]0, 1[, there exists n0 such that zn ∧ zm ∧ t = t for all n, m ≥ n0,
due to lim

n
zn = 1, and so lim

n,m
M(zn, zm, t) = t < 1.

Notation 1. Denote by P and sP the families of principal and s-principal fuzzy metric spaces,
respectively, and denote byH the family of fuzzy metric spaces in which all p-Cauchy sequences are
Cauchy. By Proposition 3 and Theorem 1, we have the chain of inclusions

sP ⊂ H ⊂ P .

By Example 3, we know that the inclusionH ⊂ P is strict but we do not know if the inclusion
sP ⊂ H is strict. Thus, the following is an open question.

Problem 1. How can we find a non-s-principal fuzzy metric space in which all p-Cauchy sequences
are Cauchy?

4. Completeness and Weak p-Completenes (w-p-Completeness)

Definition 10. A fuzzy metric space (X ,M, ∗) is called weak p-complete (w-p-complete, for
short) if every p-Cauchy sequence in X is p-convergent in X .

Remark 1. Notice that in [20] w-p-completeness is called p-completeness.

There is not any relationship between completeness and w-p-completeness, as is
shown in the following example.

Example 4.

(a) The principal fuzzy metric space of (a) in Example 2 is complete and it is not w-p-complete
([20], Example 19).

(b) The non-principal fuzzy metric space of [20], Example 18, is w-p-complete and non-complete.
(c) (A non-principal complete w-p-complete fuzzy metric space) Let X = R+ and let ϕ : R+ →

]0, 1] be a function given by ϕ(t) = t if t ≤ 1 and ϕ(t) = 1 elsewhere. Define the fuzzy set
M on X 2 ×R+ by

M(x, y, t) =

{
1 x = y

min{x,y}
max{x,y} · ϕ(t) x 6= y

. (5)

In [20], Example 13, it is proven that (X ,M, ·) is a non-principal fuzzy metric space. Now,
the only Cauchy sequences are the constant sequences, and then it is complete.
We will see that (X ,M, ·) is w-p-complete. Suppose that {xn} is a p-Cauchy sequence in
X . Then, lim

m,n
M(xm, xn, 1) = 1 and in such a case we haveM(xm, xn, 1) = min{xm ,xn}

max{xm ,xn} .

In consequence, {xn} is a Cauchy sequence in the stationary fuzzy metric space (X ,M0, ·)
whereM0(x, y) = min{x,y}

max{x,y} , and by [23], Theorem 16, {xn} is a convergent sequence in τM0 ,
and so there exists x0 ∈ R+ such that lim

n
M0(x0, xn) = 1, i.e., lim

n
M(x0, xn, 1) = 1, and

hence {xn} is p-convergent.
(d) (A non-principal non-complete non-w-p-complete fuzzy metric space)

Let X =]0, 1[, A = X ∩Q and B = X − A. Define the fuzzy setM on X 2 ×R+ by

M(x, y, t) =


min{x,y}+1
max{x,y}+1 · t if x ∈ A, y ∈ B or x ∈ B, y ∈ A, and t < 1

min{x,y}+1
max{x,y}+1 elsewhere

. (6)

It is easy to verify thatM is a fuzzy metric on X for the product t-norm (compare with [22],
Example 18).
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We describe the topology τM on X . Notice that if x ∈ A then {y ∈ B : M(x, y, 1
2 ) >

1− 1
2} = ∅ and if x ∈ B then {y ∈ A :M(x, y, 1

2 ) > 1− 1
2} = ∅. Now, it is easy to verify

that the open balls of the local base at x ∈ X , for τM, given by {B
(

x, 1
n , 1

n

)
: n > 2}, are

B(x,
1
n

,
1
n
) =

{
] n−1

n · x−
1
n , n−1

n · x + 1
n [∩A if x ∈ A

] n−1
n · x−

1
n , n−1

n · x + 1
n [∩B if x ∈ B

. (7)

Thus, τM is finer than the usual topology of R, restricted to X , but τM is not the discrete
topology.
Now, B(1, r, 1) =]1− 2r, 1] for each r ∈]0, 1[. On the other hand, B(1, 1

2 , 1
2 ) = A, and then

{B(1, r, 1) : r ∈]0, 1[} is not a local base at x = 1, since B(1, r, 1) 6⊂ A for all r ∈]0, 1[, and
henceM is not principal.
Now, consider a strictly increasing sequence {bn}, contained in B, converging to 1, in the
usual topology of R. It is easy to verify that {bn} is Cauchy. In addition, {bn} is p-convergent
since lim

n
M(bn, 1, 1) = 1. Nevertheless, by [20], Corollary 6, {bn} does not converge in X ,

due to lim
n
M(bn, 1, 1

2 ) =
1
2 . Hence, X is not complete.

Consider now two strictly decreasing sequences {qn} ⊂ A and {in} ⊂ B converging to 0,
in the usual topology of R, such that q2n+2 < i2n+1 < q2n for each n ∈ N. Let {xn} be the
sequence defined by

xn =

{
qn if n = 2p
in if n = 2p + 1

, p = 0, 1, 2, . . . (8)

We have that lim
m,n
M(xm, xn, 1) = 1 and so {xn} is p-Cauchy. However, {xn} is not Cauchy,

since M
(

xn, xx+1, 1
2

)
< 1

2 for each n ∈ N. Now, if q ∈ X , then for t ≥ 1 we have that

lim
n
M(xn, q, t) = lim

n
xn+1
q+1 ≤

1
q+1 < 1, and for t < 1 we have that lim

n
M(xn, q, t) does

not exist, and so {xn} is not p-convergent in X , and then X is not w-p-complete.

In the case that X is principal, the situation is distinct since it is easy to prove the
following proposition.

Proposition 4. If X is principal and w-p-complete, then X is complete.

We prove in the following proposition that the class of principal w-p-complete spaces
is contained inH.

Proposition 5. In a principal w-p-complete fuzzy metric space, the family of Cauchy sequences
agrees with the family of p-Cauchy sequences.

Proof. Let {xn} be a p-Cauchy sequence in the principal fuzzy metric space X . Since X is
w-p-complete, then {xn} is p-convergent in X , and thus {xn} is convergent in X , since X
is principal, and then {xn} is Cauchy.

Obviously, Cauchy sequences are p-Cauchy.

The following is a natural question.

Problem 2. Does a principal w-p-complete fuzzy metric space which is not strongly principal exist?

If the answer to this problem is affirmative, then Problem 1 is also answered and
sP 6= P .

In order to obtain a nice result on completion in fuzzy metric spaces, we need the
following proposition.
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Proposition 6. Let (X ,M, ∗) be an s-principal fuzzy metric space and let {an} and {bn} be two
sequences in X . If lim

n
M(an, bn, t0) = 1 for some t0 ∈ R+, then lim

n
M(an, bn, t) = 1 for all

t ∈ R+.

Proof. Suppose that {an} and {bn} are sequences satisfying lim
n
M(an, bn, t0) = 1 for

some t0 ∈ R+. Let t ∈ R+. Since M is s-principal, for ε ∈]0, 1[ we can find δ ∈]0, 1[
such that Uδ,t0 ⊂ Uε,t. Since lim

n
M(an, bn, t0) = 1, then there exists n0 ∈ N such that

M(an, bn, t0) > 1− δ for all n ≥ n0, i.e., (an, bn) ∈ Uδ,t0 for n ≥ n0, and hence (an, bn) ∈ Uε,t
for n ≥ n0, and soM(an, bn, t) > 1− ε for n ≥ n0, and then lim

n
M(an, bn, t) = 1, since ε is

arbitrary.

Theorem 2 (Ref. [8]). A fuzzy metric space (X ,M, ∗) admits completion if and only if, for each
pair of Cauchy sequences {αn} and {βn} in X , the following conditions are satisfied:

(c1) The assignment t → lim
n
M(αn, βn, t) for each t ∈ R+ is a continuous function on R+,

provided with the usual topology of R.
(c2) lim

n
M(αn, βn, t0) = 1 for some t0 ∈ R+ implies lim

n
M(αn, βn, t) = 1 for all t ∈ R+.

(c3) lim
n
M(αn, βn, t) > 0 for all t ∈ R+.

Attending to Proposition 6 and Theorem 2, we obtain the following theorem.

Theorem 3. An s-principal fuzzy metric space (X ,M, ∗) is completable if and only if X satisfies
(c1) and (c3).

In Theorem 4.6 of [24], it is proven that condition (c1) is satisfied for strong fuzzy
metrics, and thus we obtain the following corollary.

Corollary 2. A strong s-principal fuzzy metric space (X ,M, ∗) is completable if and only if X
satisfies condition (c3).

On the other hand, in Theorem 35 of [21], the following result is proven.

Theorem 4. Let (X ,M, ∗) be a strong fuzzy metric space and suppose that ∗ is integral (positive).
If {αn} and {βn} are a pair of Cauchy sequences in X and t ∈ R+, then {M(αn, βn, t)}n
converges in ]0, 1].

Therefore, an immediate consequence is the following corollary.

Corollary 3. If (X ,M, ∗) is a strong s-principal fuzzy metric space and ∗ is integral, thenX is completable.

We cannot replace s-principal by principal in the last corollary. Indeed, the principal
fuzzy metric space of (b) Example 2 is strong for the t-norm minimum ([21], Example 41)
and it is not completable ([8], Example 2).

The next example shows an application of Corollary 3.

Example 5. Consider the fuzzy metric space (X ,M, ∗) whereX =]0, 1],M(x, y, t) = min{x,y}+t
max{x,y}+t

and ∗ is the product t-norm.
It is well known [23] that τM is the usual topology of R restricted to ]0, 1].
The sequence {xn} in X defined by xn = 1

n for all n ∈ N is p-Cauchy. Indeed, given t0 = 1

we have lim
n,m
M(xn, xm, t0) =

min{xn ,xm}+1
max{xn ,xm}+1 = 1. Consequently, {xn} is Cauchy due toM being

strongly principal (see (c) in Example 1). Then, X is not complete since {xn} does not converge,
obviously, in X .
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Now, M is strong for the (integral) t-norm product (see [21]) and so, by Corollary 3, we
conclude that (X ,M, ∗) admits completion. It is left to the reader to verify that (X̃ ,M̃, ∗) is the
completion of (X ,M, ∗), where X̃ = [0, 1] and M̃ is the above expression ofM extended to [0, 1].

As an application of our main results, we can prove the classical one, which claims
that every metric admits completion. Below, we show such an affirmation.

Let d be a metric on X and consider the corresponding standard fuzzy metric space
(X ,Md, ·). It is well known that the class of Md-Cauchy (Md-convergent) sequences
agrees with the class of d-Cauchy (d-convergent) sequences. For this reason, it is easy to
conclude that (X ,Md, ·) is complete if and only if (X , d) is complete.

Suppose that (X , d) is a non-complete metric space. Since (X ,Md, ·) is strongly
principal (see (b) in Example 1) and strong (see [21]) and · is integral, we can apply
Corollary 3 to conclude that (X ,Md, ·) admits completion. On account of [8], (X̃ ,M̃d, ·)
is a completion of (X ,Md, ·), where X̃ is the set of all equivalence classes of Cauchy
sequences in X , under the equivalence relation {αn} ∼ {βn} ⇔ lim

n
M(αn, βn, t) = 1 for

all t > 0, and M̃d is given by M̃d(α, β, t) = t
t+lim

n
d(αn ,βn)

, whenever {αn} and {βn} are

Cauchy sequences of the classes α, β ∈ X̃ , respectively. It means that there exists the metric
d̃ on X̃ given by d̃(α, β) = lim

n
d(αn, βn). In other words, M̃d is actually the standard fuzzy

metricMd̃ on X̃ , and since (X̃ ,Md̃, ·) is complete, it is easy to conclude that (X̃ , d̃) is the
metric completion of (X , d).

Explanatory 1. The problem of finding fuzzy metrics satisfying condition (c2) was approached in
[25]. There, a family of fuzzy metrics was found, called stratified, that satisfy (c2). Both families,
stratified and s-principal fuzzy metrics, are two wide classes of fuzzy metrics that include stationary
fuzzy metrics and the standard fuzzy metric. Now, they are different. Indeed, the fuzzy metric of (c)
in Example 1 is s-principal and not stratified, and the fuzzy metric of (c) in Example 4 is stratified
and it is not s-principal.

5. Conclusions

In this paper, we have approached the problem of finding the classH of fuzzy metric
spaces characterized as follows: X ∈ H if and only if every p-Cauchy sequence in X
is Cauchy. We have proven that if every p-Cauchy sequence in X is Cauchy then X is
principal and that the converse is false. Nevertheless, if, in addition to being principal, X is
weak p-complete then the converse is true, as it has been demonstrated. Thus, we have
introduced the class of strongly principal fuzzy metrics and we have proven that strongly
principal fuzzy metric spaces are completable, whenever the fuzzy metric is strong with
respect to an integral t-norm. In addition, we have shown that if X is strongly principal
then the class of p-Cauchy sequences in X agrees with the class of Cauchy sequences, and
we ignore if the converse is true (Problem 1). As future line of research, we propose to the
reader to answer Problem 1 and also Problem 2, related to Problem 1, involving a condition
of completeness.
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