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Abstract: Chaotic properties in the dynamics of Toeplitz operators on the Hardy–Hilbert spaceH2(D)
are studied. Based on previous results of Shkarin and Baranov and Lishanskii, a characterization of
different versions of chaos formulated in terms of the coefficients of the symbol for the tridiagonal
case are obtained. In addition, easily computable sufficient conditions that depend on the coefficients
are found for the chaotic behavior of certain Toeplitz operators.
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1. Introduction

Hypercyclic (that is, topologically transitive) and chaotic operators on separable
Banach spaces have been studied for more than twenty years (the reader is referred to the
work in [1,2] for good sources on linear dynamics). On the other hand, Toeplitz operators
were introduced by Otto Toeplitz in [3]. They are among the most studied families of
operators on the Hardy–Hilbert space. On this space, the matrices of Toeplitz operators
(with respect to the canonical basis) have constant diagonals.

A Toeplitz operator TΦ : H2(D)→H2(D) on the Hardy–Hilbert spaceH2(D) with sym-
bol Φ ∈ L∞(T) is defined by TΦ( f ) = P(MΦ( f )), f ∈ H2(D), where MΦ is the multiplication
operator by Φ and P : L2(T)→H2(D) is the Riesz projection. Here, as usual, D,T ⊂ C are the
open unit disc and its boundary, the unit circle, respectively. Actually,

H2(D) = { f : D→ C ; f (z) = ∑
n≥0

anzn with ∑
n≥0
|an|2 < ∞},

so that it is naturally identified with the Hilbert sequence space `2. The reader is referred
to the work in [4] for the basic theory of Toeplitz operators, and to the work in [5,6] for a
detailed study of Hardy spaces.

It is known that analytic Toeplitz operators, that is, operators whose symbol is inH∞

(the space of all the functions that are analytic and bounded on the open unit disk), cannot
be hypercyclic, as their adjoints always have eigenvalues. However, Toeplitz operators
with anti-analytic symbols, i.e., such that the symbol Φ satisfies Φ(1/z) ∈ H∞, provide
many examples of hypercyclic operators, and they are the most studied Toeplitz operators
in the topic of chaotic dynamics. Godefroy and Shapiro [7] showed that a Toeplitz operator
TΦ with anti-analytic symbol Φ(z) = ∑n≤0 anzn is chaotic if, and only if, Φ(D) ∩ T 6= ∅
for Φ(z) = ∑n≥0 a−nzn, a result that was extended by De Laubenfels and Emamirad in [8]
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for `p, 1 ≤ p < ∞ and c0. Notice that, with the above identification ofH2(D) with `2, the
anti-analytic Toeplitz operator TΦ with Φ(z) = ∑n≤0 anzn can be formally represented by

TΦ = ∑
n≥0

a−nBn,

where B is the backward shift B(x0, x1, ...) = (x1, x2, ...), so that an anti-analytic Toeplitz
operator can be viewed as an upper triangular infinite matrix with constant diagonals. With
this identification, Bourdon and Shapiro [9] studied the dynamics of anti-analytic Toeplitz
operators in the Bergman space, and Martínez [10] in more general sequence spaces. The
first example of an anti-analytic and hypercyclic Toeplitz operator was Tλ/z for |λ| > 1 [11],
which is represented by λB. A special mention should be done to the exponential of the
backward shift T = eB that was shown to be hypercyclic in arbitrary “small” sequence
spaces in [12,13].

Baranov and Lishanskii [14], inspired by the work of Shkarin [15], studied hypercyclic-
ity of Toeplitz operators on H2(D) with symbols of the form p(1/z) + ϕ(z), where p is a
polynomial and ϕ ∈ H∞. They showed necessary conditions and sufficient conditions for
hypercyclicity which almost coincide in the case the degree of p is one. They characterized
hypercyclicity in the tridiagonal case (i.e., when p and q have degree one) by refining a
result of Shkarin [15]. Based on these results, the chaotic behavior of certain non-local
operators was studied in [16]. Recently, some new classes of hypercyclic Toeplitz operators
were also found in [17], as a continuation of the work in [14].

In this paper, a characterization of chaos in the tridiagonal case formulated in terms of
the three symbol coefficients is obtained. Sufficient conditions for chaos in more general
cases, also explicit on the symbol coefficients, are shown, and they easily provide us
with examples of chaotic Toeplitz operators. The main contribution of the present work
in comparison to the work in [14,15] is to offer conditions on the symbol coefficients of
a Toeplitz operator for chaos, which are much easier to check than the previous ones.
Moreover, the characterization of the tridiagonal case gives a full picture of the chaotic
behavior in terms of the three coefficients. Finally, a rich variety of chaotic properties, in the
topological and in the measure theoretical sense are provided, which must be compared
with previous works on the dynamics of Toeplitz operators, dealing with hypercyclicity
and/or Devaney chaos.

2. Preliminaries and Notation

Some definitions about hypercyclicity and chaos need to be recalled. From now on,
unless otherwise specified, X will be assumed to be an infinite dimensional separable
Banach space and T : X → X a continuous and linear operator.

An operator T : X → X is called hypercyclic if there is some x ∈ X whose orbit under T
is dense in X. In such a case, x is called a hypercyclic vector for T. The operator T is said to
be Devaney chaotic if it is hypercyclic and admits a dense set of periodic points. Actually the
original definition of Devaney [18] also included as an ingredient the sensitive dependence
on initial conditions, but it was shown to be redundant (see, e.g., in [19]).

The first notion of chaos coined in the mathematical literature appeared in the article
of Li and Yorke [20]. Let (Y, d) be a metric space. A continuous map f : Y → Y is called
Li–Yorke chaotic if there exists an uncountable subset Γ ⊂ Y such that for every pair x, y ∈ Γ
of distinct points one has

lim inf
n

d( f nx, f ny) = 0 and lim sup
n

d( f nx, f ny) > 0.

In this case, Γ is a scrambled set and {x, y} ⊂ Γ a Li–Yorke pair.
A vector x ∈ X is said to be irregular for T if lim infn ‖Tnx‖ = 0 and

lim supn ‖Tnx‖ = ∞.
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A stronger notion of chaos was introduced by Schweizer and Smital [21]: Let (Y, d) be
a metric space and let f : Y → Y be a continuous map. For any pair {x, y} ⊂ Y and every
n ∈ N, the distributional function Fn

xy : R+ → [0, 1] is defined by

Fxy(τ)
n =

1
n

card
{

0 ≤ i ≤ n− 1 : d( f ix, f iy) < τ
}

,

where card(A) denotes the cardinality of the set A. Define

Fxy(τ) = lim inf
n→∞

Fn
xy(τ)

F∗xy(τ) = lim sup
n→∞

Fn
xy(τ)

The map f is called distributionally chaotic if there exist an uncountable subset Γ ⊂ Y
and ε > 0 such that for every τ > 0 and each pair of distinct points x, y ∈ Γ, it happens
that F∗xy(τ) = 1 and Fxy(ε) = 0. The set Γ is a distributionally ε-scrambled set and the pair
x, y a distributionally chaotic pair. Moreover, f exhibits dense distributional chaos if the set
Γ may be chosen to be dense.

A subset A of N is said to have positive lower density if

dens(A) = lim inf
N→∞

card{n ≤ N : n ∈ A}
N

> 0.

Inspired by Birkhoff ergodic theorem, Bayart and Grivaux [22,23] considered a concept
stronger than hypercyclicity: An operator T on X is said to be frequently hypercyclic provided
there exists a vector x such that for every nonempty open subset U of X, the set of integers
n such that Tnx belongs to U has positive lower density. In this case, x is called a frequently
hypercyclic vector for T.

Bowen [24] introduced a very strong dynamical notion for maps on compact spaces
that occurs when one can approximate distinct pieces of orbits by a single periodic orbit
with a certain uniformity: A continuous map f : K → K on a compact metric space (K, d)
has the specification property (SP) if for any δ > 0 there is a positive integer Nδ such that for
any integer s ≥ 2, any set {y1, . . . , ys} ⊂ K and any integers 0 = j1 ≤ k1 < j2 ≤ k2 < · · · <
js ≤ ks satisfying jr+1 − kr ≥ Nδ for r = 1, . . . , s− 1, there is a point x ∈ K such that, for
each positive integer r ≤ s and any integer i with jr ≤ i ≤ kr, the following conditions hold:

d( f i(x), f i(yr)) < δ,

f n(x) = x where n = Nδ + ks.

Bartoll et al. [25] generalized this concept for operators: An operator T on X has the op-
erator specification property (OSP) if there exists an increasing sequence (Km)m of T-invariant
sets with 0 ∈ K1 and ∪m∈NKm = X such that for each m ∈ N the map T|Km has the SP.

Some measure-theoretic concepts in dynamics ought to be recalled too. Let (X,B, µ)
be a probability space, where X is a topological space and B denotes the σ−algebra of
Borel subsets of X. A Borel probability measure µ is said to have full support if µ(U) > 0 for
each non-empty open set U ⊂ X. A measurable map T : (X,B, µ)→ (X,B, µ) is called a
measure preserving transformation (or µ is T-invariant) if µ(T−1(A)) = µ(A) for all A ∈ B.
The measure µ is said to be strongly mixing with respect to T if

lim
n→∞

µ(A ∩ T−n(B)) = µ(A)µ(B), ∀A, B ∈ B.

A recent work that, in particular, connects the OSP with the existence of strongly mixing
measures is [26].

A sufficient condition for frequent hypercyclicity was given by Bayart and Grivaux [23],
later refined by Bonilla and Grosse-Erdmann [27] by replacing absolute convergence of
series by unconditional convergence. This is what is known today as the Frequent Hyper-
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cyclicity Criterion. A series ∑n xn in X converges unconditionally if it converges and, for any
0-neighborhood U in X, there exists some N ∈ N such that ∑n∈F xn ∈ U for every finite set
F ⊂ {N, N + 1, N + 2, . . .}.

It was shown in [28] that the Frequent Hypercyclicity Criterion implies the existence
of mixing measures (see also in [29] for more general results).

Theorem 1 ([28]). Let T be an operator on X. If there is a dense subset X0 of X and a sequence of
maps Sn : X0 → X such that for each x ∈ X0.

(i) ∑∞
n=0 Tnx converges unconditionally,

(ii) ∑∞
n=0 Snx converges unconditionally, and

(iii) TnSnx = x and TmSnx = Sn−mx if n > m,

then there is a T−invariant strongly mixing Borel probability measure µ on X with full support.

A powerful tool in linear dynamics to obtain chaotic properties for operators is to
have a wide source of eigenvectors associated to suitable eigenvalues. Certainly, the basis
is found in the so-called Godefroy–Shapiro Criterion [7]. Other sufficient conditions for
hypercyclicity can be found in [1,2,30,31].

Theorem 2 (Godefroy–Shapiro Criterion). Let T be an operator on X. Suppose that
the subspaces

X0 := span{x ∈ X : Tx = λx for some λ ∈ C with |λ| < 1}

and
Y0 := span{x ∈ X : Tx = λx for some λ ∈ C with |λ| > 1}

are dense in X. Then, T is hypercyclic. If, moreover, the subspace

Z0 := span{x ∈ X ; Tx = eαπix for some α ∈ Q}

is dense in X, then T is Devaney chaotic.

Suitable eigenvector fields will be very useful to obtain all the chaotic properties
considered here, an idea that follows the work initiated by Bayart and Grivaux [22]. Given
an operator T : X → X on a complex Banach space X, a collection of functions Ej :
T → X, j ∈ J, is called a spanning eigenvector field associated to unimodular eigenvalues if
Ej(λ) ∈ ker(λI − T) for any λ ∈ T, j ∈ J, and

span{Ej(λ) ; λ ∈ T, j ∈ J} is dense in X.

A map G : U → X defined on a non-empty open set U ⊂ C is said to be weakly holomorphic
on U if y ◦ G : U → C is holomorphic for any y ∈ X∗.

The following result is essentially well known, but its proof is included for the sake
of completeness.

Theorem 3. (Eigenfield Criterion) Given an operator T : X → X on a complex Banach space X,
if U ⊂ C is a connected nonempty open set that intersects T, Gj : U → X, j ∈ J, is a collection of
weakly holomorphic maps such that Gj(λ) ∈ ker(λI − T) for any λ ∈ U, j ∈ J, and

span{Gj(λ) ; λ ∈ U, j ∈ J} is dense in X,

then

(i) T is Devaney chaotic,
(ii) there exists a C∞ spanning eigenvector field associated to unimodular eigenvalues Ej : T→ X,

j ∈ J, such that Ej(λ) = Gj(λ) for any λ ∈ I, j ∈ J, where I ⊂ T is a non-trivial arc, and
(iii) T satisfies the Frequent Hypercyclicity Criterion.
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Proof. To prove (i), consider Y1 := U ∩ (C\D), Y2 := U ∩D, and

Y3 := U ∩ {eαπi ; α ∈ Q}.

It will suffice to show that, given k ∈ {1, 2, 3}, and for any y ∈ X∗, the equality 〈x, y〉 = 0
for every x ∈ Yk implies y = 0. Actually, as the holomorphic maps y ◦ Gj annihilate on Yk
for k ∈ {1, 2, 3}, which are sets with accumulating points in U, and U is connected, then
y ◦ Gj ≡ 0 for every j ∈ J. The assumptions imply that y = 0, and (i) is shown.

For (ii), let I0 ⊂ U ∩ T be an open arc, and let I ⊂ I0 be a non-trivial closed sub-arc.
It is possible to extend Gj from I to T as a C∞ function Ej such that Ej(λ) = 0 for all
λ 6∈ I0 for each j ∈ J. Ej, j ∈ J, is a spanning eigenvector field associated to unimodular
eigenvalues as

span{Ej(λ) ; λ ∈ I, j ∈ J} = span{Gj(λ) ; λ ∈ I, j ∈ J},

which is dense in X because I has accumulating points in U.
The fact that T satisfies the Frequent Hypercyclicity Criterion is a consequence of, e.g.,

Remark 9.10 and Theorem 9.22 in [2].

3. Tridiagonal Toeplitz Operators

The main purpose in this section is to reformulate the characterization of hypercyclic
tridiagonal operators given by Shkarin [15] and Baranov and Lishanskii [14] to offer
conditions expressed in terms of the three coefficients of the symbol.

More precisely, equivalent and sufficient conditions, expressed on the coefficients of
the symbol, are provided in order to guarantee that a tridiagonal Toeplitz operator has a
chaotic behavior. Tridiagonal Toeplitz operators were studied in [32] (see also in [33]) as
generators of chaotic semigroups associated to birth-and-death processes.

Let TΦ : H2(D)→ H2(D) be an operator with symbol Φ(z) = a1z + a0 +
a−1

z , where
a−1, a0, a1 ∈ C. If a1 is zero then TΦ is an anti-analytic operator, and there are conditions
for these operators to be hypercyclic [2]. If a−1 is zero then TΦ is a analytic operator, and
these operators are not hypercyclic, as was mentioned before. The goal of this section is to
have conditions such that these operators are chaotic when a1 and a−1 are not zero.

The previous eigenvalue criteria will be a key tool. To do this, one has to solve
the equation T f = λ f . It is known that, for f ∈ H2(D), Tz f (z) = z f (z) and T1

z
f (z) =

1
z ( f (z)− f (0)). Then T = a−1T1

z
+ a0 I + a1Tz, which implies that T f = λ f is equivalent to

a−1
f (z)− f (0)

z
+ a0 f (z) + a1z f (z) = λ f (z).

Therefore,

f (z) =
a−1 f (0)

a1z2 + (a0 − λ)z + a−1
.

If f (0) = 0 one would have that

(a−1 + (a0 − λ)z + a1z2) f (z) = 0,

as f is an analytic function on D this would imply that f (z) is identically zero. Therefore,
f (0) 6= 0 and without loss of generality it is assumed that f (0) = 1.

As it is wanted that
f (z) =

a−1

a1z2 + (a0 − λ)z + a−1
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belongs toH2(D), then the polynomial qλ(z) := a1z2 + (a0− λ)z + a−1 needs to have roots
z1 and z2 with |z1| > 1 and |z2| > 1. This is equivalent to the roots of the polynomial

pλ(z) := z2qλ(1/z) = a−1z2 + (a0 − λ)z + a1

being in D.
To find conditions on the coefficients such that both roots of pλ are in D, the following

test (see, e.g., in [34] for a proof of it) will play a key role.
Jury test: Consider the family of quadratic equations for z ∈ C

z2 + wz + r = 0,

where w ∈ C and r ∈ R are parameters. For a fixed r, let Er denote the set of all complex w such
that the absolute value of each root is less then 1. If |r| < 1, then

Er =

{
w ∈ C :

(
Re(w)

1 + r

)2

+

(
Im(w)

1− r

)2

< 1

}
.

Actually, dealing with the case when a1, a−1 ∈ C demands to generalize the Jury test.

Lemma 1. (Generalized Jury Test). The roots of z2 + wz + reiθ = 0, with parameters w ∈ C,
θ ∈ [0, 2π[ and r ≥ 0, belong to D if and only if r < 1 and

Re(we−i θ
2 )

2

(1 + r)2 +
Im(we−i θ

2 )
2

(1− r)2 < 1.

Proof. By applying the Jury test to p(z) = z2 + (we−i θ
2 )z + r, and taking into account that

p(z) = 0 if and only if q(zei θ
2 ) = 0 for q(z) = z2 + wz + reiθ , the result is obtained.

The Generalized Jury test will be applied to the polynomial

1
a−1

pλ(z) = z2 +
(a0 − λ)

a−1
z +

a1

a−1
.

Observe that, if its roots belong to D, then |a1|
|a−1|

< 1. Therefore, from now on it is assumed
that |a−1| > |a1| > 0.

Now, consider the following ellipse:

E :=
{

z ∈ C :
Re(z)2

(|a−1|+ |a1|)2 +
Im(z)2

(|a−1| − |a1|)2 = 1
}

,

and its interior

E0 :=
{

z ∈ C :
Re(z)2

(|a−1|+ |a1|)2 +
Im(z)2

(|a−1| − |a1|)2 < 1
}

.

Let
A0 := {z ∈ C : d(z, E0) < 1},

i.e., the interior of the outer parallel curve at distance one of the ellipse E. If |a−1|+ |a1| < 1,
let F be the inner parallel curve at distance one of E. There is a connected component in the
interior of F that contains 0, and its closure is set as A′0. Figure 1 illustrates an example of
how A′0 is defined.

All the conditions are now set to establish a key result that will allow us to obtain the
desired characterization in terms of a0, a1 and a−1.



Mathematics 2022, 10, 425 7 of 14

Figure 1. The dashed curve is an ellipse with major semiaxis strictly less than 1, the continuous curve
is its inner parallel at distance 1, and the gray region is A′0.

Lemma 2. Let a1, a−1 ∈ C with |a1| < |a−1|. Set a1 = |a1|eiθ1 , a−1 = |a−1|eiθ−1 , with
θ1, θ−1 ∈ [0, 2π), θ = θ1+θ−1

2 . Then, the following conditions are equivalent:

(A) There exists λ ∈ T such that pλ(z) = a−1z2 + (a0 − λ)z + a1 has its roots in D.
(B) a0 satisfies one of the following cases:

1. If |a−1|+ |a1| > 1 then a0e−iθ ∈ A0.
2. If |a−1|+ |a1| = 1 then a0e−iθ ∈ A0\{0}.
3. If |a−1|+ |a1| < 1 then a0e−iθ ∈ A0\A′0.

Proof. By applying the Generalized Jury test to the polynomial

1
a−1

pλ(z) = z2 +
(a0 − λ)

a−1
z +

a1

a−1
,

it is known that its roots belong to D if, and only if, the following inequality is satisfied:

Re( a0−λ
a−1

e−i
θ1−θ−1

2 )
2

(1 + |a1|
|a−1|

)2
+

Im( a0−λ
a−1

e−i
θ1−θ−1

2 )
2

(1− |a1|
|a−1|

)2
< 1,

which is equivalent to

Re(a0e−iθ − λe−iθ)
2

(|a1|+ |a−1|)2 +
Im(a0e−iθ − λe−iθ)

2

(|a1| − |a−1|)2 < 1.

Let b0 = a0e−iθ . The above inequality holds for some λ ∈ T if, and only if, one can find
λ′ ∈ T such that b0 − λ′ ∈ E0. This is in turn equivalent to the existence of z1, z2 ∈ E0 such
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that |b0 − z1| < 1 and |b0 − z2| > 1. Indeed, one implication is obvious since E0 is open,
and the other one follows from an easy connectedness argument: Consider the function
f : E0 → R defined by f (z) = |b0 − z|. As E0 is a connected set, the set f (E0) is an interval
in R that has points greater than 1, and smaller than 1, so 1 is inside.

The equivalence with condition (B) will be shown now:

1. |a1|+ |a−1| > 1.
As in this case b0 ∈ A0, by the definition of the set A0 it is clear that exist z1, z2 ∈ E0
such that |b0 − z1| < 1 and |b0 − z2| > 1.

2. |a1|+ |a−1| = 1.
As in this case b0 ∈ A0 \ {0}, the same reasoning as above holds for all b0 ∈ A0, except
for b0 = 0.

3. |a1|+ |a−1| < 1.
As b0 ∈ A0 \ A′0, by the definition of A0, there exists z1 ∈ E0 such that |b0 − z1| < 1.
Now, as b0 /∈ A′0, the definition of A′0 allows us to find a point z2 ∈ E0 such that
|b0 − z2| > 1.

Therefore, far it has been characterized the existence of λ ∈ T such that the λ-eigenvector
of TΦ

fλ(z) =
a−1

a1z2 + (a0 − λ)z + a−1

belongs to H2(D). Actually, it will be shown that this defines an eigenvector field that
satisfies the conditions of Theorem 3.

Theorem 4. Let B ⊂ C be an open subset with non empty intersection with T and suppose that
fλ ∈ H2(D) for any λ ∈ B, where

fλ(z) :=
a−1

a1z2 + (a0 − λ)z + a−1
.

Then, the map G : B→ H2(D), G(λ) := fλ, is weakly holomorphic and

span{G(λ) ; λ ∈ B} is dense inH2(D).

Proof. For A ⊂ C open, set H(A) := { f : A → C ; f is analytic}. Let g be a function in
H2(D). It will be shown that, if 〈 fλ, g〉 = 0 for all λ in B, then g = 0, which is equivalent to
the fact that

Z := span{ fλ ; λ ∈ B}

is dense inH2(D).
Consider H : B→ C defined by H(λ) := 〈 fλ, g〉, i.e.,

H(λ) =
1

2π

∫ 2π

0

a−1

qλ(eiθ)
g(eiθ)dθ, where qλ(z) = a1z2 + (a0 − λ)z + a−1.

Suppose that H(λ) = 0 for all λ ∈ B. Thus, all the derivatives of H vanish at certain
eiα ∈ T∩ B. That is, H(eiα) = 0,

dH
dλ

(eiα) =
1

2π

∫ 2π

0

eiθ

qeiα(eiθ)
h(θ)dθ = 0, where h(θ) :=

a−1

qeiα(eiθ)
g(eiθ),

and

∫ 2π

0
Φn(θ)h(θ)dθ = 0 for n = 0, 1, 2, . . . where Φ(θ) :=

eiθ

qeiα(eiθ)
.
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One has that Ψ(z) = z
qeiα (z)

is an analytic function in an open disc U ⊃ D. As it is

known that |a−1| > |a1|, then Ψ is univalent on a neighborhood of D, which is assumed
to be U, and there exists Ψ−1 : W → U, where W := Ψ(U) is a simply connected open
set. Then, CΨ : H(W) → H(U ), with f 7−→ f ◦ Ψ, is an isomorphism. It is known that
span{1, z, z2, . . .} is dense inH(W), thus CΨ(span{1, z, z2, . . .}) = span{1, Ψ(z), Ψ2(z), . . .}
is dense inH(U), and then dense inH2(D). That is, Y := span{1, Ψ(z), Ψ2(z), . . .} is dense
inH2(D) which gives h = 0 as h(z) ⊥ Y, concluding that g = 0.

The following theorem summarizes the previous results.

Theorem 5. Let T : H2(D) → H2(D) be a Toeplitz operator with symbol the function Φ(z) =
a−1

z + a0 + a1z, where a−1 = |a−1|eiθ−1 , a1 = |a1|eiθ1 , with θ1, θ−1 ∈ [0, 2π), and a0 belong to C.
Set θ = θ1+θ−1

2 , and let A0, A′0 be the sets defined before Lemma 2. Then, the following affirmations
are equivalent:

(C1) 0 < |a1| < |a−1| and a0 satisfies one of the following conditions:

(a) If |a−1|+ |a1| > 1 then a0e−iθ ∈ A0.
(b) If |a−1|+ |a1| = 1 then a0e−iθ ∈ A0\{0}.
(c) If |a−1|+ |a1| < 1 then a0e−iθ ∈ A0\A′0.

(C2) T satisfies the Godefroy–Shapiro Criterion.
(C3) T satisfies the Eigenfield Criterion.

All the necessary ingredients are now given in order to establish the main result of
this section.

Theorem 6. Let T : H2(D) → H2(D) be a Toeplitz operator with symbol the function
Φ(z) = a−1

z + a0 + a1z, where a0, a−1, and a1 belong to C \ {0}. Then, the following affir-
mations are equivalent:

(1) TΦ satisfies the Godefroy–Shapiro Criterion.
(2) 0 < |a1| < |a−1|, D∩ (C \Φ(D)) 6= ∅ and D̂∩ (C \Φ(D)) 6= ∅.
(3) The coefficients a−1, a1 and a0 satisfy the conditions (C1) of Theorem 5.
(4) TΦ satisfies the Eigenfield Criterion.
(5) TΦ is a distributionally chaotic operator.
(6) TΦ is a Li–Yorke chaotic operator.
(7) TΦ is a Devaney chaotic operator.
(8) TΦ admits an invariant strongly mixing Borel probability measure µ onH2(D) with full support.
(9) TΦ has the OSP.
(10) TΦ is a frequently hypercyclic operator.
(11) TΦ is a hypercyclic operator.

Proof. The equivalence of (1) and (2) follows from the works in [14,15]. The equivalence
of (1), (3), and (4) is given in Theorem 5. Equivalent conditions (1)–(4) imply that TΦ
satisfies the Frequent Hypercyclicity Criterion by Theorems 3 and 4, so any of the remaining
conditions by [35] ((5) and (6)), [7] ((7) and (11)), [28] (8), [25] (9), and [22] (10). Furthermore,
condition (6) is the weakest one among (5)–(11), and one just needs to show that (6)
implies (3) in order to conclude all the equivalences. Actually, a direct computation shows
T∗ΦTΦ − TΦT∗Φ = (|a1|2 − |a−1|2)P, where P = I − TzT∗z . As P ≥ 0, then TΦ is hyponormal
if |a−1| ≤ |a1|, and by [36] TΦ does not have Li–Yorke pairs. If D̂ ∩ (C \ Φ(D)) = ∅
then Φ(T) ⊂ D and TΦ is a contraction. Therefore TΦ does not have Li–Yorke pairs. If
D∩ (C\Φ(D)) = ∅, by an argument from Proposition 4.1 in [14] one has that ‖TΦx‖ ≥ ‖x‖
for all x, then TΦ does not have irregular vectors. In any case TΦ can not be Li–Yorke
chaotic.
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Although the conditions of Theorem 5 offer a complete characterization in terms of
the 3 coefficients a−1, a1 and a0, it is useful to have a more “handy” sufficient condition
which can be expressed by a single inequality. This is the purpose of the final result in this
section. To simplify, once the equivalences of Theorem 6 are known, from now on the term
“chaotic” will refer to any of properties (5)–(11) given there.

Corollary 1. Let a1, a0, a−1 ∈ C \ {0}. If it satisfies ||a0| − 1| < |a−1| − |a1|, then the Toeplitz
operator TΦ with symbol the function Φ(z) = a−1

z + a0 + a1z is a chaotic operator.

Proof. Recall that A0 = {z ∈ C : d(z, E0) < 1}, where E0 is the interior of a ellipse
with semiaxis s2 = |a−1| − |a1| and s1 = |a−1| + |a1|. The first observation is that, as
|a0| < |a−1| − |a1|+ 1, then a0 ∈ eiα A0 for all α ∈ [0, 2π].

In case that |a−1|+ |a1| > 1, the conditions of Theorem 5 are satisfied.
If |a−1| + |a1| = 1, then ||a0| − 1| < |a−1| − |a1| implies that a0 6= 0, and the

result follows.
Finally, if |a−1| + |a1| < 1, then the fact that |a0| > 1 − (|a−1| − |a1|) yields that

a0 /∈ eiα A′0 for all α ∈ [0, 2π], concluding the result.

4. Toeplitz Operators with General Analytic Part

In this section, for more general TΦ : H2(D) → H2(D), some conditions are given
for TΦ to satisfy the Eigenvalue Criterion. Precisely, TΦ will be assumed to be a Toeplitz
operator with symbol

Φ(z) =
∞

∑
n=0

anzn +
a−1

z
+ · · ·+ a−m

zm = ϕ(z) + q(1/z), (m ∈ N and a−m 6= 0),

that is, with general analytic part ϕ and a polynomial q in the anti-analytic part. It will be
imposed that ∑∞

k=1 |ak| < ∞, that is, ϕ is analytic in D.
If an = 0, n ≥ 1, then T := TΦ is an anti-analytic Toeplitz operator, and conditions for

the hypercyclicity of such operators are well known [7].
First, one has to solve the equation T f = λ f , where f (z) = ∑∞

k=0 γkzk, with γ0, γ1, . . . ∈
C. It is known that

T = a−m

(
T1

z

)m
+ · · ·+ a−2

(
T1

z

)2
+ a−1T1

z
+ Tϕ.

By definition, (
T1

z

)n
f (z) :=

f (z)− fn−1(z)
zn for n ≥ 1,

where fm(z) = ∑m
k=0 γkzk for m ≥ 0.

By the above remarks,

T f =

(
a−m

f (z)− fm−1(z)
zm + · · ·+ a−1

f (z)− f0(z)
z

+ ϕ(z) f (z)
)

=

(
a−m

zm
+ · · ·+ a−1

z
+ ϕ(z)

)
f (z)− a−m

fm−1(z)
zm − · · · − a−1

f0(z)
z

.

The equality T f = λ f yields

m

∑
k=1

a−k fk−1(z)
zk =

(
a−m

zm +
a−(m−1)

zm−1 + · · ·+ a−1

z
− λ + ϕ(z)

)
f (z),

and therefore

m

∑
k=1

a−k fk−1(z)zm−k =

(
m

∑
k=1

a−kzm−k + (a0 − λ)zm +
∞

∑
k=1

akzm+k

)
f (z).
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As

m

∑
k=1

a−k fk−1(z)zm−k =
m

∑
k=1

a−k

k−1

∑
s=0

γszszm−k

=
m

∑
k=1

k−1

∑
s=0

a−kγszm+s−k

=
m−1

∑
t=0

t

∑
r=0

a−(m−r)γt−rzt,

one has that

f (z) =
∑m−1

t=0 ∑t
r=0 a−(m−r)γt−rzt

∑m
k=1 a−kzm−k + (a0 − λ)zm + ∑∞

k=1 akzm+k .

Half of the following result has been shown.

Lemma 3. Let TΦ : H2(D) → H2(D) be a Toeplitz operator with symbol Φ(z) = ∑∞
k=0 akzk +

a−1
z + · · ·+ a−m

zm , where ∑∞
k=1 |ak| < ∞ and a−m 6= 0. If λ ∈ C is an eigenvalue of TΦ, then the

solutions of the equation TΦ f = λ f form an m-dimensional vector space and are of the form

f (z) =
q(z)

∑m
k=1 a−kzm−k + (a0 − λ)zm + ∑∞

k=1 akzm+k ,

with q(z) a polynomial of degree at most m− 1.

Proof. If f (z) = ∑∞
k=0 γkzk satisfies the equation T f = λ f then f has the form

f (z) =
∑m−1

t=0 ∑t
r=0 a−(m−r)γt−rzt

∑m
k=1 a−kzm−k + (a0 − λ)zm + ∑∞

k=1 akzm+k .

Observe that the numerator of f is a polynomial of degree m− 1 and it has the form

a−mγ0 + (a−mγ1 + a−(m−1)γ0)z + · · ·+ (a−mγm−1 + a−(m−1)γm−2 + · · ·+ a−1γ0)zm−1.

Therefore, as a−m 6= 0, the numerator of f (z) is nonzero if at least one of the coefficients
γk, for 0 ≤ k ≤ m, is nonzero. Clearly, every polynomial of degree at most m− 1 can be
obtained by choosing the coefficients γk, for 0 ≤ k ≤ m, appropriately. Therefore, the space
of solutions is m-dimensional.

The following result is implicit in the proof of Statement 2 of Theorem 1.2 in [14].

Proposition 1. Let m, n ∈ N, let

Φ(z) :=
a−m

zm +
a−(m−1)

zm−1 + · · ·+ a−1

z
+

∞

∑
k=0

akzk,

with ∑∞
k=1 |ak| < ∞ and a−m 6= 0. Let U be a nonempty open set in C such that Φ(D \ {0}) ⊆

C \U, and let K ⊂ U with accumulation points in U. If for any w ∈ Φ(D \ {0}) the equation
Φ(z) = w has exactly m different solutions in D \ {0}, then span{zj fλ : λ ∈ K, j = 0, 1, . . . , m−
1} is dense inH2(D), where fλ(z) = 1

zmΦ(z)−λzm , for λ ∈ K.

This section concludes by putting together the above results to obtain the next result.

Theorem 7. Let TΦ : H2(D) → H2(D) be a Toeplitz operator with symbol Φ(z) := a−m
zm +

a−(m−1)
zm−1 + · · · + a−1

z + ∑∞
k=0 akzk, with ∑∞

k=1 |ak| < ∞ and a−m 6= 0. Assume that that the
following conditions are satisfied:
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1.

||a0| − 1|+
∞

∑
i=−m+1, i 6=0

|ai| < |a−m|,

and
2. for any w ∈ Φ(D\{0}) the equation Φ(z) = w has exactly m solutions in D\{0}.
Then, TΦ is chaotic.

Proof. For λ ∈ C, define

fλ(z) =
1

∑m
k=1 a−kzm−k + (a0 − λ)zm + ∑∞

k=1 akzm+k .

One needs that the roots of the denominator of fλ(z) are not in D in order to have
fλ ∈ H2(D) and, as shown before, TΦ fλ = λ fλ. As it is wanted this to happen for certain
λ ∈ U, where U ⊂ C is an open set that intersects T, select λ0 = a0/|a0| (λ0 = 1 if a0 = 0)
and, by the first hypothesis,∣∣∣∣∣a−m + a−(m−1)z + · · ·+ a−1zm−1 + (a0 − λ0)zm +

∞

∑
k=1

akzm+k

∣∣∣∣∣
≥ |a−m| − ||a0| − 1| −

∞

∑
i=−m+1, i 6=0

|ai| > 0,

for any z ∈ D, as ||a0| − 1| ≥ |a0 − λ0|. For a sufficiently small neighborhood U of λ0 one
gets fλ ∈ H2(D) for all λ ∈ U. In addition, by construction, zj fλ(z) is a λ-eigenvector of
TΦ, j = 0, 1, . . . , m− 1, λ ∈ U.

Observe that λ0 6∈ Φ(D \ {0}). Otherwise, z0 ∈ D with λ0 = Φ(z0), that implies

0 = zm
0 (Φ(z0)− λ0) = 1/ fλ0(z0),

which is a contradiction. W.l.o.g. it is assumed that the neighborhood U of λ0 is small
enough so that U does not intersect Φ(D \ {0}).

Let K1 := {λ ∈ U ; |λ| > 1}, K2 := {λ ∈ U ; |λ| < 1}, and K3 :=
{

λ ∈ U ; λj = 1 for
some j ∈ N}. It is clear that Ki, i = 1, 2, 3, has accumulation points in U.

By the second hypothesis and Proposition 1 applied to U and Ki, i = 1, 2, 3, the sets
span{zj fλ : λ ∈ Ki, j = 0, 1, . . . , m− 1}, i = 1, 2, 3, are dense in H2(D), so Gj(λ) := zj fλ,
j = 0, 1, . . . , m− 1, is an eigenfield satisfying the hypothesis of Theorem 3, and the result is
concluded.

Remark 1. In the tridiagonal case, that is when n = m = 1, observe that the condition of
Corollary 1 coincides with the hypothesis of Theorem 7. Actually, the firs part is obvious, and the
second hypothesis is a consequence as Φ(z1) = Φ(z2) for z1, z2 ∈ D \ {0} with z1 6= z2 yields
a1 = a−1

z1z2
, which implies |a1| ≥ |a−1|, a contradiction.

5. Conclusions and Future Work

For certain Toeplitz operators with analytic and anti-analytic part it has been show
different chaotic properties under conditions expressed in terms of the symbol coefficients.
The special case of tridiagonal operators has been characterized with geometric conditions
on the coefficients that are easy to compute. In addition, the more general case that adds an
arbitrary analytic part to the tridiagonal operator, some sufficient conditions for the chaotic
behavior of the operator formulated on the symbol coefficients are also provided.
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By suggestion of Lizama in the case of non-local operators, and of Martínez-Giménez
and Rodenas for certain linear PDEs, a promising line of continuation of the present work
applied to numerical schemes that exhibit chaos is being developed.
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