

Contents lists available at ScienceDirect

## Radiation Physics and Chemistry

journal homepage: www.elsevier.com/locate/radphyschem





# Determination of the radon diffusion coefficient of thin polyethene and aluminium foils used as single or multilayer configuration barriers

Beatriz Ruvira\*, Beatriz García-Fayos, Belén Juste, José Miguel Arnal, Gumersindo Verdú

Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain

ARTICLE INFO

Keywords: Radon Diffusion coefficient Radon barrier Polyethene Aluminium

#### ABSTRACT

Radon is a radioactive noble gas exhaled from the soil that can reach high concentrations in enclosed spaces. As elevated concentrations cause serious health problems, legislation has been put in place in many countries to regulate the limit concentration and even establish mitigation techniques. One of the most effective techniques for new buildings is the installation of radon barriers. The most important parameter determining whether the barrier is adequate to protect against radon is the diffusion coefficient, whose measurement methodology is standardized in ISO/TS 11665-13:2017. This work applies a previously tested modification of this standard to calculate the radon diffusion coefficient of different materials used as single or multilayer form barriers. Given that there are wasted laminated materials, composed of polymeric materials and aluminium, which are difficult to recycle, a preliminary study of the possible effectiveness of these materials as radon barriers will be carried out using these materials separately or in combination. The materials to be tested are 10-µm sheets of polyethene (PE) and 15-um sheets of aluminium (Al), testing in each case one, two and three layers of each material. In addition, combinations of the two materials, i.e., PE-Al-PE and PE-Al-PE, are also studied. The diffusion coefficients obtained vary around  $2 \cdot 10^{-12} \text{ m}^2/\text{s}$  for PE and around  $1 \cdot 10^{-13} \text{ m}^2/\text{s}$  in the case of Al. The combination of both materials improved results obtained for single-materials barriers giving a diffusion coefficient between  $10^{-13}$  and  $10^{-14}$  m $^2$ /s. Radon reductions achieved range from 70 to 87.5% for PE to more than 98% for Al and the materials combinations. The excellent radon shielding capacity of aluminium is observed, which grows with increasing material thickness. Furthermore, it can be stated that the use of multilayer materials of different nature is very effective in reducing the radon concentration reaching an enclosed space and the use of aluminium in some of the layers is essential to achieve a more significant shielding effect.

#### 1. Introduction

Radon is a gas considered carcinogenic by the World Health Organization (World Health Organization, 2009). It is exhaled from soils with high radium content, like granite, sedimentary rocks or some types of sands, and enters buildings through cracks or poorly sealed joints, where it accumulates to high concentrations (Khan et al., 2019). Indoor radon concentration limits exist in many countries; in particular, the Directive 59/2013/Euratom sets a limit of 300 Bq/m³ for closed spaces in the European Union (Council of the European Union, 2013).

To comply with this limit, the Spanish Technical Building Code requires the installation of radon barriers in new buildings to be constructed in areas where high indoor radon concentrations are expected. According to the characteristics described in the Technical Building Code, barriers must be continuous, sealed, and have durability

appropriate to the useful life of the building. In addition, the minimum thickness should be 2 mm and have a radon diffusion coefficient of less than  $10^{-11}~\text{m}^2/\text{s}$  (Spanish Ministry of Public Works and Transport,

This coefficient defines the radon transport through the barrier, so it is a good indication of the adequacy of a barrier to protect against radon (Jiránek et al., 2008). ISO/TS 11665–13:2017 establishes an experimental methodology and a standard calculation process of this coefficient (International Standardization Organization (ISO), 2017). The radon diffusion coefficient varies over a wide range depending on the material from which the barrier is made. Among the lowest values (around  $10^{-15}$  m²/s) are barriers with some aluminium foil and ethylene vinyl acetate (EVA), while the highest values (around  $10^{-8}$  m²/s) are obtained for rubber membranes and polymer coatings. Common polymeric materials like polyethene (PE), polypropylene (PP) or polyvinyl

E-mail address: bearuqui@upv.es (B. Ruvira).

<sup>\*</sup> Corresponding author.

chloride (PVC) have a radon diffusion coefficient between  $10^{-11}$  and  $10^{-13}$  m<sup>2</sup>/s (Jiránek and Kotrbatá, 2011).

Nowadays, there are commercially available anti-radon barriers that combine different polymeric materials with aluminium, with good results (Chova; Radiansa). This kind of composition is also used for laminated materials in packaging. However, this kind of material represents an environmental problem because it is hard to recycle due to the different melting points between the polymeric materials of which they are composed, preventing them from being reprocessed by extrusion. Many of the wastes that present this problem are composed of PE, PP, PVC and aluminium and have a thickness between 40 and 120  $\mu m$ . Therefore, this work proposes a preliminary study to verify the effectiveness as anti-radon barriers of single or combined materials similar to laminated materials, in the form of monolayer or multilayer, as this is the usual configuration of many commercial wastes that cannot be recycled at present.

## 2. Materials and methods

#### 2.1. Measuring system

The measurement system is designed according to ISO/TS 11665-13:2017. It consists of two sealed chambers between which the studied barrier is placed. They are made of AISI 316L stainless steel with a thickness of 2 mm and have a volume of 0.801 L each and a test area of  $78.5 \text{ cm}^2$ . The radon source, a sealed pitchblende stone with an activity of 1.469 kBq, is placed inside the source container.

Two continuous detectors (Durridge RAD7), with a maximum standard relative uncertainty of 10%, record radon concentration in both chambers. Two desiccant units (Durridge Drystik 144-ADS-3R and drierite) maintain low relative humidity in the air inlet of the RAD7. The devices are connected with vinyl tubes 1.41 and 1.81 mm thick. The air extracted from the chamber for radon analysis is reintroduced into the chamber, thus maintaining a closed cycle. A more detailed diagram of the experimental setup can be found in (Ruvira et al., 2022).

### 2.2. Diffusion coefficient calculation

The samples (tested material) have the same diameter as the chambers (15 cm), with six holes on the outer perimeter to fix them with the screws. Prior to the test, the thickness of the samples is measured with a micrometre (model 3006 from Baxlo Precision, 10  $\mu m$  accuracy). The characteristics of the samples tested, i. e., the type of material, the number of layers and the total thickness, are described in Table 1.

The test starts when the sample is placed between both containers, and the setup is sealed with a 2 mm diameter O-ring made of rubber (SBR) and screws. The radon concentration inside the chambers is recorded at intervals of 30 min for 48 h following the methodology previously described in (Ruvira et al., 2022). After this time, the chambers are flushed, and the devices are purged. The sample is placed immediately in a gamma spectrometer with a NaI detector to determine if the material has adsorbed radon using the Pb-214 and Bi-214 peaks. For comparison, a blank consisting of virgin material that has not been exposed to the radon source has been included.

**Table 1** Description of the materials tested.

| Material    | Nº layers      | Thickness (μm) |
|-------------|----------------|----------------|
| PE          | 1              | 10 ± 4.96      |
|             | 2              | $20\pm5.18$    |
|             | 3              | $30 \pm 5.18$  |
| Al          | 1              | $15\pm7.56$    |
|             | 2              | $30 \pm 5.18$  |
|             | 3              | $45 \pm 5.35$  |
| Combination | PE - Al - PE   | $35 \pm 7.29$  |
|             | PE-Al-PE-Al-PE | $60 \pm 6.23$  |

The calculation process for the steady state is explained in Annex A.5 "Expression of results" of the ISO/TS 11665–13:2017 norm (International Standardization Organization (ISO), 2017) and in (Ruvira et al., 2022).

The diffusion coefficient measurement has been done twice for each material and number of layers, so the graphs and calculations have been made for the average data from both measurements. The methodology of the radon leakage test is described in (Ruvira et al., 2022).

#### 3. Results

Before starting the experiments, a radon leakage test was carried out. The leakage rate obtained is 0.0034  $h^{-1},$  which is lower than the limit value given in the ISO norm; leakage can therefore be assumed to be negligible.

The RAD7 registers the air temperature offering a mean airstream temperature of 17.95  $^{\circ}$ C with a variation of 1.00  $^{\circ}$ C during the tests conducted at the laboratory between February and April 2021.

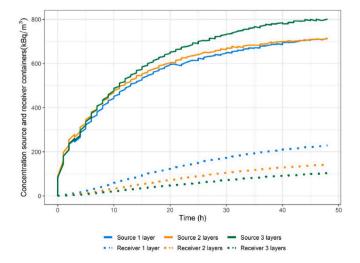

#### 3.1. Radon diffusion coefficient test of the PE foils

Fig. 1 shows the evolution of the radon concentration in both the source chamber and the receiver chamber over the test time. The radon concentration in the source chamber is between 700 and  $800~k\mathrm{Bq/m^3}$  at the end of the experiment, and the concentration in the receiver chamber varies between 100 and  $200~k\mathrm{Bq/m^3}$ . However, the more layers are added, the better the radon is slowed down, and the radon concentration in the receiver chamber decreases. Measurements made with the RAD7 have been compared with another detector (Radon Scout, Sarad) and the results show the same trend in the measurement range tested.

Table 2 shows the mean radon concentration in the source and receiver chamber in the last 24 h ( $C_{SC}$  and  $C_{RC}$ , respectively), the radon reduction percentage achieved, the radon diffusion length (l) and the radon diffusion coefficient (D). The radon diffusion length indicates the distance the radon travels inside the barrier until it disintegrates e times. The radon reduction is calculated as follows:

$$Reduction (\%) = \frac{C_{SC} - C_{RC}}{C_{SC}} \cdot 100$$
 (1)

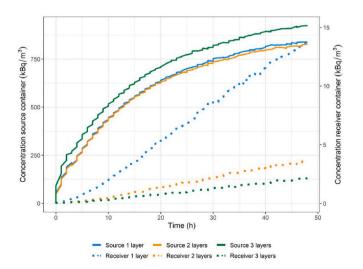
According to the results presented in Table 2, as more layers of PE are used, more radon concentrates in the source chamber, and less can reach the receiver chamber; thus, the radon reduction increases with more layers of the barrier. The radon diffusion length and the radon diffusion



**Fig. 1.** Radon concentration in the source chamber (solid line) and the receiver chamber (dashed line) for PE foils using 1, 2 and 3 layers.

**Table 2**Values of the parameters calculated to obtain the radon diffusion coefficient of PF foils

| Nº layers<br>(μm)   | C <sub>SC</sub> (kBq/<br>m <sup>3</sup> ) | C <sub>RC</sub> (kBq/<br>m <sup>3</sup> ) | Reduction<br>(%) | 1<br>(μm) | D (m <sup>2</sup> /s)                                              |
|---------------------|-------------------------------------------|-------------------------------------------|------------------|-----------|--------------------------------------------------------------------|
| 1 (10 ± 4.96)       | $671.70 \pm \\29.82$                      | $193.27~\pm\\24.25$                       | 71.23            | 831       | $\begin{array}{l} (1.45 \pm \\ 0.18) {\cdot} 10^{-12} \end{array}$ |
| $2 \ (20 \pm 5.18)$ | $683.05 \pm \\22.17$                      | $117.77 \pm \\ 16.34$                     | 82.76            | 958       | $(1.93 \pm 0.23) \cdot 10^{-12}$                                   |
| $3 (30 \pm 5.18)$   | $759.22 \pm \\ 33.85$                     | $82.34 \pm \\13.48$                       | 89.16            | 1010      | $(2.14 \pm 0.26) \cdot 10^{-12}$                                   |


coefficient barely change for all the samples tested. The radon diffusion length is greater than the thickness of the foils, so much radon travels through the barrier until it disintegrates. The diffusion coefficient is in the order of  $10^{-12}$  m<sup>2</sup>/s, which is a typical value for PE (Jiránek et al., 2008; Jiránek and Kotrbatá, 2011).

#### 3.2. Radon diffusion coefficient test of the Al foils

Fig. 2 shows the evolution of the radon concentration in both chambers during the test. As the concentration in the receiver chamber is significantly lower than in the source chamber, the values have to be read on the right Y-axis. For Al foils, the radon concentration in the source chamber varies from 800 to 900 kBq/m³ at the end of the test. However, the concentration in the receiver chamber ranges between 2.5 and  $4\,kBq/m³$  except for one Al layer, reaching up to  $14\,kBq/m³$  at the end of the experiment. Although the radon accumulating in the receiver chamber is much lower than in the case of PE, it is still a relatively high concentration. In addition, there is a significant reduction in concentration when going from one to two or three aluminium layers.

In Table 3, it can be seen that, as with PE, the more Al layers used, the higher the concentration reached in the source chamber and the less radon passes to the receiver chamber. The radon diffusion length and the diffusion coefficient hardly change with more layers. The diffusion length has a value between 189 and 279  $\mu m$ , while the diffusion coefficient is around  $10^{-13}~m^2/s$ , which indicates that Al is a material with low radon permeability. The thickness increase improves the reduction in radon concentration, albeit slightly, as the difference in concentrations between the two chambers is large.

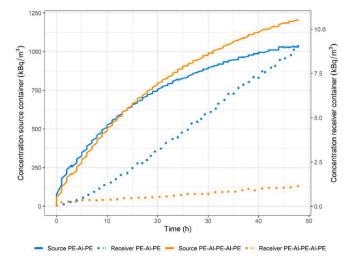
Comparing the results of PE and Al, the radon reduction achieved with a single layer of Al (98.68%) is much better than that achieved with three layers of PE (89.16%). The diffusion length for Al (around 200  $\mu$ m) is much lower than the values obtained for PE (approximately 900  $\mu$ m).



**Fig. 2.** Radon concentration in the source chamber (solid line) and the receiver chamber (dashed line) for Al foils using 1, 2 and 3 layers.

**Table 3**Values of the parameters calculated to obtain the radon diffusion coefficient of Al foils

| N° layers<br>(μm)                                     | C <sub>SC</sub> (kBq/<br>m <sup>3</sup> ) | C <sub>RC</sub> (kBq/<br>m <sup>3</sup> ) | Reduction<br>(%) | l<br>(μm) | D (m <sup>2</sup> /s)                                            |
|-------------------------------------------------------|-------------------------------------------|-------------------------------------------|------------------|-----------|------------------------------------------------------------------|
| 1 (15 ± 7.56)                                         | $780.50 \pm \\45.18$                      | $10.33 \pm 2.11$                          | 98.68            | 279       | $(1.64 \pm 0.20) \cdot 10^{-13}$                                 |
| $\begin{array}{c} 2 \ (30 \ \pm \\ 5.18) \end{array}$ | $766.52 \pm \\ 44.08$                     | $2.69 \pm 0.57$                           | 99.65            | 208       | $(9.09 \pm 1.10) \cdot 10^{-14}$                                 |
| $3 (45 \pm 5.35)$                                     | $857.57 \pm 48.14$                        | $1.55 \pm 0.35$                           | 99.82            | 189       | $\begin{array}{l} (7.50 \pm \\ 0.91) \cdot 10^{-14} \end{array}$ |


The diffusion coefficient for Al is around an order of magnitude smaller than for PE, which means Al keeps radon from passing through better than the polymeric material.

## 3.3. Radon diffusion coefficient test of the PE + Al foils

Fig. 3 shows the evolution of the radon concentration during the experiment when various combinations of PE and Al foils are studied. In this case, the radon concentration in the source chamber surpasses 1000 kBq/m³ at the end of the experiment. The concentration in the receiver chamber has values around 8 kBq/m³ and 1 kBq/m³, respectively. The lowest radon concentration in the receiver chamber among all the tests corresponds to the PE-Al-PE-Al-PE experiment.

Table 4 shows the mean radon concentration for the last 24 h of the test for both chambers. With those values, the radon reduction achieved is 99.31% for PE-Al-PE and 99.92% for PE-Al-PE, which is higher than for monomaterial PE barrier (single or multilayer) and around the same values for monomaterial Al barrier (single or multilayer). The diffusion coefficient for PE-Al-PE is around  $10^{-13}$  m<sup>2</sup>/s, which is similar to the monomaterial Al barrier with one layer; however, for PE-Al-PE-Al-PE, the result of the diffusion coefficient  $(3.6 \cdot 10^{-14} \text{ m}^2/\text{s})$  improves compared to the monomaterial Al barrier with two layers. There is a synergistic effect of the combination of both materials when the multilayer material reaches a certain thickness. In fact, the value of the radon diffusion length obtained for the latter combination is the lowest of those obtained in all the tests carried out. Therefore, it seems that the lower the diffusion coefficient, the less radon can pass through the material, and the smaller the radon diffusion length, the less barrier thickness is needed for much of the radon to disintegrate before passing through.

Therefore, the best result of all tested materials is PE-Al-PE-Al-PE because it has the highest reduction percentage, the lowest radon



**Fig. 3.** Radon concentration in the source chamber (solid line) and the receiver chamber (dashed line) for the combination of PE and Al foils.

**Table 4**Values of the parameters calculated to obtain the radon diffusion coefficient of the combination of PE and Al foils.

| Layers (µm)                                           | C <sub>SC</sub> (kBq/<br>m <sup>3</sup> ) | C <sub>RC</sub><br>(kBq/<br>m <sup>3</sup> )    | Reduction<br>(%) | 1<br>(μm) | D (m <sup>2</sup> /s)            |
|-------------------------------------------------------|-------------------------------------------|-------------------------------------------------|------------------|-----------|----------------------------------|
| PE (10) + Al (15)<br>+ PE (10)                        | 946.13 ± 66.44                            | 6.50 ± 1.42                                     | 99.31            | 316       | $(2.10 \pm 0.25)$ . $10^{-13}$   |
| PE (10) + Al (15)<br>+ PE (10) + Al<br>(15) + PE (10) | $1064.28 \pm 97.19$                       | $\begin{array}{c} 0.87 \pm \\ 0.16 \end{array}$ | 99.92            | 131       | $(3.60 \pm 0.44) \cdot 10^{-14}$ |

diffusion length and the lowest diffusion coefficient.

#### 3.4. Radon adsorption

After the tests, the radon adsorbed on the barrier materials has also been measured; the net counts (cps) of gamma peaks of Pb-214 and Bi-214 obtained with the gamma spectrometer are shown in Table 5.

Table 5 shows the radon adsorbed by the materials during exposure by the counts per second. All materials adsorb radon, and as the thickness increases, more counts are registered. However, PE adsorbs slightly more radon than Al, given that the counts are between 4 and 9 cps and around 8 cps, respectively.

Fig. 4 shows the represented values of the counts. The graph shows that there seems to be a relationship between the adsorbed radon and material thickness, being higher for PE than for Al. For the combined materials, both combinations have lower cps than what would correspond to the sum of the counts of the individual materials, even though the resulting material is thicker. For example, for the PE-Al-PE-Al-PE combination, the counts are 9.87 cps, while for two layers of Al, they are 8.23 cps and for three layers of PE, 9.56 cps. Therefore, it is again observed that the combination of polymeric materials with Al in multilayer materials also has a positive effect on radon adsorption on the exposed material, being lower than that of the individual materials.

#### 4. Conclusions

The use of multilayered materials of different nature is very effective in reducing the radon concentration. The use of aluminium in some of the layers is essential to achieve a more significant shielding effect.

It is observed that the best material tested as radon barrier is the PE-Al-PE-Al-PE combination, with a reduction of radon concentration of 99.92%, a radon diffusion length of 131  $\mu m$  and a radon diffusion coefficient of 3.60  $\pm$  0.44  $\cdot 10^{-14}~m^2/s$ , meeting the Spanish Technical Building Code conditions for this parameter.

There is a positive relationship between the thickness of the material and the radon adsorbed; however, PE adsorbs some more radon than Al. In the case of combined multilayer materials, the radon adsorption is lower than the value that would result from the sum of the individual materials.

These preliminary results are positive and show the possibility that multilayer materials resulting from the combination of polymeric materials and aluminium, similar to those laminated materials wastes, can be used as a radon barrier. This would reduce the environmental impact of these residues and contribute to sustainable development and the circular economy.

#### **CRediT** author statement

Beatriz Ruvira: Investigation, Data curation, Visualization, Writing – Original Draft. Beatriz García-Fayos: Conceptualization, Project administration, Writing – Review & Editing. Belén Juste: Conceptualization, Data curation, Writing – Review & Editing. José Miguel Arnal: Equipment Design, Methodology, Supervision. Gumersindo Verdú:

**Table 5**Counts of the samples studied.

| Material                                        | Thickness<br>(µm) | Counts (cps)    |
|-------------------------------------------------|-------------------|-----------------|
| PE (after diffusion coefficient test)           | $10 \pm 4.96$     | $4.86\pm0.24$   |
|                                                 | $20\pm5.18$       | $9.01\pm0.30$   |
|                                                 | $30\pm5.18$       | $9.56\pm0.29$   |
| PE (before diffusion coefficient test)          | $10\pm4.96$       | 0.043 $\pm$     |
|                                                 |                   | 0.125           |
| Al (after diffusion coefficient test)           | $15\pm7.56$       | $7.62 \pm 0.27$ |
|                                                 | $30\pm5.18$       | $8.23\pm0.28$   |
|                                                 | $45\pm5.35$       | $8.22\pm0.29$   |
| Al (before diffusion coefficient test)          | $15\pm7.56$       | 0.268 $\pm$     |
|                                                 |                   | 0.111           |
| PE + Al + PE (after diffusion coefficient test) | $35 \pm 7.29$     | $9.77\pm0.31$   |
| PE + Al + PE + Al + PE (after diffusion         | $60\pm6.23$       | $9.87 \pm 0.31$ |
| coefficient test)                               |                   |                 |

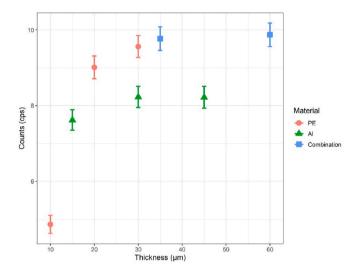



Fig. 4. Radon adsorbed by each material compared to its thickness.

Resources, Supervision, Funding acquisition.

#### Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### Acknowledgements

This work is financed by the Spanish Nuclear Safety Council under the project "Caracterización, exhalación y remediación de Radón en materiales de construcción (EXRADON)".

The authors would like to thank GDES for their collaboration during the research.

#### References

Chova, n.d.. Radon Gas Barrier [WWW Document]. URL. https://chova.com/en/products/anti-radon-barriers/ (accessed 2.16.22).

Council of the European Union, 2013. Council Directive 2013/59/Euratom. Off. J. Eur. Union. https://doi.org/10.3000/19770677.L\_2013.124.eng.

International Standardization Organization (ISO), 2017. ISO/TS 11665-13:2017 Measurement of Radioactivity in the Environment — Air: Radon 222 — Part 13:
Determination of the Diffusion Coefficient in Waterproof Materials: Membrane Two-Side Activity Concentration Test Method.

Jiránek, M., Kotrbatá, M., 2011. Radon diffusion coefficients in 360 waterproof materials of different chemical composition. Radiat. Protect. Dosim. 145, 178–183. https://doi.org/10.1093/rpd/ncr043.

- Jiránek, M., Rovenská, K., Fronka, A., 2008. Radon diffusion coefficient a material property determining the applicability of waterproof membranes as radon barriers. In: Proceedings of the American Association of Radon Scientists and Technologists. Las Vegas NV n 8
- Khan, S.M., Gomes, J., Krewski, D.R., 2019. Radon interventions around the globe: a systematic review. Heliyon 5. https://doi.org/10.1016/j.heliyon.2019.e01737, 1-10
- Radiansa, n.d.. Barreras contra el gas radón para edificios [WWW Document]. URL. htt ps://www.radiansa.com/es/radon/radon-barreras.htm (accessed 2.16.22).
- Ruvira, B., García-Fayos, B., Juste, B., Arnal, J.M., Verdú, G., 2022. Experimental estimation of the diffusion coefficient in radon barrier materials based on ISO/TS 11665-13:2017. Radiat. Phys. Chem. 193, 109993 https://doi.org/10.1016/j.radphyschem.2022.109993.
- Spanish Ministry of Public Works and Transport, 2019. Basic document DB-HS on health and safety. Section 6 protection against radon. In: Technical Building Code, pp. 138–184
- World Health Organization, 2009. Indoor radon: a public health perspective. Int. J. Environ. Stud. 67, 108. https://doi.org/10.1080/00207230903556771.