
Citation: Conejero, J.A.;

Franceschi, J.; Picó-Marco, E.

Fractional vs. Ordinary Control

Systems: What Does the Fractional

Derivative Provide? Mathematics

2022, 10, 2719. https://doi.org/

10.3390/math10152719

Academic Editor: Cristina I. Muresan

Received: 18 June 2022

Accepted: 28 July 2022

Published: 1 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Fractional vs. Ordinary Control Systems: What Does the
Fractional Derivative Provide? †

J. Alberto Conejero 1,* , Jonathan Franceschi 2 and Enric Picó-Marco 3

1 Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València,
46022 Valencia, Spain

2 Department of Mathematics “F. Casorati”, Università degli Studi di Pavia, 27100 Pavia, Italy;
jonathan.franceschi01@universitadipavia.it

3 Departamento de Ingeniería de Sistemas y Automática, Universitat Politècnica de València,
46022 Valencia, Spain; enpimar@ai2.upv.es

* Correspondence: aconejero@upv.es
† Dedicated to Prof. Carlos Lizama on the occasion of his 60th birthday.

Abstract: The concept of a fractional derivative is not at all intuitive, starting with not having a clear
geometrical interpretation. Many different definitions have appeared, to the point that the need for
order has arisen in the field. The diversity of potential applications is even more overwhelming.
When modeling a problem, one must think carefully about what the introduction of fractional
derivatives in the model can provide that was not already adequately covered by classical models
with integer derivatives. In this work, we present some examples from control theory where we insist
on the importance of the non-local character of fractional operators and their suitability for modeling
non-local phenomena either in space (action at a distance) or time (memory effects). In contrast, when
we encounter completely different nonlinear phenomena, the introduction of fractional derivatives
does not provide better results or further insight. Of course, both phenomena can coexist and interact,
as in the case of hysteresis, and then we would be dealing with fractional nonlinear models.

Keywords: fractional-order model; fractional systems; non-linear systems; complex systems;
structural properties; identification for control process

MSC: 34A08; 35R11; 93C15

1. Introduction

It is quite frequent to find research works in which, after introducing an existing model
based on ODEs, the derivatives are directly substituted by some fractional derivatives.
The argument is that the fractional model will represent the original system more closely by
choosing some particular exponents of the fractional derivatives. However, the introduction
of fractional derivatives is not trivial and should be considered carefully. Firstly, in some
cases, there is no clear explanation of the fractional nature of the model. Besides, if
an explanation of the model’s fractional nature exists, deduction from a first-principles
argument is usually missing in the exposition. Secondly, the introduction of fractional
derivatives is not in itself a better strategy, and lastly, but not least, the complexity of the
model increases since the fractional derivative concept is not really intuitive.

Fractional derivatives lack a clear geometric interpretation, as is the case in the traditional
derivative, although some proposals exist in this sense [1,2]. Besides, there is not a single
formal definition of a fractional derivative, which makes things a little more complicated
for potential users. There exists a great variety of them [3,4], although there are basically
three: Riemann-Liouville, Gronwald-Letnikov, and Caputo definitions. However, when modeling
a problem and after we have established their use and presented some advantages, it is not
immediate to know which definition will be better to choose [5,6].
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Fractional derivatives are usually considered for modeling processes of mass trans-
port, diffusion, optics, and other phenomena with memory effects; see, for instance [7–11].
With the inclusion of these derivatives, fractional-order models have demonstrated its
advantages when modeling supercapacitator capacitances [12] and controllers for temper-
ature [13], DC motors [14], or RC, LC, and RLC electric circuits [15]. These models have
also been implemented, as it is the case of the fractional-order inductor [16,17] and have
demonstrated better characteristics and greater design freedom in the case of temperature
control [18], wireless power transfer systems [19], battery charges [20], or memristors [21].

In this paper, applications are considered in the framework of control engineering,
both control design and modeling, for control purposes. Thus, open systems are considered
whose interaction with other systems and the environment is explicitly modeled using
input and output variables besides the system state. Fractional controllers have been used
to control linear and nonlinear processes with or without memory effects, i.e., non-local
phenomena. Most of the designed controllers are linear. In particular, much work has been
done to extend to the PID controller’s fractional case, which can be considered the control
engineering workhorse in the industry. Consequently, much use is made of frequency-
domain techniques. The Bode diagrams that characterize the output behavior in terms
of the input signal are particularly interesting to us. Initially thought for ordinary linear
systems, for which only the input signal frequency has to be considered, that they can be
directly extended to the linear fractional case. For the nonlinear case, as a rule, it is not
possible to use these diagrams. However, for the so-called convergent systems, a partial
extension is possible. As will be explained in Section 4, this partial extension presents a new
feature; the amplitude of the input signal must also be considered. This difference is crucial
to explaining linear fractional systems, whose Bode diagrams depend only on frequency,
as in the ordinary case and can not capture nonlinear behavior/phenomena. On the other
hand, they do capture non-local phenomena, action at a distance, and memory effects. In
contrast, the ordinary operator is a local one and consequently can not do so. Nevertheless,
fractional systems are applied, as commented above, to all sorts of applications with or
without nonlocality.

Then, a natural question arises, what are the benefits of introducing fractional controllers,
apart from having one more design alternative, with respect to the classical techniques? In this work,
we discuss this question with the analysis of two examples: a furnace with experimental
data, and finally, an academic example. We show that using fractional derivatives does not
necessarily provide a better approximation. Moreover, as shown in the academic example,
when implementing them through ordinary linear filters gives rise to systems of a very
high order.

The paper is organized as follows: In Section 2, we recall the concept of fractional
derivative and its character as a non-local operator [22], either in space (action at a distance)
or time (memory effects). Later, fractional-order models are introduced in Section 3. In
Section 4, an explanation of Bode diagrams is given in a tutorial fashion for linear ordinary,
linear fractional, and nonlinear convergent systems, stressing their similarities and differ-
ences. As an approximation of the fractional-order operators, we consider Oustaloup’s
Filter Approximation, as described in Section 5. The calculations will be performed with
FOMCON toolbox. Its use is briefly described in Section 6.

It will be important to distinguish nonlocality from nonlinearity. One of the paper
aims is to clarify the following relations, see Table 1, in the context of control modeling.

Table 1. Phenomena and model type correspondence.

Phenomena Model

linear and local linear ODEs
linear and nonlocal linear FDEs
nonlinear and local nonlinear ODEs

nonlinear and nonlocal nonlinear FDEs
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Section 7 shows an example that, when only local phenomena are present, linear frac-
tional systems make no difference with respect to ordinary ones in order to approximate a
nonlinear and local (ordinary) system. In addition, since linear fractional systems are usu-
ally implemented using an approximation by high order linear ordinary systems, problems
such as overparameterization may appear. Finally, in Section 8, we draw some conclusions.

2. Fractional Derivatives

The fractional derivative is a generalization of the usual derivative for the case where
non-integer derivative orders are considered [23], giving rise to a special type of integro-
differential operator. Historically, the first definition of a fractional derivative was the
Riemann–Liouville definition. It was developed in Abel, Riemann, and Liouville’s works in
the nineteenth century’s first half. It is based on the definition of a fractional integral, that in
turn, is a generalization of Cauchy’s formula for a repeated integral over the same variable.
If D stands for the derivative operator D f (x) = f ′(x) and Ia f (x) stands for

∫ x
a f (t)dt, then

we can get:

In
a f (x) =

∫ x

0

(x− t)n−1 f (t)
(n− 1)!

dt. (1)

that can be generalized for an arbitrary n ∈ R+ as:

In
a f (x) =

1
Γ(n)

∫ x

a
(x− t)n−1 f (t)dt (2)

where Γ(n) is the Euler’s Gamma function. Trivially, I0
a f (x) = f (x). Then, we can obtain

the fractional derivative after deriving this integral several times, as it is indicated in the
next formula:

Dn
a f = DmIm−n

a f , (3)

where Da stands for the fractional derivative operator obtained with Ia, n ∈ R+, and
m = dne, the smallest intger greater or equal than n.

The Rieman–Liouville fractional derivative has certain features that lead to difficulties
when applying it to real world problems. As a consequence, the Grünwald–Letnikov and
Caputo definitions were later developed. They are closely related to the Riemann-–Liouville
idea, but certain modifications were introduced to avoid the difficulties mentioned above.

On the one hand, the Grünwald–Letnikov (GL) derivative is especially used when
precise numerical approximations of the operator are needed since it allows an immediate
discretization of the derivative from its very definition. The n-th GL fractional derivative of
a function f defined on an interval [a, b], denoted by D̃, can be expressed as:

D̃n
a f (x) = lim

N→∞

1
hn

N

N

∑
k=0

(−1)k
(

n
k

)
f (x− khN) (4)

for x ∈ (a, b] and with hN = (x− a)/N.
Taking again m = dne, we have that for functions f ∈ Cm[a, b], GL and RL derivatives

coincide on the interval (a, b], that is, D̃n
a f (x) = Dn

a f (x) for all x ∈ (a, b], and we can
also have:

In
a f (x) = lim

N→∞
hn

N

N

∑
k=0

(−1)k
(

n
k

)
f (x− khN) (5)

On the other hand, the Caputo derivative is compatible for initial value problems [24] and
it is mostly used in that context. Let n ≥ 0 and m = dne. We start defining the operator D̂n

a by:

D̂n
a f = Im−n

a Dm f (6)
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whenever Dm f ∈ L1[a, b]. When n ∈ N, we have m = n and hence D̂n
a f = I0

aDn f = Dn f ,
recovering the standard definition in the classical case. For functions with their m first
derivatives absolutely continuous on [a, b] we have:

D̂n
a f = Dn

a [ f − Tm−1[ f ; a]] (7)

almost everywhere. Here, Tm−1[ f ; a] denotes the Taylor polynomial of degree m− 1 for the
function f , centered at a; in the case m = 0, we define Tm−1[ f ; a] = 0.

If n ≥ 0 and f is such that Dn
a [ f − Tm−1[ f ; a]] exists, where m = dne, then we define

the function Dn
∗a f by:

Dn
∗a f = Dn

a [ f − Tm−1[ f ; a]]. (8)

The operator Dn
∗a is called the Caputo differential operator of order n.

Actually, this concept has been introduced independently by many authors, including
Caputo [25,26] and Rabotnov [27]. We follow the most common convention and we will
name the derivative after Caputo only. For functions f ∈ Cµ[a, b] for some µ ∈ N, we have:

Dµ−n
a Dn

∗a f = Dµ f . (9)

for all n ∈ [0, µ].
For applications, the main characteristic of fractional derivatives is the nonlocality

either in space (action at a distance) or time (memory). The state of the process determines
the behavior of processes with memory at a given time and by the states at a finite or infinite
previous time interval. Fractional derivatives of non-integer order cannot be expressed by
a finite set of traditional derivatives of integer order, and conversely, differential equations
containing only integer-order derivatives cannot describe non-local processes. Read in
another way, without nonlocality, it makes no sense to speak of fractional derivatives, and
classical systems with integer-order derivatives can perfectly represent any system that
does not exhibit such phenomena [22].

3. Fractional-Order Models

We begin this section by briefly recalling the Laplace transform for the defined
fractional-order operators. Notice that we can take this integral transform since we saw be-
fore that the fractional operator of L1 functions returns L1 functions. The Laplace transform
reads (see [28], but also [23]):

L[D̃n
a f (t)] = snF(s), (10)

where n is a real positive number.
A fractional-order continuous-time dynamic system can be expressed by a fractional

differential equation of the following form:

anDαn y(t) + an−1Dαn−1 y(t) + · · ·+ a0Dα0 y(t) =

= bmDβm u(t) + bm−1Dβm−1 u(t) + · · ·+ b0Dβ0 u(t), (11)

where yi, uj are functions of time, (ai, bj) ∈ R2 and (αi, β j) ∈ R2
+. The system will be called

of commensurate-order if in (11) all the orders of derivation are integer multiples of a base
order α such that αk, βk = kα, α ∈ R+.

Remark 1. Notice that we are considering Dα to express any of the fractional operators outlined
previously. For applications, however, the Grünwald–Letnikov definition comes in handy, also for
its convenient relation with the Laplace transform recalled in Equation (10). We shall therefore
consider Dα to mean the Grünwald–Letnikov derivative of order α ∈ R+ in this context.



Mathematics 2022, 10, 2719 5 of 18

The system can then be expressed as:

n

∑
k=0

ak Dkα y(t) =
m

∑
k=0

bk Dkα u(t). (12)

If (12) is α = 1/q, q ∈ Z+, the system will be of rational order.
Applying the Laplace transform to (11) with zero initial conditions, the input-output

representation of a (continuous) fractional-order system can be obtained in the form of a
rational function, which is called the transfer function of the system, and is of the form:

G(s) =
Y(s)
U(s)

=
bmsβm + bm−1sβm−1 + · · · b0sβ0

ansαn + an−1sαn−1 + · · · a0sα0
. (13)

We shall call the number of fractional poles in (13) the pseudo-order of the system. In
the case of a system with commensurate order α, we can take σ = sα and consider the
pseudo-rational transfer function:

H(σ) =
b0 + b1σ + . . . + bmσm

a0 + a1σ + . . . + anσn . (14)

4. Control Systems and Bode Diagrams

Under adequate conditions, an open system can be regarded as a box processing
an input signal u transforming it into an output signal y. A linear system, ordinary or
fractional, has the following two key properties:

• If the input is a sinusoidal signal, the output is also sinusoidal of the same frequency.
The changes are in amplitude and a shift in time (phase).

• A superposition principle with respect to inputs and outputs according to which,
if for inputs u1 and u2, we have outputs y1 and y2, respectively, then for an input
u3 = au1 + bu2, the output is y3 = ay1 + by2.

We define the system gain to be the relation between output and input amplitude in
a steady-state given by their quotient. For linear systems, ordinary or fractional, the gain
is independent of the input amplitude. Therefore, it can be obtained experimentally by
introducing sinusoidal signals of unit amplitude with no loss of generality. Depending on
input frequency, a different value is obtained. This relation of amplitudes depending on
frequency is represented in a magnitude diagram using a log-log scale. See, for instance,
Figure 1. In particular, 0 dB means |y|/|u| = 1, i.e., there is neither amplification nor
attenuation at the corresponding frequency. The phase diagram represents the phase lag or
shift in time resulting between the output and input sinusoidal.
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Figure 1. Example of a Bode diagram corresponding to an ordinary linear system.
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The only significant difference between Bode diagrams corresponding to linear or-
dinary and linear fractional systems is that for the first ones, asymptotic slopes in the
magnitude diagram are integer multiples of 20 dB/dec. In contrast, for fractional systems,
we have fractional multiples.

When there are nonlinear phenomena, a new feature appears. The mark of nonlinearity
is gain dependence on amplitude. In addition, generally, given a sinusoidal input, the
output is no longer a sinusoidal, so Bode diagrams can not be obtained and there is not a
superposition principle as the one mentioned above so even if for particular cases an analog
of Bode diagrams were obtainable, they would not be of much use. Nevertheless, if such
an analog were to exist, it would be useful to know what it would resemble. Fortunately,
for a particular class of nonlinear systems, in the convergent systems [29], such an analog
exists, at least for the magnitude diagram. Convergent nonlinear (ordinary) systems, when
given periodic input, produce a periodic output of the same period again, a property often
called input entrainment. This allows for a nonlinear frequency response function that
characterizes all steady-state solutions corresponding to harmonic excitations at various
amplitudes and frequencies [29], thus extending the conventional frequency response
function defined for linear systems. However, as stressed by Pavlov et al. in [29], the gain
in the steady-state will not only depend on the frequency, as in the linear case, but also on
the excitation amplitude. Consequently, the Bode magnitude diagram is no longer given by
a curve but by a surface.

Suppose linear fractional systems were able to generate nonlinear phenomena. In
that case, their Bode diagram should show this double dependence on frequency and
amplitude and then be given by a surface or, alternatively, a family of curves. The fact
that a single curve gives their Bode diagram (for magnitude or phase) visually shows that
they are not able to represent nonlinearities. These curves (for the magnitude diagram) can
have asymptotic slopes, which are fractional multiples of 20 dB/dec showing fractional
systems capture features not represented by ordinary systems. In particular, the non-local
phenomena, such as memory effects, are mentioned above.

5. Oustaloup’s Filter Approximation

Due to practical limitations, it is often necessary to approximate a fractional-order operator
with a more manageable one of often much higher order, though. Such replacement is the
high-order rational approximation of the fractional-order operator, and a standard method to
derive it that we will adopt in the paper is due to Oustaloup [30]. Finally, the previous transfer
function is approximated by a classical transfer function of integer order [28,31].

Oustaloup’s recursive filter gives a very good approximation of fractional operators in
a specified frequency range. It is a well-established method and is often used for practical
implementation of fractional-order systems and controllers [32,33]. It is summarized next.

In order to approximate a fractional differentiator of order α or a fractional integrator
of order (−α) by a conventional transfer function, one may compute the zeros and poles of
the latter using the following equations:

sα ≈ K
N

∏
k=1

s + ω′k
s + ωk

, (15)

where:

ω′k = ωb ·ω
(2k−1−α)/N
u , (16)

ωk = ωb ·ω
(2k−1+α)/N
u , (17)

K = ωα
h , ωu =

√
ωh/ωb, (18)

with ωu being the unit gain frequency and the central frequency of a band of frequencies
geometrically distributed around it. That is, ωu =

√
ωhωb, ωh, ωb are the high and low

transitional frequencies.
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One strong advantage of Oustaloup’s filter is that the amount of necessary computa-
tions grows linearly with the order of approximation N. Indeed, only a limited history of the
process is considered. The bigger the N, the better the approximation of the differentiator
sα in its frequency band.

Besides, we shall remark that it suffices to consider α ∈ (0, 1), since we can al-
ways write:

sα = snsγ, (19)

where n = α − γ denotes the integer part of α, so that γ ∈ (0, 1), since fractional and
integer-order derivatives commute for fractional orders α ≥ 1, and sγ is obtained by the
Oustaloup approximation by using (15).

Thus, every operator in (13) may be approximated using (19) and replaced by the
obtained approximation, yielding as a final result a conventional integer-order transfer
function. This suggests that, after all, identifying in the time domain a system with a
fractional-order model would lead to substantially the same results as those provided by
a classical integer-order model of possibly (very) high order at the price of a significantly
larger amount of computations.

6. Fractional-Order Modeling and Control Toolboxes

To perform the calculations and simulations needed to complete our numerical results,
we chose to use the MATLAB toolbox FOMCON, developed by Tepljakov [34], which is
based on three other popular toolboxes. For further information, we refer the reader to the
survey paper by Li et al. [35].

• FOTF (Fractional Order Transfer Function) is a control toolbox for fractional order
systems developed by Xue et al. [31,36], which extends many MATLAB built-in
functions. The FOTF approximate fractional differential operators by means of a
discretization of the Grünwald–Letnikov definition of noninteger derivative, but other
approximation methods are possible [36].

• Ninteger (Non-integer) is a toolbox for MATLAB intended to help develop non-integer
order controllers for single-input, single-output plants and assess their performance.
It was originally developed by Valério and Sá da Costa [37]. It uses integer-order
approximations of the fractional-order transfer function, mainly based on Oustaloup’s
filter; more generally, the whole toolbox has been inspired by the original CRONE one,
from which Ninteger imported several methods.

• CRONE (Commande Robuste d’Ordre Non Entier is a robust command of non-integer
order) Toolbox, developed in the nineties by the CRONE team [32]. Many approxi-
mation techniques proposed by the CRONE team are considered as foundational in
the literature (see e.g., [28,33]). For instance, Oustaloup’s (leader of the CRONE team)
method of approximation of transfer functions was one of the cornerstones of the
original CRONE toolbox.

FOMCON toolbox for MATLAB is a fractional-order calculus-based toolbox for system
modeling and control design. Tepljiakov [33] developed it upon the core of FOTF. Conse-
quently, the main object of analysis in FOMCON is a fractional-order transfer function of
the form:

G(s) =
bmsβm + bm−1sβm−1 + · · · b0sβ0

ansαn + an−1sαn−1 + · · · a0sα0
, (20)

and its main aim is to extend conventional control schemes, like PID controllers, with
concepts of fractional calculus and provide tools to implement fractional-order systems
and controllers.

FOMCON was initially developed in order to facilitate the research of fractional-order
systems. This involved writing convenience functions, e.g., the polynomial string parser,
and building a GUI. However, a full suite of tools was also desired due to certain limitations
in existing toolboxes. Once the core of the basic function of FOMCON was established, it
was then extended with advanced features, such as fractional-order system identification
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and FOPID controller design. This makes the toolbox suitable for both beginners and more
demanding, experienced users.

7. Numerical Results

In this section, we present some numerical results on two cases of system identification,
the first one coming from experimental data and the second one simulated data. The goal
is to investigate whether fractional-orders models, being more flexible than their ordinary
integer-order counterparts, are actually more effective in approximating a given nonlinear
system and, if that is the case, whether the computational cost to generate them is worth it
in real-life scenarios.

Thus, our purpose is to identify a transfer function G as an ordinary, integer-order
transfer function and obtain an approximation of the system. Then, we will employ the
MATLAB FOMCON toolbox by Tepljakov [33] to identify the systems as fractional-order
models, using G as a starting point. In both cases, we simulate the outputs for identification
data and validation data, and we parallel them to the experimental data, estimating the
error committed as the squared norm of their difference.

Finally, we compare the performance of the fractional-order model against one of
the integer-order models, with a particular focus on validation: the concern is that the
flexibility of fractional models can cause them to over-fit the identification data, weakening
their performance against validation sets.

7.1. Example 1. Experimental Identification of a Furnace

The experimental data are collected from a model furnace used in a lab. It is formed by
a power resistor within a plastic box equipped with a fan (see Figure 2). The manipulated
variable is the percentage of energy supplied to the resistor, which depends on the applied
input voltage. The fan is kept at a constant speed for our experiments. The temperature
within the box is measured using a K-type thermocouple calibrated for a temperature
range [−50, 250] ◦C . The system is nonlinear, the gain depends on input amplitude and,
besides, it is not the same to raise the temperature or lower it. For control purposes, it is
considered to be well approximated by a first-order LTI model. These systems usually have
a pure time delay, which is almost negligible in this model.

Figure 2. Model furnace.
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The data set comes in form of a table whose columns are ordered as:

1. Time instants in seconds;
2. Input u (voltages) in percentage of maximum input voltage;
3. Output y (temperatures) in ◦C.

We chose to divide the data set with an 80:20 split between the identification and
validation sets, as can be seen in Figure 3.

Figure 3. Furnace experimental data for identification and validation.

7.1.1. Integer-Order Identification

Along this section, the parametric identification develops with fixed orders so that we
only estimate the unknown coefficients; in particular, here, in a first instance, G is chosen
to be of first-order. In a second step, one pole and one zero are added. The time step
is Ts = 12 s. The resulting first-order transfer function is:

GI1(s) =
0.003192

s + 0.004102
(21)

with a data fit of 65.29%. The second-order (with a zero) approximation is:

GI2(s) =
0.003207 s− 2.166× 10−8

s2 + 0.003965 s + 8.054× 10−8 (22)

with a data fit of 70.91%. Although it may seem a poor approximation, it is enough for
control purposes.

7.1.2. Fractional-Order Identification

The next phase is fractional-order identification with the FOMCON toolbox. The pro-
cess starts with an initial transfer function: we choose the GIi we found earlier in (21)
and (22) to be the input of the FOMCON function, which optimizes the parameters, includ-
ing now the exponents. Here, we leave fairly wide freedom of search, setting parameter
bounds as low as −102 and as high 103, and setting the order of derivation to be in the
range [10−9, 10]. Concerning the frequency range, instead, we allow searching in the range
of [10−4, 103] radians per second.

System identification is an optimization process; we thus need a (nonlinear) opti-
mization algorithm to help us perform it. The FOMCON toolbox gives two options:
Levenberg–Marquardt and the Trusted Region Reflective. The second one gives better re-
sults. We also assume that the model has static gain. The fractional-order transfer functions
obtained are:
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GF1(s) =
0.0024

s1.0474 + 0.0032
(23)

and:

GF2(s) =
−0.01752 s1.0577 + 0.0684× 10−4

s1.8809 + 0.1976 s0.96105 + 0.0018
(24)

7.1.3. Validation

Both the integer and fractional transfer functions are used to simulate data to parallel
against the identification and validation sets; the results are discussed next.

In the first-order case, the fractional order and ordinary approximations are virtually
identical. Adding one pole and one zero, the fractional approximation is better with the
identification set but the advantage disappears when confronted with validation data.
In any case, the results are quite close.

It may also be noted that the first-order integer model has two parameters and the
second-order one has four. The corresponding fractional models have three and seven,
respectively. So a fairer test would be between the first fractional model with three parame-
ters and the second-order integer model with four. In this case, the fractional model does
not outperform the integer one.

Table 2 reports the errors committed, expressed as the norm of the difference between
approximated and experimental data.

Table 2. Furnace approximation errors. Computed as ‖y− ỹ‖, where y are the experimental data,
ỹ are the approximated data and ‖ · ‖ is the Euclidean norm. The relative percentage expresses the
difference between the errors committed by the two models in a proportion of the highest.

Identification Error Validation Error

TF Order Integer Fractional Relative % Integer Fractional Relative %

1st 302.26 302.5 0.08% 244.26 244.28 0.006%
2nd 302.12 298.68 1.14% 235.46 243.51 3.3%

Figures 4–9 show the comparison between the ordinary model and the fractional one
for the first-order approximation, with respect to experimental data of both identification
and validation sets, and between each other. Figures 10–15 show the comparison between
the ordinary model and the fractional one for the second-order approximation

Figure 4. First-order linear ordinary model. Identification.
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Figure 5. First fractional-order model. Identification.

Figure 6. First-order linear ordinary model. Validation.

Figure 7. First fractional-order model. Validation.
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Figure 8. First-order models comparison with identification data.

Figure 9. First-order models comparison with validation data.

Figure 10. Second-order linear ordinary model. Identification.
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Figure 11. Second fractional-order model. Identification.

Figure 12. Second-order linear ordinary model. Validation.

Figure 13. Second fractional-order model. Validation.
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Figure 14. Second-order models comparison with identification data.

Figure 15. Second-order models comparison with validation data.

7.2. Example 2. Identification of a Simulated Fractional Model

This academic example partially replicates example 6.1 from [38]. There, a system
description is given by the transfer function.

G(s) =
−1.3333 s0.63 + 2.6667

1.3333 s3.501 + 2.5333 s2.42 + 1.7333 s1.798 + 1.6667 s1.31 + 1
. (25)

with a strong fractional character, i.e., such that its exponents are not close to integer
numbers. Then, in order to illustrate the use of the fid function for fractional identification
in the FOMCON toolbox, input-output data are obtained (see Figure 16) and a fractional
order transfer function is identified. Starting from:

G0(s) =
s + 1

s3 + s2.5 + s1.5 + s + 1
. (26)

as an initial guess, the obtained function is:

GF(s) =
−1.281 s0.656 + 2.657

1.396 s3.495 + 2.145 s2.471 + 2.736 s1.817 + 1.199 s1.176 + 1
. (27)

with a 99.98% fit. Here, an integer order transfer function with the same number of
parameters is identified instead. Afterward, Oustaloup’s and Matsuda’s approximations
for (25) are obtained, and the different Bode diagrams are compared.
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Figure 16. Simulated data with the original fractional transfer function.

7.2.1. Integer-Order Identification

The following integer order transfer function with 11 parameters, as in (25), is obtained
using the tfestim function from Matlab:

GI(s) =
15.63 s4 + 4.076 s3 + 0.1355 s2 + 0.0008051 s + 8.178× 10−7

s6 + 24.38 s5 + 8.618 s4 + 1.644 s3 + 0.05196 s2 + 0.0003044 s + 3.07× 10−7 . (28)

The quality of the approximation is very high, with a fit percentage of 99.84% with
respect to the input-output data in Figure 16, close to that of the identified fractional
model (27). This fact shows that an integer-order transfer function can approximate, within
a given frequency range, data generated by a fractional-order one with very high precision
without the need for excessively high order of derivation or computational resources.

7.2.2. Oustaloup’s and Matsuda’s Filters

Finally, the Oustaloup’s and Matsuda’s filters are obtained to approximate (25). For the
first one, the function oustapp from the FOMCON toolbox is used. We set the coefficients
to be bounded in [10−3, 103] and the order of approximation to be equal to N = 20.
Oustaloup’s approximation is quite cumbrous, too much to report it here; it suffices to
say that it has 262 terms. A significant reduction can be obtained by reducing the order
of approximation in the Oustaloup method. Nevertheless, even reduced to the minimum
N = 1, the default is N = 5, a transfer function with 18 poles and 15 zeroes is obtained.
The bode diagrams of both approximations are very close both for magnitude and phase,
as seen in Figure 17, where they are also compared with the Bode diagram for the original
fractional transfer function (25).
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Figure 17. Comparison of Bode diagrams for the Oustaloup filters.

Looking for a still more reduced approximation, Matsuda’s filter was programmed
following [31]. In this case, the order of the resulting transfer function can be easily
controlled. In a first step, a first-order approximation is obtained:

Gm(s) =
−0.1365 s + 1.377

s + 0.4063
. (29)

In Figure 18, the corresponding Bode diagram is shown only for the order 1 stable filter
obtained. Higher-order Matsuda filters approximate much better the magnitude diagram
but turn out to be unstable and consequently not valid.

Figure 18. Comparison of Bode diagrams for the integer order approximation and Matsuda’s filter.

In Figure 18, the Bode diagrams for the original transfer function (25), the identified
one (27), the integer order approximation (28) and the Matsuda filter (29), are compared.
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8. Conclusions

Fractional-order operators have been gaining popularity in Control Engineering in
recent years. They are highly promising for dealing with non-local phenomena; in addition,
fractional techniques have been used in a wide range of applications to all kinds of systems,
including nonlinear ones. However, a comparison of the Bode diagrams for linear ordinary,
linear fractional, and convergent systems leads to the question of whether any nonlinearity
can be captured simply by using fractional operators. Still, in the same way, a linear
ordinary one can approximate a nonlinear system, linear fractional systems can also be
used as an approximation.

In the experimental case examined in this work, fairly wide freedom was given to pa-
rameter search in order to give a chance to fractional operators to show their strength at their
best. However, fractional-order identification of transfer function failed to provide significant
improvements with respect to the performance of standard integer-order identification.

Randomly generated data also confirmed this trend when they were used to simulate
outputs based on a fractional transfer function. A relatively low-order integer transfer
function obtained using classic standard methods was very effective in fitting the data
for low and medium frequencies, the Oustaloup’s approximation giving a big transfer
function even setting the method approximation order to the minimum and Matsuda’s one
presenting problems of instability.

In conclusion, these results suggest fractional order methods naturally outperform
classical ones when treating phenomena, such as memory effects and non-local behavior
in general. However, when applying them to nonlinear systems, this advantage van-
ishes. For the implementation phase, the use of ordinary linear approximations, such as
Oustaloup’s and Matsuda’s, reinforces the situation. In the end, an ordinary system is used;
already standard methods could have obtained that.
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