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Abstract: This paper deals with the question of achieving a suitable extension of the notion of Suzuki-
type contraction to the framework of quasi-metric spaces, which allows us to obtain reasonable fixed
point theorems in the quasi-metric context. This question has no an easy answer; in fact, we here
present an example of a self map of Smyth complete quasi-metric space (a very strong kind of quasi-
metric completeness) that fulfills a simple and natural contraction of Suzuki-type but does not have
fixed points. Despite it, we implement an approach to obtain two fixed point results, whose validity
is supported with several examples. Finally, we present a general method to construct non-T1 quasi-
metric spaces in such a way that it is possible to systematically generate non-Banach contractions
which are of Suzuki-type. Thus, we can apply our results to deduce the existence and uniqueness of
solution for some kinds of functional equations which is exemplified with a distinguished case.
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1. Introduction

In the late 1980s and during the 1990s, several researchers conducted a line of work
consisting of establishing connections between quasi-metric spaces and domain theory with
application to the mathematical foundations of computer science, where the construction
of iterations and the obtaining of fixed points constituted essential instruments [1–6]
(at this point, it is interesting to emphasize that most of the quasi-metric spaces used to
mathematically model the corresponding computational processes are non-T1). This fruitful
approach has continued to progress during this century (cf. [7–14]).

Partly stimulated by these developments, the research about the fixed point theory on
quasi-metric spaces has received a powerful boost in the last 12 years, during which many
papers have been published in this area, so we will limit ourselves here to citing some of
the most recent ones [15–22] with the references therein.

On the other hand, Suzuki published in 2008 his renowned article [23] in which he
presented a necessary and sufficient condition for the metric completeness by utilizing an
appealing generalization of the Banach contraction principle. This new and compelling
approach was successfully continued by him in [24], and by other authors who gener-
alized and extended the type of contractions proposed by Suzuki to obtain new fixed
point theorems both in metric spaces and in b-metric spaces, partial metric spaces, G-
metric spaces, quasi-metric spaces, fuzzy metric spaces, and others (see [19,25–35]) and the
references therein).

Encouraged by the interesting facts set forth in the two previous paragraphs, we
here focus our attention in exploring basic contractions of Suzuki-type in the realm of
quasi-metric spaces. Our starting point is the following visual and direct consequence
of [23] (Theorem 2).
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Theorem 1 (Suzuki). Let F be a self map of a complete metric space (X , $), and let c ∈ (0, 1) be
a constant, such that for every x, y ∈ X , the following contraction condition holds:

$(x, F x) ≤ 2$(x, y) =⇒ $(F x, F y) ≤ c$(x, y).

Then, F has a unique fixed point ξ ∈ X . Furthermore, $(ξ, F nx0)→ 0 as n→ ∞ for all x0 ∈ X .

The above theorem suggests the following natural question (see Section 2 for notation
and concepts).
Question. Let F be a self map of a bicomplete (or at least, Smyth complete) quasi-metric
space (X , $) and let c ∈ (0, 1) be a constant, such that for every x, y ∈ X , the following
contraction condition holds:

$(x, F x) ≤ 2$(x, y) =⇒ $(F x, F y) ≤ c$(x, y). (1)

Under the above assumptions, does F admit a fixed point?
In Section 3, we will give an example showing that this question has a negative answer

in the general quasi-metric context. Nevertheless, and based on an interesting contraction
condition introduced by Fulga, Karapinar, and Petrusel in [19], we are able to obtain a
couple of fixed point theorems whose validities are supported with some enlightening
examples. Finally, we present a methodology to construct non-T1 quasi-metric spaces in
such a way that it is possible to systematically generate non-Banach contractions that are
of Suzuki-type. Thus, we can apply our fixed point results to deduce the existence and
uniqueness of solution for some kinds of functional equations that are exemplified with a
case from which we derive the existence and uniqueness of a solution for an outstanding
kind of difference equations.

2. Preliminaries

In the sequel, we will use the following notation: N and R denote the sets of positive
integers, respectively, the set of real numbers, while N0 and R+ denote the sets of non-
negative integers, respectively, the set of non-negative real numbers. For the notions and
properties of general topology employed here, we refer to the reader to [36].

The concept of quasi-metric space has its origin in the articles of Niemytzki [37]
and Wilson [38], in which these authors worked with asymmetric distances for purely
topological reasons. For instance, Wilson proved that every T1 topological space with a
countable base is quasi-metrizable. Later on, many authors contributed to the progress of
the theory of quasi-metric spaces in the field of general topology. An excellent compilation
of articles on quasi-metric spaces published up to 1982 can be found in the monograph by
Fletcher and Lindgren [39] where the authors provided a detailed and systematized study
of these structures and other related ones (for subsequent updates, see the survey article
from Künzi [40], and the book from Cobzaş [41], and the references therein).

Let X be a set. A function $ : X ×X → R+ is a quasi-metric on X , provided that it
verifies the following two conditions for every x, y, z ∈ X :

(i1) $(x, y) = $(y, x) = 0 if and only if x = y;
(i2) $(x, z) ≤ $(x, y) + $(y, z).
In that case, we say that (X , $) is a quasi-metric space.
If $ fulfills condition (i2) and the next strengthening of condition (i1): $(x, y) = 0, if

and only if x = y, we will refer to $ as a T1 quasi-metric on X .
In that case, we say that (X , $) is a T1 quasi-metric space.
Let $ be a quasi-metric on a set X . Then, we have the following notions and funda-

mental properties, denoted by (N) and (P), respectively, which will be utilized in the rest of
the paper:

(N1) The function $r : X ×X → R+, defined as $rx, y) = $(y, x), is also a quasi-
metric on X called the reverse (or the conjugate) quasi-metric of $, and the function
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$max : X ×X → R+ defined as $max(x, y) = max{$(x, y), $r(x, y)}, is a metric on X .
Notice that if $ is T1, then $r is also a T1 quasi-metric.

(P1) As in the metric case, for each x ∈ X and ρ > 0, we refer to the set B(x, ρ) :=
{y ∈ X : $(x, y) < ρ} as the $-ball of center x and radius ρ. It is well known that the
family {B(x, ρ) : x ∈ X , ρ > 0} is a base of open sets for a T0 topology T$ on X , called the
topology induced by $. If $ is a T1 quasi-metric, the topology T$ is a T1 topology on X . If T$

is a Hausdorff (or T2) topology on X , we say that (X , $) is a Hausdorff quasi-metric space.
(P2) A sequence (xn)n∈N in X is T$-convergent to a point ξ ∈ X if and only if

$(ξ, xn)→ 0 as n→ ∞.
(N2) A sequence (xn)n∈N in X is called left Cauchy in (X , $) if for each ρ > 0 there

is an nρ ∈ N, such that $(xn, xm ) < ρ whenever nρ ≤ n ≤ m; it is called right Cauchy in
(X , $) if it is left Cauchy in (X , $r), and it is called Cauchy in (X , $) if it is left and right
Cauchy in (X , $).

(P3) A sequence in X is Cauchy in (X , $) if and only if it is a Cauchy sequence in the
metric space (X , $max).

(N4) (X , $) is said to be bicomplete if the metric space (X , $max) is complete, and it
is said to be Smyth complete if every left Cauchy sequence in (X , $) is T$max -convergent.

(P4) Smyth completeness implies bicompleteness, but the converse does not hold in
general (see Example 1 below).

To the end, in this section, we remind of two basic examples of non-T1 quasi-metrics
that correspond to the asymmetric counterparts of the usual metric on R, and we also recall
a well-known full quasi-metric version of the Banach contraction principle.

Example 1. Denote by u the non-T1 quasi-metric on R given by u(x, y) = max{y− x, 0} for all
x, y ∈ R. Then, ur(x, y) = max{x− y, 0} for all x, y ∈ R. Since umax(x, y) = |x− y| for all
x, y ∈ R, we infer that (R, u) is bicomplete. However, it is not Smyth complete because (−n)n∈N
is a left Cauchy sequence in (R, u) that is not Tumax -convergent.

Example 2. It is well known that the non T1 quasi-metric space (R+, u) is Smtyh complete, where
we have also denoted by u the restriction of the quasi-metric u to R+. However (R+, ur) is not Smyth
complete because (n)n∈N is a left Cauchy sequence in (R+, ur) which is not Tumax-convergent.

Theorem 2. Let F be a self map of a bicomplete quasi-metric space (X , $), and let c ∈ (0, 1) be a
constant such that, for every x, y ∈ X , we have $(F x, F y) ≤ c$(x, y). Then, F has a unique
fixed point ξ ∈ X . Furthermore, $max(ξ, F nx0)→ 0 as n→ ∞ for all x0 ∈ X .

Let (X , $) be a quasi-metric space. As in the metric case, a self map F of X that
satisfies the contraction condition of Theorem 2 will be called a Banach contraction (on
(X , $)).

Remark 1. Note that Theorem 2 can be obtained as a consequence of the classical Banach contraction
principle because, clearly, every Banach contraction on (X , $) is a Banach contraction on the metric
space (X , $max), and the bicompleteness of (X , $) coincides, by definition, with the completeness of
(X , $max) (see (N4)).

3. Contractions of Suzuki-Type and Fixed Point Results

We begin this section by presenting an example of a self map F of a Smyth complete
quasi-metric space that satisfies the contraction condition (1), but it is free of fixed points.
Actually, our self map verifies the following contraction condition apparently stronger
than (1): There is a constant c ∈ (0, 1) such that, for every x, y ∈ X ,

min{$(x, F x), $(y, F y)} ≤ 2$(x, y) =⇒ $(F x, F y) ≤ c$(x, y). (2)

Example 3. Let X = N∪ {∞} and let $ be the quasi-metric on X given by
$(x, x) = 0 for all x ∈ X ,
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$(n, ∞) = 0 for all n ∈ N,
$(∞, n) = 1/n for all n ∈ N,

and
$(n, m) = 1/m for all n, m ∈ N with n 6= m.

Since every non-eventually left Cauchy sequence T$max -converges to ∞, we deduce that (X , $)
is Smyth complete.

Now let F be the self map of X defined as F ∞ = 1, and F n = 2n for all n ∈ N. Obviously
F has no fixed points. We prove that, nevertheless, it fulfills the condition (2) for c = 1/2.

• If x = n and y = m, with n 6= m, we obtain

$(F x, F y) = $(2n, 2m) =
1

2m
=

1
2

$(n, m) =
1
2

$(x, y).

• If x = ∞ and y = n, n ∈ N, we obtain

$(F x, F y) = $(1, 2n) =
1

2n
=

1
2

$(∞, n) =
1
2

$(x, y).

• If x = n, n ∈ N, and y = ∞, we obtain

min{$(x, F x), $(y, F y)} = min{ 1
2n

, 1} > 0 = 2$(x, y).

We have shown that F fulfills the contraction condition (2), and hence the contraction
condition (1).

Remark 2. It is interesting to emphasize that both the quasi-metric $ of the preceding example and
other of their variants (see [3]) can be used in modeling increasing sequences (xn)n∈N of information
where, roughly speaking, the element xn+1 contains more information than the element xn and
the supremum element ∞ (also denoted by >) is an “ideal” element that captures the information
of all of the elements of the sequence. Thus, in Example 3, one has that (($(n, n + 1))n∈N is a
strictly decreasing sequence, which can be interpreted to mean that the element represented by
n + 1 contains more information than the one represented by n. Furthermore, $(n, n + 1)→ 0 and
$max(n, ∞)→ 0 as n→ ∞, as we could expect in a reasonable model.

Definition 1. Let (X , $) be a quasi-metric space. A self map F of X that satisfies the contraction
condition (1), will be called a basic contraction of Suzuki-type (on (X , $)), while a self map F of
X that satisfies the contraction condition (2), will be called a 2-basic contraction of Suzuki-type (on
(X , $)).

Evidently, every 2-basic contraction of Suzuki-type on a quasi-metric space (X , $) is a
basic contraction of Suzuki-type. Moreover, it is clear that if (X , $) is a metric space, both
concepts coincide via the symmetry of $. The following is an example of a basic contraction
of Suzuki-type on a Hausdorff quasi-metric space that is not a 2-basic contraction.

Example 4. Let X = N∪ {∞} and $ : X ×X → R+ defined as:
$(x, x) = 0 for all x ∈ X ,
$(n, m) = (2|n−m| − 1)/2max{n,m}−1 if n, m ∈ N with n 6= m,
$(n, ∞) = (2n − 1)/2n−1 for all n ∈ N,
$(∞, 1) = 2/3,

and
$(1, n) = 1/6 for all n ∈ N\{1}.
We want to show that $ is a T1 quasi-metric on X . Since $(x, y) > 0 whenever x 6= y, we

focus our attention in checking that the triangle inequality (i2) is fulfilled for all x, y, z ∈ X .
If x = ∞, y = 1 and z = m > 1, we obtain

$(x, y) =
2
3
=

1
6
+

1
2
≤ 1

6
+

2m−1 − 1
2m−1 = $(x, z) + $(z, y).
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If x = ∞, y = n > 1 and z = m, z 6= y, we obtain

$(x, y) =
1
6
≤ $(x, z).

The rest of cases are obtained as a direct consequence of the following easy inequality:

2|n−m| − 1
2max{n,m}−1

≤ 2n − 1
2n−1 ,

for all n, m ∈ N.
Therefore, (X , $) is a T1 quasi-metric space. Actually, it is Hausdorff because every point of

X is isolated, i.e., {x} is T$-open for all x ∈ X , and thus, T$ agrees with the discrete topology on
X , so (X ,T$) is a metrizable topological space.

Now define a self map F of X as F n = n + 1 for all n ∈ N and F ∞ = 1.
We are going to show that F is a basic contraction of Suzuki-type on (X , $).
Indeed, for every n, m ∈ N, we obtain

$(F n, F m) =
2|n−m| − 1

2max{n+1,m+1}−1
=

1
2

2|n−m| − 1
2max{n,m}−1

=
1
2

$(n, m).

Furthermore, for every n ∈ N, we obtain

$(F n, F ∞) = $(n + 1, 1) =
2n − 1

2n =
1
2

$(n, ∞).

We also have
$(F ∞, F1) = $(1, 2) =

1
2
=

3
4

$(∞, 1),

and, for n > 1,

$(∞, F ∞) = $(∞, 1) =
2
3
>

1
3
= 2$(∞, n).

We conclude that F is a basic contraction of Suzuki-type with constant c = 3/4.
Finally, note that for n ≥ 2, we obtain

min{$(∞, F ∞), $(n, F n)} = $(n, F n) =
1
2n <

1
3
= 2$(∞, n),

and, nevertheless,

$(F ∞, F n) =
2n − 1

2n >
1
6
= $(∞, n),

which implies that F is not a 2-basic contraction of Suzuki-type on (X , $).

Remark 3. In Remark 1, we have underlined that Theorem 2 can be obtained as a consequence of
the classical Banach contraction principle. In order to guarantee that this situation does not occur
in our context is crucial to obtain an example of a basic contraction of Suzuki-type on a bicomplete
quasi-metric space (X , $), which is not a basic contraction of Suzuki-type on the complete metric
space (X , $max). Fortunately, the 2-basic contraction of Example 3 fulfills this requirement via
Theorem 1 (see also Example 7 below).

In what follows, we will present positive results that are partially inspired in the recent
article [19] by Fulga, Karapinar, and Petrusel, where the authors obtained, among other
results, two terrific and very general fixed point theorems for bicomplete T1 quasi-metric
spaces, by combining conditions of Suzuki-type, contraction conditions of α− ψ-type in
the style of Samet, Vetro, and Vetro [42] and interpolation conditions. For our goals here, it
will be enough to consider the following consequence of [19] (Theorem 2).
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Theorem 3. Let F be a self map of a bicomplete T1 quasi-metric space (X , $), and let c ∈ (0, 1)
be a constant such that, for every x, y ∈ X , the following contraction condition holds:

min{$(x, F x), $(y, F y), $(F y, y)} ≤ 2$(x, y) =⇒ $(F x, F y) ≤ c$(x, y). (3)

Then, F has a unique fixed point.

Definition 2. Let (X , $) be a quasi-metric space. A self map F of X that satisfies the contraction
condition (3), will be called an FKP-contraction (on (X , $)).

Evidently, every FKP-contraction on a quasi-metric space (X , $) is a 2-basic contrac-
tion of Suzuki-type. It is clear that both concepts coincide when (X , $) is a metric space.
However, it follows from Theorem 5 below that the 2-basic contraction of Suzuki-type of
Example 3 is not an FKP-contraction.

The proofs of the following auxiliary lemmas use standard methods. Notwithstanding,
in order to help the readers and for the sake of completeness, we give outlined demos
of them.

Lemma 1. Let F be a self map of a quasi-metric space (X , $). Then, for every x, y ∈ X ,

$(x, F x) ≤ 2 max{$(x, y), $(y, F x)}.

Proof. Assume the contrary. Then, there exist x, y ∈ X , such that
$(x, F x) > 2$(x, y) and $(x, F x) > 2$(y, F x).

Therefore,

$(x, F x) ≤ $(x, y) + $(y, F x) <
1
2

$(x, F x) +
1
2

$(x, F x),

a contradiction.

Lemma 2. Let F be a basic contraction of Suzuki-type on a quasi-metric space (X , $). Then, for
each x0∈ X , the sequence (F nx0)n∈N0 is left Cauchy in (X , $), and ($(F nx0, F n+1x0))n∈N0
is a non-increasing sequence in R+.

Proof. Let c ∈ (0, 1), for which the contraction condition (1) holds. Fix x0 ∈ X . Since
$(x0, F x0) ≤ 2$(x0, F x0), we deduce from (1) that $(F x0, F 2x0) ≤ c$(x0, F x0). Follow-
ing this process, we obtain

$(F nx0, F n+1x0) ≤ c$(F n−1x0, F nx0),

for all n ∈ N, so $(F nx0, F n+1x0) ≤ $(F n−1x0, F nx0),and $(F nx0, F n+1x0) ≤ cn$(x0, F x0),
for all n ∈ N. By standard arguments, we deduce that (F nx0)n∈N0 is a left Cauchy sequence
in (X , $) and ($(F nx0, F n+1x0))n∈N0 is a non-increasing sequence in R+.

Lemma 3. Let F be a self map of a quasi-metric space (X , $), and let c ∈ (0, 1) be a constant,
such that, for every x, y ∈ X , the following contraction condition holds:

min{$(x, F x), $(F y, y)} ≤ 2$(x, y) =⇒ $(F x, F y) ≤ c$(x, y). (4)

Then, for each x0 ∈ X , the sequence (F nx0)n∈N0 is Cauchy in (X , $).

Proof. Fix x0 ∈ X . It is clear that F is a basic contraction of Suzuki-type, so, by Lemma 2,
the sequence (F nx0)n∈N0 is left Cauchy in (X , $).

We are going to show that it is also a right Cauchy sequence in (X , $). We have

min{$(F x0, F 2x0), $(F x0, x0)} ≤ $(F x0, x0).
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Hence, $(F 2x0, F x0) ≤ c$(F x0, x0), by the contraction condition (4). By repeating the
process, we infer that

$(F n+1x0, F nx0) ≤ cn$(F x0, x0)

for all n ∈ N. Consequently, (F nx0)n∈N0 is a right Cauchy sequence in (X , $). Hence, it is
a Cauchy sequence in (X , $) (see (N2)).

Theorem 4. Let F be a 2-basic contraction of Suzuki-type on a Smyth complete quasi-metric
space (X , $). Then, for each x0 ∈ X there exists ξ ∈ X , such that $(F ξ, ξ) = 0 and
$max(ξ, F nx0)→ 0 as n→ ∞.

Proof. Fix x0 ∈ X . By Lemma 2, (xn)n∈N0 is a left Cauchy sequence in (X , $), where
xn := F nx0 for all n ∈ N0. Since (X , $) is Smyth complete, there exists ξ ∈ X , such that
$max(ξ, xn)→ 0 as n→ ∞.

By Lemma 1, for each n ∈ N, we have

$(xn, xn+1) ≤ 2 max{$(xn, ξ), $(ξ, xn+1)},

so
min{$(xn, xn+1), $(ξ, F ξ)} ≤ 2$(ξ, xn+1),

or
min{$(xn, xn+1), $(ξ, F ξ)} ≤ 2$(xn, ξ).

Consequently, we can find a subsequence (xn(k))k∈N of (xn)n∈N, such that

min{$(xn(k), xn(k)+1), $(ξ, F ξ)} ≤ 2$(ξ, xn(k)+1), (5)

or
min{$(xn(k), xn(k)+1), $(ξ, F ξ)} ≤ 2$(xn(k), ξ), (6)

for all k ∈ N.
If (5) is met, since, by Lemma 2, $(xn+1, xn+2) ≤ $(xn, xn+1), we obtain

min{$(xn(k)+1, xn(k)+2), $(ξ, F ξ)} ≤ 2$(ξ, xn(k)+1),

for all k ∈ N. Hence, $(F ξ, F xn(k)+1) ≤ c$(ξ, xn(k)+1) for all k ∈ N, where c is the
contraction constant. Therefore,

$(F ξ, ξ) ≤ $(F ξ, xn(k)+2) + $(xn(k)+2, ξ) ≤ c$(ξ, xn(k)+1) + $(xn(k)+2, ξ),

for all k ∈ N.
Since $max(ξ, xn)→ 0 as n→ ∞, we deduce that $(F ξ, ξ) = 0, with $max(ξ, F nx0)→

0 as n→ ∞.
If (6) is met, from the contraction condition, we infer that $(xn(k)+1, F ξ) ≤ c$(xn(k), ξ)

for all k ∈ N.
Since $(xn(k), ξ) → 0 as k → ∞, we obtain $(xn(k)+1, F ξ) → 0 as k → ∞. We also

have that $(ξ, xn(k)) → 0 and $(xn(k), xn(k)+1) → 0 as k → ∞, so by applying the triangle
inequality, we obtain $(ξ, F ξ) = 0. Hence, min{$(ξ, F ξ), $(xn(k), xn(k)+1)} ≤ 2$(ξ, xn(k))
for all k ∈ N, so $(F ξ, xn(k)+1) ≤ c$(ξ, xn(k)) for all k ∈ N. From the triangle inequality, it
follows that $(F ξ, ξ) = 0, which concludes the proof.

Corollary 1. Let F be a 2-basic contraction of Suzuki-type on a Smyth complete T1 quasi-metric
space (X , $). Then, F has a unique fixed point ξ ∈ X . Furthermore, $max(ξ, F nx0) → 0 as
n→ ∞ for all x0 ∈ X.

Proof. Fix x ∈ X . By Theorem 5, there exists ξ ∈ X , such that $(F ξ, ξ) = 0 and
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$max(ξ, F nx) → 0 as n → ∞. Since (X , $) is T1, we have that F ξ = ξ. Suppose that
ζ ∈ X is another fixed point of F . Then

min{$(ξ, F ξ), $(ζ, F ζ)} = 0.

By the contraction condition, $(F ξ, F ζ) ≤ c$(ξ, ζ), so $(ξ, ζ) = 0, i.e., ξ = ζ.
Finally, given any x0 ∈ X , by Theorem 4, there exists ξx0 ∈ X such that F ξx0 = ξx0

and $max(ξx0 , F nx0) → 0 as n → ∞. Since ξ is the unique fixed point of F , we conclude
that $max(ξ, F nx0)→ 0 as n→ ∞.

The next result generalizes Theorem 3 to non-T1 quasi-metric spaces. In this way, we
can recover the main part of the quasi-metric spaces that appear in the modeling of several
processes in the theory of computation, which, as we pointed out in Section 1 are non-T1.

Theorem 5. Let F be a FKP-contraction on a bicomplete quasi-metric space (X , $). Then, F has
a unique fixed point ξ ∈ X . Furthermore, $max(ξ, F nx0)→ 0 as n→ ∞, for all x0 ∈ X .

Proof. Fix x0 ∈ X . Since F is an FKP-contraction, it satisfies the contraction condition (4).
So, by Lemma 3, (xn)n∈N0 is a Cauchy sequence in (X , $), where xn := F nx0 for all n ∈ N0.
Since (X , $) is bicomplete, there exists ξ ∈ X , such that $max(ξ, xn)→ 0 as n→ ∞.

We shall prove that ξ is a fixed point of F .
As in the proof of Theorem 4, it follows from Lemma 1 that

min{$(ξ, F ξ), $(xn, xn+1), $(xn+1, xn)} ≤ 2$(ξ, xn+1),

or
min{$(xn, xn+1), $(ξ, F ξ), $(F ξ, ξ)} ≤ 2$(xn, ξ),

for all n ∈ N.
Consequently, we can find a subsequence (xn(k))k∈N of (xn)n∈N, such that

min{$(ξ, F ξ), $(xn(k), xn(k)+1), $(xn(k)+1, xn(k))} ≤ 2$(ξ, xn(k)+1), (7)

or
min{$(xn(k), xn(k)+1), $(ξ, F ξ), $(F ξ, ξ)} ≤ 2$(xn(k), ξ), (8)

for all k ∈ N.
If (7) is met, since F is an FKP-contraction, we deduce that $(F ξ, F xn(k)+1) ≤

c$(ξ, xn(k)+1) for all k ∈ N, where c is the contraction constant.
Exactly as in the proof of Theorem 4, we obtain $(F ξ, ξ) = 0 and $max(ξ, F nx0) →

0 as n → ∞. Since F is an FKP-contraction, the equality $(F ξ, ξ) = 0 implies that
$(F xn(k)+1, F ξ) ≤ c$(xn(k)+1, ξ) for all k ∈ N. Therefore, $(F xn(k)+1, F ξ)→ 0 as n→ ∞,
so $(ξ, F ξ) = 0. We conclude that ξ is a fixed point of F .

If (8) is met, reasoning as in the preceding case, we obtain $(ξ, F ξ) = 0 with
$max(ξ, F nx0)→ 0 as n→ ∞. Since F is an FKP-contraction, from the equality $(ξ, F ξ) =
0 we deduce, as in the preceding case, that $(F ξ, ξ) = 0. Hence, ξ is a fixed point of F .

Finally, suppose that ζ is another fixed point of F . Then,

min{$(ξ, F ξ), $(ζ, F ζ), $(F ζ, ζ)} = 0.

Since F is an FKP-contraction, we deduce that $(ξ, ζ) = 0. Similarly, we show that
$(ζ, ξ) = 0. Hence, ζ = ξ, and thus, ξ is the unique fixed point of F .

The following is an example where we can apply Theorem 4 but not Theorem 5.

Example 5. Let (R+, u) be the Smyth complete non-T1 quasi-metric space of Example 2. Let F
be the self map of R+ defined as F0 = 3/2 and F x = 2 for all x > 0. We first show that F
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is not a Banach contraction on (R+, u). Indeed, choose an arbitrary c ∈ (0, 1). Let x = 0 and
y ∈ (0, 1/2c). Then, u(F x, F y) = u(3/2, 2) = 1/2 > cy = cu(0, y) = cu(x, y).

Next we show that, however, F is a 2-basic contraction on (R+, u) with constant c = 3/4.
Indeed, since for every x > 0, u(F x, F0) = u(2, 3/2) = 0, we only need to analyze the case
where x = 0 and y > 0. To reach this, suppose that min{u(x, F x), u(y, F y)} ≤ 2u(x, y),
i.e., min{3/2, u(y, 2)} ≤ 2y. If min{3/2, u(y, 2)} = 3/2, we obtain 3/4 ≤ y and 3/2 ≤
max{2 − y, 0}. Thus, we come to a contradiction. Hence, min{3/2, u(y, 2)} = u(y, 2), so
u(y, 2) ≤ 2y and u(y, 2) ≤ 3/2, which implies y ≥ 2/3. Therefore, u(F x, F y) = u(3/2, 2) =
1/2 ≤ 3y/4 = 3u(x, y)/4.

We conclude that F is a 2-basic contraction on (R+, u). By Theorem 4, there is ξ ∈ R+ such
that $(F ξ, ξ) = 0 (note that in this example that condition is satisfied by all points of R+).

Finally, we check that F is not an FKP-contraction on (R+, u). To this end, it suffices
to note that for an arbitrary c ∈ (0, 1) that we obtain, taking x = 0 and y ∈ (0, 1/2], that
min{u(x, F x), u(y, F y), u(F y, y)} = 0, but u(F x, F y) = 1/2 > cy = cu(x, y). Therefore,
we cannot apply Theorem 5.

Next we give an example where we can apply Theorem 5, but not Theorem 3.

Example 6. Let X = {0, 1, 2, 3}, and let $ be the non-T1 quasi-metric on X given by $(x, x) = 0
for all x ∈ X , $(0, 1) = 0, $(1, 0) = 2, $(x, y) = 1 if x, y ∈ {2, 3} with x 6= y, $(x, y) = 2, if
x ∈ {0, 1} and y ∈ {2, 3}, and $(x, y) = 2, if x ∈ {2, 3} and y ∈ {0, 1}.

(X , $) is Smyth complete, and hence, bicomplete because the left Cauchy sequences in (X , $)
are eventually constant.

Now, define a self map F of X by F0 = 2, and F1 = F2 = F3 = 3.
We first note that F is not a Banach contraction on (X , $) because $(F0, F1) = $(2, 3) = 1

but $(0, 1) = 0.
We assert that F is an FKP-contraction on (X , $) with constant c = 1/2. By the construction

of F , we only need to focus our attention in the next cases:
Case (a) x = 0, y = 1. Then, $(F x, F y) = $(2, 3) = 1 > $(x, y), but in this case, we have:

min{$(x, F x), $(y, F y), $(F y, y)} = 2 > 2$(0, 1).
Case (b) x = 1, y = 0. Then, $(F x, F y) = $(3, 2) = 1 = $(x, y)/2.
Case (c) x = 0 and y ∈ {2, 3}. Then, $(F x, F y) = 1 = $(x, y)/2.
Case (d) x ∈ {2, 3} and y = 0 Then, $(F x, F y) = 1 = $(x, y)/2.
We have checked that F is an FKP-contraction on (X , $), so we can apply Theorem 5. In fact

F has a unique fixed point, namely ξ = 3. Finally, we cannot apply Theorem 3 because (X , $) is
not a T1 quasi-metric space.

Related to Remark 3, we give an example where we can apply Theorem 3 (and also
Corollary 1) to a Smyth complete Hausdorff qusi-metric space (X , $) but not Theorem 1 to
the complete metric space (X , $max).

Example 7. Let X = {0, 1, 2, 3, 4} and let $ : X ×X → R+ defined as $(x, x) = 0 for all
x ∈ X , $(0, 1) = 1/2, $(1, 0) = 2, $(2, 3) = 2, $(x, y) = 2 if x ∈ {0, 1} and y ∈ {2, 3, 4},
$(x, y) = 2 if x ∈ {2, 3, 4} and y ∈ {0, 1}, and $(x, y) = 1 otherwise.

It is easily checked that ρ is a quasi-metric on X , and that T$ is a Hausdorff topology on X
(in fact, T$ is a compact topology and T$ = T$r = T$max). Clearly (X , $) is Smyth complete.

Now define a self map F of X as F0 = 2, F1 = 3, and F2 = F3 = F4 = 4.
We first note that F is not a basic contraction of Suzuki-type on the complete metric space

(X , $max), so we cannot apply Theorem 1. Indeed, we have $max(0, F0) = 2 < 2$max(0, 1), but
$max(F0, F1) = $max(2, 3) = 2 = $max(0, 1).

We shall prove that, however, F is an FKP-contraction on (X , $), with constant c = 1/2.

• If x = 0, y = 1, we obtain

min{$(x, F x), $(y, F y), $(F y, y)} = 2 > 2$(0, 1).
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• If x, y ∈ {2, 3, 4} we obtain $(F x, F y) = 0.
• In the rest of the cases, it is routine to check that $(F x, F y) = $(x, y)/2.

Therefore, we can apply Theorem 5 (note that we can also apply Corollary 1). In fact, F has a
unique fixed point, namely ξ = 4.

As we pointed out in Section 1, the last part of the paper is devoted to developing
a general method that allows us to construct non-T1 quasi-metric spaces on which it
is possible to systematically generate contractions of Suzuki-type that are not Banach
contractions. We illustrate this approach by applying our fixed point results to show the
existence and uniqueness of solution for some kinds of functional equations from which
we derive the existence and uniqueness of a solution for a very well-known difference
equation. To this purpose, the following result will be crucial.

Proposition 1. Let (X , σ) be a quasi-metric space, such that |X | ≥ 2 and σ ≤ 1, let Y be a
strict non-empty subset of X , and ⊥ be an element, such that ⊥ /∈ X . Put X ′ = X ∪ {⊥}
and Y ′ = Y ∪ {⊥}. Define a function $ : X ′ ×X ′ → [0, 1] as:

$(x, x) = 0 for all x ∈ X ,
$(⊥, y) = 0 for all y ∈ Y ,
$(x, y) = σ(x, y) for all x, y ∈ X \Y ′,

and
$(x, y) = 2, otherwise.

Then, we have:
(A) (X ′, $) is a non-T1 quasi-metric space. Moreover, (X ′, $) is bicomplete if (X \Y , σ) is.
(B) If F is a self map of X ′, such that F y ∈ X \Y ′ for all y ∈ Y ′, and the set {y ∈ Y :
σ(F⊥, F y) > 0} is non-empty, then F is not a Banach contraction on (X ′, $).

Proof. (A) We omit the easy proof that (X ′, $) is a non-T1 quasi-metric space. Now,
let (xn)n ∈ N be a Cauchy sequence in (X ′, $). Via the definition of $, there is n0 ∈ N such
that xn ∈ X \Y ′ for all n ≥ n0, and $(xn, xm) = σ(xn, xm) for all n, m ≥ n0. Hence, (xn)n∈N
is a Cauchy sequence in (X \Y , σ). Let p ∈ X \Y , such that σmax(p, xn) → 0 as n → ∞.
Since $ = σ on X \Y , we infer that $max = σmax on X \Y . So $max(p, xn)→ 0 as n→ ∞.
We conclude that (X ′, $) is bicomplete.

(B) Take any y ∈ Y , such that σ(F⊥, F y) > 0. Since F y, F⊥ ∈ X \Y ′, we obtain

$(F⊥, F y) = σ(F⊥, F y) > 0 = $(⊥, y).

Therefore, F is not a Banach contraction on (X , $).

In the sequel, we shall denote by f0 the zero function on R, i.e., f0(x) = 0 for all x ∈ R.
Adopting the notation of Proposition 1, let (X , σ) be the quasi-metric space, such that
X = [0, 1]R\{ f0} and σ is the supremum quasi-metric on X , i.e.,

σ( f , g) = sup
x∈R

max{ f (x)− g(x), 0},

for all f , g ∈ [0, 1]R\{ f0}. Of course, σ ≤ 1 on X.
Let Y := { f ∈ X : supx∈R f (x) < 1}. Since,

σmax( f , g) = sup
x∈R
| f (x)− g(x)|,

for all f , g ∈ X , we infer that (X \Y , σmax) is a complete metric space, i.e., (X \Y , σ) is a
bicomplete quasi-metric space.

Put ⊥= f0, X ′ = X ∪ { f0}, i.e., X ′ = [0, 1]R, and let Y ′ = Y ∪ { f0}.
Denote by $ the quasi-metric on X ′ constructed in Proposition 1. Thus, (X ′, $) is

bicomplete by Proposition 1(A).
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Now, let F : R→ [0, 1] be the functional equation with initial value F(0) = a ∈ [0, 1],
and such that

F(x) =
αF(x− 1)

β + γF(x− 1)
,

for all x ∈ R, with 0 < α < β and γ > 0.
Define a self map F of X ′ as follows:
F f0(0) = a, and F f0(x) = 1 for all x ∈ R\{0}.
If f ∈ Y :
F f (0) = a, F f (1) = 1, and F f (x) = 0 otherwise.
If f ∈ X \Y :
F f (0) = a, and

F f (x) =
α f (x− 1)

β + γ f (x− 1)
,

for all x ∈ R\{0}.
Observe that

X \Y ′ = { f ∈ [0, 1]R : sup
x∈R

f (x) = 1},

and thus, F f ∈ X \Y ′ for all f ∈ Y ′. Moreover, σ(F f0, F f ) = 1 for all f ∈ Y . Hence, F
is not a Banach contraction on (X ′, $) by Proposition 1(B).

We are going to check that F is an FKP-contraction on (X ′, $). To this end, it is
appropriate to note that $( f , g) ≤ 1 for all f , g ∈ X \Y ′.
• For f0 and f ∈ Y , we have

min{$( f0, F f0), $( f , F f ), $(F f , f )} = 2 > 0 = 2$( f0, f ),

and
$(F f , F f0) ≤ 1 =

1
2

$( f , f0).

• For f , g ∈ Y , we have $(F f , F g) = 0.
• For f ∈ Y ′ and g ∈ X \Y ′, or f ∈ X \Y ′ and g ∈ Y ′, we have

$(F f , F g) ≤ 1 =
1
2

$( f , g).

• For f , g ∈ X \Y ′, we have

$(F f , F g) = sup
x∈R

max{ αβ( f (x− 1)− g(x− 1))
(β + γ f (x− 1))(β + γg(x− 1))

, 0}

≤ sup
x∈R

max{α( f (x− 1)− g(x− 1))
β

, 0} = α

β
$( f , g).

Therefore, F is an FKP-contraction with contraction constant c = max{1/2, α/β}.
We have proven that all conditions of Theorem 5 are fulfilled, so that F has a unique

fixed point h ∈ X ′, which is obviously the unique solution of the functional equation F.

Remark 4. This approach has the advantage that we only need pay attention to calculating
$(F f , F g) when f , g ∈ X \Y . Moreover, we also deduce that h ∈ X \Y ′, i.e., supx∈R h(x) =
1, because F f 6= f for all f ∈ Y ′.

As a consequence, we obtain that the difference equation, with initial value x0 = a, and

xn =
αxn−1

β + γxn−1
,

for all n ∈ N, with 0 < α < β and γ > 0, has a unique solution which consists of the restriction
of h to N0. This type of difference equations is well-known, and belongs to the family of difference
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equations for population growth (also called, sometimes, logistic difference equations); see e.g., [43]
(p. 515).

4. Conclusions

We have presented an example of a basic contraction of Suzuki-type on a Smyth
complete quasi-metric space, which has no fixed points. This shows the great difficulty
in obtaining a full natural quasi-metric generalization of Suzuki’s fixed point theorem.
However, and inspired in a type of contraction stated by Fulga, Karapinar, and Petrusel [19],
we are able to obtain fixed point theorems for contractions of Suzuki-type, both for Smyth
complete and bicomplete quasi-metric spaces. Our results were accompanied with some
key examples. In particular, Example 7 shows that such results provide real generalizations
of the corresponding ones for metric spaces. Finally, we have implemented a method to
construct basic contractions of Suzuki-type that are not Banach contractions, illustrating
this approach with an application to a featured class of difference equations.
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20. Mecheraoui, R.; Mitrović, Z.D.; Parvaneh, V.; Bagheri, Z. On the Meir–Keeler theorem in quasi-metric spaces. J. Fixed Point Theory
Appl. 2021, 23, 37.

21. Ahmed, E.S.; Fulga, A. The Górnicki-Proinov type contraction on quasi-metric spaces. AIMS Math. 2021, 6, 8815–8834. [CrossRef]
22. Romaguera, S.; Tirado, P. Remarks on the quasi-metric extension of the Meir-Keeler fixed point theorem with an application to

D3-systems. Dyn. Syst. Appl. 2022, 31, 195–205. [CrossRef]
23. Suzuki, T. A generalized Banach contraction principle that characterizes metric completeness. Proc. Amer. Math. Soc. 2008, 136,

1861–1869. [CrossRef]
24. Suzuki, T. A new type of fixed point theorem in metric spaces. Nonlinear Anal. 2009, 71, 5313–5317. [CrossRef]
25. Pant, R. Fixed point theorems for nonlinear contractions with applications to iterated function systems. Appl. Gen. Topol. 2018, 19,

163–172. [CrossRef]
26. Fulga, A. Fixed point theorems in rational form via Suzuki approaches. Results Nonlinear Anal. 2018, 1, 19–29.
27. Alqahtani, O.; Bindu, V.M.H.; Karapınar, E. On Pata–Suzuki-type contractions. Mathematics 2019, 7, 720. [CrossRef]
28. Pant, R.; Shukla, R. New fixed point results for Proinov–Suzuki type contractions in metric spaces. Rend. Circ. Mat. Palermo Series

2 2022, 71, 633–645. [CrossRef]
29. A. Latif, A.; Parvaneh, V.; Salimi, P.; Al-Mazrooei, A.E. Various Suzuki type theorems in b-metric spaces. J. Nonlinear Sci. Appl.

2015, 8, 363–377. [CrossRef]
30. Alolaiyan, H.; Ali, B.; Abbas, M. Characterization of a b-metric space completeness via the existence of a fixed point of Ciric-Suzuki

type quasi-contractive multivalued operators and applications. An. St. Univ. Ovidius Constanta 2019, 27, 5–33. [CrossRef]
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