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Abstract: Let A be an algebra of subsets of a set Ω and ba(A) the Banach space of bounded finitely
additive scalar-valued measures on A endowed with the variation norm. A subset B of A is a
Nikodým set for ba(A) if each countable B-pointwise bounded subset M of ba(A) is norm bounded.
A subset B of A is a Grothendieck set for ba(A) if for each bounded sequence {µn}∞

n=1 in ba(A) the
B-pointwise convergence on ba(A) implies its ba(A)∗-pointwise convergence on ba(A). A subset
B of an algebra A is a strong-Nikodým (Grothendieck) set for ba(A) if in each increasing covering
{Bn : n ∈ N} of B there exists Bm which is a Nikodým (Grothendieck) set for ba(A). The answer of
the following open question for an algebra A of subsets of a set Ω, proposed by Valdivia in 2013, has
not yet been found: Is it true that if A is a Nikodým set for ba(A) then A is a strong Nikodým set for
ba(A)? In this paper we surveyed some results related to this Valdivia’s open question, as well as the
corresponding problem for strong Grothendieck sets. The new Propositions 1 and 3 provide more
simplified proofs, particularly in their application to Theorems 1 and 2, which were the main results
surveyed. Moreover, the proofs of almost all other propositions are wholly or partially original.

Keywords: Grothendieck set; Nikodým set; strong Grothendieck set; strong Nikodým set; algebra of
subsets; bounded scalar measure; σ-algebra; variation norm

MSC: 28A33; 46B25

1. Introduction

Let B be a subset of an algebra A of subsets of a set Ω and let L(B) be the real or
complex normed space generated by the characteristics functions eB with B ∈ B, endowed
with the supremum norm, denoted by ‖·‖∞. In what follows, dual means topological
dual and the dual of a normed space E endowed with the dual norm is denoted as E∗.
In particular, the dual L(A)∗ is isometric to the real or complex Banach space ba(A)
formed by the bounded finitely additive scalar measures defined on A provided with
the variation norm, denoted by |·|. The variation norm is equivalent to the supremum
norm, i.e., sup{|µ(A)| : A ∈ A}, µ ∈ ba(A). This equivalence follows easily from [1]
(Propositions 1 and 2). We identified L(A)∗ and ba(A) and then µ(eA) = µ(A), for each
µ ∈ L(A)∗ = ba(A) and each A ∈ A. We also identified its duals L(A)∗∗ and ba(A)∗.

A subset B of an algebra A of subsets of a set Ω is a Nikodým set for the Banach space
ba(A) if every B-pointwise bounded subset M of ba(A) is a |·|-bounded subset of ba(A),
where this |·|-boundedness is equivalent to the uniform boundedness of M in A. If A is a
σ-algebra, then A is a Nikodým set for the Banach space ba(A), and this property is the
famous Nikodým–Grothendieck uniform boundedness theorem for the scalar bounded
additives measures defined on A. This theorem is a good test for uniform boundedness in
ba(Σ) with many applications in Banach spaces and in Measure theory [2] (Chapter VII,
Nikodým-Grothendieck Boundedness Theorem).
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A first significant improvement of this theorem was obtained by M. Valdivia in [1]
(Theorem 2), who found that if {An : n ∈ N} is an increasing covering of a σ-algebra
A there exists an Ap which is a Nikodým set for the Banach space ba(Σ). A family
{Aσ : σ ∈ Np, p ∈ N} of subsets ofA is defined as an increasing web inA if {An1 : n1 ∈ N}
is an increasing covering of A and for each (n1, · · · , np) ∈ Np, p ∈ N, the countable
family of sets {An1,··· ,npnp+1 : np+1 ∈ N} is an increasing covering of An1,··· ,np . The family
(σn : σn ∈ Nn, n ∈ N) is a chain if there exists a sequence of natural numbers (mp)∞

p=1 such
that σn = (m1, · · · , mn), for each n ∈ N. For each increasing web {Aσ : σ ∈ Np, p ∈ N}
in a σ-algebra A there exists a chain (σn : σn ∈ Nn, n ∈ N) such that each Aσn , n ∈ N, is a
Nikodým set for ba(A). This result was obtained in [3] (Theorem 2.7) by means of locally
convex topological spaces theory.

Motivated by these results, a subset B of an algebra A of subsets of a set Ω is a strong
Nikodým set for ba(A) if for each increasing covering Bn : n ∈ N of B there exists a Bp which
is a Nikodým set for ba(A). Moreover, if for each web {Bσ : σ ∈ Np, p ∈ N} in B there
exists a chain (σn : n ∈ N) such that each Bσn , n ∈ N, is a Nikodým set for the space ba(A)
then B is called a web Nikodým set for the space ba(A). Clearly, a web Nikodým set implies
a strong Nikodým set and a strong Nikodým set implies Nikodým set. For a σ-algebra A
the set A is a web Nikodým set for ba(A) [3] (Theorem 3.1).

A Banach space E is a Grothendieck space if its dual and bidual, E∗ and E∗∗, verify
that for every sequence of E∗ the E-pointwise convergence to 0 implies its E∗∗-pointwise
convergence to 0. The current interest in Grothendieck spaces is motivated by interesting
characterizations and several open questions. For instance:

1. A Banach space E is a Grothendieck space if and only if every continuous linear
operator T : E→ c0 is weakly compact.

2. Is E reflexive, if E and E∗ are Grothendieck spaces?
3. If E is Grothendieck, is E∗∗ a Grothendieck space?

It is said that an algebra A of subsets of a set Ω has the Grothendieck property if the
completion L∞(A) of L(A) is a Grothendieck space. This is equivalent to the property
that the A-pointwise convergence to 0 of a bounded sequence of L(A)∗ implies its L(A)∗∗-
pointwise convergence to 0. This characterization motivates that a subset B of an algebra A
of subsets of a set Ω is called a Grothendieck set for ba(A) if the B-pointwise convergence to
0 of a bounded sequence of L(A)∗ = ba(A) implies its ba(A)∗-pointwise convergence to 0.

A subset B of an algebra A of subsets of a set Ω is a strong Grothendieck set for ba(A) if
for each increasing covering (Bn : n ∈ N) of B there exists a Bp which is a Grothendieck
set for ba(A). The property that for every σ-algebra A the set A is a Grothendieck set for
ba(A) follows from [4] (Introduction).

2. Strong Nikodým Sets

Let B be a subset of of an algebra A of subsets of a set Ω. If L(B) is a dense subset of
L(A), then there is a natural isometry between L(B)∗ and L(A)∗ that enables us to identify
L(B)∗ and L(A)∗.

Proposition 1. A subset B of an algebra A of subsets of a set Ω is a Nikodým set for the Banach
space ba(A) if and only if the following two conditions hold:

1. L(B) = L(A).
2. Every B-pointwise bounded subset M of L(A)∗ is a bounded subset of L(B)∗.

Proof. Suppose that B is a Nikodým set for the Banach space ba(A). As the orthogonal set
of L(B), named L(B)⊥, is a bounded linear subspace of L(A)∗ it follows that L(B)⊥ = {0}.
Therefore, L(B) = L(B)⊥⊥ = {0}⊥ = L(A). Moreover, if M is a B-pointwise bounded
subset of L(A)∗ then M is a norm bounded subset of L(A)∗. By density L(A)∗ = L(B)∗,
hence M is a norm bounded subset of L(B)∗.
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Conversely, if conditions (1) and (2) are verified, then from (1) it follows that L(B)∗ =
L(A)∗ and this equality and (2) imply that every B-pointwise bounded subset M of L(A)∗
is a norm bounded subset of L(A)∗. Hence, B is a Nikodým set for the Banach space
ba(A).

In the following, we abbreviated the norm bounded by bounded.

Proposition 2. Suppose that an algebra A of subsets of a set Ω contains a subset B that it is a
Nikodým set for the Banach space ba(A), and let {Fn : n ∈ N} be an increasing covering of L(B)
formed by closed absolutely convex subsets of L(B). Then, there exists n0 such that each Fn0 is a
neighborhood of zero in L(B).

Proof. As L(B) is dense in the completion L̂(A) of L(A), then we identify the dual of L̂(A)
with L(B)∗, hence L(B)∗ = L(A)∗ = L̂(A)

∗
. Let Gn be the closure of Fn in the Banach space

L̂(A), for each n ∈ N. According to the Baire category theorem, it is enough to prove that

the increasing family {Gn : n ∈ N} covers L̂(A). If there exists f ∈ L̂(A)\⋃{Gn : n ∈ N}
then, by the Hahn-Banach theorem, there exists µn ∈ L(A)∗ such that µn(Gn) = {0}
and µn( f ) = n, for each n ∈ N. Then, the set {µn : n ∈ N} is an unbounded subset

of L̂(A)
∗
= L(A)∗ that is a B-pointwise bounded subset of L(A)∗. This contradicts the

hypothesis that B is a Nikodým set for the Banach space ba(A)(= L(A)∗).

Note that this Proposition 2 is found in [5], where Baire-like spaces were introduced.
It also follows from [6] (Proposition 1.2.1).

The next corollary is a particular case of Proposition 2.

Corollary 1. Let {Bn : n ∈ N} be an increasing covering of a subset B of an algebra A of subsets
of a set Ω. If B is a Nikodým set for the Banach space ba(A), then there exists m ∈ N such that the
closure in L(A) of the absolutely convex hull of {meB : B ∈ Bm} contains {eA : A ∈ A}. Hence,
L(Bm) = L(A).

Proof. By applying Proposition 2 with Fn equal to the closure in L(B) of the absolutely con-
vex hull of {neB : B ∈ Bn}, we deduced that there exists n0 that the closure in L(A) of the
absolutely convex hull of {n0eB : B ∈ Bn0} is a neighborhood of zero in L(A). Hence, there
exists m > n0 such that the closure in L(A) of the absolutely convex hull of {meB : B ∈ Bm}
contains the closed unit ball of L(A).

In the next proposition, we consider an algebra A of subsets of a set Ω that contains a
set B such that L(B) = L(A) and B is not a Nikodým set for the Banach space ba(A). If
〈E, F〉 is a dual pair of topological vector spaces and A is a subset of E, then the polar set of
A in F is the set Ao := { f ∈ F : | f (a)| ≤ 1, for each a ∈ A}.

Proposition 3. Let B be a subset of an algebra A such that B is not a Nikodým set for the Banach
space ba(A) and suppose that L(B) = L(A). Then, there exists an absolutely convex and weakly∗

closed B-pointwise bounded subset M in L(A)∗ such that for each finite subset {Qi : 1 ≤ i ≤ p}
of A the set M ∩ {eQi : 1 ≤ i ≤ p}o is unbounded.

Proof. If B is a subset of an algebraA such that B is not a Nikodým set for the Banach space
ba(A) and L(B) = L(A) then, by condition (2) in Proposition 1, there exists a B-pointwise
bounded subset P of L(A)∗ such that P is an unbounded subset of L(B)∗. The B-pointwise
boundedness of P implies that L(B) ⊂ ∪{nPo : n ∈ N}, from the norm unboundedness of
P it follows that its polar set Po in L(A) does not contain a neighborhood of zero in L(A),
and from L(B) = L(A) it follows that Po does not contain a neighborhood of zero in L(B).

Let Q1 ∈ A. If eQ1 /∈ ∪{nPo : n ∈ N} then, the absolutely convex hull Γ{Po ∪ eQ1}
does not contain a zero neighborhood of L(B). If eQ1 ∈ ∪{nPo : n ∈ N} then there exists
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m ∈ N such that eQ1 ∈ mPo, hence Γ{Po ∪ eQ1} ⊂ mPo. The fact that Po does not contain a
neighborhood of zero in L(B) implies that Γ{Po ∪ eQ1} does not contain a neighborhood of
L(B). In summary, if Q1 ∈ A then P1 := Γ{Po ∪ eQ1} does not contain a zero neighborhood
of L(B).

Analogously, if Q2 ∈ A then, if eQ2 /∈ ∪{nP1 : n ∈ N}, the absolutely convex hull
Γ{P1 ∪ eQ2} does not contain a neighborhood of L(B). If eQ2 ∈ ∪{nP1 : n ∈ N} then
there exists m ∈ N such that eQ2 ∈ mP1, hence Γ{P1 ∪ eQ2} ⊂ mP1. The fact that P1 does
not contain a neighborhood of zero in L(B) implies that Γ{P1 ∪ eQ2} does not contain a
neighborhood of L(B). We then obtained that if {Q1, Q2} ⊂ A the set Γ{P1 ∪ eQ2} =
Γ{Po ∪ eQ1 ∪ eQ2} does not contain a neighborhood of L(B).

Repeating this process, we deduced that for each finite subset {Qi : 1 ≤ i ≤ p} of A
the set Γ{Po ∪ {eQi : 1 ≤ i ≤ p} does not contain a neighborhood of L(A). Hence, the polar
set of Γ{Po ∪ {eQi : 1 ≤ i ≤ p} in L(A)∗, given by the equality(

Γ{Po ∪ {eQi : 1 ≤ i ≤ p}
)o

= Poo ∩ {eQi : 1 ≤ i ≤ p}o

is not a bounded subset of L(A)∗. Finally, the set M := Poo verified this proposition.

The unbounded set M
⋂{

eQi : 1 ≤ i ≤ p
}o obtained in Proposition 3 verifies the equality

sup{|µ| : µ ∈ M ∩ {eQi : 1 ≤ i ≤ p}o} = ∞ (1)

Recall that the variation |·| and supremum norms are equivalent in L(A)∗, hence
equality (1) is equivalent to the equality

sup
{
|µ(B)| : B ∈ A, µ ∈ M ∩ {eQi : 1 ≤ i ≤ p}o} = ∞. (2)

We required the following definition, motivated by (2).

Definition 1. Let A be an algebra of subsets of a set Ω and let A ∈ A. A subset M of L(A)∗ is
quasi-A-bounded if there exists a finite subset {Qi : 1 ≤ i ≤ p} of A such that

sup
{
|µ(B)| : B ⊂ A, B ∈ A, µ ∈ M ∩ {eQi : 1 ≤ i ≤ p}o} < ∞. (3)

Clearly, Proposition 3 states that, if B is a subset of an algebra A such that B is not a
Nikodým set for the Banach space ba(A) and L(B) = L(A), then there exists an absolutely
convex and weakly∗ closed B-pointwise bounded subset M in L(A)∗ such that M is non
quasi-Ω-bounded.

The proof of the next Lemma follows with the direct application of (3) to each Ai,
1 ≤ i ≤ p.

Lemma 1. Let us suppose that {A1, A2, · · · , Ap} is a subset of an algebra A of subsets of a set Ω
whose union is A. Let M be a subset of L(A)∗ such that M is quasi-Ai-bounded for 1 ≤ i ≤ p.
Then M is quasi-A-bounded.

Proposition 4. Let us suppose that A is an algebra of subsets of a set Ω, A ∈ A and that M is an
absolutely convex non quasi-A-bounded subset of L(A)∗. Then, for each positive natural number s
and for each finite family {Qj : 1 ≤ j ≤ r}, with Qj ∈ A, 1 ≤ j ≤ r, there exists µ ∈ M and a
subset A1 ∈ A, A1 ⊂ A, such that:

1. |µ(A1)| > s.
2. |µ(A\A1)| > s.
3. ∑1≤j≤r

∣∣µ(Qj)
∣∣ ≤ 1.

4. M is a non quasi-(A\A1)-bounded.
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Proof. For C := {eA, eQ1 , · · · , eQr}

sup{|ν(B)| : B ∈ A, B ∈ A, ν ∈ rM ∩ C0} = ∞,

hence, there exists P1 ⊂ A, P1 ∈ A, and ν0 ∈ rM ∩ C0 such that |ν0(P1)| > r(1 + s). Then
the measure µ = r−1ν0 ∈ M ∩

(
r−1C0) verifies the following inequalities:

|µ(P1)| > 1 + s,
|µ(A)| ≤ r−1 < 1,∣∣µ(Qj)

∣∣ ≤ r−1, 1 ≤ j ≤ r, hence ∑1≤j≤r
∣∣µ(Qj)

∣∣ ≤ rr−1 = 1.

From |µ(P1)| > 1 + s and |µ(A)| < 1 it follows that µ(A\P1) > s.
As M is non quasi-A-bounded and {P1, A\P1} is a partition of A, then we may obtain

the following two cases:

1. M is non quasi-P1-bounded. Then A1 := A\P1 verifies that M is non quasi-A\A1-
bounded, |µ(A1)| = |µ(A\P1)| > s and |µ(A\A1)| = |µ(P1)| > 1 + s > s.

2. M is non quasi-(A\P1)-bounded. Then the set A1 := P1 verifies that M is non quasi-
A\A1-bounded, |µ(A1)| = |µ(P1)| > 1 + s > s and |µ(A\A1)| = |µ(A\P1)| > s.

Hence, the proposition is proved, since ∑1≤j≤r
∣∣µ(Qj)

∣∣ ≤ ∑1≤j≤r r−1 = rr−1 = 1.

By applying Proposition 4 m times we directly obtain Proposition 5.

Proposition 5. Let us suppose that A is an algebra of subsets of a set Ω, A ∈ A, and let M be
an absolutely convex non quasi-A-bounded subset of L(A)∗. Then for a positive natural number
m, a positive natural number s > 0 and for each finite family {Qj : 1 ≤ j ≤ r}, with Qj ∈ A,
1 ≤ j ≤ r, there exists {µ1, µ2, · · · , µm} ⊂ M and pairwise disjoint subsets Ai ∈ A, 1 ≤ i ≤ m,
such that each Ai is a subset of A and for each i, 1 ≤ i ≤ m, the following inequalities are verified:

1. |µi(Ai)| > s.
2.

∣∣µi(A\ ∪ {Aj : 1 ≤ j ≤ i})
∣∣ > s.

3. ∑1≤j≤r
∣∣µi(Qj)

∣∣ ≤ 1.
4. M is a non quasi-

(
A\ ∪ {Aj : 1 ≤ j ≤ i}

)
-bounded.

In the next proposition we consider the natural numbers ni, 1 ≤ i ≤ p, and an infinite
subset I of {n ∈ N : n > np}.

Proposition 6. Let us suppose that A is an algebra of subsets of a set Ω, A ∈ A, and suppose that
for each n ∈ {ni : 1 ≤ i ≤ p} ∪ I the set Mn is an absolutely convex non quasi-A-bounded subset
of L(A)∗. Then, for s > 0 and for each finite family {Qj : 1 ≤ j ≤ r}, with Qj ∈ A, 1 ≤ j ≤ r,
there exists µi ∈ Mni , a pairwise disjoint family of subsets Ri ∈ A with Ri ⊂ A, for 1 ≤ i ≤ p,
and an infinite subset J of I such that for each i, 1 ≤ i ≤ p, the following inequalities are verified:

1. |µi(Ri)| > s.
2. ∑1≤j≤r

∣∣µi(Qj)
∣∣ ≤ 1.

3. Mn is a non quasi-
(

A\⋃{Rj : 1 ≤ j ≤ p}
)
-bounded, for each n ∈ {ni : 1 ≤ i ≤ p} ∪ J.

Proof. Applying Proposition 5 with M = Mn1 there exists a partition {Pi : 1 ≤ i ≤ p + 2}
of A, with each Pi ∈ A, and there exists a subset {λi : 1 ≤ i ≤ p + 1} ⊂ Mn1 such that:

1. |λi(Pi)| > s.
2. ∑1≤j≤r

∣∣λi(Qj)
∣∣ ≤ 1.

3. Mn1 is a non quasi-Pp+2-bounded.

For 2 ≤ i ≤ p the set Mni is not quasi-A-bounded, hence, by Lemma 1, there exists ij
with 1 ≤ ij ≤ p + 2 such that Mni is not quasi-Pij -bounded.

Let Iw := {n ∈ I : Mn is not quasi-Pw-bounded}, for 1 ≤ w ≤ p + 2. By Lemma 1, the
infinite set I is equal to ∪{Iw : 1 ≤ w ≤ p + 2}. Hence, there exists w0 such that the set
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J1 := Iw0 is infinite. The cardinality of the set K = {p + 2} ∪ {ij : 2 ≤ j ≤ p} ∪ {w0} is less
that p + 2. Hence if l ∈ {n ∈ N : 1 ≤ n ≤ p + 2}\K and we define R1 := Pl and µ1 = λl ,
then by construction:

1. |µ1(R1)| = |λl(Pl)| > s.
2. ∑1≤j≤r

∣∣µ1(Qj)
∣∣ = ∑1≤j≤r

∣∣λl(Qj)
∣∣ ≤ 1

3. By construction p + 2 ∈ K, hence l 6= p + 2. Therefore Pp+2 ⊂ A\Pl = A\R1. This
inclusion and the fact that Mn1 is a non quasi-Pp+2-bounded imply that Mn1 is a non
quasi-(A\R1)-bounded. For each 2 ≤ i ≤ p we have that ij ∈ K, hence we deduce,
analogously, that Mni is non quasi-(A\R1)-bounded.

Repeating p times the previous reasoning, the proposition is obtained. For instance,
in the second step we apply Proposition 5 with M = Mn2 , J1 and we work with non
quasi-(A\R1)-boundedness.

The Proposition 6 enables to get the elements of A and the measures of the next
proposition.

Proposition 7. Let us suppose that A is an algebra of subsets of a set Ω and let {Mn : n ∈ N}
be a sequence of absolutely convex non quasi-Ω-bounded subsets of L(A)∗. Then there exists an
increasing sequence of natural numbers (ni : i ∈ N) and two sequences (As : s ∈ N\{1}) and
(Ms : s ∈ N\{1}) formed by the finite families

As =
{

Aij ∈ A : (i, j) ∈ N2, i + j = s
}

and
Ms =

{
µij ∈ Mni : (i, j) ∈ N2, i + j = s

}
such that for each s ∈ N\{1} and each (i, j) ∈ N2 with i + j = s it is verified that:

1.
∣∣µij(Aij)

∣∣ > i + j = s.
2. ∑{

∣∣µij(Ahk)
∣∣ : h + k < i + j = s} ≤ 1.

3. The sets of the family {Aij ∈ A : (i, j) ∈ N2} are pairwise disjoints.

Proof. This proof follows by an inductive process on s.
The first step correspond to s = 2. Applying Proposition 6 to A = Ω, s = 2, n1 = 1,

I = {n ∈ N : 1 < n} and without a finite family {Qj : 1 ≤ j ≤ r}. Then we get the finite
families A2 = {A11 ∈ A}, M2 = {µ11 ∈ Mn1} and an infinite subset J1 of I such that:

1. |µ11(A11)| > 2.
2. Mn is non quasi-(Ω\A11)-bounded, for each n ∈ {n1} ∪ J1.

In the second step of this inductive process, Proposition 6 is applied again with
A = Ω\A11, s = 3, n1 is the natural number defined in the first step, n2 := min{n ∈ J1},
I = {n ∈ J1 : n2 < n} and {Q1} = {A11}. Then, we get the family A3 = {Aij ∈
A : (i, j) ∈ N2, i + j = 3}, formed by pairwise disjoint subsets of Ω\A11, the family
M3 = {µij ∈ Mni : (i, j) ∈ N2, i + j = 3}, and an infinite subset J2 of J1 such that:

1.
∣∣µij(Aij)

∣∣ > 3, for each (i, j) ∈ N2, with i + j = 3.
2.

∣∣µij(Ahk)
∣∣ ≤ 1, for each (i, j, h, k) ∈ N4, with h + k < i + j = 3.

3. Mn is non quasi-
(
Ω\ ∪ {Aij : i + j ≤ 3}

)
-bounded, for each n ∈ {n1, n2} ∪ J2.

Clearly, in the third step, Proposition 6 is applied to A = Ω\ ∪ {Aij : i + j ≤ 3},
s = 4, n1 and n2 are the natural numbers defined in the previous steps, n3 := min{n ∈ J2},
I = {n ∈ J2 : n3 < n}, and {Q1, Q2, Q3} = {A11, A12, A21}. Then, we get the family
A4 = {Aij ∈ A : (i, j) ∈ N2, i + j = 4}, formed by pairwise disjoint subsets of Ω\ ∪ {Aij :
i + j ≤ 3}, the family M4 = {µij ∈ Mni : (i, j) ∈ N2, i + j = 4}, and an infinite subset J3 of
J2 such that:
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1.
∣∣µij(Aij)

∣∣ > 4, for each (i, j) ∈ N2, with i + j = 4.
2. ∑{

∣∣µij(Ahk)
∣∣ : h + k < 4} ≤ 1, for each (i, j) ∈ N4, with i + j = 4.

3. Mn is non quasi-
(
Ω\ ∪ {Aij : i + j ≤ 4}

)
-bounded, for each n ∈ {n1, n2, n3} ∪ J3.

The induction continues in an obvious way.

Theorem 1. Let A be a σ-algebra. Then A is a strong Nikodým set for the Banach space ba(A).

Proof. Let us suppose that {An : n ∈ N} is an increasing covering of A such that each An
is not a Nikodým set for the Banach space ba(A). Corollary 1 with B = A and Bn = An,
n ∈ N, implies that there exists n0 such that for each n ≥ n0 we have L(An) = L(A). Hence,
we may suppose that n0 = 1. For each n ∈ N, by Proposition 3 with B = An, there exists in
L(A)∗ a family {Mn : n ∈ N} of weak∗ closed absolutely convex An-pointwise bounded
subsets that are non quasi-Ω-bounded subsets. Therefore, by Proposition 7, there exists an
increasing sequence of natural numbers (ni : i ∈ N) such that for each s ∈ N\{1} there exist
two finite families As = {Aij ∈ A : (i, j) ∈ N2, i + j = s} and Ms = {µij ∈ Mni : (i, j) ∈ N2,
i + j = s} such that for each (i, j) ∈ N2, with i + j = s,

1.
∣∣µij(Aij)

∣∣ > i + j = s,
2. ∑{

∣∣µij(Ahk)
∣∣ : h + k < i + j = s} ≤ 1, and

3. the sets of families {Aij ∈ A : (i, j) ∈ N2} are pairwise disjoints.

The sequence (s : 2 ≤ s) contains an increasing sub-sequence (ws : 2 ≤ s) that has the
following property: For each µij ∈Mws , the variation of µij in

⋃{
Aij : Aij ∈ Awt , s < t

}
is

less than or equal to 1.
In fact, let s = 2. Then M2 = {µ11} and we define w2 = 2. Suppose that the variation

of the bounded measure µ11 is less than or equal to a positive natural number a. Let

A′w2+1 =
⋃{

Aw2+1+pa : p = 0, 1, 2, · · ·
}

A′w2+2 =
⋃{

Aw2+2+pa : p = 0, 1, 2, · · ·
}

. . . . . . . . . . . . . . . . . . . . . . . . . . .

A′w2+a =
⋃{

Aw2+a+pa : p = 0, 1, 2, · · ·
}

The additivity of the variation implies that there exists a natural number w3 ∈
{w2 + 1, w2 + 2, · · · , w2 + a} such that the variation of µ11 in A′w3

is less than or equal
to 1.

Then, Mw3 = {µij ∈ Mni : (i, j) ∈ N2, i + j = w3} and we may suppose that the
variation of each µij, (i, j) ∈ N2, i + j = w3, is less than or equal to a positive natural
number b. Let now be

A′w3+1 =
⋃{

Aw3+1+pb(w3−1) : p = 0, 1, 2, · · ·
}

A′w3+2 =
⋃{

Aw3+2+pb(w3−1) : p = 0, 1, 2, · · ·
}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A′w3+b(w3−1) =
⋃{

Aw3+b(w3−1)+pb(w3−1) : p = 0, 1, 2, · · ·
}

and again, by the additivity of variation, there exists w4 ∈ {w3 + 1, w3 + 2, · · · , w3 + b(w3 −
1)} such that, for each (i, j) ∈ N2, i + j = w3, the variation of each µij in A′w4

is less than or
equal to 1.

The induction continues in an very natural way.
Let (1, 1) , (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), · · · be N2 ordered by the diagonal order,

(is : s = 2, 3, · · · ) the sequence of the first components of N2 ordered by the diagonal order,
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i.e., (1, 1, 2, 1, 2, 3, · · · ), and let js = ws − is, s = 2, 3, · · · . The union
⋃{Ais ,js : s ∈ N,

s > 1} ∈ A =
⋃{Ani : i ∈ N}, hence there exists r ∈ N such that⋃

{Ais ,js : s ∈ N, s > 1} ∈ Anr .

By construction:

(1) There exists an increasing sequence (sv : v ∈ N) such that isv = nr, for each v ∈ N.
Then, jsv = wsv − isv = wsv − nr.

(2) µisv ,jsv
= µnr ,jsv

∈ Mnr .
(3) The set Mnr is Anr -pointwise bounded, hence

sup
{∣∣∣µnr ,jsv

(⋃
{Ais ,js : s ∈ N, s > 1}

)∣∣∣ : v ∈ N
}
< ∞.

(4) From ∣∣µnr ,jsv

(
Anr ,jsv

}
)∣∣ > nr + jsv > v,

∑
{∣∣µnr ,jsv

(
Aiw ,jw

)∣∣ : w < sv
}
≤ 1

and the property that the variation of µnr ,jsv
in
⋃{Aiw ,jw : w ∈ N, w > sv} is less than

or equal than 1, we obtain the contradiction

sup
{∣∣∣µnr ,jsv

(⋃
{Ais ,js : s ∈ N, s > 1}

)∣∣∣ : v ∈ N
}
= ∞.

3. Strong Grothendieck Sets

Recall that a subset B of an algebraA of subsets of a set Ω is a Grothendieck set for the
Banach space ba(A) if for each bounded sequence (µn, n ∈ N) of ba(A) the B-pointwise
convergence of (µn, n ∈ N) to µ ∈ ba(A) implies its weak convergence, i.e.,

lim
n→∞

ϕ(µn) = ϕ(µ), ∀ϕ ∈ ba(A)∗.

In the definition of the Grothendieck set given in [7] (Definition 1) the sentence “each
bounded sequence” is replaced by “each sequence”. Both definitions of Grothendieck sets
agree when B is a Nikodým set for the Banach space ba(A), because then each sequence
(µn, n ∈ N) of ba(A) that B-pointwise converges is B-pointwise bounded, hence it is
norm bounded. In the introduction, it was considered that the definition given in this
paper is the natural extension to a subset B of the property that verifies an algebra A
when A is a Grothendieck set for the Banach space ba(A), i.e., the completion of L(A) is
a Grothendieck space. Moreover, with the definition of Grothendieck sets given in this
survey, the Grothendieck sets possessed the favorable hereditary property considered in
Theorem 2. We do not know if this hereditary property holds with the definition given
in [7] (Definition 1).

It was defined in the introduction that a subset B of an algebra A of subsets of a set
Ω is a strong Grothendieck set for the Banach space ba(A) if for each increasing covering
{Bn : n ∈ N} there exists n0 such that Bn0 is a Grothendieck set for the Banach space ba(A).

Theorem 2. Assume that A is an algebra of subsets of a set Ω that contains a subset B which is a
Nikodým and a Grothendieck set for ba(A). Then B is a strong Grothendieck set for ba(A).

Proof. We need to prove that if {Bn : n ∈ N} is an increasing covering of B, there exists
some p ∈ N such that Bp is a Grothendieck set for ba(A).

By Corollary 1, there exists p such that closure in L(A) of the absolutely convex hull
of
{

peB : B ∈ Bp
}

contains {eA : A ∈ A}.
Let us check that Bp is a Grothendieck set for ba(A). So, let {λn}∞

n=1 be a bounded
sequence in ba(A) such that λn(M)→ 0, for each M ∈ Bp.
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Then supn∈N|λn| < ∞ and λn(u)→ 0 for every u ∈ abx
{

χA : A ∈ Bp
}

. We only need

to prove that λn(v)→ 0 for each v ∈ abx
{

χA : A ∈ Bp
}‖·‖∞ .

Let (uk)
∞
k=1 be a sequence in abx

{
χA : A ∈ Bp

}
such that ‖uk − v‖∞ → 0. Conse-

quently, given ε > 0 there exists k(ε) ∈ N with∥∥∥uk(ε) − v
∥∥∥

∞
<

ε

2
(
1 + supn∈N|λn|

) .

By hypothesis limn→∞ λn(uk(ε)) = 0; hence, there exists n(ε) ∈ N such that for
n ≥ n(ε) ∣∣∣λn(uk(ε))

∣∣∣ < ε

2
,

From the two preceding inequalities, it follows that limn→∞ λn(v) = 0, because for
n ≥ n(ε) we obtain

|λn(v)| ≤
∣∣∣λn(v− uk(ε))

∣∣∣+ ∣∣∣λn(uk(ε))
∣∣∣ ≤

≤ |λn|
∥∥∥uk(ε) − v

∥∥∥
∞
+
∣∣∣λn(uk(ε))

∣∣∣ < ε

2
+

ε

2
= ε

Hence, Bp is a Grothendieck set for L(A).

A subset B of an algebra A of subsets of a set Ω is a Vitali–Hahn–Saks set for ba(A)
if for each sequence (µn, n ∈ N) of ba(A) the B-pointwise convergence of (µn, n ∈ N)
to µ ∈ ba(A) implies its weak convergence. It is straightforward to prove that B is a
Vitali–Hahn–Saks set for ba(A) if and only if B is a Nikodým and Grothendieck set for
ba(A).

Corollary 2. Let A be an algebra of subsets of a set Ω such that the set A is a Vitali–Hahn–Saks
set for ba(A). The set A is a strong Grothendieck set for ba(A). In particular, if A is a σ-algebra of
subsets of a set Ω then A is a strong Grothendieck set for ba(A).

Proof. If A is an algebra of subsets of a set Ω such that the set A is a Vitali–Hahn–Saks set
for ba(A) then the set A is a Nikodým set and a Grothendieck set for ba(A). By Theorem 2
with B = A we find that A is a strong Grothendieck set for ba(A). The particular case
follows from the fact that if A is a σ-algebra of subsets of a set Ω then A is a Nikodým set
and a Grothendieck set for ba(A).

A positive answer to the aforementioned Valdivia open question would help to extend
several theorems on Measure theory on σ-algebras of subsets of a set Ω to algebras of
subsets of a set Ω. Applications of Theorems 1 and 2 for σ-algebras, improving Phillips
lemma about convergence in ba(A), Nikodým’s pointwise convergence theorem in ca(A)
and the usual characterization of weak convergence in ca(A), with ca(A) being the linear
subspace of ba(A) consisting of the countably additive measures on a σ-algebra A (see [2]
(Chapter 7)), are provided in [7] (Propositions 1, 2, and 3).

In [8] (Section 3), a class C of rings of subsets was determined, such that for each ring
R of subsets of a set Ω with R ∈ C then the property that the set R is a Nikodým set for
ba(R) implies that the set R is a strong Nikodým set for ba(R). This result provides a
partial positive solution of the still open problem for an algebra A of subsets of a set Ω, of
whether the property that the set A is a Nikodým set for ba(A) implies that this set A is
also a strong Nikodým set for ba(A).

Let J be the algebra of all Jordan measurable subsets of the finite product Ω =
Π{[ai, bi] : 1 ≤ i ≤ k} of k real closed intervals. J is not a σ-algebra and it is proved
in [9] (Theorem 2) that the set J is a strong Nikodým set for ba(J ). This result was
improved in [10] (Theorem 1) finding that this algebra J is a web Nikodým set for ba(J ).
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Let us recall (see [4] (2.3. Definition)) that for an algebra A of subsets of a set Ω a
countable subset {µn : n ∈ N} of ba(A) is uniformly exhaustive on A if for each countable
family {Ak : k ∈ N} of pairwise disjoint elements of A we have the following:

lim
k→∞

sup
n∈N
|µn(Ak)| = 0,

and that a subset C of a normed space E is an uniform bounded deciding set for E if each subset
M of E∗ which is pointwise bounded on C is norm bounded ([11]). Interesting relations
between Nikodým and Grothendieck properties, uniform exhaustivity, uniform bounded
deciding property and the so called Rainwater sets ([12]) are considered in [13].

LetA be a Boolean algebra and let KA be the Stone space ofA. Recall that by the Stone
duality theorem, A is isomorphic with the algebra C of clopen subsets of KA (see [14,15]),
and that each scalar finitely additive measure µ with finite variation defined on A has a
unique Borel extension, denoted also by µ, defined in the space KA, preserving the variation
of µ. In the Riesz representation theorem the dual space C(KA)

∗ of the Banach space of
continuous scalar functions on KA is isometrically isomorphic with the space of all finitely
additive bounded measures on A.

A complete Boolean algebra A is a Boolean algebra in which every subset of A has
a supremum. More generally, if κ is a cardinal then a Boolean algebra A is κ-complete
if every subset of A of cardinality less than κ has a supremum; in particular, a Boolean
algebra A is σ-complete if every countable subset of A has a supremum.

Nikodým and Grothendieck properties in Boolean algebras are defined in a natural
way. For instance, a Boolean algebraA has the Nikodým property if each sequence (µn)

∞
n=1

of scalar finitely additive bounded measures such that supn|µn(a)| < ∞ for all a ∈ A
verifies that supn|µn| < ∞. In brief, a Boolean algebra A has the Nikodým property if it
verifies the Nikodým-Grothendieck boundedness theorem or, equivalently, if the algebra
C of the clopen subsets of the Stone space KA of A is a Nikodým set for the Banach space
ba(C). Each σ-complete Boolean algebra A has the Nikodým property. Grothendieck
property for boolean algebras is defined similarly.

In [16], it was proved that in the model obtained by side-by-side product of Sacks
forcings, the Boolean algebra of subsets of the first infinite countable ordinal ω that belong
to the ground model has the Grothendieck property.

In [17], the authors show that in the model obtained by the side-by-side product of
Sacks forcing every σ-complete Boolean algebra from the ground model has the Nikodým
property and that there exists a Boolean algebra of cardinality less than the cardinal c of the
continuum with the Nikodým property. In [18], the existence of Boolean algebras with the
Nikodým and Grothendieck properties is established in models verified by a quite wide
class of forcing notions.

Finally, in [19] the author shows that if κ is a cardinal such that κN has cofinality κ
and the cofinality of the Lebesgue null ideal is at most κ then there is a Boolean algebra
of cardinality κ with the Nikodým property. In particular, this shows that there exist,
consistently, algebras with the Nikodým property that are of cardinality less than c. Lower
bounds for the minimum cardinality of a Boolean algebra with the Nikodým property were
also obtained.
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