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Abstract: Presently, we inquire about the organic/inorganic cation effect on different properties
based on structure, morphology, and steadiness in preparing a one-step solution of APbI3 thin films,
where A = MA, FA, Cs, using spin coating. This study was conducted to understand those properties
well by incorporating device modeling using SCAPS-1D software and to upgrade their chemical
composition. X-ray diffraction (XRD) was used to analyze the crystal structures. Atomic Force
Microscopy (AFM) and Scanning Electron Microscopy (SEM) were conducted to characterize the
surface morphology; photoluminescence, Transmission Electron Microscopy (TEM), and a UV–Visible
spectrometer helped us to study the optical properties. The (110) plane is where we found the
perovskite’s crystalline structure. According to the XRD results and by changing the type of cation,
we influence stabilization and the growth of the APbI3 absorber layer. Hither, a homogenous, smooth-
surfaced, pinhole-free perovskite film and large grain size are results from the cesium cation. For
the different cations, the band gap’s range, revealed by the optical analysis, is from 1.4 to 1.8 eV.
Moreover, the stability of CsPbI3 remains excellent for two weeks and in a ~60% humid environment.
Based on the UV–Visible spectrometer and photoluminescence characterization, a numerical analysis
for fabricated samples was also performed for stability analysis by modeling standard solar-cell
structures HTL/APbI3/ETL. Modeling findings are in good agreement with experimental results
that CsPbI3 is more stable, showing a loss % in PCE of 14.28%, which is smaller in comparison to
FAPbI3 (44.46%) and MAPbI3 (20.24%).

Keywords: thin films; APbI3; organic/inorganic perovskite; optical properties; stability; SCAPS-1D;
numerical analysis

1. Introduction

The decline of fossil fuels and global warming are responsible for the global demand
for renewable energy resources and the development of advanced technology for producing
them. The use of natural resources permits the production of energy from renewable energy
resources [1,2]. It is imperative that the scientific community expands to make use of these
resources efficiently. Global challenges of generating energy from renewable resources can
be met with the help of solar energy [3,4]. Substantial efforts are required to develop novel
photovoltaic technologies that guarantee cost reduction with enhanced efficiency. The research
community has a rising interest in perovskite solar cells (PSCs) among other technologies
because of the ease of the fabrication process and higher conversion efficiency [5–10].
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The first PSC was reported in 2009 as having a power-conversion efficiency (PCE%) of
2.2% [11,12]. After extensive research, in 2011 researchers improved the efficiency by around
6.5% along with inadequate stability [13]. The conversion efficiency further improved to
9.7% in 2012 [14]. Researchers pay keen attention to PSCs because the PCE reached 15%
in 2013 [15]. In 2014, Yalçin et al. presented PSC top efficiency of around 20% [16] and
Devi et al. improves that PCE to 23.30% with 1.55 eV of bandgap in 2019 [17,18]. In the near
future, the commercialization and stabilization of PSCs will increase greatly since 25.2%
of efficient PSCs were recently verified and reported by KRICT and MIT. Results were
also tested and verified by Newport PV Laboratory [19]. This is incredibly close to 26.7%
efficient crystalline silicon solar cells [20,21]. The instant growth in the PSCs performance is
the primary reason for the gigantic boost in the research, manufacturing, and development
of PSCs. High absorption coefficient and long carrier diffusion length are also the cause for
the further development of PSC technology [22,23].

Organic-inorganic halide perovskites are exceptionally fascinating absorber/active
materials in thin-film technology due to their exceptional prominent device performance
(solar cells and LEDs) and exceptional tunable optoelectronic properties [24–28]. Recently,
a profound study has been made on hybrid perovskites (APbX3) due to their long carrier-
diffusion length, high absorption, stability and carrier mobility, small effective hole/electron
masses, and low exciting binding energies [29–34]. Consequently, the success of these
synthesized compounds has been seen in manufacturing lasers [35,36] polarizers [37],
diodes [38,39] photodetectors [40,41], and solar-cell [42,43] manufacturer technology.

Generally, the solar cells comprise the sandwiched configuration of having per-
ovskite photoactive/absorbers type ABX3, charge transport layers, and counter electrodes.
Halide perovskite materials can be denoted by ABX3; wherever A is an organic methy-
lammonium (CH3NH3

+ or MA) and formamidinium (NH2CH = NH2
+ or FA) cesium(

Cs+ or Cs
)

ions, B can be an inorganic cation (Sn2
+ or Pb2

+), and X can be a halogen ion
(Cl−, Br− or I−) [44–46]. Amongst them, the extremely conventional promising active ma-
terials are methylammonium lead iodide (MAPbI3, formamidinium lead iodide (FAPbI3),
and cesium lead iodide (CsPbI3) [47–50]. To realize the efficiency determination of PSCs,
we should base the study on the interface of perovskite layers, the transportation process,
and the charge extraction. Consequently, we can say that there is a parallel between each
path of the crystal quality and the system’s efficiency, and at the interface, non-radiative
recombination reduces. The development of the first leads to the enhancement of the other.
In our work, the investigation primarily focuses on the cation lead iodide’s stability APbI3
(where A can be Cs, MA, and FA), and the wide absorption range of the PSC phase. At
UV–Vis wavelengths and to optimize photon absorption, the present studies concentrate on
halide exchange to modify the bandgap. This work is divided into three main categories.

We describe a new method for altering the bandgap of halide perovskites by elaborat-
ing on cation materials. We have synthesized organic-inorganic lead halide perovskites
(APbI3, where A = mixed monovalent cation systems MA/Cs/FA), using the spin-coating
process; this method is a low-cost technique for thin-film material deposition. After the
successful fabrication of samples, we performed different characterization studies on as-
deposited samples. Then we performed a detailed study of the degradation and recovery of
the perovskite phase of deposited samples by studying their optical absorption and crystal
structures along with the physical appearance of samples. Lastly, we performed a numerical
analysis study of these materials to provide insight into physics for as-deposited, degraded,
and recovered samples by simulating standard solar-cell structure HTL/APbI3/ETL in
SCAPS-1D, where APbI3 is replaced with MAPbI3, FAPbI3 and CsPbI3.

2. Thin-Film Manufacture
2.1. Experimental Procedure

Lead (II) iodide (PbI2), methylammonium iodide (MAI), cesium iodide (CsI), formi-
dinium iodide (FAI) purchased from sigma Aldrich, N,N-dimethylformamide anhydrous
(DMF), and dimethyl sulfoxide (DMSO) from Thermo Scientific, the antisolvent chloroben-
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zene from Sigma-Aldrich, were used as precursor materials to fabricate the perovskite
thin-film solutions. Then the prepared solution of APbI3, where (A = Cs, MA, FA), was
spin-coated for 20 s at 2000 rpm on the FTO substrate. The deposition procedure is shown
in Figure 1, where on top we displayed steps to deposit perovskite samples via the spin-
coating method and at bottom of Figure 1 we displayed the as-deposited samples along
with precursor solutions for perovskite materials.

Figure 1. APbI3 where A = MA/FA/Cs films were manufactured with a low-cost technique.

2.2. Film Characterization

Different characterization techniques were used to evaluate the as-deposited samples
of perovskite materials. The perovskite thin film’s crystal-structure analysis was performed
by XRD RIGAKU Ultima IV diffractometer, SEM (Scanning Electron Microscopy) was
performed to find the morphology of the deposited sample at different magnification
levels, AFM (Atomic Force Microscopy) was performed to characterize the deposited film’s
topography analysis, and TEM (Transmission Electron Microscopy) was also performed to
authenticate the formation of perovskite structures. The absorption was calculated using a
UV-Visible wavelength range of 300 to 850 nm, and photoluminescence (PL) was performed
by He-Cd laser.

3. Results and Discussion

The impact of changing cation A on the thin films’ microstructure was explored by
XRD Figure 2, where we can see the locations and the plans of diffractions peaks: 14.0 (110),
24.0 (202), 28.0 (220), 32.0 (222), 37.5 (400), and 52.0 (303). These crystal structures are
fundamentally very similar; growth was shown at the peak at 2θ = 14◦, which corresponds
to MAPbI3 shown in Figure 2a and FAPbI3 (110) as (hkl) shown in Figure 2c. The orange
phase is also for the (110) peak of CsPbI3 shown in Figure 2b, which is the most prominent
peak among the three compounds. However, a continuous displacement between the
crystal structures is observed. Substantially, there is a highly crystalline phase, especially
when there is an overly lattice strain. This remark shows the ability to substitute readily for
the cations (MA, FA, and Cs) across the lattice without harming the crystal structure. The
MAPbI3 structure to be studied is correlated with the same diffraction peaks. Furthermore,
the height (110) intensity is enhanced for the CsPbI3 film.



Nanomaterials 2022, 12, 3027 4 of 19

Figure 2. XRD patterns of (a) MAPbI3, (b) CsPbI3, and (c) FAPbI3 thin films.

The XRD pattern uncovered the enhanced crystallite orientation alongside the (110) plane.
As a result of the solvent treatment, a tetragonal lattice has factored a = b = 8.919 Å and
c = 11.920 Å, which corresponds to the space group I4/mcm, and the film of perovskite
MAPbI3 crystallizes. However, when CsPbI3 was heat-treated for 10 min at 180 ◦C, these
diffraction peaks can be allocated to cubic phase (a = 6.18 Å, space group Pm3m), and
up to 180 ◦C in temperature, a− CsPbI3 was formed as in the crystalline phases. These
results indicated the efficiency of the synthesis of CsPbI3 in the standard conditions, and
the crystallization trend of perovskite was proper during synthesis [51].

The roughness and surface morphology changes with different cations in the per-
ovskite thin films. The parameters are revealed in Table 1. Effective lattice strain has been
calculated to know about the deformations of the grains in the surface of the film. To
acquire the effective lattice strain (ε) Equation (1) was used [52].

β cos(θ) =
kλ
D

+ 4ε sin(θ) (1)

where λ is the wavelength of the X-ray, β is the full width half maximum (FWHM), k is
a constant (0.94), and θ is the Bragg angle. Equation (2) was applied to determine the
dislocation density of the crystal.

δ =
1

D2 (2)
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Table 1. APbI3 thin films XRD parameters.

Sample ID Lattice Strain(
ε×10−3) Grain Size

(nm)
Dislocation Density

(nm−1)
Roughness

(nm)

MAPbI3 9.05 331 0.91× 10−5 145
CsPbI3 8.71 345 0.84× 10−5 420
FAPbI3 8.13 283 1.13× 10−5 231

Scanning electron micrography was the technique used to investigate the morphology
of the films at many points in Figure 3. At first, large crystallites and a few large pinholes
are the morphology of the MAPbI3. As the change in the cation of MA by FA and Cs,
there is a formation of a few crystals distributed randomly on the surface of FAPbI3. The
appearance of structures in destroyed shapes coincides with peaks corresponding to the
yellow phase in XRD; this is the preferred crystal habit of the yellow FAPbI3. Pinholes that
are several nanometers were observed on the surface of MAPbI3 annealed at 120 ◦C; in
the case of CsPbI3 perovskite, there are not plenty of pinholes in the thin film annealed at
180 ◦C. When the heat-treatment temperature was raised to 200 ◦C, it was clear that CsPbI3
started to crystallize, and the grains were more regular. The effect could be explained by the
MAPbI3 perovskite becoming unstable under the same conditions, serving as a degraded
model after a short amount of time. At the same time, the control film shows signs of
δ−CsPbI3 at a temperature of 180 ◦C. To explain the better absorbance, there is a formation
with a thicker and regular thickness of intimate contact with the underlying layer, which is
compact and smooth with better-packed grains, which contained the resultant CsPbI3 film
annealed at 200 ◦C.

Figure 3. (SEM) images of the surface morphology of (A) MAPbI3, (B) CsPbI3, and (C) FAPbI3.
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The surface morphology of samples is an important parameter for perovskite solar cells
as they can directly affect the quantum efficiency (QE) of perovskite materials. To analyze
the surface roughness of deposited perovskite material, AFM study was conducted, as the
roughness parameter often results in many holes which create resistance and, consequently,
decrease the charge mobility of carriers. Figure 4 shows the results for the surface roughness
of perovskite materials, and from Figure 4 it is clear that surface height and valley point in
MA- and Cs-doped perovskite are lesser than that of FA-doped perovskite material [53].

Figure 4. The topographic property of (a) MAPbI3, (b) FAPbI3, (c) CsPbI3 films.

Figure 5 indicates the TEM characterization of polycrystalline MAPbI3 thin films.
Further, 0.28 nm is the lattice fringe equivalent to (110) or (220) of the MAPbI3 phase.
FAPbI3 thin films: 0.64 nm is the lattice fringe equivalent to (110) of the FAPbI3 phase.
CsPbI3 thin films: 0.36 nm is the lattice fringe equivalent to (100) of the CsPbI3 phase.

The PL measurements were canned at the ambient temperature as shown in Figure 6b.
The PL peak intensity between 700–850 nm previously mentioned progressively increases
with the CsPbI3 film. However, by changing the cation A (FA) by MA and Cs, the PL
intensities vary. A suggestion is that CsPbI3 thin film is the optimal level at which it can
better ambush, owing to the improvement of crystallinity and surface passivation, the
absorption shift.

The corresponding UV–Vis spectra of MAPbI3, FAPbI3, and CsPbI3 were recorded
[300 nm–1000 nm] (Figure 6a). Different cations shift the absorption edge to a high wave-
length, reducing the perovskite films’ defect density and increasing their crystallization
quality. Furthermore, the optical bandgap is in good agreement.

The optical bandgap is in good agreement with the literature (Table 2), where it reduces
drastically until an optimal level as shown in Figure 7. The intercalation of the cesium as a cation
regulates the optical properties of CsPbI3 semiconductor materials for photovoltaic devices [54].
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Figure 5. TEM images of the surface morphology of (a–d) MAPbI3, (b–e) FAPbI3, and (c–f) CsPbI3.

Figure 6. (a) Absorption and (b) Bandgap energy for of MAPbI3, FAPbI3, and CsPbI3.

Table 2. APbI3 thin films’ optical properties.

Sample ID
Optical Band Gap by

Absorption Emission PL Peak Stokes Shift

λc (nm) Eg (eV) λ (nm) Eg (eV) (meV)

MAPbI3 719 1.55 760 1.40 150
FAPbI3 795 1.50 770 1.35 150
CsPbI3 752 1.53 768 1.36 180
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Figure 7. (a) Photoluminescence (PL) (b) normalized PL for MAPbI3, CsPbI3, and FAPbI3 thin films.

4. Degradation Study

The serious problems are the stability issues for the commercialization of perovskite solar
cells. The halide perovskite components are related through weak interactions such as ionic
and hydrogen bonding. The decomposition of organic species and the ion migration happen
quickly in perovskite solar cells under moisture penetration as shown in Figures 8 and 9 [55]. In
this part, we discuss the stability from the viewpoint of cation exchange, CsPbI3, MAPbI3,
and FAPbI3 stabilization, and the best solution for reducing efficiency leakage. Figure 8
shows pictures of samples that were put in 60% humidity under dark conditions, and
from Figure 8 it is clear that MAPbI3 and FAPbI3 have gone through degradation while
CsPbI3 shows resilience against humidity. A few pinholes were observed in samples just
by visually inspecting the surface of the samples. The crystallography of the same samples
was also analyzed by performing XRD of these samples.

Figure 10 shows the XRD patterns of fresh MAPbI3, FAPbI3, and CsPbI3 thin films,
aged for four weeks in the air at 60% humidity under dark conditions and recovered with
thermal treatment under temperature 100 C. Although no technique is generally used
to measure the stability of perovskite thin films, a simple procedure was developed to
analyze them. By comparing the values of the intensities, this method was developed
to detect the most stable thin film. Relative to fresh spectra, essential changes do not
happen in ranges; for example, in the appearance of new peaks, a percentage decrease in
intensity appears to relate with stability since the number of perovskite diffraction planes
is proportional to the total power. This phenomenon explains that the new the peaks that
appear on older films correspond to new phases and demonstrate the partial degradation
of the MAPbI3, FAPbI3, and CsPbI3 thin films. The recovered FAPbI3 and CsPbI3 samples
showed significantly increased stability by thermal treatment due to the hysteretic effect of
these materials related to phase transition. Remarkably, the intensity of the recovered pieces
is higher than the aged CsPbI3 and FAPbI3 prepared. On the other hand, the MAPbI3 film
showed low stability compared to the perovskite based on cesium, see Figure 10. This
study suggests that CsPbI3 improves crystal quality and has high stability. However, we
can see the appearance of the non-perovskite Gphase for the FAPbI3 film in the spectrum in
Figure 10b, showing that parts of the structure had deteriorated in new phases; thus, we
can announce that this study proves that CsPbI3 is the most efficient in these conditions.
The absorption results confirm this conclusion where the aged CsPbI3 and FAPbI3 and
MAPbI3 samples show a dramatic decrease compared to the fresh and recovered samples,
and these results are plotted in Figure 11.
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Figure 8. Degradation mechanism of APbI3 in the air at 60% humidity and under dark conditions.

Figure 9. Recovery mechanism of APbI3 in the air at 60% humidity and under dark conditions. (a) As
deposited samples (b) Degradation of samples (c) Recovery after thermal treatment of samples.
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Figure 10. XRD characterization of APbI3 samples in the air at 60% humidity and under dark
conditions; (a) MAPbI3, (b) FAPbI3, (c) CsPbI3.

Figure 11. Optical absorption of APbI3 samples in the air at 60% humidity and under dark conditions;
(A) MAPbI3, (B) CsPbI3, (C) FAPbI3.
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5. Film Recovering

From the photographs APbI3, as shown in Figures 8 and 9, the color changes from a
deep color to a clear color due to the dissociation or phase transition of perovskite. The
same process was also analyzed with the subject to SEM studies by analyzing the surfaces
of the deposited, degraded, and thermally treated samples. From Figure 12, a pinhole and
change in surface morphology are apparent for pure aged FA and MA samples compared
to fresh ones, but we can note that for Cs samples that show good stability and are well
recovered by thermal treatment, the surface shows fewer pinholes. This is in agreement
with the results of the absorption spectra (plotted in Figure 11) and visual inspection in
Figure 9, which confirms the stability; here, we can offer the route to enhance the stability of
APbI3. We confirm that the incorporation of (Cs) enhances the stabilization of perovskite
and our results are in good agreement with the literature [56].

Figure 12. Fresh, degraded and recovered samples of APbI3 in the air at 60% humidity and under
dark conditions: (A,D,G) MAPbI3 (B,E,H) FAPbI3 (C,F,I) CsPbI3.

6. Numerical Analysis

Device modeling for as-deposited, aged, and recovered samples was performed in
SCAPS, and the simulation parameters that were used for the given device structure
HTL/APbI3/ETL are given in Tables 3–5.

SCAPS-1D is a solar-cell capacitance software that is used to calculate the functional
parameters of the solar cell, such as short circuit current (Jsc), open-circuit voltage (Voc),
Fill factor (FF%), and power-conversion efficiency (PCE%), based on the input parameters
given in Tables 3 and 4 and the absorption profile for each layer [57,58]. SACPS-1D, over
years, has proven to be a significant tool for understanding the physics of solar cells and it
has been comprehensively used for perovskite solar cells [59–64]. SCAPS also calculates
AC quantities, electron/hole densities, quantum efficiencies (QE%)/spectral response,
total recombination currents, energy band diagrams, and current density vs. voltage
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characteristics [65–73] It is based on drift-diffusion differential equations and Poisson’s
carrier (electron/hole transport) continuity equations [63,64].

Table 3. Simulated-device physical input parameters [58,70–73].

Parameters Spiro−OMeTAD
(HTL)

MAPbI3
(Absorber)

FAPbI3
(Absorber)

CsPbI3
(Absorber)

TiO2
(ETL)

W (µm) 0.6 0.4 0.4 0.4 0.1
Eg (eV) 3 1.55 1.5 1.53 3.2
χ (eV) 2.45 3.9 4.0 3.88 4
∈r 3 10 6.6 6 9

Nc
(
cm−3) 2.2× 1018 2.8× 1018 1.2× 1019 1.1× 1020 1× 1019

Nv
(
cm−3) 1.1× 1019 3.9× 1018 2.9× 1018 8× 1019 1× 1019

n, p
(
cm−3) 1× 1015 1× 1014 1× 1014 1× 1014 1× 1016

µe
(
cm2/Vs

)
0.0002 11.8 2.7 16 20

µp
(
cm2/Vs

)
0.0002 11.8 2.8 16 10

Table 4. Defects in layers and interfaces.

Defect Properties Spiro−OMeTAD Absorber Spiro−OMeTAD/
Absorber

Nt 1× 1016 (
cm−3) 3× 1014 (

cm−3) 1× 1014 (
cm−2)

E (eV) 0.6 0.6 0.32
δe
(
cm2) 1× 10−14 1× 10−14 1× 10−16

δh
(
cm2) 1× 10−14 1× 10−14 1× 10−16

Nt : Total density; E : Energy level; δh , δe : Holes and electrons capture cross section area.

Table 5. Percentage loss in different fabricated solar cells PCE; MAPbI3, FAPbI3, and CsPbI3.

Samples Fabricated Samples
PCE [%]

Degraded Samples
PCE [%]

Loss Percentage in
PCE [%]

MAPbI3 22.93 18.29 20.24
FAPbI3 20.74 11.52 44.46
CsPbI3 19.12 16.39 14.28

The HTL/APbI3/ETL desired structures were simulated in SCAPS-1D software; in
this, Spiro−OMeTAD was used as HTL, APbI3 is a perovskite absorber layer with A replac-
ing (MA, FA, Cs) and TiO2 is used as ETL layer. The physical parameters for all structures
remained constant, as shown in Tables 3 and 4, and the only things that we changed in
the absorption profile for the absorber layer were “as-deposited”, “after-degradation” and
“recovery”, along with the band gap of the absorber layers.

• JV and QE% as deposited.
• JV and QE% after degradation.
• JV and QE% after recovery.

The results for JV characteristics along with QE% for as-deposited samples were
plotted in Figures 13 and 14. From the figures, it is visible that solar-cell structure with
MAPbI3 as the absorber layer has a higher PCE% than other structures, as well as QE%.
The reason for this is because of good band alignment and high absorption coefficient with
respect to the other two samples, whereas high open-circuit voltage was achieved for the
sample CsPbI3 due to its wider band gap.
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Figure 13. J-V curve of fabricated samples; MAPbI3, FAPbI3, and CsPbI3.

Figure 14. Quantum efficiency of fabricated samples; MAPbI3, FAPbI3, and CsPbI3.

Similarly, results for JV and QE characteristics after degradation were also plotted in
Figures 15 and 16 below. Figure 15 clearly shows that degradation highly affects the perfor-
mance of FAPbI3 by reducing its open-circuit voltage (Voc) and short circuit current (Jsc).
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Figure 15. J-V curve of fabricated samples degraded; MAPbI3, FAPbI3, and CsPbI3.

Figure 16. Quantum efficiency of fabricated samples degraded; MAPbI3, FAPbI3, and CsPbI3.

Based on these results we calculated the percentage loss of PCE in each solar cell,
and for this, a formula was devised to find the percentage of loss in PCE% during the
degradation of a solar cell. % loss formula is shown in Equation (3) below

% loss =
PCEFS − PCEDS

|PCEFS|
× 100 (3)
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where PCEFS is the fabricated samples power-conversion efficiency estimated in SCAPS-1D
software and PCEDS is the degraded samples power-conversion efficiency estimated in
SCAPS-1D after degradation. Results for % loss are shown in Table 5, and it is clearly shown
that FAPbI3 is highly affected by degradation and CsPbI3 shows more stability.

Similarly, in the last section, we apply the recovery mechanism in SCAPS-1D for given
solar-cell structures, and results are drawn in Figures 17 and 18.

Figure 17. J-V curve of fabricated samples recovered; MAPbI3, FAPbI3, and CsPbI3.

Figure 18. Quantum efficiency of fabricated samples recovered; MAPbI3, FAPbI3, and CsPbI3.
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Similar to % loss, a formula was also devised to find the % gain after recovery of
perovskite thin films, and the formula is shown below in Equation (4).

% gain =
PCERS − PCEDS

|PCEDS|
× 100 (4)

The results for the given formula are drawn in Table 6. Where PCERS is the recov-
ered samples power-conversion efficiency and PCEDS is the degraded samples power-
conversion efficiency. From Table 6, it is clearly shown that CsPbI3 has proven to be
more stable.

Table 6. Percentage gain in different fabricated solar cells PCE; MAPbI3, FAPbI3, and CsPbI3.

Samples Degraded Samples
PCE [%]

Recovered Samples
PCE [%]

Gain Percentage in
PCE [%]

MAPbI3 18.29 19.09 4.37
FAPbI3 11.52 12.04 4.51
CsPbI3 16.39 17.90 9.21

7. Conclusions

The one-step spin-coating technique has successfully prepared CsPbI3 thin films.
The effect of cation A was investigated by XRD, SEM, optical analysis, and SCAPS-1D
solar-cell numerical analysis software. The XRD analysis displays an extraordinary in-
tensity of peak (110) by treating CsPbI3 film with the chlorobenzene antisolvent, leading
to large grains of CsPbI3 thin film examined by SEM and AFM analysis. Furthermore,
the enhancement of light absorption was observed more effectively. To investigate the
degradation effect on device performance, a numerical analysis was performed with de-
vice structures Spiro −OMeTAD/MAPbI3/TiO2, Spiro −OMeTAD/FAPbI3/TiO2 and
Spiro−OMeTAD/CsPbI3/TiO2. Based on the results presented, it was found that CsPbI3
thin films are suitable candidates for efficient, stable, and durable perovskite devices.
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