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Impact of GST thickness 
on GST‑loaded silicon waveguides 
for optimal optical switching
Jorge Parra, Juan Navarro‑Arenas, Miroslavna Kovylina & Pablo Sanchis*

Phase‑change integrated photonics has emerged as a new platform for developing photonic 
integrated circuits by integrating phase‑change materials like GeSbTe (GST) onto the silicon photonics 
platform. The thickness of the GST patch that is usually placed on top of the waveguide is crucial for 
ensuring high optical performance. In this work, we investigate the impact of the GST thickness in 
terms of optical performance through numerical simulation and experiment. We show that higher‑
order modes can be excited in a GST‑loaded silicon waveguide with relatively thin GST thicknesses 
(<100 nm), resulting in a dramatic reduction in the extinction ratio. Our results would be useful for 
designing high‑performance GST/Si‑based photonic devices such as non‑volatile memories that could 
find utility in many emerging applications.

Similarly to micro- and nano-electronics, silicon has become the mainstay material for developing photonic inte-
grated circuits (PICs). Silicon photonics (SiPh) has been established as an appealing technology for a wide range 
of applications in the fields of telecom and  datacom1, quantum  computing2, or  LiDAR3, to name a few. However, 
the active properties of silicon either based on  nonlinearities4 or electro-optic  effects5 are rather modest, thus 
imposing several trade-offs such as compactness and bandwidth. In such a way, there is a compelling interest in 
the integration of complementary metal-oxide-semiconductor (CMOS) compatible materials featuring a large 
refractive index modulation at telecommunication wavelengths to overcome those limitations and provide new 
functionalities to the SiPh platform.

In this context, a plethora of new materials have been proposed in recent years, namely: ferroelectrics, by 
relying on Pockels effect for enabling high-speed and loss-less refractive index modulation such as barium titan-
ate (BTO)6 and lithium niobate (LiNbO3)7; two dimensional (2D) materials, which exploit their large electro-
refractive index such as  graphene8 and transition metal dichalcogenides (TMDs)9; transparent conducting oxides 
(TCOs) such as indium tin oxide (ITO) by leveraging the strong light-matter interaction (LMI) provided by the 
epsilon-near-zero (ENZ)  regime10–12; and phase-change materials (PCMs) such as vanadium dioxide (VO2)13 and 
 chalcogenides14 that stand out for enabling ultra-compact devices thanks to the dramatic change in the refractive 
index together with, in chalcogenides, a reversible non-volatile response at room temperature.

Ge2Sb2Te5 (GST) is one of the most widely used among the different chalcogenide  compounds15. At telecom 
wavelengths, the refractive index of GST typically changes in the order of �n ∼ 2− 3 and �κ ∼ 1 in the real and 
imaginary parts, respectively, between the amorphous (a-GST) and crystalline (c-GST)  state16–18. To undergo the 
crystallization, the GST needs to be heated above ∼ 180◦ C, while for the amorphization, the material must reach 
the melting temperature ( ∼ 650◦ C) followed by a rapid cooling ( > 1− 10◦ C/ns) to produce the melt-quench19. 
Otherwise, the GST is likely to be recrystallized. The phase change can be achieved on-chip by self-heating the 
material with optical pulses and evanescent-field  coupling20 or placing a microheater near the  GST21,22. On the 
other hand, the switching between both states can be achieved with sub-nanosecond  times23, sub-picojoule 
 energies24, and up to 1015  cycles25.

Such appealing properties have led to developing high-performance and new kinds of waveguide-based 
photonic integrated devices such as  modulators26–30, pass  polarizers31, photonic  memories32–37, reconfigurable 
 devices38–40,  switches41–47, or  synapses48. Thereby, enabling new applications based on non-von Neumann archi-
tectures such as  arithmetic49 and  logic50 operations, in-memory  computing51, neuromorphic  computing52,53, or 
photonic tensor  cores54. Moreover, the non-volatile characteristic of GST would be desirable for achieving silicon 
photonic devices with ultra-low power  consumption55.

A waveguide loaded with a thin patch of GST is the basis of most GST-based photonic devices, which usu-
ally exploit the large change in the absorption. Therefore, minimizing insertion losses while maximizing the 
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extinction ratio is the target for such absorption-based devices. In this context, the thickness of the GST layer 
directly impacts the optical performance of GST/Si waveguides. Compared to silicon, GST exhibits a larger real 
part in its refractive index in both states. Hence, the light can be confined and guided (with loss) in smaller 
cross-sections than their silicon counterparts. However, as we demonstrate in this work, the coupling and the 
guiding interplay between silicon and GST can reduce the expected optical performance in contrast to with the 
assumption of single-mode operation. Therefore, the analysis of the GST thickness in such terms is necessary to 
obtain optimal optical switching and provide a more in-depth insight into the optical behavior of such hybrid 
waveguides.

We demonstrate through numerical simulation and experiment that using relatively thick GST layers does not 
imply an enhancement of the optical performance. In fact, this is reduced compared to thinner layers because 
higher-order modes with a low extinction ratio are excited when the GST is crystalline.

Results
Description of GST‑loaded silicon waveguides. Figure 1 illustrates the working principle of the con-
sidered GST/Si waveguide used for optical switching. The waveguide comprises a standard silicon waveguide 
with a layer of GST on top (see inset of Fig. 1). Switching between amorphous and crystalline is achieved by 
triggering the phase change with an external or on-chip stimuli such as evanescent coupling or microheaters. For 
optical actuation, heating originates inside the GST patch, while for microheaters, the heat distribution depends 
on the heater design. Nevertheless, a full change in the GST patch is usually achieved by tailoring the shape of 
the optical or electrical pulses. The phase change is accompanied by a variation on both real and imaginary parts 
of the effective refractive index of the guided light. Therefore, at the output of the hybrid waveguide, the light is 
modulated in both phase and amplitude. On the other hand, the modulation strength is strongly dependent on 
the thickness of the GST patch, which can be tailored between a few and dozens of nanometers during the  fab-
rication process.

Optical modes coupling and propagation. For the materials used in this work, we consider the com-
plex refractive indices ( n+ jκ ) given in the "Methods" section. Those values are used for our numerical simula-
tions, which unless otherwise stated, are given at 1550 nm and for the transverse electric (TE) polarization. Fig-
ure 2a depicts the power transfer between a silicon and GST/Si waveguide in the presence of a step discontinuity. 
Because of the refractive index profile mismatch between both structures, several optical modes may be excited 
in the GST/Si waveguide to fulfill the field continuity condition at the interface. In this regard, the normalized 
transmitted electric field along the propagation direction (z-axis) in the GST/Si waveguide can be approximated 
as a linear combination of the different supported modes or  eigenmodes56 as

where Ŵn is the coupling coefficient between the optical mode of the silicon waveguide and the n th-mode of the 
hybrid waveguide, κeff,n is the corresponding effective extinction coefficient, and � is the working wavelength.

To determine the value of Ŵn , we exploited the reciprocity of the coupling process. Hence, we calculated the 
coupling by exciting the silicon waveguide with the supported optical modes of the GST/Si waveguide. Figure 2b 
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Figure 1.  Illustration of a GST-loaded silicon waveguide and its working principle for optical switching. The 
GST switches between crystalline and amorphous states upon an optical or electrical switching signal. Between 
both states, the refractive index of the GST suffers a dramatic change in both real and imaginary parts, resulting 
in an amplitude and phase modulation of the output light. Inset shows the cross-section and the dimensions of 
the GST/Si waveguide.
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illustrates this process when a GST/Si mode excites the silicon waveguide. Optical mismatch gives rise to uncou-
pled power comprised by reflection and radiation. In this manner, Ŵn can be obtained by assessing the amount 
of power that is transmitted, i.e., coupled to the TE mode of the silicon waveguide. To discriminate between 
radiated and transmitted power, we use the overlap integral:

where E/Hn is the field profile in the silicon waveguide at a certain length when is excited with the n th GST/Si 
optical mode, and E/Hin is the TE fundamental mode of the silicon waveguide. Simulation details can be found 
in the "Methods" section.

Based on our simulations, the hybrid waveguide can support two optical modes (mode 0 and mode 1) in 
the amorphous state. Figure 3 shows the propagation losses and the associated power coupling coefficients as a 
function of the GST thickness. Mode 0 corresponds to the TE polarized fundamental mode of the GST/Si wave-
guide [Fig. 3a]. The light is mainly confined in the silicon waveguide for a very thin GST, giving rise to negligible 
coupling losses. As the GST thickness increases, the light is pushed up towards the GST [see insets of Fig. 3a]. 
However, the real part of the GST refractive index in the amorphous state is not high enough to allow guiding 
inside the GST patch. Consequently, a high percentage of the light remains in the silicon, and the optical coupling 
is still high. On the other hand, mode 1 corresponds to a hybrid optical mode with Ex and Ey components that has 
a cut-off around a thickness of 45 nm [Fig. 3b]. Although the propagation loss of this mode can be comparable to 
mode 0, the coupling is very weak since the light is mostly localized near the boundaries of the GST/Si waveguide.

For the crystalline state, the real part of the GST refractive index suffers a dramatic increase giving rise to 
additional higher-order optical modes [see Fig. 4]. The propagation loss of the fundamental mode (mode 0) can 
reach almost 40 dB/µ m for the highest thickness of GST [see Fig. 4a]. However, the coupling varies from near-
perfect coupling to a high coupling loss for thickness values between 20 nm and 60 nm. Such a change arises 
because the GST becomes the core of the hybrid waveguide [see insets of Fig. 4a]. The hybrid mode (mode 1) 
has a lower cut-off thickness of around 20 nm [see Fig. 4b]  in contrast to the amorphous state. This reduction 
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Figure 2.  (a) Illustration of the power transfer between a silicon and GST/Si waveguide. Due to the optical 
mismatch between both waveguides, the incident power ( Pin ) is radiated outside the waveguide ( Prad ), reflected 
( Pr ), and transmitted ( Pt ). (b) Illustration of the technique used to obtain the coupling efficiency between the 
optical modes of the GST/Si waveguide and the fundamental TE mode of the silicon waveguide by exploiting 
the reciprocity property of the coupling process.

Figure 3.  GST amorphous. Propagation losses (solid line) and coupling (dotted line) for the two supported 
optical modes: (a) fundamental GST TE-like (mode 0) and (b) hybrid (mode 1). Insets show the electric-field 
distribution |E| for a certain GST thickness.
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is due to the larger refractive index contrast. The propagation loss is between 5 and 15 dB/µ m with a maximum 
coupling of ∼ 0.2 . On the other hand, mode 2 has a cut-off thickness of around 55 nm [see Fig. 4c]. For this case, 
the light is guided through the silicon waveguide resembling the TE-like mode of a silicon waveguide [see insets 
of Fig. 4c]. Consequently, there is a weak interaction between the light and GST layer,  yielding to the highest 
coupling values and lowest propagation losses among the three optical modes.

To verify the excitation and optical properties of such higher-order modes, we simulated the optical trans-
mission between a silicon and GST/Si waveguide by using 3D-FDTD. Figure 5 shows the results obtained by 
3D-FDTD (red line) and eigenmode expansion (EME) (blue line) using Eq. (1) together with values of Figs. 3 
and 4. We considered a 5-µm-long GST/Si waveguide like the shown in Fig. 2a ending in perfectly matched layer 
to avoid reflections [see inset of Fig. 5b]. The theoretical transmission considering only the propagation loss of 
the fundamental mode (mode 0) of the GST/Si waveguide is plotted for comparison (dotted line). Results show 
very good agreement between 3D-FDTD and EME simulations. Few discrepancies exist in the amorphous state 
since the fundamental GST/Si mode has small coupling losses and the propagation loss of the hybrid mode is 
similar to the fundamental (see Fig. 3). For the crystalline state, the influence of higher-order modes is notably 
for thicknesses higher than 20 nm. For lower values, modes 1 and 2 are cut-off and cannot be excited. As the 
GST patch is thickened, the coupling to the fundamental mode is reduced, and the values of modes 1 and 2 
are increased (see Fig. 4). Higher-order modes have significantly lower propagation loss than the fundamental. 
Therefore, the discrepancies between the multimode behavior of the GST/Si waveguide and the single-mode 
assumption are enlarged.

Figure 4.  GST crystalline. Propagation losses (solid line) and coupling (dotted line) for the three supported 
optical modes: (a) fundamental GST TE-like (mode 0), (b) hybrid (mode 1), and (c) Si TE-like (mode 2). Insets 
show the electric-field distribution |E| for a certain GST thickness.

Figure 5.  Comparison between 3D-FDTD and eigenmode expansion (EME). Transmission of GST/Si 
waveguide as a function of the GST thickness in the (a) amorphous and (b) crystalline state. Simulations were 
carried out for a step discontinuity between a silicon and GST/Si waveguide. The fundamental TE mode of the 
silicon waveguide impinges into a GST/Si waveguide ending in perfectly matched layer (see inset). Results were 
obtained for a 5 µm-long-GST/Si waveguide. The dotted line stands for the transmission considering a perfect 
coupling of the fundamental (mode 0) TE mode into the GST/Si waveguide.
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Selection of optimal thickness. For optical switching purposes, the optimal thickness of the GST should 
maximize the figure of merit (FOM) that relates the extinction ratio (ER), the insertion loss (IL), and the length 
of the hybrid waveguide, i.e., FOM = ER/(IL×Length). For GST-loaded silicon waveguides, the insertion loss 
and extinction ratio depend on the GST length due to the multimode behavior of the hybrid waveguide in the 
crystalline state. On the other hand, ultra-compact waveguides are desired since this feature enables higher chip 
density and reduces the energy consumption.

Figure 6 shows the optical performance (IL, ER, and FOM) of GST-loaded silicon waveguides calculated by 
EME as a function of the GST thickness and for different lengths. The insertion losses follow a similar trend like 
the propagation loss of the fundamental mode in the amorphous state due to its high coupling efficiency [see 
Fig. 3a]. Conversely, the response of the extinction ratio exhibits a maximum of around 30–40 nm, which stems 
from the multimode operation of the GST/Si waveguide. As the thickness of the GST increases, the contribu-
tion of the fundamental mode to total optical losses is reduced. These are mainly determined by the high-order 
modes (modes 1 and 2), which have much lower propagation losses than mode 0 (see Fig. 4). Such a response is 
transferred to the FOM, as shown in Fig. 6c. For thicknesses greater than 30-40 nm, the FOM suffers a dramatic 
reduction as the GST thickness increases.

Experimental characterization. We experimentally validated our simulations by fabricating and char-
acterizing a multimode GST-loaded silicon waveguide in the amorphous and crystalline states (see "Methods" 
section for details about fabrication and characterization setup). We chose 70 nm for GST thickness to ensure 
the multimode operation in the GST/Si waveguide. Figure 7a shows the measured transmission spectrum of a 
5-µm-long GST/Si waveguide in the amorphous and crystalline state. The inset shows the fabricated waveguide’s 
scanning electron microscope (SEM) image. Results were normalized with respect to a silicon waveguide with-
out GST. We obtained high insertion loss ( ∼ 7 dB) and extinction ratio ( ∼ 30 dB), resulting in a FOM value of 
around 4. These results are in good agreement with our simulations describing the multimode operation (see 
Fig. 6). Accordingly, the optical performance is in the crystalline state is not dominated by the propagation loss 
of the fundamental mode but by the higher-order modes. Otherwise, the extinction ratio would have drastically 
increased to values above 100 dB, i.e., the measured power would have been limited by the noise floor.

To give a better insight into the multimode performance of the waveguide in the crystalline state, we simulated 
the transmission by EME as a function of the GST length, as shown in Fig. 7b. The transmission of each GST/Si 
optical mode and the experimental value (dot) are plotted for comparison. Discrepancies between simulation 
(solid red line) and experiment might be attributed to slight variations on the refractive index of the on-chip GST 
in the crystalline state compared to the thin film or a non-uniform crystallization of the GST layer. Neverthe-
less, as it can be noticed, the contribution of the fundamental mode (mode 0) is very small, mainly due to the 
extremely high propagation losses, and being negligible after a few nanometers [see inset of Fig. 7b]. Therefore, 
the transmission response of the 5-µm-long GST/Si waveguide stems from the interplay between the high-order 
modes (modes 1 and 2), which have much lower propagation losses in comparison with the fundamental mode 
(mode 0).

Discussion
In conclusion, we have investigated and characterized the impact of GST thickness on GST-loaded silicon wave-
guides for optimal optical switching. Our results show that for thicknesses greater than ∼ 30 nm, GST/Si wave-
guides may work in a multimode regime arising from the large refractive index of GST. The multimode operation 
results in a reduction of the performance compared to the assumption of single-mode transmission, in which 
the light is mostly guided within the GST layer. Through numerical simulation, we unveil that the origin of such 
a multimode is the large step-index discontinuity between the silicon and GST/Si waveguide. Our experimental 
results confirm the optical performance’s multimode operation and the associated turndown. For a 70-nm-thick 

Figure 6.  Optical performance of GST-loaded silicon waveguides calculated by eigenmode expansion as a 
function of the GST thickness and for different lengths. (a) Insertion loss. (b) Extinction ratio. (c) Figure of 
merit.
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and 5-µm-long GST patch, we obtain an insertion loss and extinction ratio of 7 dB and 30 dB, respectively, result-
ing in a FOM of around 4. Such values represent almost a six-fold reduction in the FOM value with respect to 
the assumption of single-mode operation. Hence, confirming that utilizing thick GST layers may not be optimal 
in GST-loaded silicon waveguides for optical switching purposes.

Our results are helpful for further developing and optimizing GST-based silicon photonic components and 
circuits that might apply in emerging fields such as non-volatile switching, photonic tensor cores, and neuro-
morphic computing.

Methods
Optical constants and GST refractive index characterization. For the materials used in this work, 
we consider the complex refractive indices ( n+ jκ ) shown in Table 1. For GST, we experimentally determined 
the refractive index in both states from a 70-nm-thick Ge2Sb2Te5 thin film deposited in a gold substrate by 
using e-beam evaporation. As-deposited GST was amorphous, while crystallization was achieved by heating 
the sample with a hot plate at ∼ 180◦ C for 10 min. The complex refractive index was calculated from reflection 
measurements using Fourier-transform infrared (FTIR) spectroscopy.

Simulation of the optical modes and coupling. The optical modes and their associated effective com-
plex refractive indices were obtained by using 2D finite element method (FEM) using FemSIM tool from  RSoft57. 
We applied a non-uniform mesh of 20 nm × 20 nm (x × y) with a minimum division of 10 points in the GST 
thickness (y-axis). On the other hand, the mode coupling was obtained by 3D finite-difference time-domain 
(3D-FDTD) simulations using FullWAVE tool from  RSoft58. We applied a non-uniform mesh of 20 nm × 20 nm 
× 20 nm (x × y × z) with a minimum division of 10 points in the thickness (y-axis) of the GST layer. Perfectly 
matched layers (PMLs) were utilized to all the boundaries, except at x = 0 in which symmetric boundary condi-
tion was used.

Fabrication and characterization setup. The photonic strucrures were fabricated in 220-nm-thick sili-
con-on-insulator (SOI) and patterned by e-beam. GST was deposited by e-beam evaporation from a Ge2Sb2Te5 
source and etched by lift-off in acetone. As-deposited GST was amorphous, while crystallization was achieved 
by heating the samples above the crystallization temperature ( ∼ 180◦ C) for several minutes. Grating couplers 
were used for fiber-to-chip coupling.

To characterize the sample, we used a continuous-wave tunable laser working in the C-band (Photonetics 
ECL-1600). Polarization was adjusted to TE with a polarization controller (Thorlabs FC032) before injecting it 

Figure 7.  (a) Measured spectrum of the fabricated 70-nm-thick and 5-m-long GST/Si waveguide in the 
amorphous and crystalline state. The inset shows a scanning electron microscope (SEM) image of the 
waveguide. The scale bar is 2 µ m. The dashed line encloses the GST layer. (b) Simulated transmission 
and contribution of each mode along the 5-µm-long GST/Si waveguide at a wavelength of 1550 nm. The 
experimental transmission value is also shown. The inset depicts a zoom-out of the plot.

Table 1.  Refractive index of the materials at 1550 nm. a-GST (c-GST) stands for GST in the amorphous 
(crystalline) state.

Air Si SiO2 a-GST c-GST

n+ jκ 1 3.476 1.444 4.373+ j0.0937 6.463+ j1.074
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into the chip. At the output, optical power was recorded using a power meter (Thorlabs PM320E) and a high-
sensitivity photodiode (Thorlabs S155C).

Data availibility
The datasets generated and/or analyzed during the current study are available in the Zenodo repository, https:// 
doi. org/ 10. 5281/ zenodo. 62015 10.
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