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Consistency of pacing profile 
according to performance 
level in three different editions 
of the Chicago, London, and Tokyo 
marathons
Fran Oficial‑Casado 1, Jordi Uriel2, Irene Jimenez‑Perez 1,3, Márcio Fagundes Goethel 4,5, 
Pedro Pérez‑Soriano 1 & Jose Ignacio Priego‑Quesada 1,3*

Running pacing has become a focus of interest over recent years due to its relationship with 
performance, however, it is still unknown the consistency of each race in different editions. The aim 
of this study is to analyze the consistency of pacing profile in three consecutive editions of three 
marathon races. A database of 282,808 runners, compiled from three different races (Chicago, 
London, and Tokyo Marathon) and three editions (2017, 2018, and 2019) was analyzed. Participants 
were categorized according to their time performance in the marathon, every 30 min from 2:30 h 
to sub‑6 h. The relative speed of each section for each runner was calculated as a percentage of the 
average speed for the entire race. The intraclass correlation coefficients (ICC) of relative speed at 
the different pacing section, taking into account the runner time categories, was excellent over the 
three marathon editions (ICC > 0.93). The artificial intelligence model showed an accuracy of 86.8% 
to classify the runners’ data in three marathons, suggesting a consistency between editions with 
identifiable differences between races. In conclusion, although some differences have been observed 
between editions in certain sections and marathon runner categories, excellent consistency of 
the pacing profile was observed. The study of pacing profile in a specific marathon can, therefore, 
be helpful for runners, coaches and marathon organizers for planning the race and improving its 
organization.

Marathons events are becoming increasingly popular, with a high number of participants (> 30,000 in many 
cases)1, where the main goal for runners is to regulate energy resources to avoid premature fatigue and so fin-
ish the  race2,3. Pacing, considered as the evolution of speed throughout the competition depending on runners’ 
priorities, capabilities, physiological, psychological, energetic, and environmental  factors3–5, has increased the 
focus of interest over recent years due to its relationship with  performance2,3,6–9. A pacing profile can be affected 
by factors such as  age10–14,  sex7,9,15–18, metabolic and cardiovascular  factors19,20, performance  level8,21–24, previ-
ous  experience2,25,  footwear26, collective  behavior27 or race  characteristics8. Although more attention has been 
paid to several factors such as sex or performance level, others like individual race characteristics need further 
 investigation8.

In relation to individual race characteristics, Haney and  Mercer28 analyzed Las Vegas and San Diego mara-
thons without observing any differences between them in terms of pacing profile. Both races had similar slope 
profiles and they suggested that larger differences in this characteristic could have a greater effect on  pacing28. 
A recent study assessed four marathons (Valencia, Chicago, London, and Tokyo marathons) observing differ-
ences in their pacing characteristics (e.g., the difference in relative speed between the first and second half of the 
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marathon)8, and slope profile and environmental temperature were suggested as possible explanatory  factors8. 
Although pacing profile could be different depending on each race, it is important to investigate whether this 
profile is consistent in different race editions. For example, a consistent pacing profile of races would allow run-
ners to analyze race characteristics prior to the competition and plan pacing during the race, and would enable 
organizers to analyze pacing profile to take decisions on the organization of the race (where to start and finish, 
race circuit, starting dynamics, etc.).

The aim of this study, therefore, was to analyze the consistency of pacing profile in three consecutive editions 
of three marathon competitions. It was hypothesized that the consistency of the pacing profile would be high, 
since, in the races analyzed, there had been no changes made to the route, and any reduction in consistency 
would be observed if the environmental conditions differed between editions.

Materials and methods
Study design. One possibility to carry out this study was to measure the reproducibility from the data of 
runners of different categories who participated in three editions of the same marathon. However, this type of 
design has significant limitations, such as the difficulty of getting enough sample in several different marathons 
and the fact that the runners’ performance cannot be guaranteed to be the same for three years. For this reason, 
it was decided to study consistency using three different statistical techniques from an extensive database: intra-
class correlation study, analysis of differences through ANOVAs, and artificial intelligence.

This manuscript is a continuation of a previous  publication8. In this last publication, the database was based 
on only one edition of four marathons to assess if different pacing profiles were observed. The analysis of this 
data evocated a new question about the assessment of the consistency of the marathons. Therefore, in the current 
study, three different editions of three marathons were assessed.

Database. This study was approved by the Ethical Committee for Research in Humans of the University of 
Valencia (ref. H1544598666277) and followed the relevant European regulations for data protection and is in 
accordance with the Declaration of Helsinki. An automatic web scraping application developed in MATLAB 
(Mathworks Inc., Natick, USA), was employed. This application is designed to obtain the runners’ times at dif-
ferent kilometer points of a marathon: 5, 10, 15, 21 km, 25, 30, 35, 40 and 42.2 km. All data were obtained and 
analyzed anonymously from the official and public websites of three editions (2017, 2018, and 2019) and three 
marathons’ races: Chicago Marathon (USA; https:// chica go- histo ry.r. mikat iming. com/ 2019/), London Mara-
thon (UK; https:// www. tcslo ndonm arath on. com/ resul ts/ race- resul ts), and Tokyo Marathon (Japan; https:// 
www. marat hon. tokyo/ en/ about/ past/). These marathons were selected because were gold label races, with an 
important number of participants, and with no alteration of their route in the last three editions. Inclusion crite-
ria were to have full pacing data registered on the website and to finish the marathon in less than 6 h. From the 
database obtained, outliers were identified by the intersection of different outlier detection methods defined by 
the package "OutlierDetection" in RStudio (version 1.2.5033) and removed from the database. The sample size 
of the total database was, therefore, 282,808 runners. Table 1 shows the characteristics of the marathons assessed.

Data analysis. Participants were categorized according to their finish time in the marathon: sub-2:30 
(n = 812), sub-3:00 (between 2:30 and 2:59 h, n = 12,503), sub-3:30 (between 3:00 and 3:29 h, n = 32,038), sub-
4:00 (between 3:30 and 3:59 h, n = 54,727), sub-4:30 (between 4:00 and 4:29 h, n = 56,229), sub-5:00 (between 
4:30 and 4:59 h, n = 55,436), sub-5:30 (between 5:00 and 5:29 h, n = 41,306) and sub-6:00 (between 5:29 and 
5:59 h, n = 29,757). Full marathon average speed and the average speed of each section were calculated individu-
ally. The relative speed of each section for every runner was then calculated as a percentage of the average speed 
of whole  race6. Other pacing variables were  calculated7,8: Pacing range (difference between the maximum and 
the minimum relative speed obtained in the sections), DifHalf (difference in relative speed between the first half 
of the marathon and the second half), and ΔRelative speed (difference in relative speed between the km 10 sec-
tion and km 40 section).

Statistical analysis. Statistical analysis was performed using RStudio software (version 1.2.5033). To assess 
the consistency of the pacing profile of the different marathons, the intraclass correlation coefficient (ICC), dif-
ferences between editions using ANOVAs, and the artificial intelligence method was analyzed. The ICC from 
the model, based on an average measurement, absolute-agreement, and 2-way random-effects model ("2,k")29, 
was calculated between the three years at each of the marathons and runner time categories for the evolution 
of the relative speed throughout the race. To be able to compare these values with the differences between the 
marathons, the same ICC analysis was performed, but between the marathons. ICC values were also calculated 
between the three years for each pacing variable: Pacing range, DifHalf, and ΔRelative speed. The following 
classification of ICC values was  used30: values 1.00 to 0.81 (excellent reproducibility), 0.80 to 0.61 (very good), 
0.60 to 0.41 (good), 0.40 to 0.21 (reasonable) and, from 0.20 to 0.00 (poor). This type of ICC model was used 
considering that mean values for each edition were compared and no single runner’s data that were involved in 
the three editions.

To analyze the differences between marathon editions, parametric tests were used due to the large sample 
sizes in all the groups  assessed31. Repeated measures ANOVAs, with one within-subject factor (pacing section) 
and one inter-subject factor (edition), were applied for the relative speed for each marathon and runner time 
categories. Bonferroni post-hoc test and Cohen’s effect sizes (ES)32 were applied for pair-comparisons. One-way 
ANOVAs were performed to assess the differences between marathon editions using pacing profile variables 
(Pacing range, DifHalf, and ΔRelative speed). The significance level was set at p < 0.05 and ES > 0.8 (large effect 

https://chicago-history.r.mikatiming.com/2019/
https://www.tcslondonmarathon.com/results/race-results
https://www.marathon.tokyo/en/about/past/
https://www.marathon.tokyo/en/about/past/
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size) to ascertain a non-overlap in mean scores greater than 47%32. Data are reported as mean ± standard devia-
tion in the figures with 95% confidence intervals of the differences (CI95%) in the text.

If marathons present a consistency between editions but differ from other marathons, artificial intelligence 
would identify the marathon assessing pacing profile data. Therefore, a feedforward-type network structure of 
an artificial neural network (ANN) (Fig. 1) with 2 hidden layers was constructed, containing 40 neurons in each 
layer. The transfer function used in the first layer was the tansigmoidal and in the second softmax. Learning 
took place by reverse propagation with Bayesian regularization. The data included in the ANN as inputs were 
the average speed at each section, the runner’s category, and the three profile variables assessed. The dataset 
was randomly divided into proportions of 70% for training and 30% for testing. The training performance was 
demonstrated through the mean square error value, which reached its minimum value of 0.132 after 604 epochs. 
ANN analysis was performed using Matlab (version 2020b, The Math Works Inc., Natick, MA, USA).

Results
The ICC of relative speed at the different pacing sections, taking runner time categories into account, was excel-
lent between the three marathon editions (ICC > 0.93) (Fig. 2). The 2018 Chicago edition presented higher rela-
tive speed for sub-2:30 runners at km 21.1 than the other two editions (vs. 2017 CI95% [1.0, 2.3%] p < 0.001 and 
ES = 0.8; vs. 2019 CI95% [1.3, 2.3%] p < 0.001 and ES = 0.9), lower relative speed at the end of the race compared 
with the 2017 edition for sub-2:30 (CI95% [− 3.7, − 7.5%] p < 0.001 and ES = 0.9), and lower relative speed at 
the end of the race compared with the 2019 edition for sub-4:00 runners (CI95% [− 0.7, − 1.1%] p < 0.001 and 
ES = 0.8). Overall, the 2018 London edition presented higher relative speed in the first 21 km than the other 
two editions for runners from sub-2:30 (e.g. km 21.1: vs. 2017 CI95% [3.0, 4.7%] p < 0.001 and ES = 2.4; vs. 2019 
CI95% [3.8, 5.4%] p < 0.001 and ES = 2.8) to sub-4:00 (e.g. km 5: vs. 2017 CI95% [4.9, 5.3%] p < 0.001 and ES = 0.9; 
vs. 2019 CI95% [4.3, 4.7%] p < 0.001 and ES = 0.8), and just at the beginning of the race compared with the 2017 
edition for sub-4:30 (CI95% [4.5, 5.0%] p < 0.001 and ES = 0.8) and sub-5:00 runners (CI95% [5.5, 6.0%] p < 0.001 
and ES = 0.8). The Tokyo editions did not differ in any of the runner time categories and pacing sections (p > 0.05 
and ES > 0.8) and no differences were observed between the 2017 and 2019 editions in any of the marathons 
assessed (p > 0.05 and ES > 0.8).

Figure 3 shows the differences and ICC values between the three marathons regardless of the annual edi-
tion. The figure exemplifies how ICC values were lower when comparing different marathons (ICC 0.75–0.97), 
especially for the higher runner time categories, than for different editions of the same marathon (Fig. 2; ICC 
0.93–1.00).

Moreover, pacing variables showed excellent ICC coefficients between editions (Fig. 4; ICC > 0.87) and did 
not present any differences between marathon editions (p > 0.05 and ES < 0.8).

The ANN structure reached 86.8% of total accuracy. Detailed sensitivity and specificity values for each mara-
thon are demonstrated using a confusion matrix (Fig. 5), showing that most false positives and false negatives 
were lower than the 7% of the cases, and 87, 80, and 98% of runners were correctly classified for Chicago, London 
and Tokyo races, respectively.

Table 1.  Characteristics of the marathons assessed. *1Environmental conditions were obtained for Tokyo from 
the official website of the marathon, and for London and Chicago from the website https:// www. timea nddate. 
com. *2Elevation gain and loss were obtained from the data of a runner that performed all the marathons 
(Garmin 920XT, Garmin Ltd, Switzerland).

Race Chicago London Tokyo

Edition (year) 2017 2018 2019 2017 2018 2019 2017 2018 2019

Date (day/month) 08/10 07/10 13/10 23/04 22/04 28/04 26/02 25/02 03/03

Number of participants assessed 36,792 38,619 39,503 33,522 32,127 35,870 18,756 26,564 21,055

Mean environmental temperature (°C)*1 23 16 11 12 22 12 12 6 5

Mean environmental humidity (%)*1 74 89 60 65 75 69 31 45 76

Elevation gain (m)*2 11 37 22

Elevation loss (m)*2 21 60 48

Figure 1.  Artificial neural network structure.

https://www.timeanddate.com
https://www.timeanddate.com
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Discussion
The aim of this study was to analyze pacing profile consistency in three consecutive editions of three different 
marathon competitions. The main results were that, although the ICC coefficients of relative speed at the different 

Figure 2.  Mean and standard deviation of relative speed (percentage of average speed for the full marathon) at 
the different pacing sections assessed for the different marathon editions. The intraclass correlation coefficient 
(ICC) between years is shown for each marathon and runner time category. Differences (p < 0.05 and ES > 0.8) 
between years are shown using symbols (*** p < 0.001 and ES > 0.8 between 2017 and 2018; ### p < 0.001 and 
ES > 0.8 between 2018 and 2019; no differences being observed between 2017 and 2019 editions).
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pacing sections, taking runner time categories into account, were excellent, some differences were observed 
between editions for some sections and categories of the Chicago and London marathons. The 2018 Chicago 
edition presented higher relative speed at km 21.1 and lower relative speed at the end of the race for sub-2:30 
runners, and lower relative speed at the end of the race for sub-4:00 runners. 2018 London edition presented 
higher relative speed in the first 21 km than the other two editions for runners from sub-2:30 to sub-4:00. Pac-
ing variables also presented excellent ICC coefficients with no differences between editions. Finally, artificial 
intelligence showed an accuracy of the 86.8% to classify the data of the runners in three marathons, suggesting 
a consistency between editions with identifiable differences between races.

Coaches are starting to analyze pacing profile of a specific race to plan their runner’s competition. Similarly, 
for race organizers, to analyze this pacing profile would enable to take decisions on the organization. However, 
to know if this analysis is valid, it is necessary to assess if the races are consistent in the different editions. To 
our knowledge, this is the first study analyzing consistency in pacing according time categories of different 
marathons editions. Our results shows that marathon editions presented excellent consistency, understanding 
this interpretation based on the excellent ICC values of relative speed at the different pacing sections, also excel-
lent ICC values of pacing variables that can define the pacing profile of the race, and also by the good accuracy 
observed by the artificial intelligence model assessed. This result has an important practical application as it 
confirms that analyzing the pacing profile of a specific race can be useful for different purposes. Firstly, it is of 
use to runners and coaches aiming to plan the pacing strategy of the race according mostly to their performance 
level demands. Negative and even pacing throughout a race has been suggested as the most successful profile in 
a  marathon2,4,6,8,15,21. However, it has also been observed that positive pacing can be a good strategy to achieve 
the best performance in specific races with particular course  profile33. The fact that the pacing profile of the 
race is consistent means that a runner can analyze pacing profile of previous editions of a specific race and take 
into account in a runner’s  strategy8, cause it seems a consequence of performance probably due to different 
interaction of factors limiting performance such as psychological, physiological, metabolic, and cardiovascular 
 demands2,11,19,20,27. Secondly, it is useful for organizers when it comes to evaluating how organizational changes 
in the edition could alter the pacing profile of the competition, if their goal is to facilitate runners records. An 

Figure 3.  Mean and standard deviation of relative speed (percentage of average speed for the full marathon) 
at the different pacing sections of the marathons analyzed. The intraclass correlation coefficient (ICC) between 
marathons is shown for each of the runner time categories. Differences (p < 0.05 and ES > 0.8) between 
marathons are shown using symbols (*** p < 0.001 and ES > 0.8 between Chicago and London; &&& p < 0.001 
and ES > 0.8 between Chicago and Tokyo; ### p < 0.001 and ES > 0.8 between London and Tokyo).
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Figure 4.  Boxplots of pacing range (A), DifHalf (B), and ΔRelative speed (C) of the marathons assessed. 
Intraclass correlation coefficients (ICC) between editions are shown for each marathon. No differences (p > 0.05 
and ES < 0.8) were observed between marathon editions.
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example of this is how most races try to reduce crowding at the beginning of the race due to its effect on the 
relative speed of the initial  section34. The pacing variables’ ICC coefficients were also excellent, suggesting that 
these variables could be used to characterize a specific marathon. Each one of the three variables assessed pro-
vides different information about the pacing characteristics of the race. The DifHalf is related to the facility of 
performing one of the types of profile (positive or negative pacing profile) which is of interest to coaches and 
elite athletes for improving marks or breaking marathon  records6,15. Moreover, the pacing range is related to 
variability and ΔRelative speed to compare the beginning and the end of the  race8.

ICC coefficients between the three marathons were also assessed to understand the interaction between 
category and race profile. Unsurprisingly, the ICCs were lower when evaluating the three competitions together. 
However, it was observed that these coefficients can still be considered very good (ICC > 0.75). This is in agree-
ment with the results of Oficial-Casado and  colleagues8, who observed that, although a specific marathon and its 
characteristics affect pacing, the effect of time category is decisive. Faster runners have a much more homogene-
ous profile throughout the race, and, as the time category increases, these runners perform the first half faster 
to the detriment of the second half of the race (positive pacing)2,8,21.

Concerning the differences observed between editions in certain categories and sections, we can just speculate 
on the reason for the results obtained due to the type of study carried out. In the case of the Chicago Marathon, 
the differences observed are in two categories (sub-2: 30 and sub-4:00) and concrete sections (km 20 and 40). 
We could then hypothesize that these differences are due to collective  behaviors27 and specific runners of the 
2018 edition. However, London presents more obvious differences between 2018 and the other two editions, and 
that is also found in most categories. The information available on the marathon website shows that the same 
route was taken in the three editions, and no logistical changes were found so that this reason can be ruled out. 
However, one reason that can explain these differences is the higher temperature observed in the 2018 edition. 
This higher environmental temperature could explain the faster relative speed in the first sections of the  race35,36, 
and also a decrease in speed in the second half of the race due to thermal  stress35,37. Further studies could explore 
the effect of environmental conditions on pacing in a controlled laboratory study.

Finally, the artificial intelligence model was able to identify the race with an accuracy of 87% based only on 
pacing profile data. This result provides confidence that the profile is specific to each race, and it is also consistent 
across different editions, although it may present some differences.

The main limitation of this study is the fact that reproducibility was not assessed in controlled laboratory 
conditions, which would allow us to control more factors that could affect pacing. Clearly, however, that kind 
of laboratory study would also have several limitations such as low ecological validity and small sample size, 
in contrast to the positive aspects of the current study that analyzed 282,808 runners’ data with robust statisti-
cal results. We assume that these results are generalizable for gold label marathons with no changes in their 
route. However, consistency could be different for non-gold label marathons, or with small modifications in the 

Figure 5.  Matrix Confusion of the test dataset.
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organization, route or with lower number of participants, which encourages further research. Finally, as the data 
was obtained anonymously, factors such as the age or the sex were not analyzed.

In conclusion, although some differences were found between editions in certain sections and runners’ time 
categories of the three different marathons, the data suggested that an excellent consistency of the pacing profile 
was observed between their editions. Therefore, the study of the pacing profile for a specific marathon can be 
helpful to runners, coaches and marathon organizers for planning the race and improving its organization.

Data availability
The datasets generated and analysed during the current study are available in the Mendeley repository (doi: 
https:// doi. org/ 10. 17632/ xvfvk 2zvhw.1; https:// data. mende ley. com/ datas ets/ xvfvk 2zvhw/1).

Received: 18 January 2022; Accepted: 14 June 2022

References
 1. Vitti, A., Nikolaidis, P. T., Villiger, E., Onywera, V. & Knechtle, B. The, “New York City Marathon”: Participation and performance 

trends of 1.2M runners during half-century. Res. Sports Med. 28, 121–137 (2020).
 2. Swain, P., Biggins, J. & Gordon, D. Marathon pacing ability: Training characteristics and previous experience. Eur. J. Sport Sci. 20, 

1–7 (2019).
 3. Deaner, R. O., Addona, V. & Hanley, B. Risk taking runners slow more in the marathon. Front. Psychol. https:// doi. org/ 10. 3389/ 

fpsyg. 2019. 00333 (2019).
 4. Casado, A., Hanley, B., Jiménez-Reyes, P. & Renfree, A. Pacing profiles and tactical behaviors of elite runners. J. Sport Health Sci. 

10, 537–549 (2021).
 5. Edwards, A. M. & Polman, R. C. J. Pacing and awareness: Brain regulation of physical activity. Sports Med. 43, 1057–1064 (2013).
 6. Díaz, J. J., Fernández-Ozcorta, E. J. & Santos-Concejero, J. The influence of pacing strategy on marathon world records. Eur. J. 

Sport Sci. 18, 781–786 (2018).
 7. Nikolaidis, P. T. & Knechtle, B. Pacing strategies in the ‘Athens Classic Marathon’: Physiological and psychological aspects. Front. 

Physiol. https:// doi. org/ 10. 3389/ fphys. 2018. 01539 (2018).
 8. Oficial-Casado, F., Uriel, J., Pérez-Soriano, P. & Quesada, J. I. P. Effect of marathon characteristics and runners’ time category on 

pacing profile. Eur. J. Sport Sci. 21, 1559–1566 (2021).
 9. Muñoz-Pérez, I. et al. Different race pacing strategies among runners covering the 2017 Berlin Marathon under 3 hours and 30 

minutes. PLoS ONE 15, e0236658 (2020).
 10. March, D. S., Vanderburgh, P. M., Titlebaum, P. J. & Hoops, M. L. Age, sex, and finish time as determinants of pacing in the mara-

thon. J. Strength Cond. Res. 25, 386–391 (2011).
 11. Breen, D., Norris, M., Healy, R. & Anderson, R. Marathon pace control in masters athletes. Int. J. Sports Physiol. Perform. 13, 

332–338 (2018).
 12. Cuk, I., Nikolaidis, P. T., Villiger, E. & Knechtle, B. Pacing in long-distance running: Sex and age differences in 10-km race and 

marathon. Medicina (Mex.) 57, 389 (2021).
 13. Nikolaidis, P. T., Cuk, I., Rosemann, T. & Knechtle, B. Performance and pacing of age groups in half-marathon and marathon. Int. 

J. Environ. Res. Public Health 16, 1777 (2019).
 14. Nikolaidis, P. T. & Knechtle, B. Pacing in age group marathoners in the “New York City Marathon”. Res. Sports Med. 26, 86–99 

(2018).
 15. Díaz, J. J., Fernández-Ozcorta, E. J., Torres, M. & Santos-Concejero, J. Men vs. women world marathon records’ pacing strategies 

from 1998 to 2018. Eur. J. Sport Sci. 19, 1297–1302 (2019).
 16. Cuk, I., Nikolaidis, P. T., Markovic, S. & Knechtle, B. Age differences in pacing in endurance running: Comparison between 

marathon and half-marathon men and women. Medicina (Mex.) 55, 479 (2019).
 17. Cuk, I., Nikolaidis, P. T. & Knechtle, B. Sex differences in pacing during half-marathon and marathon race. Res. Sports Med. 28, 

111–120 (2020).
 18. Nikolaidis, P. T., Ćuk, I. & Knechtle, B. Pacing of women and men in half-marathon and marathon races. Medicina (Mex.) 55, 14 

(2019).
 19. Rapoport, B. I. Metabolic factors limiting performance in marathon runners. PLoS Comput. Biol. 6, e1000960 (2010).
 20. Billat, V. L., Palacin, F., Correa, M. & Pycke, J.-R. Pacing strategy affects the sub-elite marathoner’s cardiac drift and performance. 

Front. Psychol. https:// doi. org/ 10. 3389/ fpsyg. 2019. 03026 (2020).
 21. Hettinga, F. J., Edwards, A. M. & Hanley, B. The science behind competition and winning in athletics: Using world-level competi-

tion data to explore pacing and tactics. Front. Sports Act. Living https:// doi. org/ 10. 3389/ fspor. 2019. 00011 (2019).
 22. Renfree, A. & Gibson, A. S. C. Influence of different performance levels on pacing strategy during the Women’s World Champion-

ship marathon race. Int. J. Sports Physiol. Perform. 8, 279–285 (2013).
 23. Nikolaidis, P. T. & Knechtle, B. Effect of age and performance on pacing of marathon runners. Open Access J. Sports Med. 8, 171–180 

(2017).
 24. Nikolaidis, P. T. & Knechtle, B. Do fast older runners pace differently from fast younger runners in the ‘New York City Marathon’?. 

J. Strength Cond. Res. 33, 3423–3430 (2019).
 25. Micklewright, D., Papadopoulou, E., Swart, J. & Noakes, T. Previous experience influences pacing during 20 km time trial cycling. 

Br. J. Sports Med. 44, 952–960 (2010).
 26. Rodrigo-Carranza, V., González-Mohíno, F., Santos del Cerro, J., Santos-Concejero, J. & González-Ravé, J. M. Influence of advanced 

shoe technology on the top 100 annual performances in men’s marathon from 2015 to 2019. Sci. Rep. 11, 22458 (2021).
 27. Renfree, A., Crivoi do Carmo, E., Martin, L. & Peters, D. M. The influence of collective behavior on pacing in endurance competi-

tions. Front. Physiol. 6, 373 (2015).
 28. Haney, T. A. & Mercer, J. A. A description of variability of pacing in marathon distance running. Int. J. Exerc. Sci. 4, 133–140 (2011).
 29. Shrout, P. E. & Fleiss, J. L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 86, 420–428 (1979).
 30. Weir, J. P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond Res. Natl. 

Strength Cond. Assoc. 19, 231–240 (2005).
 31. Blanca, M. J., Alarcón, R., Arnau, J., Bono, R. & Bendayan, R. Non-normal data: Is ANOVA still a valid option?. Psicothema 29, 

552–557 (2017).
 32. Cohen, J. Statistical Power Analysis for the Behavioral Sciences 2nd edn. (Routledge, 1988).
 33. Santos-Lozano, A., Collado, P. S., Foster, C., Lucia, A. & Garatachea, N. Influence of sex and level on marathon pacing strategy. 

Insights from the New York City Race. Int. J. Sports Med. 35, 933–938 (2014).
 34. Treiber, M. Crowd flow modeling of athletes in mass sports events: A macroscopic approach. In Traffic and Granular Flow ’13 (eds 

Chraibi, M. et al.) 21–29 (Springer, 2015). https:// doi. org/ 10. 1007/ 978-3- 319- 10629-8_3.

https://doi.org/10.17632/xvfvk2zvhw.1
https://data.mendeley.com/datasets/xvfvk2zvhw/1
https://doi.org/10.3389/fpsyg.2019.00333
https://doi.org/10.3389/fpsyg.2019.00333
https://doi.org/10.3389/fphys.2018.01539
https://doi.org/10.3389/fpsyg.2019.03026
https://doi.org/10.3389/fspor.2019.00011
https://doi.org/10.1007/978-3-319-10629-8_3


9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10780  | https://doi.org/10.1038/s41598-022-14868-6

www.nature.com/scientificreports/

 35. Trubee, N. W., Vanderburgh, P. M., Diestelkamp, W. S. & Jackson, K. J. Effects of heat stress and sex on pacing in marathon runners. 
J. Strength Cond. Res. 28, 1673–1678 (2014).

 36. Spitz, M. G., Kenefick, R. W. & Mitchell, J. B. The effects of elapsed time after warm-up on subsequent exercise performance in a 
cold environment. J. Strength Cond. Res. 28, 1351–1357 (2014).

 37. Ely, M. R., Cheuvront, S. N., Roberts, W. O. & Montain, S. J. Impact of weather on marathon-running performance. Med. Sci. 
Sports Exerc. 39, 487–493 (2007).

Author contributions
F.O.C. and J.I.P.Q. had the conceptualization of the idea. All the authors contributed to the design of the study. 
J.U., M.F.G. and J.I.P.Q. worked in the data curation. M.F.G. and J.I.P.Q. performed the statistical analysis and 
the data visualization. I.J.P., P.P.S. and J.I.P.Q. supervised the project. F.O.C. and J.I.P.Q. wrote the original draft 
of the manuscript, and all authors reviewed, edited, and agreed to the final version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.I.P.-Q.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Consistency of pacing profile according to performance level in three different editions of the Chicago, London, and Tokyo marathons
	Materials and methods
	Study design. 
	Database. 
	Data analysis. 
	Statistical analysis. 

	Results
	Discussion
	References


