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Quantizations and global hypoellipticity for
pseudodifferential operators of infinite order in classes of
ultradifferentiable functions

Vicente Asensio

Abstract

We study the change of quantization for a class of global pseudodifferential operators of
infinite order in the setting of ultradifferentiable functions of Beurling type. The composition
of different quantizations as well as the transpose of a quantization are also analysed, with
applications to the Weyl calculus. We also compare global w-hypoellipticity and global
w-regularity of these classes of pseudodifferential operators.

1 Introduction

In the present paper, we deal with the change of quantization in the class of global pseudodiffer-
ential operators introduced by Jornet and the author in [1]. The symbols are of infinite order
with exponential growth in all the variables, in contrast to the approach of Zanghirati [26] and
Fernandez, Galbis, and Jornet [16], who treat pseudodifferential operators of infinite order in
the local sense and infinite order only in the last variable, for Gevrey classes and for classes of
ultradifferentiable functions of the Beurling type in the sense of Braun, Meise, and Taylor [9)].
In [1, 16], the composition of two operators is given in terms of a suitable symbolic calculus.
On the other hand, Prangoski [24] studies pseudodifferential operators of global type and infinite
order for ultradifferentiable classes of Beurling and Roumieu type in the sense of Komatsu. We
refer also to [10, 11, 13, 22] and the references therein to find other papers discussing pseudod-
ifferential operators defined in global classes (especially Gelfand-Shilov classes).

The appropriate setting in the present paper and in [1] is the space of (non-quasianalytic)
global ultradifferentiable functions defined by Bjérck [2], characterized as those f € S(R?), i.e.
in the Schwartz class, such that for all A > 0 and all a € N¢ both

sup M@ |9 f(z)] and sup X9 (¢)]
rEeR4 £eRd

are finite, w denoting a (non-quasianalytic) weight function in the sense of [9]. These spaces
are always contained in the Schwartz class, and they equal the Schwartz class for the case
w(t) =log(1l+1t), t > 0, not considered in our setting.

The notion of hypoellipticity comes from the problem of determining whether a distribution
solution to the partial differential equation Pu = f is a classical solution or not. The authors
in [16] provide adequate conditions for the construction of a (left) parametriz for their symbols,
which guarantee the hypoellipticity in the desired class in [15]. For the operators defined in [24],
the corresponding construction of parametrices is done in Cappiello, Pilipovié¢, and Prangoski [12].
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Here, we develop the method of the parametrix in Section 5 for the class of operators introduced
in [1], but also for every quantization of the pseudodifferential operator. In particular, we obtain
a sufficient condition for any quantization of a pseudodifferential operator to be w-regular in
the sense of Shubin [25] (see the definition of w-regularity at the beginning of Section 5). In a
forthcoming paper, the global parametrix method presented here will be used to define a suitable
Weyl wave front set for S’ (R%) and complete the characterization of global wave front sets given
in [5].

As we mention at the beginning, one of the goals of the present paper is to extend the results
in [1] by adapting them for a valid change of quantization for these symbols (see Sections 3 and
4). Namely, we follow the ideas for the change of quantization set within the framework of global
symbol classes of Shubin [25, §23]. In [24] it is considered the change of quantization and its
corresponding symbolic calculus for classes in the sense of Komatsu [19], also in the Roumieu
setting. Nonetheless, as pointed out in [1], whenever the weight w is under the mild condition

JH > 1:2w(t) <w(Ht)+ H, t>0,

the classes of ultradifferentiable functions are equally defined either by weights as in [9] or by
sequences as in [19] (see Bonet, Meise, and Melikhov [7]). Thus, if the weight sequence (M),
satisfies only stability under ultradifferential operators, as assumed in [24], our classes of symbols
(and amplitudes) might not coincide with the ones defined in [24]. Tt turns out that, even only
in the Beurling setting, we are discussing different cases.

Finally, in Section 6, inspired by Boggiatto, Buzano, and Rodino [3], we show that some
w-hypoelliptic symbols are stable under change of quantization and we compare the notions of
w-regularity and w-hypoellipticity following the ideas of [4].

2 Preliminaries

We begin with some notation on multi-indices. Throughout the text we will denote by a =

(ai,...,aq) € Nd a multi-index of dimension d. The length of « is |a| = a; + - -+ + ag. For two
multi-indices o and 8 we write 8 < « for 8; < «j, when j =1,...,d. Moreover, a! = a1!- - ay!
and if 8 < «, then (g) = WLB)' For x = (z1,...,24) € RY, we have z® = 2{* - 2§?. We
write 0% = (8—‘21)&1 (a%d)ad and we set

Da:Dgfll...Dad

Tq’

where D77 = (—i)'aJ"(%)aj, j=1,...,d.
J
In our setting we work with weight functions as the ones defined by Braun, Meise, and
Taylor [9].
Definition 2.1. A non-quasianalytic weight function w : [0, +00[— [0, +00[ is a continuous and

increasing function which satisfies:
(o) IL>1: w(2t) < L(w(t)+1), t>0,
+oo t
3) / %dt < too,
1
(7) log(t) = o(w(t)) as t — o,
(8) ot w(e') is conver.
We extend the weight function w to C% in a radial way: w(z) = w(|2]), z € C%, where |z| denotes
the Euclidean norm.



From Definition 2.1(«) we immediately have:
w(z +vy) < L(w(zr) +wy) + 1), z,y € R% (2.1)
For z € C% we denote (z) := /1 + [2[2. From (2.1) we have
w((2)) Sw(l+|z|) < Lw(z) + L(1 + w(1)), zeC? (2.2)

Definition 2.2. Given a weight function w, the Young conjugate ¢} : [0, 00o[— [0, 00[ of ¢, is
defined as

P (t) = igg{st —Pu(s)}

When the weight function w is clear or irrelevant in the context, we simply denote ¢, and
@l by ¢ and ¢*. From now on, we assume that wlj,;; = 0, which implies that ©*(0) = 0 (in
particular, this gives that w(1) = 0 in formula (2.2)). Moreover, it is known that ¢* is convex,
the function ¢*(z)/x is increasing for z > 0 and ¢** := (¢p*)* = ¢ (see [9]). From [18, Remark
2.8(c)] is not difficult to see (cf. [6, Lemma A.1]):

Proposition 2.3. If a weight function w satisfies w(t) = o(t*) as t — +oo for some 0 < a <1,
then for every B > 0 and A > 0 there exists C > 0 such that

B'nl < Ce®¥ (%), n € Np.
The following result can be found in [9)].

Lemma 2.4. (1) Let L > 0 be such that w(et) < L(w(t) +1). Then

nr (Y (YUY AN~
AL"p ()\Ln)—i—nyﬁ)\@ (/\)+)\jz_:1L (2.3)
for everyy >0, A >0, neN.
(2) For all s,t,\ > 0, we have
200" (557) S A7 (5) + 207 (5) S A7 () (2:4)

We will consider without losing generality with no explicit mention that the constant L > 1
that comes from Definition 2.1(«) fulfils the condition of Lemma 2.4. For more results involving
©* see, for instance, [1, 9, 16] and [6, Lemma A.1].

We deal with a class of global ultradifferentiable functions, which extends the classical
Schwartz class with the use of weight functions. It was introduced by Bjorck [2], but only
considering a subadditive weight function w (so the following definition is slightly more general
than the given by Bjorck).

Definition 2.5. For a weight w as in Definition 2.1 we define S,,(R?) as the set of allu € L*(R?)
such that (v and its Fourier transform U belong to C*=(R?) and)

(i) for each A >0 and a € N¢,  sup @ |D(x)| < +oo,
z€R4

(ii) for each X >0 and o € NZ,  sup & |DU(¢)| < +o0.
£eRr?



The corresponding strong dual is denoted by S! (RY) and is the set of all the linear and con-
tinuous functionals u : S,(RY) — C. We say that an element of S'(R?) is an w-temperate
ultradistribution.

The space S, (R%) has been studied for different purposes by many authors. We refer, for
instance, to [4, 6, 17] for some examples of publications that treat different problems in the
setting of the class S,,(R?). We recall here [1, Lemma 2.11], which will be useful below.

Lemma 2.6. If f € S(RY), then f € S,(RY) if and only if for every A, > 0 there is C , > 0
such that for all « € N¢ and z € R, we have

lo]

| D f(x)] < C)\Me)‘w* (T)e—uw(r).

From now on, m denotes a real number and 0 < p < 1. In the following, we consider global
symbols and global amplitudes of infinite order defined very similarly to the ones in [1, Definitions
3.1 and 3.2]. The unique difference is the factor e™(#:8) in the case of symbols and e (®:¥:¢)
in the case of amplitudes, which are more suitable for our purposes. We observe that these
definitions are equivalent to those in [1]. In fact, when considering symbols for example, it is
enough to use that there exist A, B > 0 such that A(w(z)+w(§)) < w(z,§) < B(w(x)+w(&)+1)
for every x, £ € R?,

Definition 2.7. A global symbol (of order m) in GS;* is a function p(z,§) € C*°(R?*®) such
that for all n € N there exists C,, > 0 with

D3 DEp(a, )] < Cul(, &) letlense” (152) gmote),

for all o, B € N and z,¢ € R4,

Definition 2.8. A global amplitude (of order m) in GAJ" is a function a(z,y,§) € C>(R3)
such that for all n € N there exists Cy, > 0 with

(x — y)Plathl npg* ( \a+5+’ﬂ)

mw(fl’,y,g)
((w,y, )yt ‘ ’

DSDE DYa(w,y,€)| < Cn

for all o, B,y € N¢ and x,y, & € RY.

In [1] we introduce global pseudodifferential operators on S, (R?) by means of oscillatory
integrals for global amplitudes as in Definition 2.8 (see [1, Proposition 3.3]). It turns out that
the action of a pseudodifferential operator on a function in S,,(R%) can be written as an iterated
integral [1, Theorem 3.7] and it is continuous and linear from S, (R%) into itself. In fact, we use
these properties to state the following definition:

Definition 2.9. Given a global amplitude a(z,y,§) € GAJ" (as in Definition 2.8), we define
the associated global pseudodifferential operator A : S, (R%) — S,,(RY) by

AN = [ ([ atmrwin)ds. 1 e S.@.

Moreover, this operator can be extended linearly and continuously to an operator A from
S/ (R?) into S’,(R?) [1, Proposition 3.10].

At some stages we need classes of ultradifferentiable functions defined in the local sense;
we refer the reader to [9, 16] for a theory of pseudodifferential operators of infinite order when



defined in local spaces. Let w be a weight function. For an open set Q C R?, we define the space
of ultradifferentiable functions of Beurling type in {2 as

Es(Q) :={f € C™(Q) : ||k, < oo for every A > 0, and every K C Q compact},

where
|fl&,x := sup sup \D"‘f(:z:)|e_)‘“"*(‘%l).
aeNgzeK
We endow such space with the Fréchet topology given by the sequence of seminorms |f|x,, n,
where (K,,), is any compact exhaustion of {2 and n € N. The strong dual of &,(2) is the space
of compactly supported ultradistributions of Beurling type and is denoted by &/ ().

The space of ultradifferentiable functions of Beurling type with compact supportin €2 is denoted
by D, (), and it is the space of those functions f € &,(€) such that its support, denoted by
supp f, is compact in 2. Its corresponding dual space is denoted by D/, (£2) and it is called the
space of ultradistributions of Beurling type in €. The following continuous embeddings hold:

EL(RT) € S, (RT) € D, (RY).

We recall that the space S, (R?), as well as its strong dual S/ (R?), are stable under Fourier
transform (see, for instance [2]).

Since the global amplitudes have exponential growth in all the variables, it becomes useful
a particular kind of integration by parts to understand the behaviour of a pseudodifferential
operator in this setting. Following [24], but with a different point of view, we use in [1] entire
functions with prescribed exponential growth in terms of a weight function w. The existence of
this type of entire functions was proven by Braun [8] and Langenbruch [20]. In several variables
we have a similar result:

Theorem 2.10 ([1], Theorem 2.16). Let w : [0,00[— [0,00[ be a continuous and increasing
function satisfying the conditions («), (), and (8) of Definition 2.1. Then there are a function
G € H(C?) and some constants Cy,Cy, C3,Cy > 0 such that

i’) log|G(2)] <w(z)+C1, zeC%
ii’) log|G(2)| > Cow(2) — Cy, z € U= {zeC?:|Im(z)| < C3(|Re(z)| + 1)}.

We also need the notion of w-ultradifferential operator with constant coefficients. Let G be
an entire function in C? with log |G| = O(w). For ¢ € &,(R?), the map Tg : £,(R%) — C given

by
Ta(p) = DEG0O) pag )

al
aeNg

defines an ultradistribution T € £/, (R?) with support equal to {0}. The convolution operator
G(D) : D, (RY) — D! (R?) defined by G(D)(u) = Tg*pu is said to be an ultradifferential operator
of w-class.

Proposition 2.11. Let G be the entire function given in Theorem 2.10 and n € N. If
G"(z) = Z bo 2%, zeC?
@END

denotes the n-th power of G, then there exist C, K > 0 such that

s ||
[ba| < e"CenCe (ﬁ), o€ Ng;

G™(6)] > C e KO ¢ e RY.



The following result characterizes those operators whose kernel is a function in S, (R?). These
operators are fundamental to understand the symbolic calculus. The proof is standard.

Proposition 2.12. Let T : S,,(R?) — S, (R?) be a pseudodifferential operator. The following
assertions are equivalent:

(1) T has a linear and continuous extension T : S/, (RY) — S,,(R?).

(2) There exists K(x,y) € S,(R??) such that
/K x,y)p(y)dy, ¢ € S, (RY).

Any operator T : S, (RY) — S, (R?) which satisfies (1) or (2) of Proposition 2.12 is called
w-regularizing.

3 Symbolic calculus for quantizations

We generalize the symbolic calculus developed in [1] for quantizations.

Definition 3.1. We define FGS]" to be the set of all formal sums ZjeNo a;(x,€) such that
aj(z, &) € C°(R*) and there is R > 1 such that for every n € N there exists Cy, > 0 with

\Dngaj(x,gﬂ < Cn<(m7§)>—P(\a+5\+j)enpw*(%)emw(gg,g)’

for each j € Ny, a, B € N&, and log (<(z §)>) > ﬂ*ﬂ*(l)-

J n

Definition 3.2. Two formal sums ) a; and ) b; in FGS;" are said to be equivalent, denoted
by > a; ~ > bj, if there is R > 1 such that for each n € N there exist C,, > 0 and N,, € N with

Ia+ﬁ\+N)
n

‘Dij Z(%‘ - bj)’ < Cn<(g;,g)>—p(|a+ﬂ|+1v)enpw(

<N

@),

for every N > N,,, o, 8 € N¢, and log ( {(z, E)>) > Lo (X)),

n

The following construction has been carried out in [1] following the lines of [16, Theorem 3.7].
Let ® € D,(R??), where o is a weight function which satisfies w(t'/?) = O(o(t)), as t — +o0,
and

|®(t)] <1, O(t) =11if |t] <2, O(t) =0 if [¢t| > 3. (3.1)

Let (jn)n be a sequence of natural numbers such that j,,/n — oo as n tends to infinity. For each
Jn < j < jn+1, we set

oi(@.6) =1 - ® ((jifj)), Any = ReFOHE), (3.2)

where R > 1 is the constant which appears in Definition 3.1. It is understood that pg = 1. We
have shown in [1] that ¢; € GSS’”. Moreover, if } ., a; € FGSJ" then, by [1, Theorem 4.6],

) = Z¢j($>£)a1(m7£)

=0



is a global symbol in GSJ"*, equivalent to Zj aj in FGS".
Now, we extend some results in [1] for quantizations. In what follows, 7 stands for a real
number. Let k € Ny denote the minimum natural number satisfying

7|+ |1 — 7] < 2. (3.3)

Furthermore, for any m € R we denote
m' =mL", (3.4)
where L > 1 is the constant of Lemma 2.4. We observe that m’ = m if and only if 0 < 7 < 1.
Lemma 3.3. Ifb(z,§) € GS;" and T € R, then
a(z,y,§) == b((1 — 1)z + 7Y,)
is a global amplitude in GA[IflaX{O’m'}’w.
Proof. The following inequality is easy to check:
((2,9.6) < VB(r)e —y) (L —T)e +7y.8),  zy.leR, TR

We take p € N such that max{|1 — 7,|7], (v6(r))?} < e’P. By assumption, for all A > 0 there
exists C > 0 such that (L > 1 is the constant of Lemma 2.4)

D3 Dy DYa(x,y,€)] < [1 = 7| *rPICA (1 = 7)a + 7y, €)) -1+
« eALzﬁﬂtp* (%)emw((lf‘r)xjtry,g).
The choice of p gives |1 — 7[1ol|7|IBI(\/6(r))PlatB+1l < e2PrlatBtal Then, by (2.3), we get
il M7 (SR |0 oo (5550) o, 1
Finally, since w is radial and increasing, applying k times property («) of the weight function w,
we get, for m > 0,

emw((l—‘l’)x-‘r‘l'y,f) < emw(2k(.’t,y,f)) < em’w(%y,f)emLk+mLk71+~~+mL. (35)

O
Corollary 3.4. Let ; be the function in (3.2). For all A > 0 there exists C > 0 such that

la+B+r] )
A

DS DD 0y(1 1)+ 7y, 6)] < Ca(((1 — ) + 7y, &) ~lrtpHlehee”
or every o, B,y € N& and x,y,& € R%. Hence ¢,;((1 —7)x + 71y,&) € GA® for all 7 € R.
0 Pj p
Here, we generalize [1, Lemma 4.7] to readapt it to our context.

Lemma 3.5. Let a(z,y,§) be an amplitude in GAJ" and let A be the corresponding pseudod-
ifferential operator. For each u € S, (R%),

Alu) = S,(RY) =~ A;(w),
j=0

where A; is the pseudodifferential operator defined by the amplitude

(QPJ - (pj+1)((1 - 7')37 + Ty,E)a(m,y,f), J S NO-



Proof. By Corollary 3.4, (¢; — ¢j+1)((1 = 1)z +7y,&)a(z,y,§) € GAJ™. Since A, ny1 — 00 as
N — oo, proceeding as in [1, Proposition 3.3], one can show that, for each u € S,,(R?),

JZZ;AJ Su®Y — tim [ [ D oy (1 = 7+ 0, ae, v ulu)dyd.

We show that this limit is, for all 7 € R, equal to 4 in L(S,,(R%), S/ (R?)). We recall that

(1—on+)((1—=T)z +7Y,&) = fI)(((l —jzl')ﬂc + Ty,f))

n,N+1

and ®(0) = 1, being ® € D,(R>?) the function in (3.1) with w(t'/?) = O(a(t)), t — co. We
claim that for each f,g € S, (R%),

/// elr—y) ¢ (@(%) — 1) a(z,y,&) f(y)g(x)dydéde — 0 (3.6)

as k — oo. We use the following identity to integrate by parts with the ultradifferential operator
G(D) associated to the entire function in Proposition 2.11:

1
G=(&)

for some power s € N that we will determine later. Then, the integrand in the left-hand side
of (3.6) equals

ell@=y)& — G*(—D,)e @€, (3.7)

e <0 Gs(Dy)((fﬁ((l_T)xTJ”y’g) - 1)a(x,y,£)f(y)g(x))
:ei(z—y)§ Z Z mhl!!ngl(;)lmngl (¢((1—7)z+7y7£> —1)><

neNd  mtn2+nz=n
x Da(z,y,§) D) f(y)g(x).

Therefore, the integral in (3.6) is equal to

777! Ty Iml z’(m—i)fL
Do Y 771!772!773!(k) ///e aGR

neNd  mtnztns=n

<oy (o(U2EETEE) ) Dirate. . ©) D Flw)a(e)dydcda.

From Proposition 2.11, there are Cy, Cy,C3 > 0 (depending only on G) such that for all n € Ng
and ¢ € R? we have

by] < eCre=sCre” (3) < CgesC®, (3.8)

It follows from Definition 2.8 (see for example [1, Lemma 2.6]) that for all A > 0 there exists
C > 0 such that (L > 1 is the constant of Lemma 2.4)

|D}2a(x,y,§)| < e’ “(L2) gme(e.6)



Since f, g € S, (R?), there exist C4 , ,C,, > 0 such that

A,m?
IDF )] < O e i) e i) (2] < e mEHDte),

For ;; = 0 we have ® = 1 if [((1 — 1)z + 7y,§)| < 2k, and for || > 0 it follows that
D) (@(%) - 1) = Dg“b((l_ﬂl%y’&) is zero for |((1 — 7)x + 7y,&)| < 2k; there-

fore, we can assume that |((1 — 7)z + 7y, £)| > 2k. In particular, we have

1< (=7 + 9,0 < £ (1= 71+ [ + 1) (lyl + 1] + 1),

As ® € D,(R*) C D, (R??), there exists C{ > 0 such that

o (@(@—ﬂw%mé) _ 1)\ <opere () g et

For m > 0 (if m < 0, then mw(zx,y,£) < 0), since

m\m

mw(z,y, &) < mLw(x) + mLw(y) + mLw(€) + mL,

it is enough to take s € N satisfying sCy > mL + 1 to get e(=5C2tmL)w(€) < o~w(©  and

therefore the integrals are convergent by condition () of the weight w. On the other hand, since
> #2'.773, =3l < 27l by Lemma 2.4 we have

Z M e () arter (m2h) arter (lal) o aret(a) arar?

1M 112! -
T 172113

Now, the series

Z e—sClso* (Slg‘l ) e)xL(,a* (@)

neNg
converges provided A > sCp (see [1, (3.5), (3.6)]). Thus, there exists C' > 0 such that
‘ - k ) 1)@(% v, &) (y)g()dyddr| < C = 0,
and hence (3.6) is satisfied. O

The next result is the corresponding extension of [1, Proposition 4.8].

Lemma 3.6. Let ) p; € FGS]" and let (Cp)n, (Cy,)n be the sequences of constants that appear
in Definition 3.1 and in the estimate of the derivatives of ¢; in Corollary 3.4. We denote
Dy, := Coppitr and D;, == C! 5,1, where L > 1 is the constant of Lemma 2.4 and p € Ny is
so that 3(t) < €P, for a fized T € R. Consider (jn)n, jn € N, such that j1 = 1, j, < jni1,
Jn/n — o0 and

/ S —pJ DnD;z o —pJ
Dn+1Dn+1 ‘ Z (2R) < T Z (2R) ’ ne Na
J=In+1 J=In

and moreover,

Qap*(l) > max{n,log D,,,log D).},  for j > jn.
j n



If
7j=0

then the associated pseudodifferential operator A is the limit in L(S,,(R?), S/, (R?)) of the sequence
of operators Sy : S, (Rd) — Sw(Rd), where each Sy is a pseudodifferential operator with
amplitude

QMZ

— o)1 =7)e+74,9)_p((1— 1)z +79,€)).
=0

Proof. For each j € Ny, one can show that

J J
(i — i) (L =Tz+ 75,9 _p(A =)z +7y,8) =D ((p; — i+1)p) (1 = T)z + 79,€)
1=0 1=0
is a global amplitude in GAE‘aX{O’m/}’w, m’ being set in (3.4). Hence, the function

J N N
Z(@j - <Pj+1)(zpl) = Z@jpj — PN+1 Zpl
1=0 j=0 1=0

Jj=0

2

is a global amplitude in GAg‘aX{O’m,}’“.

Now, we prove that Sy, — A in L(S,(R%),S(R%)) as N — co. As in the proof of [1,
Proposition 4.8], it is enough to show that, for any f,g € S,(RY), ((Sn- — A)f,g) — 0 as
N — oo. Note that A and Sy, N =1,2,... act continuously on S,,(R¢). Thus

(Snr = )f.9) = [(Sn0 = A f@)gla)da
/ // ey Z%p] @N+1Zpl}*a> dydf) (z)da

for every f,g € S, (R%), where ¢, on,p;, i, and a are evaluated at ((1 — 7)z + 7y, €).
We show that, for each f,g € S,,(R9),

/ // i(a—y) OO > (1 =m)z+ 7y, Opi (1 —7)x + T?‘/vf)>f(y)dyd£)g(x)dx and

=N+1
b)/ (// ei(m—y)-5<@N+1((1 — 1)z + 7Y, &) gpz((l — 1)z + Ty,g)>f(y)dyd€)g(x)dx

tend to zero when N — oo.
Let us show that the integral in a) goes to zero. We integrate by parts with formula (3.7) for
some s € N to be determined later. Then

el y)ﬁGs( ( Z ©j D) )

j=N+1

n!
— ie—y):

771'772 73! Z Tt D ;- Dip; - D f(y).
j=N+1

neNg  mtm2t+nz=n

10



Hence, we can reformulate the integral in a) as

//GS o, Y 777'|m+n2|x

neENd  mtnz+nz=n "71 772 773
(3.9)

X / € ST D, - DFp; - DI f(y)dyd€ ) g(w)da
J=N+1
When ¢; # 0, and j, < j < jnt1, we have log (%) > ?gp*(%) (see (3.2)). By
Corollary 3.4, for each n € N, the following estimate holds (as in the hypotheses of this lemma,
we denote D, = C! 5., > 0)

F+1 *( Im11 )
LenE et (T

Dy @i (1 = 7)x +7y,§)| < Dye

Moreover, for that n € N (as in the hypotheses of this lemma, we denote D,, = Cy,,15+1 > 0),
by (2.4), we have

[Dy?p; (1 = 7)x + 7y, &)

< D, 2 e (G5 (1 = 1)z + 7y, £)) =PI+ gme(( =)zt 75,6)

* In2

"Lp+1 ) (2R)™ o gmw((1=T)z+7Y,8)

©
< DnenLﬁ+1¢* (nanﬁzil)enLﬁJrlptp* (771“%“ ) <((1 _ T)x + 7y, £)>7pjemw((17‘r)w+‘ry,§)
< DnenLﬁH‘P (
Property (7) of Definition 2.1 yields that there exists C' > 0 such that (z) < Ce*((®) 2 ¢ RY,
Then, using (2.2),

e ((I=n)z+7y.8) < p(m+3)w(((A-T)z+7y,8) o=3w((1-T)e+7y.8)))

< e(m+3)Lw((1—T)x+'ry,f)e(m+3)L03<((1 _ T),T + Ty,§)>_3
< CB3e(m+3)Lw((1=)e+7y.£) o(m+3)L ,—3%0" (F)

By (3.5) (k being as in (3.3)), we obtain
e(m+3) Lo((1=m)a+7y.6) « (m+3) L5 w(@,y,8) o (m+3) LM (m43) L2
< eMANLETZ (@ (@) +w(y)+w(©)) o (mF3) LE 4 (m+3) L%
Take 0 < £ < n. Later, an additional condition will be imposed on £. Since f,g € S, (R%),

there are C/ > 0, which depends on ¢,m, and on 7, and D > 0 that depends on m and on 7 such
that

1D f(y)| < Cyle (Lt *(4%%)e—((M+3)L’““+1)w(y);
9(2)] < De~(mHLH41ut0)

Lemma 2.4, the fact that Z = = 317l and the choice of p € N provide

|7] ln
7! T *( Iy | ) nLFtH1 *( 2] ) oL+ *( I3 )
E ———|r|Imtmrle P \nopti /e P \noptt ) e ? \arp+1
ATy 215!
p+1x (_Inl !
< <7_>|q7|€le ¥ (ZL2+1) E 777
m!n2!ns!

n+n2+n3=n
« (Inl P r
< eZch (z" )eeLE P_,L

11



Thus, from (3.8), we estimate (3.9) by

/ /C’S —sCaw(€) Z o501 o—5C19" (2L (/ Z DD L () persr

neNg j=N+1

x (QR)*PjC3e(m+3)L+(m+3)L2+“~+(m+3)Lk+2e(m+3)Lk+2(w(ac)er(y)er(g)) %

% 673;*-%0*(%)Cé/e—((m+3)L"'+2+1)w(y)dy) df) De—((m+3)LE 24w (@) go.

Take s € Ny such that sCo > (m + 3)L**2 4+ 1. Choosing ¢ > sC; we obtain that the series
depending on n € Nd

Z 675014p Sc ZLgo (%)
neNg
converges (see [1, (3.6)]). The constant depending on n is D, D},. We get for j; < N + 1 < ji41,

the following estimate for the integral in a):

0o Jn+1—1

Eg(/e*w@dx) (/e*w@)dy) (/e’“’(s)df) (Zl

where Ey > 0 is a constant depending on ¢. The last 3 integrals converge by property () of the
weight function. By assumption, we have 3%90* (%) > log Dy, 4+ log D, + n. This finally proves
that the integral in a) converges to zero as N tends to infinity.

For the limit in b), we can proceed as in [1, Proposition 4.8] with the above techniques. [

#)7
J=Jn (2R)Pie ()

The next example recovers [1, Example 4.9] for 7 = 0. The proof is straightforward and is
left to the reader.

Example 3.7. Let a(z,y,§) be an amplitude in GAJ"* and let
= > ﬁ, P11 — )Mo (~D,)P DY alx,y,€)l,_, -
|B+~|=37

Then, the series >72 p;(x,€) is a formal sum in FGS;““X{’”’mL}’“ for all 7 € R.

The following lemma is taken from [16, Lemma 3.11].
Lemma 3.8. Let m > n and ée%”*(%) <t< eFe () fort > 0. Then

19" (3) > o(n=Dw(t) 20" (£5)

for j large enough.

These two lemmas are easy to prove.

Lemma 3.9. Let 7 € R and let k € Ny as in (3.3). Then we have

k2
w(z,y) < LPw((1 — 1)z + 1y) + LFPw(y — z) + Z L, r,y € R%

Jj=1

12



Lemma 3.10. For all 7 € R, the inequality
[v]2 < C(Jv + trw|* + [v — t(1 — T)w|?)
holds for all v,w € RY, 0 <t < 1, where C = 2max{(1 — 7)%,7%}.

The following result shows that any pseudodifferential operator can be written as a quanti-
zation modulo an w-regularizing operator and is needed to understand the composition of two
different quantizations in the next section. For the proof, it is fundamental the fact that the
kernel K of a pseudodifferential operator behaves like a function in S, (R?) in the complement
of a strip A, = {(z,y) € R??: |z — y| < 7} around the diagonal of R2¢, for some r > 0. In other
words, if  is as in [1, Lemma 5.1], then YK € S, (R??) [1, Theorem 5.2].

Theorem 3.11. Let a(z,y,§) be an amplitude in GAJ" with associated pseudodifferential op-
erator A. Then, for any T € R, we can write A uniquely as

A=P,+R,

where R is an w-regularizing operator and P, is the pseudodifferential operator given by

// =Sy (1 - 1)z + 1y, uly)dyde,  u € Su(RY),

Smax{m,mL},w
p

being pr € G . Moreover, we have

,6) ~ Y piw,€) = Z > 7 ,r'ﬂ‘ 7)Mo (=D,)" D} a(w,y, )|, -
j=0

J=0|B+~|=j

The symbol p,(z,€) is called 7-symbol of the pseudodifferential operator A. When 7 =
0,1,1/2, these symbols are called the left, right, and Weyl symbols of A.

Proof. We consider the sequence (j,), as in the statement of Lemma 3.6, with ?(p*(l) >

max{n,log(Cy,r5+s),10g(Dynpts)}, where (Cp)n and (Dy,), denote the sequences of constants
that come from Definition 2.8 and Corollary 3.4, and p € Ny is so that max{|1 — 7|,2|7|} < eP.
Put

= > ﬁ, (1= MO (=D.) DY ale, . ),
[B+]=3

By Example 3.7, Zj pj € FGSglax{m’mL}’w. Now, we write

)= (@, &)p;(x,€),

=0

where (¢;); is the sequence described in (3.2). By [1, Theorem 4.6] we obtain that p.(z,§) €
GSE“aX{m’mL}’°J and p, ~ Y. p;. We set, for u € S,,(R?),

o) i= [[ @ 1)+ o ut)ayde.

By Lemma 3.6, P, is the limit of Sy, in L(S,(R%),S.,(R%)), where Sy, is the pseudodifferen-
tial operator with amplitude E;-V:O(cpj — i) (T =)+ 7y, ) XCi_om((1 — Tz + 7y,£)) in

13



GA,I?aX{O*m,L}’”, m’ as in (3.4). On the other hand, from Lemma 3.5, A = Y_¥_; Ay, where
Ap is the pseudodifferential operator with amplitude a(z,y,&)(¢n — on41)((1 —T)z 4+ 7y,§) in
GAT™ C GAR O IEe Thus for u € S, (RY),

D)= [[ e on — onia)(1 = rho -+ v Eale . ulw)dude
N=0

and

N—o0

Prula) = Jim [ [ LY 0 ) (=)o i (30 p(1 = -t 7, €) July)dud
=0

Hence, we can write A — P, as the series vaozo Py -, where each Py . corresponds to the

pseudodifferential operator associated to the amplitude in GAg‘aX{O’m/L} s

(@N*¢N+1)((1*7)$+7y,€)( a(z,y,§) — ij (1 =7z + Ty, 5))

Our purpose is to show that the kernel K of A — P, belongs to S, (R??). To that purpose, we
write

y) =Y Kn(z,y)
N=0

0 N
= /ei(xiy).é(wl\/' - @N+1)((1 - T)I + Ty,f) <0,(LE, y7§) - Zp]((l - T):E + Tyaf))df
N=0 7=0
Now, we take 7 > 0 and x € &,(R??) such that x = 1 in R??\ A,,, and x = 0 in A, (see [1,
Lemma 5.1]). Then we can write

N

K=xK+(1-y) | Z K;.
j:O
We follow the lines of [25, Theorem 23.2], and also the scheme of the proof of [16, Theo-
rem 3.13], as well as [1, Theorem 5.4]. We make the following change of variables:
v=_1-"7)z+Ty; w=x—y.

Similarly as in [16, Theorem 3.13], we write the partial sums of K as

N N N
SN K =Ko+ Y Ii+) Qi —Wy,
j=0 j=1 j=1

14



where

(B+)! 1
> 2 A (Bt —a)

[B+7|=5 0Fa<p+y

X / !B — )PP D, (v,€) (9707 DI a) (v, v, §)dE;

G- 3 3 Tl il

1~/! |
B+l sy By al(B+v—a)

/ i(z—y)- ng( 903+1)(U £)D5+7 aWﬂy(CC Yy, &)d&;

way(z,y,8) == (j + 1)/O (858;%)@ +trw,v — (1 — 7)tw, §)(1 — t)jdt; (3.10)

N
B+)! 1
> 2 Bl Bty —a)l

[B+7]=10F#a<B+y

% /ei(m*y)‘ET‘ﬁl(l _ 7-)|’Y\(_1)\'7\1)?()01\[4_1(U7 ¢) (@[jagDéH'y—aa) (v, v, €)dE.

We have YK € S, (R??) [1, Lemma 5.1, Theorem 5.2]. Moreover, it is easy to see that Ky €
S.(R2%). Indeed, we have

Ko(z,y) = / FEVE o) (1= e+ 79,)(alw y, €) — ale,x, €)dE.

Since 1 — ¢ € S, (R??), following [1, Lemma 3.5(a)] one obtains the desired property for Ky by
Lemma 3.9.
First step. First of all, we compute DgD;Ij (z,y) for ,e € Nd. We use integration by parts

with the formula )

Gy —z)

for a suitable power G*(D) of G(D), being G(£) the entire function considered in Proposition 2.11.
We obtain, as in [1, Theorem 5.4],

RICE)R . C;(_Dg)ei(ﬂc—y)f7 (3.11)

D} D I;(x, y)
B8+ 1 i
Z Z ( g!fyr!y) a1(5+,yfa)|Gs( ) Z by E (—1)rtelx

[B+7|=j 0Fa<B+y neNd  mtmatns=n
01+02+63=0
€1+e€xtez=e€

% 77' 0! e! (91 + 61)
M !naing! 01102165! €1leales! (61 + €1 — mp)!

x / ellr=wEghta=m ple pee DAt g, (v, £) DI D (0507 DT~ ) (v, v, £)de.

FlB+ez] (1— 7—)|’Y+92| X

Fix A > 0 and set n > X large enough that may depend on 7,m, p, L, and R. According to
Lemma 3.9, it is enough to take s € N such that sCy > ALF*2 where Cy > 0 comes from (3.8)
and k € Ny as in (3.3). For the convergence of the series depending on 1 € Nd, let n satisfy in
addition that n > sC7, where C7 > 0 comes from (3.8). Now, proceeding as in [16, Theorem
3.13] (and using Proposition 2.3 and Lemma 3.8) we can show that Z;’il I; € S, (R??).

15



Second step. Since 1 — x is supported in Ay, we estimate |DYDSQ;(x,y)| for 0,e € N,
(x,y) € Ag,. By the formula of integration by parts given in (3.11) for a suitable power of G(D),
G*(D), we have

DYDLQ;(x,y)

B+ 1 e
= Z Z Bl el —a) Gy Z by, Z (—1)latlx

|B+7|=j+1 a<p+vy neNd 01+624+603=0
€1t+e€xtez=¢
nm—+nz2+ns=n

) — 7)l2lrlely

« 0! € 77' (91 +61)! T‘ﬁl(l
01162103! €1leales! mylnalns! (01 + €1 — 771)!

x [ e St m D DR DR o) — ) (0, DI DR (DT P i,
where wgy, = wpy (2, y,§) is defined in (3.10). Fix XA > 0 and take n > X to be determined later.
We consider in this step p € N such that

max{2(1 + |7]), (1 4 2r)°} < e?.
We put n € Ny, 72 > n, such that (where ¢ € Ny satisfies 2¢ > 3R)

. Latt N
n>=——\LPT2 £ mL3? 4+ 1)+ 1.
p

By Lemma 3.10 and the properties of ¢*, proceeding as in the proof of the second step of [1,

Theorem 5.4] we obtain, for some C; > 0,

| D% DS (DT B0 ) (w9, &)

< Cﬁelﬁ:ﬁLﬁJr‘q'p PORA LpemL’“+3+~~-+mL(j + 1){(v, §)>fp\26+2wfa| %

1
~rp+3 [2842y—a+603+€3+n3)| 3 _rk+3 . .
elGnL P ( 16nLP+3 ) mL w(v)emL w(w)eme(f)/ |1 _ t|]dt.

For the estimate of the derivatives of Q;(x,&) we can proceed similarly as in the first step to
show finally that (1 —x) Y72, Q; € S,(R*).

Third step. Let Ty : S,(R?) — S, (R?) be the operator with kernel (1 — x)Wy. As in the
proof of [1, Theorem 5.4], it follows that (Ti) converges to an operator T : S,,(R?) — S, (R?) in
L(S (RY),S! (R%)). We show that T' = 0. To this aim, fix N € N, j, < N +1 < j,41 and set

an = Re¥1¥ ( v ) For the support of the derivatives of o1, we may assume that
2ay < (1 —7)z +7y,£)) < 3an.
For f,g € S,(R?), we have

Tnt.9) = [ Twf@gtyiz = [ [01=0@pWy () @)dy)glode

Fixed N € N, we can use Fubini’s theorem (since f,g € S,,(R%) and |¢] < 3ay) and we obtain

Ini.9) / / Z 2 (ﬂﬂTv!wa!(5+1v—a)!{/ e = (-1

[B+7]=10F#a<S+y

X Do 1(0,€) (90) DI a) (v,0,€)d€ }(y) (1 = X) (&, y)dy ) g(w)d
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An integration by parts with (3.11) for a suitable power s € N, to be determined, gives

eilev)e Gf(f) G*(Dy){ Dg o1 (v,€) (970) DF ™) (0,0,)F () (1 = x)(, w)g ()}
= ¢!l y)f Z by > 7771 T DI Do 1 (v, )%

Ino!
neNg  mnzt+nztna=n mitiretnslia!

x Dy (afa;Dfﬂ “a) (v, v, ) Dy f(y) Dyt (1 = %) (x, y)g ().
Thus, we obtain

B+ 1 ’
v f,9) Z 2 (5!7!7)04'(5+704'Z" 2 ;

! LN
19 1m311,4!
|B+7|=1 0#a< B+ neNd  mnatistna=n N1:M2!M3:74!

w81~y )h // i(a— y)gGé /DnlDE@N+1 v, €)%
x Dy (00) DI a) (v, v, &) D f(y) D (1 = X) (w0, ) g () dyd& .

To estimate |(Tn f, g)|, let p € Ny be as at the beginning of the proof (max{|l — 7|,2|7|} <e )
By Definition 2.8 and Corollary 3.4, for all n € N there exist C,, = Cy,15+s > 0 and D,
Dy, r5+3 > 0 such that, by the chain rule,

D72 (0507 DI %a) (v, 0, 6))

< ol |2l 0 ( (0, €))~PI2B+27+ma—al AnLP Ppp” (%)emw(v,v,g),

543w (Inytal
D Depnt1(v, §)| < Dn<(v,§)>—/’|’71+a|64"”+3pw (fmgsl)

By the choice of p € Ny,
|7|ImFBL2)r|) 2l |1 — 7| < ePlmAmtital,
Since 2ay < {(v,€)) and 1 < |B 49| < N < N 4 1, we use that ¢*(x)/z is increasing to get
(0, €)7o, )BT < (0, €))28+2
w+w\)

< (2R)2e18+ = 2we” (125

Put ¢ < n. Since f,g € S,(RY) and 1 — x € &,(R??), there exist Ey, E}, E > 0 such that
(where k is as in (3.3))

1D £ ()] < Epet?e" (5) =it 0w,

= (1nal
D1 (1= x)(z,9)| < Byetee" (7)),
lg(x)] < Ble~((mb+DL (o),

We use (3.8). Since (ﬁ%;)' < 21847 < elB+1 ] we have by the properties of ¢* that (TN f,g)| is
less than or equal to

N Pl B4 1 (1) o sCre (22 pr2
> Y (pam) a3 e (e G nit e

|B+7|=10#a<B+y neNg

/ /Cs —sCaw(& (/CnDnEgEéE/em“’(”’v’g)ef((mLJrL)Lk*Hl)(“’(y)w("’”))dy) dg) dx
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Set s € N such that sCy > (mL + L)L’”‘1 + 1, and take £ > sC; to get that the series is
convergent. It is easy to see for such s € N that there exists C > 0 such that

emw(v,v,{)ef((mL+L)Lk+1+1)w(y)e*((mL+L)Lk+1+1)w(x)€fsC2w(§)

< Cre— () g=w(@) (—w(y) g =w(E)

So, we have

/// e~ () g=w(@)=w(®)=w(€) gy de o
2an <((v,§))<3an

< o—w(2an) /// e—w(x)—w(y)—w(f)dydfdx)
R3d

By property () of Definition 2.1, there exists C' > 0 such that 3log(t) < w(t) + C, t > 0. Thus,
e—w(QaN) < (2@]\[)_360.

We recall that C),D,, is the only constant that depends on n. By the choice of the sequence
(Jn)n, we have
e"C,D,, < a‘;’v.

Hence, there exists C’ > 0 such that

N ~
FHUNIB 1 QD
Tvag SC, o
(Tt 9 ﬁ%: 107&;5“ (oaw)  agr—ar a

O XL 1y dePtt N1
en £ ﬁ((2R)2p>

Since the series converges for R > 1 large enough (which may depend on 7), and since n — oo
when N — oo, we show that |(T f, g}| tends to zero when N — oc.

It only remains to prove the uniqueness of the pseudodifferential operator modulo an w-
regularizing operator. We notice that every global amplitude as in Definition 2.8 defines an
w-ultradistribution. Then, as in [22, 25], the identities in S’ (R??) for the Fourier transform

K- (z,y) = 2m)Fel, (ar((1 = T)z + 79,))
and
ar(v,6) = (2m) " Fopse (Kr(v+7w,0—(1-7)w))

yield the uniqueness of the 7-symbol since the kernel K is also unique. O

As a consequence of Theorem 3.11, we can describe the precise relation between different
quantizations for a given global symbol in terms of equivalence of formal sums as the following
result shows.

Theorem 3.12. Ifa, (z,€) and ar,(z,§) are the 71 and T2-symbol of the same pseudodifferential
operator A, then

= 1
ar,(x,€) NZ Z al (11— 72) l ‘({9 Dgar (z,€).
J=0 |a|=j
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Proof. By Theorem 3.11, the pseudodifferential operator A is determined via the 7;-symbol
ar, (1 =71)z+ 71y, &) modulo an w-regularizing operator. Again by Theorem 3.11, its 75-symbol
has the following asymptotic expansion

)6l

Ay (2,8) ~ Z Z B" (1 = )0 DI DY (ar, (1 = 71)a + 71y, )], _,)
J=0|B+~|=j
> (X %((1—72)71)”'(_72(1—n))‘ﬁl)agpgaﬁ(m,g)
i=0jal=j Bir=a )

(=) = ma(1 = 7))*10g D ar, (2, 6)

<
I
<
L
Il
~

1
a(ﬁ — m)*0g D¢ ar, (x,€).

<
I
=
L
Il
<

4 Transposition and composition of operators

By [1, Proposition 3.10], we deduce that if A has as amplitude a((1 — 7)z + 7y,§), then its
transpose 'A has the amplitude a((1 — 7)y + 72, —£). Hence, if a,(z,&) is the T-symbol of A,
then tay_,(x,€) is the (1 — 7)-symbol of A given by

tay (1 =7z +7y,8) = a. (1 — 1)y + 72, —&). (4.1)

In particular we have ‘a,(z,£) = a1_,(x, —€). On the other hand, for 7 = 0, Ya; (y, —¢) coincides
with ag(z,£). Now, we show the corresponding generalization of [1, Proposition 5.5].

Theorem 4.1. Let A be the pseudodifferential operator with T-symbol a.(x,&). Then its trans-
pose restricted to S,,(R?) can be decomposed astA = Q+ R, where R is an w-reqularizing operator
and Q is the pseudodifferential operator associated to the T-symbol given by

Z Z (1—-27 |a‘86 Dgar(x,—€).

7=0jal=3 *

Proof. By assumption we deduce that A has the (1—7)-symbol ta;_, (z, £) given by formula (4.1)
restricted to y = 2. Moreover, from Theorem 3.12, the 7-symbol of t A satisfies

53D DETEEE LT NNERII DB S TUREC LT e)

Jola\J ' JOIQIJ
O

Let us deal with the composition of two pseudodifferential operators given by their corre-
sponding quantizations of symbols.

Theorem 4.2. Let a,(x,§) € GSJ'* be the 1i-symbol of Ay and br,(z,§) € GS;"** be the
To-symbol of As, being A1 and As their corresponding pseudodifferential operators. The T-symbol
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cr(z,6) € GSZ“*'"“‘"“ of A1 o A has the asymptotic expansion

Z Z Caﬁwéalfmangaﬁ ($7§> . (r“)ngb-,—Q(:L‘7§), (4'2)
7=0 |a+B—a1—az|=j
atpB=v+4

where the coefficients cagysara, 1€

Z Z |a aitas| <OZ + ﬂ — Q] — Otz) <'Y> ( 1) )T'aall(l—T)Ba271|a1|(1—72)|a2|~
o — (1 (651 (65

k=0 |ay |=k
[az|=1

7'!

Proof. We first assume 71 = 0 and 72 = 1. In this case, ar, (1 — )z +71y,€) and b, (1 — 7))z +
7oy, &) coincide with ag(z, ) and by (y,£). Then

(A 0 Ag)u(z) = /e”'fao(a:,g)@(g)dg, r € R

~

It is not difficult to see that Asu(x) = I(—x), where I(£) = [e b (y,&)u(y)dy. Hence
Tou(€) = (2n)71(¢) and

(A1 0 Ax)u // i(z—y): c(x,y, &uy)dydE, z e R,

where c(z,y, &) = (27)%ag(x, )by (y, €) is an amplitude in GAZ“‘H”Z"". So, by Theorem 3.11, the
7-symbol ¢, (z, &) has the asymptotic expansion:

(2n) ;‘)B; Bv' 8l )Ivla?+7D§D;(a0(x,§)bl(y,5))|y:w (4.3)
v|=3
1)181(
) Z 2 W 7911 — )9 Dl ag (e, €) - O:DYb1 (2,€).  (4.4)
= 5‘5?2)34_7

For the general case, by Theorem 3.12, we have

9~3 % i. 108D, (0,6)

J1=0 |a1|=j1

S

J2=0 |az|=j2

(1= mp)l*2log2 D20, (2, 6).

Thus, from (4.4), we get

DB +)!
(2m) Z > W 781 = )l

=0 |B+~|=
6+e:,8+7

< OIDI(3 3 Ao .9)

J1=0 |a1|=31

xagD"’(Z Z

J2=0 |az|=72

\zl

(1= 72)/21022 Db, (2,6)).
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We make the change of variables v/ = a; +d, ' =a; + 8, =as +¢€, f/ = as +7. Then

> 1
z,6) ~ (2m)* > > Wfﬂ DY ar, (x,6)0¢ DI b, (2, €)x
J=0 |o/+B' —a1—as|=j
a/+5/*5/+7'

oy — ay)! g 51
XZ S (- |a7a1+a2|(a + 6" — a1 — ag)! v "

k,1=0 |on|=k (o —a)l(B" — a2)! arl(7" — 1)l a!(0" — a2)!

laz|=1

X T‘O"ﬂ“l(l — T)‘Blfw‘rl‘all(l — 7'2)‘&2|.

The proof follows since
(o + 5 — a1 —a)! ~' o'l (o + B —ar\ (Y o
(@ —a)(B —a)! aq!(y — 1) ag!( — ao)! o —aq a1 ) \as /)’

The coefficients appearing in formula (4.2) are sometimes simplified for some particular 7 € R.
For example, if 7 = 0, by formula (4.3), we obtain

O

c(w, &) = co(x,€) ~ (2m) Z > fa”m (ao (@, &)b1(y,6))],_,

J=0 1] J

On the other hand, from formula (4.1), by (z,&) = 'bo(x, —&). Hence, by [1, Lemma 5.6], we have

co(@,€) ~ (2m)? (ao(x,€) 0 bo(x,€)) = (2) Z > fa”ao 2,£)DYbo(x, ),

J=0|v|=3

which in particular gives [1, Theorem 5.7] (cf. [25, Theorem 23.7]).

Another interesting case is when dealing with 7 = 1/2. We will obtain it as a consequence of
a more general result (cf. [25, Problem 23.2]). First, we need a lemma, taken from [3, Theorem
5.5]:

Lemma 4.3. The formula

_ Bt 1 3 1
B+~ — ol Byl B—0)(B—ct~y—0)0l(6— B+ el

0<6<
B—e<d<B—e+ry

holds for all 3,v,€ € N& with e < 5+ 7.

Example 4.4. Given two pseudodifferential operators A and B, the T-symbol of the composition
operator C' = A o B is given by

Iﬁl
(27) Z S~ EDT 811 - )07 DEar (2,€)) (02 DIbs (2, €)).

J=0|B+~|=j

Proof. Formula (4.4) states that ¢, (z,€) is equivalent to (since § = 8+ v — ¢)

Dot 3 BV ey I
27T JZOﬁJFZY: J -7 GS%-:FW B+ —e€)lel ﬁ'ﬁ' p Clo(.r 5) fDI 1(-7375)'
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Moreover, by Lemma 4.3, it is equal to

(27) Z Z DIBLABI1 — 7%

J=0|B4+~|=j

1
oPti—epp 9<D'b .
Xﬁézﬂ;-'y o;s;5 (B=0)(B—e+y—0)I(s—B+e)l ¢ pao(x,§) - 9 DYbi (x,€)

B—e<o<B—e+y

Weput u=p8—-90,v=0—€e+v—0,and § =9 — 5+ €. Therefore,

SO D S et

J=0 |v40+pu+d|=j
0
X @EVHDQLHGO(SU, £)- ag—wD;Jrebl (z,8),

and taking j = j1 + j2 + Js3, Jj1, J2, 73 € No, we have

271- Z Z |#| \M M@”D’u(i Z |5|35D5 ( §)>X
1= 0|V+u| =j1 J2=08|=j2
orn(S > (=) 0Dl (2, 6)).

J3=016|=js
We get the result since Theorem 3.12 gives

ZZ . WafDéao(x 3} m(thZ
k=0 |0|=k

k=0 |5|=k

[(1-7) )10 Dby (, €).

%‘H

O

Corollary 4.5. Given two pseudodifferential operators A and B, the Weyl symbol of the com-
position operator C' = Ao B is given by

ey ¥ ! 5. 2195 D, ) 07 Db . ).

J=0|8+~|=j

5 Parametrices and w-regularity

In this section we give a sufficient condition for w-reqularity of a global pseudodifferential op-
erator. We say that a pseudodifferential operator P : S/, (R%) — S’ (R%) is w-regular if given
u € 8" (R?) such that Pu € S, (R?), we have u € S,(R?). See [4] for a study of w-regularity of
linear partial differential operators with polynomial coefficients using quadratic transformations
(cf. [21] for the non-isotropic case).

We use the well-known method of the construction of a parametrix for the symbol of the
operator, using symbolic calculus. We follow the lines of [15, 26]. From [23], we know that a
weight function o is equivalent to a subadditive weight function if and only if it satisfies

(ag) 3C >0, Fto >0VA>1: o(At) < ACo(t), t > to.
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We refer to [14, 23] for applications and characterizations of property (ag) on the weight function.
The following result is taken from [15, Lemma 3.3].

Lemma 5.1. Let w be a subadditive weight function. For all A > 0 and j,k € N, we have
s (%) el (%) - AL ()
J! K = (R

The following lemma states Vandermonde’s identity.

Lemma 5.2. For any m,n,r € Ny, we have

S0 - (")

Lemma 5.3. If ), a; € FGS'"* and b(z,§) € GSJ"Y, then -, a;(x,§)b(x,§) € FGS;”1+"”2’“.

The following result is in the spirit of Zanghirati [26] and Ferndndez, Galbis, and Jornet [15]
(see also Cappiello, Pilipovié¢, and Prangoski [12]).

Theorem 5.4. Let w be a weight function and let o be a subadditive weight function with
w(t/P) = o(co(t)) ast — co. Let p(x,&) € GSIPml’“’ be such that, for some R > 1:

(i) Ip(e,€)] 2 e ™ for (2,6 2 R;

(i) There exist C > 0 and n € N such that
\D;‘Dfp(x,f)\ < ClotAl( (g, €))PloatBlener (nlal) gwes (nIBD | p(z, €)),

for a, 8 € N&, ((x,€)) > R.
Then there exists g(x,§) € GSlpm"w such that qop ~ 1 in FGSL’”"“’.

Proof. We set X
q(7,§) = NEX3) ((x,€)) > R.

We show by induction on |« 4 ] that there exists C; > 0 such that

1

D2 DL go(,€)] < CL (2, €))~PletBlemes nlalemes (I8N o (., €)| (5.1)

for all a, B € N4, ((x,€)) > R. Indeed, the inequality is true for « = 3 = 0. Now, differentiating
the formula p(z, &)qo(z,£) = 1, we obtain

| g o
P ODIDw(e )=~ Y e e DEDER(r, D D¢ ().
P G L CR)]

Now, we assume that the inequality (5.1) is true for (&, 3) < (e, B). Using condition (i7), we
obtain

Ip(z, ) DE D go(, )|

al ﬁ' =1 7 S~ 31 L% = 1% 3
< _ __ola+B] —pla+Blo L s (nlal) &k (nlB))
< X Facaing gl ey e Ip(, €)] %
0#(a,B8)<(a,B)

a—a+8-p| —pla—a+B—B| Lo (nla—al) Lo (n|8—7
x Clom BBl (g, )y —Pla=th=Bleme; (nla=al) g el (n1B=BD g (2, £)).
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A

. | |
Since = lo| ‘

ol ! B :
aTa—a) Bis_P) = Talla—all |33 we obtain, by Lemma 5.1,

etes(mlal) pres(nla—al)  oier(mlBl) pEer(nlB—Bl)

Bl ——= =
” 8]! 16— Bl

! < edesnlal) ek (niB)

! o —a!

Thus

) ) |a+B]
(D2 D a(a,€)] < O+ (@ ) FlePleden el e Do ) 3 (S)T

Finally, the fact that

SN COREED 3D I (=D ()

0#(8,5)<(a.5) k=1 |nl=k
completes the proof of (5.1) if we take C7 > 0 such that
o (dC\F
— 1.
> (01) <
k=1
For j € N, we define recursively

(-

ely!

¢;(2,) = —qo(@,€) Y

0<]e+|<j

Tl = 7) (O D54 ey (2, €)) (9 DIp (2, €)).

We show that there exist constants Co, C3 > 0 with C7 < Co < C3 such that
|D5quj(x,§)| < Cg’“rfmcg<(:L.75»fp(loc+5\+2j)e%w;ﬁ(n(\aJrBI+2J'))e\m\w(ﬂv,ﬁ)7 (5.2)

for all a, 3 € N&, ((z,£)) > R. We proceed by induction on j € Ny. First, observe that
formula (5.1) implies formula (5.2) for j = 0, since |go(z, £)| < Rel™«@8) for ((z,£)) > R (from
condition (7)). Now, assume that (5.2) holds for all 0 < I < j (where C5 > Cy > Cq, and
Cy,C3 > 0 are large enough). Then, by the definition of ¢;(z,§), we have

| | 1
B ol B! S
IDeDLg;(x, )l < D D2 Dl go(x, )] >
laslaa! B18,18,17 2 & ) 1~
oo —a Q1tazlas! 511551 55] o< €
B1+B2+B83=4

x 7|1 = [T DE s ey (2, NI DS DL pla, €)).

We use formula (5.1) for the derivatives of go(z, ), the inductive hypothesis (5.2) for the ones of
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@j—|u|(x, &), and condition (i7) for the derivatives of p(xz,&). All this implies

! ! .
|D2‘ngj (z,6)] < Z o p! C\1a1+61\ ((z, §)>7p\a1+61\6%%(n|a1|) %
ot oT oy —a C1la2las! 110551 53!
B1+B2+B3=p
" 1 i
LTI S LT le e iale Rl

0<]e+|<j
« <(CE,§)>fp(laz+e+ﬁz+v\+2(j*\6+7|))6%«)2‘,(n(\az+e+ﬁ2+v\+2(j*|6+7|)))e\mlww,€)X

sl el (g €))—plat el e (nlaa ) bl (oD (o, )

= (&, )Pt B2 dmluee)  § ol Bl Hlea+bal

laolava! B1 18513, 1
o T 1ta2las! 511 55155!

B1+B2+B3=pB
1, % 1, * 1 -
« enPo(nlail) g5 es (nlbil) Z ﬁ|7_|\e||1 _ 7_|\'y\0£a2+6+32+7|0§ [e4+| %
€Y.
0<let+[<j
% e%@;(”(|a2+52|+2j—|€+’7\))C|0£3+’Y+ﬁ3+€|6%99;(”|a3+’>’|)e%99;("|ﬁ3+€|).

(5.3)
To estimate the right-hand side of (5.3) we multiply and divide by
(loz 4 Ba| + 25 — |e +v[)!]rs + [!| B3 + €]!
Then, as
ol B ! Ell
arlaslag! B1182!1830 = |aa ezl as|! [Ba]!|B2[!| B3]
we have, by Lemma 5.1,
exesmlarl) g2 er(lBil) oEes(n(laztBzl+2i—le+7]) ores(nlas+y]) i @h(nlBs+el)
|a ! 1Bt (Joz + B2l + 27 —le+ ]! [as+ ]! |83 + el!
<L ermla+sl+e),
" (lee+ B[ +24)!
Now, we see that
| | i — |
|Ol| |B| |a3+’y|'|63+€|'(|a2+ﬁ2|+2] |€+7|) SQ\Q1+(13‘2|[31+53‘ (54)

|az|!|as|! |B2]!] B!

Indeed, we multiply and divide by (Jo + as| + |81 + B3] + |e + ¥])! to get, by the properties of
the multinomial coefficients,

(la+ 5]+ 2j)!

! 18]! |as +71"183 + ef! 1
sl 1B2]1]a! [ TotAT
oz [tas| B2 Bst (Jor + sl + 1By + Bs| + e+ (| Jo+obet )

olt 81 1

= oo |Yas|! [B2]!] B! o |1 B! (‘aﬁlgj‘f‘z;.rﬁﬁﬂ).

As we have, for « = a1 + as + ag,

|ovf! _ |a1+a3!(|a> <2|a1+a3|(04|>7
loa ez !l Joa 'fes|! \Jaz|) — |oa
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(and in the same way for 8 = 51 + B2 + B3), we deduce formula (5.4) by Lemma 5.2. We then
have, from (5.3),

|D§‘D§qj (z,8)| < ((x, §)>fp(\oz+ﬁ\+2j)e%w’;(n(\a+5l+2j))6\mlw(w,£) >

« Z 2\a1+a3|2|61+l33\0¥¥1+51|C\2@2+52|C§C\a3+63\ %

aytastaz=a

B1+B2+B3=p
1 +7l y—letal
x>l = rPlef ey gl
0<]e+|<3
Since
|8 i 2C, a1 +B1] 120\ las+83] la+8] ~j 2CCy |ar1+asz+PB1+83]
el > (5) (G SR DI
aytaztaz=a 2 2 aytaztaz=a 2
B1+PB2+B3=p B1+P2+B83=0
la+8]
; 2C0C1\*
copviel 3T S (20,
2
k=0 |n|=k

we take Cs > 0 large enough so that

> (M) <2

In addition, we put C5 > 0 large enough satisfying

Z é(C’CC'ZM)\eI Z ’;(C’C‘Qgg—q—)lvl §( Zj];<dQCC2ma);{lT|7|1—T})k)2

0<|e|<j 0<|vI<g 0<k<
=1 d?CCy max{|7], |1 — 7|} \ ¥\ 2
< E — .
= (k_lk!( Cs ) ) <1/2

This proves (5.2). Furthermore, by [1, Lemma 2.9(1)] we have that for all £ € N there exists
Cy > 0 such that, for each j,

(1522 miw(a.6)

DS DL g;(,€)| < CeCy T PICY ((, €)) P Ulot A2 gtoet

for all a, 8 € N¢ and {(z,€)) > R and, in particular, the estimate of Definition 3.1 follows.

Now, we extend g;(z,£) to C°°(R??) for each j € Np. To this aim, we take ¢ € D,(R??),
supported in {(x,¢) € R?? : ((z,¢)) < 2R} and equal to 1 when ((z,&)) < R. Then, we
set g;(x,€) == qj(z,§)(1 — ¢)(x,§), which satisfies g; = ¢; if ((z,£)) > 2R and vanishes if
((x,€)) < R. Tt is easy to see that 1 — ¢ € GS%’“’. Hence, by Lemma 5.3, ¢;(,€) € FGSL’”"“’.

We identify ¢; = ¢; and we show that )" ¢; op ~ 1. For j > 0, by the definition of ¢;(z,¢)
we have

() |

Qj(I7f)p(xa§) = - Z Tfy!T 6‘(1 - T)lfy'(agDEijlH»“/\(xvg))(angp(x?g))

0<e+]<j

= —Tj(.’E,f) + qj(fﬂ,f)P(xaf)v
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where > r; := Y gj op (cf. [1, Proposition 4.13]). Thus, r;(z,£) = 0 for j > 0. Also, by
the definition of composition, ro(x,&) = qo(x,&)p(x, &) = 1 if ((z,£)) > 2R, which shows that
> gjop~ 1. Since ) ¢; is a formal sum in FGSlpm"‘“, by [1, Theorem 4.6] there exists g(x,&) €
GS‘pml*’J such that ¢ ~ )" g¢;. Finally, [1, Proposition 4.14] yields g o p ~ 1, and the proof is
complete. O

Corollary 5.5. Let w be a weight function and let o be a weight function that satisfies (o) with
w(ttP) = o(o(t)) as t — oo. If p(x,&) € GS;"* satisfies the hypotheses of Theorem 5.4, any
quantization of the corresponding pseudodifferential operator P is w-regular.

Proof. By Theorem 5.4 there is a pseudodifferential operator @ such that Qo P = I 4+ R, being I
the identity operator and R an w-regularizing operator (as a direct consequence of Theorems 4.2
and 3.11 for 7 = 0). Then, u = Q(Pu) — Ru € S,,(R?) for any u € S/, (RY) with Pu € S,,(R%).
The same argument is valid for an arbitrary quantization. O

6 Global w-hypoellipticity for mixed classes

In what follows, m,my € R, mg < m, 0 < p <1, and for any given weight function w, o denotes
a Gevrey weight function, i.e. o(t) = t%, for some 0 < a < 1, such that

w(t?) =o(a(t)),  t— . (6.1)

Definition 6.1. Let a € GST’“. We say that a is an w-hypoelliptic symbol in the class
HGS™* and we write a € HGSJ""™* if there exist a Gevrey weight function o satisfy-
ing (6.1) and R > 1 such that

(i) There exist Cy,Cy > 0 such that

Crem O < Ja(r,€)] < Co™ @O ((2,6)) > R

(i) There exist C > 0, n € N such that
\D;‘Dfa(x,f)\ < C|a+5\<($’g)yp\aw\e%wé(nla\)e%%(nlﬁ\)|a(gj,§)|’

for {(z,€)) > R, a,B € N§.

We show in Theorem 6.8 below that Definition 6.1 is independent on the quantization 7 for
the case my = m. Hence, we extend [3, Proposition 8.4], showing that w-hypoelliptic symbol
classes are not perturbed by a change of quantization. We observe that any pseudodifferential
operator defined by an w-hypoelliptic symbol is also w-regular by Theorem 5.4, but the converse
is not true. For instance, the twisted Laplacian in R2,

1 \2 1 \2
L= (D= 3u) + (s~ 57)

is w-regular for every weight function w as it is shown in [4, Example 5.4], but its corresponding
symbol is not w-hypoelliptic for any given weight function w by [4, Remark 5.5].

For technical reasons, the class of global symbols for which Theorem 6.8 holds needs to be
smaller than the one introduced in Section 2. Namely, we need to introduce some kind of mixed
conditions. The following is the corresponding definition for symbols:
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Definition 6.2. We say that a € @é?w if a € C®(R??) and there exists a Gevrey weight
function o satisfying (6.1) such that for all A > 0 there is C\ > 0 with

D3 Dfa(z,6)] < Cal(a, )P AlAes (52 meed) 0 pe NG, 26 € R

Definitions 6.1 and 6.2 are independent of the weight function o, since given two Gevrey
weight functions o7 and oy with (6.1), the Gevrey weight function o(t) := min{o(¢),02(¢)},
t > 1, satisfies (6.1) too.

According to condition (6.1), we have, by [1, Lemma 2.9(1)], that for all A, > 0 there exists
C > 0 such that

MOZ(%) <C +up9023(i), j € No. (6.2)

—~ m,w
As an immediate consequence we have GS , C GS;"’“’.

Lemma 6.3. Let a € (,}T/ST’W. Then a € HGS;""™* if and only if there evist R > 1 and C7 > 0
such that |a(z,€)| > Cpe™@8) for ((x,£)) > R.

Proof. The necessity is obvious. For the sufficiency, since a € GTSZL’W, for o as in (6.1) there
exists C' > 0 with

DY Dfa(x,€)] < C{(x, €))FletPlersllotileme(es) o g eN, z.6€RY, (63)
which in particular yields
Crem™ ™) < a(z,&)] < Ce™ @9, ((2,€)) = R. (6.4)

This shows Definition 6.1(i). For condition (i), by (2.4), e®s(le+A8D) < e2¢s 2l e3¢z (218D Thuys,
by (6.3) and (6.4), we have (since Cf < C)

o C [a+B| ol 1o*(2la 1%
|DID§a(x,§)| < (C’) (&, €))~PlatBl3es Clal o305 BN g (4, £)],
1

for ((z,€)) > R, a, 3 € N&. Since a € (A}JSZWJ C GSJ*, the result follows. O
Similar mixed conditions are imposed to amplitudes and formal sums.

Definition 6.4. An amplitude a(x,y,&) € C(R3?) belongs to EKZ“” if there exists a Gevrey
weight function o satisfying (6.1) such that for all A > 0 there is Cy > 0 with

(x — y)Pletitl
(@, y, )yl B+

w [ |lat+B+~]
D2 Df DYa(z,y,€)| < Ca der (=50 gnate©) 8y € NY, @,y,€ € R

Definition 6.5. A formal sum ) p; is in F/GJSZWJ if pj € C°(R*) and there exist a Gevrey
weight function o satisfying (6.1) and R > 1 such that for all n € N there exists C,, > 0 such
that

D3 D2p;(,€)] < Cu((a, €)) Pt s (55) gmotee),

for each j € Ny, a, B € N, log (<(z}’§)>) > ?cpj:(%)
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Definition 6.6. We say that > a; ~ Y b; in FAG/S;RM if there exist a Gevrey weight function o
satisfying (6.1) and R > 1 such that for allm € N there exist C,, > 0, N,, € N such that

[DEDE Y (0= by)] < Cal(, ) #llt 818 gnes (B555) gt
J<N
for all N > Ny, a, 8 € Ng, log ({280) > 0 (M),
Again by (6.2) it is also clear that E}KZLW C GA;""“ and FAG/SZM) - FGS;"’"".

The amplitudes introduced in Definition 6.4 do not have exponential growth in the variable
y to avoid the increasing in the order m € R in some results in Section 3. For instance, if

a € GKZW, then, following Example 3.7,

Z Z 5'7' \/3| 1 — 7')"7‘86"'7( )ﬁD;a(x,y,g) c Ff‘é/s;n,w. (6.5)

J=0|8+~|=3

—~ O,w
It is easy to check that ¢; (defined in (3.2)) belongs to GS, . Hence the corresponding symbolic

calculus is developed in the same manner as for the global symbol class GSZL"". In particular,

by [1, Theorem 4.6], we have, from (6.5),

)= i, 6)p;(z,€) €GS, (6.6)

=0

for all 7 € R. Such symbol is called is the 7-symbol of the pseudodifferential operator associated

to the amplitude a(z,y,§) € é\g;n’w. In addition, as a consequence of Theorem 3.11 we obtain
Theorem 3.12 for mixed classes.

Theorem 6.7. Let 71,70 € R. Ifar (z,£),ar,(z,&) € (A}/SZ%W are the T -symbol and the T2-symbol
of the pseudodifferential operator A, then

a'rg z g Z Z Tl _7—2 |a\a§ Daa’ﬂ(‘r 5)
i=0jal=; :
L mw
in FGS,
Now we are ready to prove the main theorem of this section.
Theorem 6.8. Let 71,72 € R and let a,, € CEJSZMJ. If a;, € HGS)V™¥, then a,, € HGS;""™*™.

Proof. By (6.6) we have a,, € (E/Sz%w. Therefore, by Lemma 6.3, it is enough to show that there
exist R > 1, D > 0 such that
|ar, (2,€)| > Dem™(74) (6.7)

for {(x,€)) > R. In fact, by assumption, by the same result there are Ry > 1, D; > 0 such that
(ar, (2,€)] = Dyem (=9 (6.8)

for ((x,€)) > Ry. By Theorem 6.7 and Definition 6.6, there exist a Gevrey weight function oy
satisfying (6.1) and Ry > 1 such that there exist C; > 0, N; € N:

ar, (2 Z Z ol (11 — 72) IozlaozDozaT1 (,8)] < C{(z,8))~" N 05, (N) gmw(@,€)

J<N |a|=j
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for N > N; and log (((m,g») > L5(N). By (6.2), there exists 4; > 0 such that ¢} (N) <

- 1 =

Ay + ppl(N) for all N € . Then,

ar, (,8&) — Z Z (11 — 70)l* ‘8“D0‘a71 (2,6)| < Cre®r Ry PN e (@) (6.9)
J<N |a|=j

for all N > Ny and ((z,€)) > Rgen?5(N) where Ry > R, will be determined later.
We fix N = N; € N and we claim that

)Z > iln - ) log Dgar, (€)= Dhemeteo), (6.10)

Jj= OIa\J

if ((x,&)) is large enough. The inequality is immediate for N = 1 by (6.8) for {(z,£)) > Ry, so
we shall assume that N > 1. First, we estimate

b > L —m)logDgan, .6)|

Jlla\y

Since a, (z,€) € @?7w, there exists a Gevrey weight function oy satisfying (6.1) such that there
is Cy > 0 with - )
DS Dgar, (x,8)] < Co(w, &))" 2re?PmaN-Hemelnd),

forall 2, € RY and 1 < |a| < N —1. Again by (6.2), there exists As > 0 such that ¢}, (N —1) <
Ag + ppl (N —1). Consider ((z,€)) large enough so that

((2,€)) = Rae?> (N1,
with R4 > 1 to be determined. Then
DS Dgar, (2,€)] < Cac®{(a, ) e2eb(N-Demetr)

< 0262A2 (R4)—2pemw(x,£)’

for {(x,€)) > Rye?«N=1 1 < |a|] < N — 1. On the other hand, by formula [22, (0.3.1)], we

obtain
Nz: 3 m1 =7 —7'2|‘0‘| Nz:l (d|m —7'2| < edin—mal,
J=1 |al=j Jj=1
So, we deduce
N-1 1
\ (1 = 7)1 9¢ Dy, (x,{)‘ < CpeAz(Ry) 2 edlmi—malgmu(@,6) (6.11)

1

J J

al

for ((x,€)) > Rye¥«N=1)_ Hence, by the triangular inequality, from formulas (6.11) and (6.8)
we have

1

‘ Z Z — (11— 72) |a‘8“D Yar (x, 5)’ > Dye™w(®:8) 0262‘42(]%4) 2p gdIT1 72| gmw(z,€)
a!

J=0 |a|=7

> &emw(w,§)7
-2
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which shows (6.10) provided Ry be so that

(Rq)?*F > DiczezAzedlﬁ_m ;
1

and ((x,€)) > max{Ry, Rye¥>(N=D}. Finally we obtain, by (6.10) and (6.9),

if RGN >

D _ D
|a7_2 (x’ E)| > 71emw(a:,§) . CleAl R3 pNemw(x,f) > Tlemw(x,f)

DilCleAl and ((z,€)) > R := max{Ry, Rye?>N =1 Rgen?i(N)}. Then (6.7) is satisfied

for D = % > 0 and R > 1, and the proof is complete. O
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