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Quantizations and global hypoellipticity for

pseudodifferential operators of infinite order in classes of

ultradifferentiable functions

Vicente Asensio

Abstract

We study the change of quantization for a class of global pseudodifferential operators of
infinite order in the setting of ultradifferentiable functions of Beurling type. The composition
of different quantizations as well as the transpose of a quantization are also analysed, with
applications to the Weyl calculus. We also compare global ω-hypoellipticity and global
ω-regularity of these classes of pseudodifferential operators.

1 Introduction

In the present paper, we deal with the change of quantization in the class of global pseudodiffer-
ential operators introduced by Jornet and the author in [1]. The symbols are of infinite order
with exponential growth in all the variables, in contrast to the approach of Zanghirati [26] and
Fernández, Galbis, and Jornet [16], who treat pseudodifferential operators of infinite order in
the local sense and infinite order only in the last variable, for Gevrey classes and for classes of
ultradifferentiable functions of the Beurling type in the sense of Braun, Meise, and Taylor [9].
In [1, 16], the composition of two operators is given in terms of a suitable symbolic calculus.
On the other hand, Prangoski [24] studies pseudodifferential operators of global type and infinite
order for ultradifferentiable classes of Beurling and Roumieu type in the sense of Komatsu. We
refer also to [10, 11, 13, 22] and the references therein to find other papers discussing pseudod-
ifferential operators defined in global classes (especially Gelfand-Shilov classes).

The appropriate setting in the present paper and in [1] is the space of (non-quasianalytic)
global ultradifferentiable functions defined by Björck [2], characterized as those f ∈ S(Rd), i.e.
in the Schwartz class, such that for all λ > 0 and all α ∈ Nd0 both

sup
x∈Rd

eλω(x)|∂αf(x)| and sup
ξ∈Rd

eλω(ξ)|∂αf̂(ξ)|

are finite, ω denoting a (non-quasianalytic) weight function in the sense of [9]. These spaces
are always contained in the Schwartz class, and they equal the Schwartz class for the case
ω(t) = log(1 + t), t > 0, not considered in our setting.

The notion of hypoellipticity comes from the problem of determining whether a distribution
solution to the partial differential equation Pu = f is a classical solution or not. The authors
in [16] provide adequate conditions for the construction of a (left) parametrix for their symbols,
which guarantee the hypoellipticity in the desired class in [15]. For the operators defined in [24],
the corresponding construction of parametrices is done in Cappiello, Pilipović, and Prangoski [12].

Keywords: global classes, pseudodifferential operator, quantizations, hypoellipticity.
Mathematical Subject Classification (2010): 46F05, 47G30, 35S05, 35H10.
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Here, we develop the method of the parametrix in Section 5 for the class of operators introduced
in [1], but also for every quantization of the pseudodifferential operator. In particular, we obtain
a sufficient condition for any quantization of a pseudodifferential operator to be ω-regular in
the sense of Shubin [25] (see the definition of ω-regularity at the beginning of Section 5). In a
forthcoming paper, the global parametrix method presented here will be used to define a suitable
Weyl wave front set for S ′ω(Rd) and complete the characterization of global wave front sets given
in [5].

As we mention at the beginning, one of the goals of the present paper is to extend the results
in [1] by adapting them for a valid change of quantization for these symbols (see Sections 3 and
4). Namely, we follow the ideas for the change of quantization set within the framework of global
symbol classes of Shubin [25, §23]. In [24] it is considered the change of quantization and its
corresponding symbolic calculus for classes in the sense of Komatsu [19], also in the Roumieu
setting. Nonetheless, as pointed out in [1], whenever the weight ω is under the mild condition

∃H > 1 : 2ω(t) ≤ ω(Ht) +H, t > 0,

the classes of ultradifferentiable functions are equally defined either by weights as in [9] or by
sequences as in [19] (see Bonet, Meise, and Melikhov [7]). Thus, if the weight sequence (Mp)p
satisfies only stability under ultradifferential operators, as assumed in [24], our classes of symbols
(and amplitudes) might not coincide with the ones defined in [24]. It turns out that, even only
in the Beurling setting, we are discussing different cases.

Finally, in Section 6, inspired by Boggiatto, Buzano, and Rodino [3], we show that some
ω-hypoelliptic symbols are stable under change of quantization and we compare the notions of
ω-regularity and ω-hypoellipticity following the ideas of [4].

2 Preliminaries

We begin with some notation on multi-indices. Throughout the text we will denote by α =
(α1, . . . , αd) ∈ Nd0 a multi-index of dimension d. The length of α is |α| = α1 + · · ·+ αd. For two
multi-indices α and β we write β ≤ α for βj ≤ αj , when j = 1, . . . , d. Moreover, α! = α1! · · ·αd!
and if β ≤ α, then

(
α
β

)
:= α!

β!(α−β)! . For x = (x1, . . . , xd) ∈ Rd, we have xα = xα1
1 · · ·x

αd
d . We

write ∂α =
(
∂
∂x1

)α1
. . .
(
∂
∂xd

)αd and we set

Dα = Dα1
x1
· · ·Dαd

xd
,

where D
αj
xj = (−i)|αj |

(
∂
∂xj

)αj
, j = 1, . . . , d.

In our setting we work with weight functions as the ones defined by Braun, Meise, and
Taylor [9].

Definition 2.1. A non-quasianalytic weight function ω : [0,+∞[→ [0,+∞[ is a continuous and
increasing function which satisfies:

(α) ∃ L ≥ 1 : ω(2t) ≤ L(ω(t) + 1), t ≥ 0,

(β)

∫ +∞

1

ω(t)

t2
dt < +∞,

(γ) log(t) = o(ω(t)) as t→∞,

(δ) ϕω : t 7→ ω(et) is convex.

We extend the weight function ω to Cd in a radial way: ω(z) = ω(|z|), z ∈ Cd, where |z| denotes
the Euclidean norm.
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From Definition 2.1(α) we immediately have:

ω(x+ y) ≤ L(ω(x) + ω(y) + 1), x, y ∈ Rd. (2.1)

For z ∈ Cd we denote 〈z〉 :=
√

1 + |z|2. From (2.1) we have

ω(〈z〉) ≤ ω(1 + |z|) ≤ Lω(z) + L(1 + ω(1)), z ∈ Cd. (2.2)

Definition 2.2. Given a weight function ω, the Young conjugate ϕ∗ω : [0,∞[→ [0,∞[ of ϕω is
defined as

ϕ∗ω(t) := sup
s≥0
{st− ϕω(s)}.

When the weight function ω is clear or irrelevant in the context, we simply denote ϕω and
ϕ∗ω by ϕ and ϕ∗. From now on, we assume that ω|[0,1] ≡ 0, which implies that ϕ∗(0) = 0 (in
particular, this gives that ω(1) = 0 in formula (2.2)). Moreover, it is known that ϕ∗ is convex,
the function ϕ∗(x)/x is increasing for x > 0 and ϕ∗∗ := (ϕ∗)∗ = ϕ (see [9]). From [18, Remark
2.8(c)] is not difficult to see (cf. [6, Lemma A.1]):

Proposition 2.3. If a weight function ω satisfies ω(t) = o(ta) as t→ +∞ for some 0 < a ≤ 1,
then for every B > 0 and λ > 0 there exists C > 0 such that

Bnn! ≤ Ceaλϕ
∗(nλ ), n ∈ N0.

The following result can be found in [9].

Lemma 2.4. (1) Let L > 0 be such that ω(et) ≤ L(ω(t) + 1). Then

λLnϕ∗
( y

λLn
)

+ ny ≤ λϕ∗
( y
λ

)
+ λ

n∑
j=1

Lj (2.3)

for every y ≥ 0, λ > 0, n ∈ N.

(2) For all s, t, λ > 0, we have

2λϕ∗
(s+ t

2λ

)
≤ λϕ∗

( s
λ

)
+ λϕ∗

( t
λ

)
≤ λϕ∗

(s+ t

λ

)
. (2.4)

We will consider without losing generality with no explicit mention that the constant L ≥ 1
that comes from Definition 2.1(α) fulfils the condition of Lemma 2.4. For more results involving
ϕ∗ see, for instance, [1, 9, 16] and [6, Lemma A.1].

We deal with a class of global ultradifferentiable functions, which extends the classical
Schwartz class with the use of weight functions. It was introduced by Björck [2], but only
considering a subadditive weight function ω (so the following definition is slightly more general
than the given by Björck).

Definition 2.5. For a weight ω as in Definition 2.1 we define Sω(Rd) as the set of all u ∈ L1(Rd)
such that (u and its Fourier transform û belong to C∞(Rd) and)

(i) for each λ > 0 and α ∈ Nd0, sup
x∈Rd

eλω(x)|Dαu(x)| < +∞,

(ii) for each λ > 0 and α ∈ Nd0, sup
ξ∈Rd

eλω(ξ)|Dαû(ξ)| < +∞.
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The corresponding strong dual is denoted by S ′ω(Rd) and is the set of all the linear and con-
tinuous functionals u : Sω(Rd) → C. We say that an element of S ′ω(Rd) is an ω-temperate
ultradistribution.

The space Sω(Rd) has been studied for different purposes by many authors. We refer, for
instance, to [4, 6, 17] for some examples of publications that treat different problems in the
setting of the class Sω(Rd). We recall here [1, Lemma 2.11], which will be useful below.

Lemma 2.6. If f ∈ S(Rd), then f ∈ Sω(Rd) if and only if for every λ, µ > 0 there is Cλ,µ > 0
such that for all α ∈ Nd0 and x ∈ Rd, we have

|Dαf(x)| ≤ Cλ,µeλϕ
∗
(
|α|
λ

)
e−µω(x).

From now on, m denotes a real number and 0 < ρ ≤ 1. In the following, we consider global
symbols and global amplitudes of infinite order defined very similarly to the ones in [1, Definitions
3.1 and 3.2]. The unique difference is the factor emω(x,ξ) in the case of symbols and emω(x,y,ξ)

in the case of amplitudes, which are more suitable for our purposes. We observe that these
definitions are equivalent to those in [1]. In fact, when considering symbols for example, it is
enough to use that there exist A,B > 0 such that A(ω(x)+ω(ξ)) ≤ ω(x, ξ) ≤ B(ω(x)+ω(ξ)+1)
for every x, ξ ∈ Rd.

Definition 2.7. A global symbol (of order m) in GSm,ωρ is a function p(x, ξ) ∈ C∞(R2d) such
that for all n ∈ N there exists Cn > 0 with

|Dα
xD

β
ξ p(x, ξ)| ≤ Cn〈(x, ξ)〉

−ρ|α+β|enρϕ
∗
(
|α+β|
n

)
emω(x,ξ),

for all α, β ∈ Nd0 and x, ξ ∈ Rd.

Definition 2.8. A global amplitude (of order m) in GAm,ω
ρ is a function a(x, y, ξ) ∈ C∞(R3d)

such that for all n ∈ N there exists Cn > 0 with

|Dα
xD

β
yD

γ
ξ a(x, y, ξ)| ≤ Cn

〈x− y〉ρ|α+β+γ|

〈(x, y, ξ)〉ρ|α+β+γ|
enρϕ

∗
(
|α+β+γ|

n

)
emω(x,y,ξ),

for all α, β, γ ∈ Nd0 and x, y, ξ ∈ Rd.

In [1] we introduce global pseudodifferential operators on Sω(Rd) by means of oscillatory
integrals for global amplitudes as in Definition 2.8 (see [1, Proposition 3.3]). It turns out that
the action of a pseudodifferential operator on a function in Sω(Rd) can be written as an iterated
integral [1, Theorem 3.7] and it is continuous and linear from Sω(Rd) into itself. In fact, we use
these properties to state the following definition:

Definition 2.9. Given a global amplitude a(x, y, ξ) ∈ GAm,ω
ρ (as in Definition 2.8), we define

the associated global pseudodifferential operator A : Sω(Rd)→ Sω(Rd) by

A(f)(x) :=

∫ (∫
ei(x−y)·ξa(x, y, ξ)f(y)dy

)
dξ, f ∈ Sω(Rd).

Moreover, this operator can be extended linearly and continuously to an operator Ã from
S ′ω(Rd) into S ′ω(Rd) [1, Proposition 3.10].

At some stages we need classes of ultradifferentiable functions defined in the local sense;
we refer the reader to [9, 16] for a theory of pseudodifferential operators of infinite order when
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defined in local spaces. Let ω be a weight function. For an open set Ω ⊂ Rd, we define the space
of ultradifferentiable functions of Beurling type in Ω as

Eω(Ω) :=
{
f ∈ C∞(Ω) : |f |K,λ <∞ for every λ > 0, and every K ⊂ Ω compact

}
,

where

|f |K,λ := sup
α∈Nd0

sup
x∈K
|Dαf(x)|e−λϕ

∗
(
|α|
λ

)
.

We endow such space with the Fréchet topology given by the sequence of seminorms |f |Kn,n,
where (Kn)n is any compact exhaustion of Ω and n ∈ N. The strong dual of Eω(Ω) is the space
of compactly supported ultradistributions of Beurling type and is denoted by E ′ω(Ω).

The space of ultradifferentiable functions of Beurling type with compact support in Ω is denoted
by Dω(Ω), and it is the space of those functions f ∈ Eω(Ω) such that its support, denoted by
supp f , is compact in Ω. Its corresponding dual space is denoted by D′ω(Ω) and it is called the
space of ultradistributions of Beurling type in Ω. The following continuous embeddings hold:

E ′ω(Rd) ⊆ S ′ω(Rd) ⊆ D′ω(Rd).

We recall that the space Sω(Rd), as well as its strong dual S ′ω(Rd), are stable under Fourier
transform (see, for instance [2]).

Since the global amplitudes have exponential growth in all the variables, it becomes useful
a particular kind of integration by parts to understand the behaviour of a pseudodifferential
operator in this setting. Following [24], but with a different point of view, we use in [1] entire
functions with prescribed exponential growth in terms of a weight function ω. The existence of
this type of entire functions was proven by Braun [8] and Langenbruch [20]. In several variables
we have a similar result:

Theorem 2.10 ([1], Theorem 2.16). Let ω : [0,∞[→ [0,∞[ be a continuous and increasing
function satisfying the conditions (α), (γ), and (δ) of Definition 2.1. Then there are a function
G ∈ H(Cd) and some constants C1, C2, C3, C4 > 0 such that

i’) log |G(z)| ≤ ω(z) + C1, z ∈ Cd;

ii’) log |G(z)| ≥ C2ω(z)− C4, z ∈ Ũ := {z ∈ Cd : | Im(z)| ≤ C3(|Re(z)|+ 1)}.

We also need the notion of ω-ultradifferential operator with constant coefficients. Let G be
an entire function in Cd with log |G| = O(ω). For ϕ ∈ Eω(Rd), the map TG : Eω(Rd)→ C given
by

TG(ϕ) :=
∑
α∈Nd0

DαG(0)

α!
Dαϕ(0)

defines an ultradistribution TG ∈ E ′ω(Rd) with support equal to {0}. The convolution operator
G(D) : D′ω(Rd)→ D′ω(Rd) defined by G(D)(µ) = TG∗µ is said to be an ultradifferential operator
of ω-class.

Proposition 2.11. Let G be the entire function given in Theorem 2.10 and n ∈ N. If

Gn(z) =
∑
α∈Nn0

bαz
α, z ∈ Cd

denotes the n-th power of G, then there exist C,K > 0 such that

|bα| ≤ enCe−nCϕ
∗
(
|α|
nC

)
, α ∈ Nd0;

|Gn(ξ)| ≥ C−nenKω(ξ), ξ ∈ Rd.
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The following result characterizes those operators whose kernel is a function in Sω(Rd). These
operators are fundamental to understand the symbolic calculus. The proof is standard.

Proposition 2.12. Let T : Sω(Rd) → Sω(Rd) be a pseudodifferential operator. The following
assertions are equivalent:

(1) T has a linear and continuous extension T̃ : S ′ω(Rd)→ Sω(Rd).

(2) There exists K(x, y) ∈ Sω(R2d) such that

(Tϕ)(x) =

∫
K(x, y)ϕ(y)dy, ϕ ∈ Sω(Rd).

Any operator T : Sω(Rd) → Sω(Rd) which satisfies (1) or (2) of Proposition 2.12 is called
ω-regularizing.

3 Symbolic calculus for quantizations

We generalize the symbolic calculus developed in [1] for quantizations.

Definition 3.1. We define FGSm,ωρ to be the set of all formal sums
∑
j∈N0

aj(x, ξ) such that

aj(x, ξ) ∈ C∞(R2d) and there is R ≥ 1 such that for every n ∈ N there exists Cn > 0 with

|Dα
xD

β
ξ aj(x, ξ)| ≤ Cn〈(x, ξ)〉

−ρ(|α+β|+j)enρϕ
∗
(
|α+β|+j

n

)
emω(x,ξ),

for each j ∈ N0, α, β ∈ Nd0, and log
( 〈(x,ξ)〉

R

)
≥ n

j ϕ
∗( j
n

)
.

Definition 3.2. Two formal sums
∑
aj and

∑
bj in FGSm,ωρ are said to be equivalent, denoted

by
∑
aj ∼

∑
bj, if there is R ≥ 1 such that for each n ∈ N there exist Cn > 0 and Nn ∈ N with∣∣∣Dα
xD

β
ξ

∑
j<N

(aj − bj)
∣∣∣ ≤ Cn〈(x, ξ)〉−ρ(|α+β|+N)enρϕ

∗
(
|α+β|+N

n

)
emω(x,ξ),

for every N ≥ Nn, α, β ∈ Nd0, and log
( 〈(x,ξ)〉

R

)
≥ n

Nϕ
∗(N

n

)
.

The following construction has been carried out in [1] following the lines of [16, Theorem 3.7].
Let Φ ∈ Dσ(R2d), where σ is a weight function which satisfies ω(t1/ρ) = O(σ(t)), as t → +∞,
and

|Φ(t)| ≤ 1, Φ(t) = 1 if |t| ≤ 2, Φ(t) = 0 if |t| ≥ 3. (3.1)

Let (jn)n be a sequence of natural numbers such that jn/n→∞ as n tends to infinity. For each
jn ≤ j < jn+1, we set

ϕj(x, ξ) := 1− Φ
( (x, ξ)

An,j

)
, An,j = Re

n
j ϕ
∗
ω(

j
n ), (3.2)

where R ≥ 1 is the constant which appears in Definition 3.1. It is understood that ϕ0 = 1. We
have shown in [1] that ϕj ∈ GS0,ω

ρ . Moreover, if
∑
j aj ∈ FGSm,ωρ then, by [1, Theorem 4.6],

a(x, ξ) :=

∞∑
j=0

ϕj(x, ξ)aj(x, ξ)
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is a global symbol in GSm,ωρ , equivalent to
∑
j aj in FGSm,ωρ .

Now, we extend some results in [1] for quantizations. In what follows, τ stands for a real
number. Let k ∈ N0 denote the minimum natural number satisfying

|τ |+ |1− τ | ≤ 2k. (3.3)

Furthermore, for any m ∈ R we denote

m′ = mLk, (3.4)

where L ≥ 1 is the constant of Lemma 2.4. We observe that m′ = m if and only if 0 ≤ τ ≤ 1.

Lemma 3.3. If b(x, ξ) ∈ GSm,ωρ and τ ∈ R, then

a(x, y, ξ) := b((1− τ)x+ τy, ξ)

is a global amplitude in GAmax{0,m′},ω
ρ .

Proof. The following inequality is easy to check:

〈(x, y, ξ)〉 ≤
√

6〈τ〉〈x− y〉〈((1− τ)x+ τy, ξ)〉, x, y, ξ ∈ Rd, τ ∈ R.

We take p̃ ∈ N such that max{|1 − τ |, |τ |, (
√

6〈τ〉)ρ} ≤ eρp̃. By assumption, for all λ > 0 there
exists Cλ > 0 such that (L ≥ 1 is the constant of Lemma 2.4)

|Dα
xD

β
yD

γ
ξ a(x, y, ξ)| ≤ |1− τ ||α||τ ||β|Cλ〈((1− τ)x+ τy, ξ)〉−ρ|α+β+γ|×

× eλL
2p̃ρϕ∗

(
|α+β+γ|
λL2p̃

)
emω((1−τ)x+τy,ξ).

The choice of p̃ gives |1− τ ||α||τ ||β|(
√

6〈τ〉)ρ|α+β+γ| ≤ e2p̃ρ|α+β+γ|. Then, by (2.3), we get[
e2p̃|α+β+γ|eλL

2p̃ϕ∗
(
|α+β+γ|
λL2p̃

)]ρ ≤ eλρϕ∗( |α+β+γ|
λ

)
eλρ

∑2p̃
j=1 L

j

.

Finally, since ω is radial and increasing, applying k times property (α) of the weight function ω,
we get, for m ≥ 0,

emω((1−τ)x+τy,ξ) ≤ emω(2
k(x,y,ξ)) ≤ em

′ω(x,y,ξ)emL
k+mLk−1+···+mL. (3.5)

Corollary 3.4. Let ϕj be the function in (3.2). For all λ > 0 there exists Cλ > 0 such that

|Dα
xD

β
yD

γ
ξϕj((1− τ)x+ τy, ξ)| ≤ Cλ〈((1− τ)x+ τy, ξ)〉−ρ|α+β+γ|eλρϕ

∗
(
|α+β+γ|

λ

)
,

for every α, β, γ ∈ Nd0 and x, y, ξ ∈ Rd. Hence ϕj((1− τ)x+ τy, ξ) ∈ GA0,ω
ρ for all τ ∈ R.

Here, we generalize [1, Lemma 4.7] to readapt it to our context.

Lemma 3.5. Let a(x, y, ξ) be an amplitude in GAm,ω
ρ and let A be the corresponding pseudod-

ifferential operator. For each u ∈ Sω(Rd),

A(u) = Sω(Rd)−
∞∑
j=0

Aj(u),

where Aj is the pseudodifferential operator defined by the amplitude

(ϕj − ϕj+1)((1− τ)x+ τy, ξ)a(x, y, ξ), j ∈ N0.
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Proof. By Corollary 3.4, (ϕj −ϕj+1)((1− τ)x+ τy, ξ)a(x, y, ξ) ∈ GAm,ω
ρ . Since An,N+1 →∞ as

N →∞, proceeding as in [1, Proposition 3.3], one can show that, for each u ∈ Sω(Rd),

∞∑
j=0

Aj(u)(x) = Sω(Rd)− lim
N→∞

∫∫
ei(x−y)·ξ

(
1− ϕN+1((1− τ)x+ τy, ξ)

)
a(x, y, ξ)u(y)dydξ.

We show that this limit is, for all τ ∈ R, equal to A in L(Sω(Rd),S ′ω(Rd)). We recall that

(1− ϕN+1)((1− τ)x+ τy, ξ) = Φ
( ((1− τ)x+ τy, ξ)

An,N+1

)
and Φ(0) = 1, being Φ ∈ Dσ(R2d) the function in (3.1) with ω(t1/ρ) = O(σ(t)), t → ∞. We
claim that for each f, g ∈ Sω(Rd),∫∫∫

ei(x−y)·ξ
(

Φ
( (1− τ)x+ τy, ξ

k

)
− 1
)
a(x, y, ξ)f(y)g(x)dydξdx→ 0 (3.6)

as k →∞. We use the following identity to integrate by parts with the ultradifferential operator
G(D) associated to the entire function in Proposition 2.11:

ei(x−y)·ξ =
1

Gs(ξ)
Gs(−Dy)ei(x−y)·ξ, (3.7)

for some power s ∈ N that we will determine later. Then, the integrand in the left-hand side
of (3.6) equals

ei(x−y)·ξ
1

Gs(ξ)
Gs(Dy)

((
Φ
( (1− τ)x+ τy, ξ

k

)
− 1
)
a(x, y, ξ)f(y)g(x)

)
= ei(x−y)·ξ

1

Gs(ξ)

∑
η∈Nd0

bη
∑

η1+η2+η3=η

η!

η1!η2!η3!

(τ
k

)|η1|
Dη1
y

(
Φ
( (1− τ)x+ τy, ξ

k

)
− 1
)
×

×Dη2
y a(x, y, ξ)Dη3

y f(y)g(x).

Therefore, the integral in (3.6) is equal to∑
η∈Nd0

bη
∑

η1+η2+η3=η

η!

η1!η2!η3!

(τ
k

)|η1| ∫∫∫
ei(x−y)·ξ

1

Gs(ξ)
×

×Dη1
y

(
Φ
( (1− τ)x+ τy, ξ

k

)
− 1
)
Dη2
y a(x, y, ξ)Dη3

y f(y)g(x)dydξdx.

From Proposition 2.11, there are C1, C2, C3 > 0 (depending only on G) such that for all η ∈ Nd0
and ξ ∈ Rd we have

|bη| ≤ esC1e−sC1ϕ
∗
(
|η|
sC1

)
,

∣∣∣ 1

Gs(ξ)

∣∣∣ ≤ Cs3e−sC2ω(ξ). (3.8)

It follows from Definition 2.8 (see for example [1, Lemma 2.6]) that for all λ > 0 there exists
Cλ > 0 such that (L ≥ 1 is the constant of Lemma 2.4)

|Dη2
y a(x, y, ξ)| ≤ CλeλL

3ϕ∗
(
|η2|
λL3

)
emω(x,y,ξ).
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Since f, g ∈ Sω(Rd), there exist C ′λ,m, Cm > 0 such that

|Dη3
y f(y)| ≤ C ′λ,me

λL3ϕ∗
(
|η3|
λL3

)
e−(mL+1)ω(y), |g(x)| ≤ Cme−(mL+1)ω(x).

For η1 = 0 we have Φ ≡ 1 if |((1 − τ)x + τy, ξ)| ≤ 2k, and for |η1| > 0 it follows that

Dη1
y

(
Φ
(

(1−τ)x+τy,ξ
k

)
− 1
)

= Dη1
y Φ

(
(1−τ)x+τy,ξ

k

)
is zero for |((1 − τ)x + τy, ξ)| ≤ 2k; there-

fore, we can assume that |((1− τ)x+ τy, ξ)| > 2k. In particular, we have

1 ≤ 1

2k
|((1− τ)x+ τy, ξ)| ≤ 1

k
(|1− τ |+ |τ |)(|x|+ 1)(|y|+ 1)(|ξ|+ 1).

As Φ ∈ Dσ(R2d) ⊆ Dω(R2d), there exists C ′′λ > 0 such that

|τ ||η1|
∣∣∣Dη1

y

(
Φ
( (1− τ)x+ τy, ξ

k

)
− 1
)∣∣∣ ≤ C ′′λeλL3ϕ∗

(
|η1|
λL3

)
, η1 ∈ Nd0.

For m ≥ 0 (if m < 0, then mω(x, y, ξ) < 0), since

mω(x, y, ξ) ≤ mLω(x) +mLω(y) +mLω(ξ) +mL,

it is enough to take s ∈ N satisfying sC2 ≥ mL + 1 to get e(−sC2+mL)ω(ξ) ≤ e−ω(ξ), and
therefore the integrals are convergent by condition (γ) of the weight ω. On the other hand, since∑ η!

η1!η2!η3!
= 3|η| ≤ e2|η|, by Lemma 2.4 we have

∑
η1+η2+η3=η

η!

η1!η2!η3!
eλL

3ϕ∗
(
|η1|
λL3

)
eλL

3ϕ∗
(
|η2|
λL3

)
eλL

3ϕ∗
(
|η3|
λL3

)
≤ eλLϕ

∗
(
|η|
λL

)
eλL

2+λL3

.

Now, the series ∑
η∈Nd0

e−sC1ϕ
∗
(
|η|
sC1

)
eλLϕ

∗
(
|η|
λL

)
converges provided λ > sC1 (see [1, (3.5), (3.6)]). Thus, there exists C > 0 such that∣∣∣ ∫∫∫ ei(x−y)·ξ

(
Φ
( (1− τ)x+ τy, ξ

k

)
− 1
)
a(x, y, ξ)f(y)g(x)dydξdx

∣∣∣ ≤ C 1

k
→ 0,

and hence (3.6) is satisfied.

The next result is the corresponding extension of [1, Proposition 4.8].

Lemma 3.6. Let
∑
pj ∈ FGSm,ωρ and let (Cn)n, (C

′
n)n be the sequences of constants that appear

in Definition 3.1 and in the estimate of the derivatives of ϕj in Corollary 3.4. We denote
Dn := C2nLp̃+1 and D′n := C ′

nLp̃+1 , where L ≥ 1 is the constant of Lemma 2.4 and p̃ ∈ N0 is

so that 3〈τ〉 ≤ ep̃, for a fixed τ ∈ R. Consider (jn)n, jn ∈ N, such that j1 = 1, jn < jn+1,
jn/n→∞ and

Dn+1D
′
n+1

∞∑
j=jn+1

(2R)−ρj ≤ DnD
′
n

2

jn+1−1∑
j=jn

(2R)−ρj , n ∈ N,

and moreover,
n

j
ϕ∗
( j
n

)
≥ max{n, logDn, logD′n}, for j ≥ jn.
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If

a(x, ξ) :=

∞∑
j=0

ϕj(x, ξ)pj(x, ξ),

then the associated pseudodifferential operator A is the limit in L(Sω(Rd),S ′ω(Rd)) of the sequence
of operators SN,τ : Sω(Rd) → Sω(Rd), where each SN,τ is a pseudodifferential operator with
amplitude

N∑
j=0

(ϕj − ϕj+1)((1− τ)x+ τy, ξ)(

j∑
l=0

pl((1− τ)x+ τy, ξ)).

Proof. For each j ∈ N0, one can show that

(ϕj − ϕj+1)((1− τ)x+ τy, ξ)

j∑
l=0

pl((1− τ)x+ τy, ξ) =

j∑
l=0

((ϕj − ϕj+1)pl)((1− τ)x+ τy, ξ)

is a global amplitude in GAmax{0,m′},ω
ρ , m′ being set in (3.4). Hence, the function

N∑
j=0

(ϕj − ϕj+1)
( j∑
l=0

pl

)
=

N∑
j=0

ϕjpj − ϕN+1

N∑
l=0

pl

is a global amplitude in GAmax{0,m′},ω
ρ .

Now, we prove that SN,τ → A in L(Sω(Rd),S ′ω(Rd)) as N → ∞. As in the proof of [1,
Proposition 4.8], it is enough to show that, for any f, g ∈ Sω(Rd), 〈(SN,τ − A)f, g〉 → 0 as
N →∞. Note that A and SN,τ , N = 1, 2, . . . act continuously on Sω(Rd). Thus

〈(SN,τ −A)f, g〉 =

∫
(SN,τ −A)f(x)g(x)dx

=

∫ (∫∫
ei(x−y)·ξ

({ N∑
j=0

ϕjpj − ϕN+1

N∑
l=0

pl

}
− a
)
f(y)dydξ

)
g(x)dx

for every f, g ∈ Sω(Rd), where ϕj , ϕN , pj , pl, and a are evaluated at ((1− τ)x+ τy, ξ).
We show that, for each f, g ∈ Sω(Rd),

a)

∫ (∫∫
ei(x−y)·ξ

( ∞∑
j=N+1

ϕj((1− τ)x+ τy, ξ)pj((1− τ)x+ τy, ξ)
)
f(y)dydξ

)
g(x)dx and

b)

∫ (∫∫
ei(x−y)·ξ

(
ϕN+1((1− τ)x+ τy, ξ)

N∑
l=0

pl((1− τ)x+ τy, ξ)
)
f(y)dydξ

)
g(x)dx

tend to zero when N →∞.
Let us show that the integral in a) goes to zero. We integrate by parts with formula (3.7) for

some s ∈ N to be determined later. Then

ei(x−y)·ξ
1

Gs(ξ)
Gs(Dy)

( ∞∑
j=N+1

ϕj · pj · f(y)
)

= ei(x−y)·ξ
1

Gs(ξ)

∑
η∈Nd0

bη
∑

η1+η2+η3=η

η!

η1!η2!η3!

∞∑
j=N+1

τ |η1+η2|Dη1
y ϕj ·Dη2

y pj ·Dη3
y f(y).
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Hence, we can reformulate the integral in a) as∫ (∫ 1

Gs(ξ)

∑
η∈Nd0

bη
∑

η1+η2+η3=η

η!

η1!η2!η3!
τ |η1+η2|×

×
∫
ei(x−y)·ξ

∞∑
j=N+1

Dη1
y ϕj ·Dη2

y pj ·Dη3
y f(y)dydξ

)
g(x)dx.

(3.9)

When ϕj 6= 0, and jn ≤ j < jn+1, we have log
( 〈((1−τ)x+τy,ξ)〉

2R

)
≥ n

j ϕ
∗( j
n

)
(see (3.2)). By

Corollary 3.4, for each n ∈ N, the following estimate holds (as in the hypotheses of this lemma,
we denote D′n = C ′

nLp̃+1 > 0)

|Dη1
y ϕj((1− τ)x+ τy, ξ)| ≤ D′ne

nLp̃+1ϕ∗
(
|η1|

nLp̃+1

)
.

Moreover, for that n ∈ N (as in the hypotheses of this lemma, we denote Dn = C2nLp̃+1 > 0),
by (2.4), we have

|Dη2
y pj((1− τ)x+ τy, ξ)|

≤ Dne
2nLp̃+1ρϕ∗

(
|η2|+j
2nLp̃+1

)
〈((1− τ)x+ τy, ξ)〉−ρ(|η2|+j)emω((1−τ)x+τy,ξ)

≤ Dne
nLp̃+1ϕ∗

(
|η2|

nLp̃+1

)
enL

p̃+1ρϕ∗
(

j

nLp̃+1

)
〈((1− τ)x+ τy, ξ)〉−ρjemω((1−τ)x+τy,ξ)

≤ Dne
nLp̃+1ϕ∗

(
|η2|

nLp̃+1

)
(2R)−ρjemω((1−τ)x+τy,ξ).

Property (γ) of Definition 2.1 yields that there exists C > 0 such that 〈x〉 ≤ Ceω(〈x〉), x ∈ Rd.
Then, using (2.2),

emω((1−τ)x+τy,ξ) ≤ e(m+3)ω(〈((1−τ)x+τy,ξ)〉)e−3ω(〈((1−τ)x+τy,ξ)〉)

≤ e(m+3)Lω((1−τ)x+τy,ξ)e(m+3)LC3〈((1− τ)x+ τy, ξ)〉−3

≤ C3e(m+3)Lω((1−τ)x+τy,ξ)e(m+3)Le−3
n
j ϕ
∗( jn ).

By (3.5) (k being as in (3.3)), we obtain

e(m+3)Lω((1−τ)x+τy,ξ) ≤ e(m+3)Lk+1ω(x,y,ξ)e(m+3)Lk+1+···+(m+3)L2

≤ e(m+3)Lk+2(ω(x)+ω(y)+ω(ξ))e(m+3)Lk+2+···+(m+3)L2

.

Take 0 < ` < n. Later, an additional condition will be imposed on `. Since f, g ∈ Sω(Rd),
there are C ′′` > 0, which depends on `,m, and on τ , and D > 0 that depends on m and on τ such
that

|Dη3
y f(y)| ≤ C ′′` e

`Lp̃+1ϕ∗
(
|η3|
`Lp̃+1

)
e−((m+3)Lk+2+1)ω(y);

|g(x)| ≤ De−((m+3)Lk+2+1)ω(x).

Lemma 2.4, the fact that
∑ η!

η1!η2!η3!
= 3|η| and the choice of p̃ ∈ N provide∑

η1+η2+η3=η

η!

η1!η2!η3!
|τ ||η1+η2|enL

p̃+1ϕ∗
(
|η1|

nLp̃+1

)
enL

p̃+1ϕ∗
(
|η2|

nLp̃+1

)
e`L

p̃+1ϕ∗
(
|η3|
`Lp̃+1

)
≤ 〈τ〉|η|e`L

p̃+1ϕ∗
(
|η|

`Lp̃+1

) ∑
η1+η2+η3=η

η!

η1!η2!η3!

≤ e`Lϕ
∗
(
|η|
`L

)
e`L

∑p̃
r=1 L

r

.
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Thus, from (3.8), we estimate (3.9) by∫ (∫
Cs3e

−sC2ω(ξ)
∑
η∈Nd0

esC1e−sC1ϕ
∗
(
|η|
sC1

)( ∫ ∞∑
j=N+1

DnD
′
ne
`Lϕ∗

(
|η|
`L

)
e`L

∑p̃
r=1 L

r

×

× (2R)−ρjC3e(m+3)L+(m+3)L2+···+(m+3)Lk+2

e(m+3)Lk+2(ω(x)+ω(y)+ω(ξ))×

× e−3
n
j ϕ
∗( jn )C ′′` e

−((m+3)Lk+2+1)ω(y)dy
)
dξ
)
De−((m+3)Lk+2+1)ω(x)dx.

Take s ∈ N0 such that sC2 ≥ (m + 3)Lk+2 + 1. Choosing ` ≥ sC1 we obtain that the series
depending on η ∈ Nd0 ∑

η∈Nd0

e−sC1ϕ
∗
(
|η|
sC1

)
e`Lϕ

∗
(
|η|
`L

)
converges (see [1, (3.6)]). The constant depending on n is DnD

′
n. We get for jl ≤ N + 1 < jl+1,

the following estimate for the integral in a):

E`

(∫
e−ω(x)dx

)(∫
e−ω(y)dy

)(∫
e−ω(ξ)dξ

)( ∞∑
n=l

jn+1−1∑
j=jn

DnD
′
n

(2R)ρje3
n
j ϕ
∗( jn )

)
,

where E` > 0 is a constant depending on `. The last 3 integrals converge by property (γ) of the
weight function. By assumption, we have 3nj ϕ

∗( j
n

)
≥ logDn + logD′n + n. This finally proves

that the integral in a) converges to zero as N tends to infinity.
For the limit in b), we can proceed as in [1, Proposition 4.8] with the above techniques.

The next example recovers [1, Example 4.9] for τ = 0. The proof is straightforward and is
left to the reader.

Example 3.7. Let a(x, y, ξ) be an amplitude in GAm,ω
ρ and let

pj(x, ξ) :=
∑
|β+γ|=j

1

β!γ!
τ |β|(1− τ)|γ|∂β+γξ (−Dx)βDγ

y a(x, y, ξ)|y=x .

Then, the series
∑∞
j=0 pj(x, ξ) is a formal sum in FGSmax{m,mL},ω

ρ for all τ ∈ R.

The following lemma is taken from [16, Lemma 3.11].

Lemma 3.8. Let m ≥ n and 1
ee

m
j ϕ
∗( jm ) ≤ t ≤ e

n
j ϕ
∗( jn ) for t > 0. Then

enϕ
∗( jn ) ≥ e(n−1)ω(t)e2nϕ

∗( j2n ),

for j large enough.

These two lemmas are easy to prove.

Lemma 3.9. Let τ ∈ R and let k ∈ N0 as in (3.3). Then we have

ω(x, y) ≤ L2ω((1− τ)x+ τy) + Lk+2ω(y − x) +

k+2∑
j=1

Lj , x, y ∈ Rd.
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Lemma 3.10. For all τ ∈ R, the inequality

|v|2 ≤ C(|v + tτw|2 + |v − t(1− τ)w|2)

holds for all v, w ∈ Rd, 0 ≤ t ≤ 1, where C = 2 max{(1− τ)2, τ2}.

The following result shows that any pseudodifferential operator can be written as a quanti-
zation modulo an ω-regularizing operator and is needed to understand the composition of two
different quantizations in the next section. For the proof, it is fundamental the fact that the
kernel K of a pseudodifferential operator behaves like a function in Sω(Rd) in the complement
of a strip ∆r = {(x, y) ∈ R2d : |x− y| < r} around the diagonal of R2d, for some r > 0. In other
words, if χ is as in [1, Lemma 5.1], then χK ∈ Sω(R2d) [1, Theorem 5.2].

Theorem 3.11. Let a(x, y, ξ) be an amplitude in GAm,ω
ρ with associated pseudodifferential op-

erator A. Then, for any τ ∈ R, we can write A uniquely as

A = Pτ +R,

where R is an ω-regularizing operator and Pτ is the pseudodifferential operator given by

Pτu(x) =

∫∫
ei(x−y)·ξpτ ((1− τ)x+ τy, ξ)u(y)dydξ, u ∈ Sω(Rd),

being pτ ∈ GSmax{m,mL},ω
ρ . Moreover, we have

pτ (x, ξ) ∼
∞∑
j=0

pj(x, ξ) =

∞∑
j=0

∑
|β+γ|=j

1

β!γ!
τ |β|(1− τ)|γ|∂β+γξ (−Dx)βDγ

y a(x, y, ξ)|y=x .

The symbol pτ (x, ξ) is called τ -symbol of the pseudodifferential operator A. When τ =
0, 1, 1/2, these symbols are called the left, right, and Weyl symbols of A.

Proof. We consider the sequence (jn)n as in the statement of Lemma 3.6, with n
j ϕ
∗( j
n

)
≥

max{n, log(C4nLp̃+3), log(D4nLp̃+3)}, where (Cn)n and (Dn)n denote the sequences of constants
that come from Definition 2.8 and Corollary 3.4, and p̃ ∈ N0 is so that max{|1 − τ |, 2|τ |} ≤ ep̃.
Put

pj(x, ξ) :=
∑
|β+γ|=j

1

β!γ!
τ |β|(1− τ)|γ|∂β+γξ (−Dx)βDγ

y a(x, y, ξ)|y=x .

By Example 3.7,
∑
j pj ∈ FGSmax{m,mL},ω

ρ . Now, we write

pτ (x, ξ) :=

∞∑
j=0

ϕj(x, ξ)pj(x, ξ),

where (ϕj)j is the sequence described in (3.2). By [1, Theorem 4.6] we obtain that pτ (x, ξ) ∈
GSmax{m,mL},ω

ρ and pτ ∼
∑
pj . We set, for u ∈ Sω(Rd),

Pτu(x) :=

∫∫
ei(x−y)·ξpτ ((1− τ)x+ τy, ξ)u(y)dydξ.

By Lemma 3.6, Pτ is the limit of SN,τ in L(Sω(Rd),S ′ω(Rd)), where SN,τ is the pseudodifferen-

tial operator with amplitude
∑N
j=0(ϕj − ϕj+1)((1 − τ)x + τy, ξ)(

∑j
l=0 pl((1 − τ)x + τy, ξ)) in
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GAmax{0,m′L},ω
ρ , m′ as in (3.4). On the other hand, from Lemma 3.5, A =

∑∞
N=0AN , where

AN is the pseudodifferential operator with amplitude a(x, y, ξ)(ϕN − ϕN+1)((1− τ)x+ τy, ξ) in

GAm,ω
ρ ⊆ GAmax{0,m′L},ω

ρ . Thus, for u ∈ Sω(Rd),

Au(x) =

∞∑
N=0

∫∫
ei(x−y)·ξ(ϕN − ϕN+1)((1− τ)x+ τy, ξ)a(x, y, ξ)u(y)dydξ

and

Pτu(x) = lim
N→∞

∫∫
ei(x−y)·ξ

[ N∑
j=0

(ϕj−ϕj+1)((1−τ)x+τy, ξ)
( j∑
l=0

pl((1−τ)x+τy, ξ)
)]
u(y)dydξ.

Hence, we can write A − Pτ as the series
∑∞
N=0 PN,τ , where each PN,τ corresponds to the

pseudodifferential operator associated to the amplitude in GAmax{0,m′L},ω
ρ :

(ϕN − ϕN+1)((1− τ)x+ τy, ξ)
(
a(x, y, ξ)−

N∑
j=0

pj((1− τ)x+ τy, ξ)
)
.

Our purpose is to show that the kernel K of A − Pτ belongs to Sω(R2d). To that purpose, we
write

K(x, y) =

∞∑
N=0

KN (x, y)

=

∞∑
N=0

∫
ei(x−y)·ξ(ϕN − ϕN+1)((1− τ)x+ τy, ξ)

(
a(x, y, ξ)−

N∑
j=0

pj((1− τ)x+ τy, ξ)
)
dξ.

Now, we take r > 0 and χ ∈ Eω(R2d) such that χ ≡ 1 in R2d \ ∆2r, and χ ≡ 0 in ∆r (see [1,
Lemma 5.1]). Then we can write

K = χK + (1− χ) lim
N→∞

N∑
j=0

Kj .

We follow the lines of [25, Theorem 23.2], and also the scheme of the proof of [16, Theo-
rem 3.13], as well as [1, Theorem 5.4]. We make the following change of variables:

v = (1− τ)x+ τy; w = x− y.

Similarly as in [16, Theorem 3.13], we write the partial sums of K as

N∑
j=0

Kj = K0 +

N∑
j=1

Ij +

N∑
j=1

Qj −WN ,
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where

Ij(x, y) :=
∑
|β+γ|=j

∑
06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!
×

×
∫
ei(x−y)·ξτ |β|(1− τ)|γ|(−1)|γ|Dα

ξ ϕj(v, ξ)
(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)dξ;

Qj(x, y) :=
∑

|β+γ|=j+1

∑
α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!
τ |β|(1− τ)|γ|(−1)|γ|×

×
∫
ei(x−y)·ξDα

ξ (ϕj − ϕj+1)(v, ξ)Dβ+γ−α
ξ ωβγ(x, y, ξ)dξ;

ωβγ(x, y, ξ) := (j + 1)

∫ 1

0

(
∂βx∂

γ
y a
)
(v + tτw, v − (1− τ)tw, ξ)(1− t)jdt; (3.10)

WN (x, y) :=

N∑
|β+γ|=1

∑
06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!
×

×
∫
ei(x−y)·ξτ |β|(1− τ)|γ|(−1)|γ|Dα

ξ ϕN+1(v, ξ)
(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)dξ.

We have χK ∈ Sω(R2d) [1, Lemma 5.1, Theorem 5.2]. Moreover, it is easy to see that K0 ∈
Sω(R2d). Indeed, we have

K0(x, y) =

∫
ei(x−y)·ξ(1− ϕ1)((1− τ)x+ τy, ξ)(a(x, y, ξ)− a(x, x, ξ))dξ.

Since 1− ϕ1 ∈ Sω(R2d), following [1, Lemma 3.5(a)] one obtains the desired property for K0 by
Lemma 3.9.

First step. First of all, we compute Dθ
xD

ε
yIj(x, y) for θ, ε ∈ Nd0. We use integration by parts

with the formula

ei(x−y)·ξ =
1

G(y − x)
G(−Dξ)e

i(x−y)·ξ, (3.11)

for a suitable powerGs(D) ofG(D), beingG(ξ) the entire function considered in Proposition 2.11.
We obtain, as in [1, Theorem 5.4],

Dθ
xD

ε
yIj(x, y)

=
∑
|β+γ|=j

∑
06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

1

Gs(y − x)

∑
η∈Nd0

bη
∑

η1+η2+η3=η
θ1+θ2+θ3=θ
ε1+ε2+ε3=ε

(−1)|γ+ε1|×

× η!

η1!η2!η3!

θ!

θ1!θ2!θ3!

ε!

ε1!ε2!ε3!

(θ1 + ε1)!

(θ1 + ε1 − η1)!
τ |β+ε2|(1− τ)|γ+θ2|×

×
∫
ei(x−y)·ξξθ1+ε1−η1Dθ2

x D
ε2
y D

α+η2
ξ ϕj(v, ξ)D

θ3
x D

ε3
y

(
∂βx∂

γ
yD

β+γ−α+η3
ξ a

)
(v, v, ξ)dξ.

Fix λ > 0 and set n ≥ λ large enough that may depend on τ,m, ρ, L, and R. According to
Lemma 3.9, it is enough to take s ∈ N such that sC2 ≥ λLk+2, where C2 > 0 comes from (3.8)
and k ∈ N0 as in (3.3). For the convergence of the series depending on η ∈ Nd0, let n satisfy in
addition that n ≥ sC1, where C1 > 0 comes from (3.8). Now, proceeding as in [16, Theorem
3.13] (and using Proposition 2.3 and Lemma 3.8) we can show that

∑∞
j=1 Ij ∈ Sω(R2d).
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Second step. Since 1 − χ is supported in ∆2r, we estimate |Dθ
xD

ε
yQj(x, y)| for θ, ε ∈ Nd0,

(x, y) ∈ ∆2r. By the formula of integration by parts given in (3.11) for a suitable power of G(D),
Gs(D), we have

Dθ
xD

ε
yQj(x, y)

=
∑

|β+γ|=j+1

∑
α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

1

Gs(y − x)

∑
η∈Nd0

bη
∑

θ1+θ2+θ3=θ
ε1+ε2+ε3=ε
η1+η2+η3=η

(−1)|ε1+γ|×

× θ!

θ1!θ2!θ3!

ε!

ε1!ε2!ε3!

η!

η1!η2!η3!

(θ1 + ε1)!

(θ1 + ε1 − η1)!
τ |β|(1− τ)|γ|(1− τ)|θ2|τ |ε2|×

×
∫
ei(x−y)·ξξθ1+ε1−η1Dθ2

x D
ε2
y D

α+η2
ξ (ϕj − ϕj+1)(v, ξ)Dθ3

x D
ε3
y (Dβ+γ−α+η3

ξ ωβγ)dξ,

where ωβγ = ωβγ(x, y, ξ) is defined in (3.10). Fix λ > 0 and take n ≥ λ to be determined later.
We consider in this step p̃ ∈ N such that

max{2(1 + |τ |), (1 + 2r)ρ} ≤ eρp̃.

We put ñ ∈ N0, ñ ≥ n, such that (where q ∈ N0 satisfies 2q ≥ 3R)

ñ ≥ Lq+1

ρ
(λLp̃+2 +mL3 + 1) + 1.

By Lemma 3.10 and the properties of ϕ∗, proceeding as in the proof of the second step of [1,
Theorem 5.4] we obtain, for some Cñ > 0,

|Dθ3
x D

ε3
y (Dβ+γ−α+η3

ξ ωβγ)(x, y, ξ)|

≤ Cñe16ñL
p̃+3ρ

∑3p̃+1
p=1 LpemL

k+3+···+mL(j + 1)〈(v, ξ)〉−ρ|2β+2γ−α|×

× e16ñL
p̃+3ρϕ∗

(
|2β+2γ−α+θ3+ε3+η3|

16ñLp̃+3

)
emL

3ω(v)emL
k+3ω(w)emLω(ξ)

∫ 1

0

|1− t|jdt.

For the estimate of the derivatives of Qj(x, ξ) we can proceed similarly as in the first step to
show finally that (1− χ)

∑∞
j=1Qj ∈ Sω(R2d).

Third step. Let TN : Sω(Rd) → Sω(Rd) be the operator with kernel (1 − χ)WN . As in the

proof of [1, Theorem 5.4], it follows that (TN ) converges to an operator T : Sω(Rd)→ Sω(Rd) in
L(Sω(Rd),S ′ω(Rd)). We show that T = 0. To this aim, fix N ∈ N, jn ≤ N + 1 < jn+1 and set

aN := Re
n

N+1ϕ
∗
(
N+1
n

)
. For the support of the derivatives of ϕN+1, we may assume that

2aN ≤ 〈((1− τ)x+ τy, ξ)〉 ≤ 3aN .

For f, g ∈ Sω(Rd), we have

〈TNf, g〉 =

∫
TNf(x)g(x)dx =

∫ (∫
(1− χ)(x, y)WN (x, y)f(y)dy

)
g(x)dx.

Fixed N ∈ N, we can use Fubini’s theorem (since f, g ∈ Sω(Rd) and |ξ| ≤ 3aN ) and we obtain

〈TNf, g〉 =

∫ (∫ N∑
|β+γ|=1

∑
06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

{∫
ei(x−y)·ξτ |β|(1− τ)|γ|(−1)|γ|×

×Dα
ξ ϕN+1(v, ξ)

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)dξ

}
f(y)(1− χ)(x, y)dy

)
g(x)dx.

16



An integration by parts with (3.11) for a suitable power s ∈ N, to be determined, gives

ei(x−y)·ξ
1

Gs(ξ)
Gs(Dy)

{
Dα
ξ ϕN+1(v, ξ)

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)f(y)(1− χ)(x, y)g(x)

}
= ei(x−y)·ξ

1

Gs(ξ)

∑
η∈Nd0

bη
∑

η1+η2+η3+η4=η

η!

η1!η2!η3!η4!
τ |η1|Dη1

y D
α
ξ ϕN+1(v, ξ)×

×Dη2
y

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)Dη3

y f(y)Dη4
y (1− χ)(x, y)g(x).

Thus, we obtain

〈TNf, g〉 =

N∑
|β+γ|=1

∑
06=α≤β+γ

(β + γ)!

β!γ!

1

α!(β + γ − α)!

∑
η∈Nd0

bη
∑

η1+η2+η3+η4=η

η!

η1!η2!η3!η4!
×

× τ |η1+β|(1− τ)|γ|(−1)|γ|
∫ ∫

ei(x−y)·ξ
1

Gs(ξ)

∫
Dη1
y D

α
ξ ϕN+1(v, ξ)×

×Dη2
y

(
∂βx∂

γ
yD

β+γ−α
ξ a

)
(v, v, ξ)Dη3

y f(y)Dη4
y (1− χ)(x, y)g(x)dydξdx.

To estimate |〈TNf, g〉|, let p̃ ∈ N0 be as at the beginning of the proof (max{|1− τ |, 2|τ |} ≤ ep̃).
By Definition 2.8 and Corollary 3.4, for all n ∈ N there exist Cn = C4nLp̃+3 > 0 and Dn =
D4nLp̃+3 > 0 such that, by the chain rule,

|Dη2
y (∂βx∂

γ
yD

β+γ−α
ξ a)(v, v, ξ)|

≤ 2|η2||τ ||η2|Cn〈(v, ξ)〉−ρ|2β+2γ+η2−α|e4nL
p̃+3ρϕ∗

(
|2β+2γ+η2−α|

4nLp̃+3

)
emω(v,v,ξ),

|Dη1
y D

α
ξ ϕN+1(v, ξ)| ≤ Dn〈(v, ξ)〉−ρ|η1+α|e4nL

p̃+3ρϕ∗
(
|η1+α|
4nLp̃+3

)
.

By the choice of p̃ ∈ N0,

|τ ||η1+β|(2|τ |)|η2||1− τ ||γ| ≤ ep̃|η1+η2+β+γ|.

Since 2aN ≤ 〈(v, ξ)〉 and 1 ≤ |β + γ| ≤ N < N + 1, we use that ϕ∗(x)/x is increasing to get

〈(v, ξ)〉−ρ|η1+α|〈(v, ξ)〉−ρ|2β+2γ+η2−α| ≤ 〈(v, ξ)〉−ρ|2β+2γ|

≤ (2R)−2ρ|β+γ|e−2nρϕ
∗
(
|β+γ|
n

)
.

Put ` < n. Since f, g ∈ Sω(Rd) and 1 − χ ∈ Eω(R2d), there exist E`, E
′
`, E > 0 such that

(where k is as in (3.3))

|Dη3
y f(y)| ≤ E`e`L

3ϕ∗
(
|η3|
`L3

)
e−((mL+L)L

k+1+1)ω(y);

|Dη4
y (1− χ)(x, y)| ≤ E′`e

`L3ϕ∗
(
|η4|
`L3

)
;

|g(x)| ≤ E′e−((mL+L)L
k+1+1)ω(x).

We use (3.8). Since (β+γ)!
β!γ! ≤ 2|β+γ| ≤ e|β+γ|, we have by the properties of ϕ∗ that |〈TNf, g〉| is

less than or equal to

N∑
|β+γ|=1

∑
06=α≤β+γ

( ep̃+1

(2R)2ρ

)|β+γ| 1

α!(β + γ − α)!
esC1

( ∑
η∈Nd0

e`Lϕ
∗
(
|η|
`L

)
e−sC1ϕ

∗
(
|η|
sC1

))
e`L

∑p̃+2
t=1 L

t

×

×
∫ (∫

Cs3e
−sC2ω(ξ)

(∫
CnDnE`E

′
`E
′emω(v,v,ξ)e−((mL+L)L

k+1+1)(ω(y)+ω(x))dy
)
dξ
)
dx.
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Set s ∈ N such that sC2 ≥ (mL + L)Lk+1 + 1, and take ` ≥ sC1 to get that the series is
convergent. It is easy to see for such s ∈ N that there exists Ck > 0 such that

emω(v,v,ξ)e−((mL+L)L
k+1+1)ω(y)e−((mL+L)L

k+1+1)ω(x)e−sC2ω(ξ)

≤ Cke−ω(〈(v,ξ)〉)e−ω(x)e−ω(y)e−ω(ξ).

So, we have ∫∫∫
2aN≤〈(v,ξ)〉≤3aN

e−ω(〈(v,ξ)〉)e−ω(x)−ω(y)−ω(ξ)dydξdx

≤ e−ω(2aN )

∫∫∫
R3d

e−ω(x)−ω(y)−ω(ξ)dydξdx,

By property (γ) of Definition 2.1, there exists C > 0 such that 3 log(t) ≤ ω(t) +C, t ≥ 0. Thus,

e−ω(2aN ) ≤ (2aN )−3eC .

We recall that CnDn is the only constant that depends on n. By the choice of the sequence
(jn)n, we have

enCnDn ≤ a3N .

Hence, there exists C ′ > 0 such that

|〈TNf, g〉| ≤ C ′
N∑

|β+γ|=1

∑
06=α≤β+γ

( ep̃+1

(2R)2ρ

)|β+γ| 1

α!(β + γ − α)!

CnDn

a3N

≤ C ′

en

N∑
l=1

1

l!

( dep̃+1

(2R)2ρ

)l
.

Since the series converges for R ≥ 1 large enough (which may depend on τ), and since n → ∞
when N →∞, we show that |〈TNf, g〉| tends to zero when N →∞.

It only remains to prove the uniqueness of the pseudodifferential operator modulo an ω-
regularizing operator. We notice that every global amplitude as in Definition 2.8 defines an
ω-ultradistribution. Then, as in [22, 25], the identities in S ′ω(R2d) for the Fourier transform

Kτ (x, y) = (2π)dF−1ξ 7→x−y
(
aτ ((1− τ)x+ τy, ξ)

)
and

aτ (v, ξ) = (2π)−dFw 7→ξ
(
Kτ (v + τw, v − (1− τ)w)

)
yield the uniqueness of the τ -symbol since the kernel Kτ is also unique.

As a consequence of Theorem 3.11, we can describe the precise relation between different
quantizations for a given global symbol in terms of equivalence of formal sums as the following
result shows.

Theorem 3.12. If aτ1(x, ξ) and aτ2(x, ξ) are the τ1 and τ2-symbol of the same pseudodifferential
operator A, then

aτ2(x, ξ) ∼
∞∑
j=0

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξ D

α
xaτ1(x, ξ).
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Proof. By Theorem 3.11, the pseudodifferential operator A is determined via the τ1-symbol
aτ1((1− τ1)x+ τ1y, ξ) modulo an ω-regularizing operator. Again by Theorem 3.11, its τ2-symbol
has the following asymptotic expansion

aτ2(x, ξ) ∼
∞∑
j=0

∑
|β+γ|=j

(−1)|β|

β!γ!
τ
|β|
2 (1− τ2)|γ|∂β+γξ Dβ

xD
γ
y (aτ1((1− τ1)x+ τ1y, ξ)

∣∣
y=x

)

=

∞∑
j=0

∑
|α|=j

( ∑
β+γ=α

1

β!γ!
((1− τ2)τ1)|γ|(−τ2(1− τ1))|β|

)
∂αξ D

α
xaτ1(x, ξ)

=

∞∑
j=0

∑
|α|=j

1

α!
((1− τ2)τ1 − τ2(1− τ1))|α|∂αξ D

α
xaτ1(x, ξ)

=

∞∑
j=0

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξ D

α
xaτ1(x, ξ).

4 Transposition and composition of operators

By [1, Proposition 3.10], we deduce that if A has as amplitude a((1 − τ)x + τy, ξ), then its
transpose tA has the amplitude a((1 − τ)y + τx,−ξ). Hence, if aτ (x, ξ) is the τ -symbol of A,
then ta1−τ (x, ξ) is the (1− τ)-symbol of tA given by

ta1−τ ((1− τ)x+ τy, ξ) := aτ ((1− τ)y + τx,−ξ). (4.1)

In particular we have taτ (x, ξ) = a1−τ (x,−ξ). On the other hand, for τ = 0, ta1(y,−ξ) coincides
with a0(x, ξ). Now, we show the corresponding generalization of [1, Proposition 5.5].

Theorem 4.1. Let A be the pseudodifferential operator with τ -symbol aτ (x, ξ). Then its trans-
pose restricted to Sω(Rd) can be decomposed as tA = Q+R, where R is an ω-regularizing operator
and Q is the pseudodifferential operator associated to the τ -symbol given by

q(x, ξ) ∼
∞∑
j=0

∑
|α|=j

1

α!
(1− 2τ)|α|∂αξ D

α
xaτ (x,−ξ).

Proof. By assumption we deduce that tA has the (1−τ)-symbol ta1−τ (x, ξ) given by formula (4.1)
restricted to y = x. Moreover, from Theorem 3.12, the τ -symbol of tA satisfies

taτ (x, ξ) ∼
∞∑
j=0

∑
|α|=j

1

α!
(1− 2τ)|α|∂αξ D

αt
x a1−τ (x, ξ) =

∞∑
j=0

∑
|α|=j

1

α!
(1− 2τ)|α|∂αξ D

α
xaτ (x,−ξ).

Let us deal with the composition of two pseudodifferential operators given by their corre-
sponding quantizations of symbols.

Theorem 4.2. Let aτ1(x, ξ) ∈ GSm1,ω
ρ be the τ1-symbol of A1 and bτ2(x, ξ) ∈ GSm2,ω

ρ be the
τ2-symbol of A2, being A1 and A2 their corresponding pseudodifferential operators. The τ -symbol
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cτ (x, ξ) ∈ GSm1+m2,ω
ρ of A1 ◦A2 has the asymptotic expansion

∞∑
j=0

∑
|α+β−α1−α2|=j

α+β=γ+δ

cαβγδα1α2∂
γ
ξD

α
xaτ1(x, ξ) · ∂δξDβ

xbτ2(x, ξ), (4.2)

where the coefficients cαβγδα1α2
are

(2π)d

γ!δ!

∞∑
k,l=0

∑
|α1|=k
|α2|=l

(−1)|α−α1+α2|
(
α+ β − α1 − α2

α− α1

)(
γ

α1

)(
δ

α2

)
τ |α−α1|(1−τ)|β−α2|τ

|α1|
1 (1−τ2)|α2|.

Proof. We first assume τ1 = 0 and τ2 = 1. In this case, aτ1((1− τ1)x+ τ1y, ξ) and bτ2((1− τ2)x+
τ2y, ξ) coincide with a0(x, ξ) and b1(y, ξ). Then

(A1 ◦A2)u(x) =

∫
eix·ξa0(x, ξ)Â2u(ξ)dξ, x ∈ Rd.

It is not difficult to see that A2u(x) = Î(−x), where I(ξ) =
∫
e−iy·ξb1(y, ξ)u(y)dy. Hence

Â2u(ξ) = (2π)dI(ξ) and

(A1 ◦A2)u(x) =

∫∫
ei(x−y)·ξc(x, y, ξ)u(y)dydξ, x ∈ Rd,

where c(x, y, ξ) = (2π)da0(x, ξ)b1(y, ξ) is an amplitude in GAm1+m2,ω
ρ . So, by Theorem 3.11, the

τ -symbol cτ (x, ξ) has the asymptotic expansion:

cτ (x, ξ) ∼ (2π)d
∞∑
j=0

∑
|β+γ|=j

(−1)|β|

β!γ!
τ |β|(1− τ)|γ|∂β+γξ Dβ

xD
γ
y

(
a0(x, ξ)b1(y, ξ)

)∣∣
y=x

(4.3)

= (2π)d
∞∑
j=0

∑
|β+γ|=j
δ+ε=β+γ

(−1)|β|(β + γ)!

δ!ε!β!γ!
τ |β|(1− τ)|γ|∂δξD

β
xa0(x, ξ) · ∂εξDγ

xb1(x, ξ). (4.4)

For the general case, by Theorem 3.12, we have

a0(x, ξ) ∼
∞∑
j1=0

∑
|α1|=j1

1

α1!
τ
|α1|
1 ∂α1

ξ Dα1
x aτ1(x, ξ);

b1(x, ξ) ∼
∞∑
j2=0

∑
|α2|=j2

(−1)|α2|

α2!
(1− τ2)|α2|∂α2

ξ Dα2
x bτ2(x, ξ).

Thus, from (4.4), we get

cτ (x, ξ) ∼ (2π)d
∞∑
j=0

∑
|β+γ|=j
δ+ε=β+γ

(−1)|β|(β + γ)!

δ!ε!β!γ!
τ |β|(1− τ)|γ|×

× ∂δξDβ
x

( ∞∑
j1=0

∑
|α1|=j1

1

α1!
τ
|α1|
1 ∂α1

ξ Dα1
x aτ1(x, ξ)

)
×

× ∂εξDγ
x

( ∞∑
j2=0

∑
|α2|=j2

(−1)|α2|

α2!
(1− τ2)|α2|∂α2

ξ Dα2
x bτ2(x, ξ)

)
.
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We make the change of variables γ′ = α1 + δ, α′ = α1 + β, δ′ = α2 + ε, β′ = α2 + γ. Then

cτ (x, ξ) ∼ (2π)d
∞∑
j=0

∑
|α′+β′−α1−α2|=j
α′+β′=δ′+γ′

1

γ′!δ′!
∂γ
′

ξ D
α′

x aτ1(x, ξ)∂δ
′

ξ D
β′

x bτ2(x, ξ)×

×
∞∑

k,l=0

∑
|α1|=k
|α2|=l

(−1)|α
′−α1+α2| (α

′ + β′ − α1 − α2)!

(α′ − α1)!(β′ − α2)!

γ′!

α1!(γ′ − α1)!

δ′!

α2!(δ′ − α2)!
×

× τ |α
′−α1|(1− τ)|β

′−α2|τ
|α1|
1 (1− τ2)|α2|.

The proof follows since

(α′ + β′ − α1 − α2)!

(α′ − α1)!(β′ − α2)!

γ′!

α1!(γ′ − α1)!

δ′!

α2!(δ′ − α2)!
=

(
α′ + β′ − α1 − α2

α′ − α1

)(
γ′

α1

)(
δ′

α2

)
.

The coefficients appearing in formula (4.2) are sometimes simplified for some particular τ ∈ R.
For example, if τ = 0, by formula (4.3), we obtain

c(x, ξ) = c0(x, ξ) ∼ (2π)d
∞∑
j=0

∑
|γ|=j

1

γ!
∂γξD

γ
y

(
a0(x, ξ)b1(y, ξ)

)∣∣
y=x

.

On the other hand, from formula (4.1), b1(x, ξ) = tb0(x,−ξ). Hence, by [1, Lemma 5.6], we have

c0(x, ξ) ∼ (2π)d
(
a0(x, ξ) ◦ b0(x, ξ)

)
= (2π)d

∞∑
j=0

∑
|γ|=j

1

γ!
∂γξ a0(x, ξ)Dγ

xb0(x, ξ),

which in particular gives [1, Theorem 5.7] (cf. [25, Theorem 23.7]).
Another interesting case is when dealing with τ = 1/2. We will obtain it as a consequence of

a more general result (cf. [25, Problem 23.2]). First, we need a lemma, taken from [3, Theorem
5.5]:

Lemma 4.3. The formula

(β + γ)!

(β + γ − ε)!ε!
1

β!γ!
=

∑
0≤δ≤β

β−ε≤δ≤β−ε+γ

1

(β − δ)!(β − ε+ γ − δ)!δ!(δ − β + ε)!
,

holds for all β, γ, ε ∈ Nd0 with ε ≤ β + γ.

Example 4.4. Given two pseudodifferential operators A and B, the τ -symbol of the composition
operator C = A ◦B is given by

cτ (x, ξ) ∼ (2π)d
∞∑
j=0

∑
|β+γ|=j

(−1)|β|

β!γ!
τ |β|(1− τ)|γ|(∂γξD

β
xaτ (x, ξ))(∂βξD

γ
xbτ (x, ξ)).

Proof. Formula (4.4) states that cτ (x, ξ) is equivalent to (since δ = β + γ − ε)

(2π)d
∞∑
j=0

∑
|β+γ|=j

(−1)|β|τ |β|(1− τ)|γ|
∑

ε≤β+γ

(β + γ)!

(β + γ − ε)!ε!
1

β!γ!
∂β+γ−εξ Dβ

xa0(x, ξ) · ∂εξDγ
xb1(x, ξ).
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Moreover, by Lemma 4.3, it is equal to

(2π)d
∞∑
j=0

∑
|β+γ|=j

(−1)|β|τ |β|(1− τ)|γ|×

×
∑

ε≤β+γ

∑
0≤δ≤β

β−ε≤δ≤β−ε+γ

1

(β − δ)!(β − ε+ γ − δ)!δ!(δ − β + ε)!
∂β+γ−εξ Dβ

xa0(x, ξ) · ∂εξDγ
xb1(x, ξ).

We put µ = β − δ, ν = β − ε+ γ − δ, and θ = δ − β + ε. Therefore,

cτ (x, ξ) ∼ (2π)d
∞∑
j=0

∑
|ν+θ+µ+δ|=j

(−1)|µ+δ|

µ!ν!δ!θ!
τ |µ+δ|(1− τ)|ν+θ|×

× ∂ν+δξ Dµ+δ
x a0(x, ξ) · ∂θ+µξ Dν+θ

x b1(x, ξ),

and taking j = j1 + j2 + j3, j1, j2, j3 ∈ N0, we have

cτ (x, ξ) ∼ (2π)d
∞∑
j1=0

∑
|ν+µ|=j1

(−1)|µ|

µ!ν!
τ |µ|(1− τ)|ν|∂νξD

µ
x

( ∞∑
j2=0

∑
|δ|=j2

(−1)|δ|

δ!
τ |δ|∂δξD

δ
xa0(x, ξ)

)
×

× ∂µξD
ν
x

( ∞∑
j3=0

∑
|θ|=j3

1

θ!
(1− τ)|θ|∂θξD

θ
xb1(x, ξ)

)
.

We get the result since Theorem 3.12 gives

aτ (x, ξ) ∼
∞∑
k=0

∑
|δ|=k

(−1)|δ|

δ!
τ |δ|∂δξD

δ
xa0(x, ξ), bτ (x, ξ) ∼

∞∑
k=0

∑
|θ|=k

1

θ!
(1− τ)|θ|∂θξD

θ
xb1(x, ξ).

Corollary 4.5. Given two pseudodifferential operators A and B, the Weyl symbol of the com-
position operator C = A ◦B is given by

cw(x, ξ) ∼ (2π)d
∞∑
j=0

∑
|β+γ|=j

(−1)|β|

β!γ!
2−|β+γ|(∂γξD

β
xaw(x, ξ))(∂βξD

γ
xbw(x, ξ)).

5 Parametrices and ω-regularity

In this section we give a sufficient condition for ω-regularity of a global pseudodifferential op-
erator. We say that a pseudodifferential operator P : S ′ω(Rd) → S ′ω(Rd) is ω-regular if given
u ∈ S ′ω(Rd) such that Pu ∈ Sω(Rd), we have u ∈ Sω(Rd). See [4] for a study of ω-regularity of
linear partial differential operators with polynomial coefficients using quadratic transformations
(cf. [21] for the non-isotropic case).

We use the well-known method of the construction of a parametrix for the symbol of the
operator, using symbolic calculus. We follow the lines of [15, 26]. From [23], we know that a
weight function σ is equivalent to a subadditive weight function if and only if it satisfies

(α0) ∃C > 0, ∃t0 > 0 ∀λ ≥ 1 : σ(λt) ≤ λCσ(t), t ≥ t0.
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We refer to [14, 23] for applications and characterizations of property (α0) on the weight function.
The following result is taken from [15, Lemma 3.3].

Lemma 5.1. Let ω be a subadditive weight function. For all λ > 0 and j, k ∈ N, we have

eλϕ
∗
ω(

j
λ )

j!

eλϕ
∗
ω(

k
λ )

k!
≤ eλϕ

∗
ω(

j+k
λ )

(j + k)!
.

The following lemma states Vandermonde’s identity.

Lemma 5.2. For any m,n, r ∈ N0, we have

r∑
k=0

(
m

k

)(
n

r − k

)
=

(
m+ n

r

)
.

Lemma 5.3. If
∑
j aj ∈ FGSm1,ω

ρ and b(x, ξ) ∈ GSm2,ω
ρ , then

∑
j aj(x, ξ)b(x, ξ) ∈ FGSm1+m2,ω

ρ .

The following result is in the spirit of Zanghirati [26] and Fernández, Galbis, and Jornet [15]
(see also Cappiello, Pilipović, and Prangoski [12]).

Theorem 5.4. Let ω be a weight function and let σ be a subadditive weight function with
ω(t1/ρ) = o(σ(t)) as t→∞. Let p(x, ξ) ∈ GS|m|,ωρ be such that, for some R ≥ 1:

(i) |p(x, ξ)| ≥ 1

R
e−|m|ω(x,ξ) for 〈(x, ξ)〉 ≥ R;

(ii) There exist C > 0 and n ∈ N such that

|Dα
xD

β
ξ p(x, ξ)| ≤ C

|α+β|〈(x, ξ)〉−ρ|α+β|e 1
nϕ
∗
σ(n|α|)e

1
nϕ
∗
σ(n|β|)|p(x, ξ)|,

for α, β ∈ Nd0, 〈(x, ξ)〉 ≥ R.

Then there exists q(x, ξ) ∈ GS|m|,ωρ such that q ◦ p ∼ 1 in FGS|m|,ωρ .

Proof. We set

q0(x, ξ) =
1

p(x, ξ)
, 〈(x, ξ)〉 ≥ R.

We show by induction on |α+ β| that there exists C1 > 0 such that

|Dα
xD

β
ξ q0(x, ξ)| ≤ C |α+β|1 〈(x, ξ)〉−ρ|α+β|e 1

nϕ
∗
σ(n|α|)e

1
nϕ
∗
σ(n|β|)|q0(x, ξ)| (5.1)

for all α, β ∈ Nd0, 〈(x, ξ)〉 ≥ R. Indeed, the inequality is true for α = β = 0. Now, differentiating
the formula p(x, ξ)q0(x, ξ) = 1, we obtain

p(x, ξ)Dα
xD

β
ξ q0(x, ξ) = −

∑
06=(α̂,β̂)≤(α,β)

α!

α̂!(α− α̂)!

β!

β̂!(β − β̂)!
Dα̂
xD

β̂
ξ p(x, ξ)D

α−α̂
x Dβ−β̂

ξ q0(x, ξ).

Now, we assume that the inequality (5.1) is true for (α̂, β̂) < (α, β). Using condition (ii), we
obtain

|p(x, ξ)Dα
xD

β
ξ q0(x, ξ)|

≤
∑

06=(α̂,β̂)≤(α,β)

α!

α̂!(α− α̂)!

β!

β̂!(β − β̂)!
C |α̂+β̂|〈(x, ξ)〉−ρ|α̂+β̂|e 1

nϕ
∗
σ(n|α̂|)e

1
nϕ
∗
σ(n|β̂|)|p(x, ξ)|×

× C |α−α̂+β−β̂|1 〈(x, ξ)〉−ρ|α−α̂+β−β̂|e 1
nϕ
∗
σ(n|α−α̂|)e

1
nϕ
∗
σ(n|β−β̂|)|q0(x, ξ)|.
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Since α!
α̂!(α−α̂)!

β!

β̂!(β−β̂)!
≤ |α|!
|α̂|!|α−α̂|!

|β|!
|β̂|!|β−β̂|!

, we obtain, by Lemma 5.1,

|α|!e
1
nϕ
∗
σ(n|α̂|)

|α̂|!
e

1
nϕ
∗
σ(n|α−α̂|)

|α− α̂|!
|β|!e

1
nϕ
∗
σ(n|β̂|)

|β̂|!
e

1
nϕ
∗
σ(n|β−β̂|)

|β − β̂|!
≤ e 1

nϕ
∗
σ(n|α|)e

1
nϕ
∗
σ(n|β|).

Thus

|Dα
xD

β
ξ q0(x, ξ)| ≤ C |α+β|1 〈(x, ξ)〉−ρ|α+β|e 1

nϕ
∗
σ(n|α|)e

1
nϕ
∗
σ(n|β|)|q0(x, ξ)|

∑
0 6=(α̂,β̂)≤(α,β)

( C
C1

)|α̂+β̂|
.

Finally, the fact that

∑
06=(α̂,β̂)≤(α,β)

( C
C1

)|α̂+β̂|
≤
|α+β|∑
k=1

∑
|η|=k

( C
C1

)k
≤
|α+β|∑
k=1

(dC
C1

)k
completes the proof of (5.1) if we take C1 > 0 such that

∞∑
k=1

(dC
C1

)k
< 1.

For j ∈ N, we define recursively

qj(x, ξ) := −q0(x, ξ)
∑

0<|ε+γ|≤j

(−1)|ε|

ε!γ!
τ |ε|(1− τ)|γ|(∂γξD

ε
xqj−|ε+γ|(x, ξ))(∂

ε
ξD

γ
xp(x, ξ)).

We show that there exist constants C2, C3 > 0 with C1 < C2 < C3 such that

|Dα
xD

β
ξ qj(x, ξ)| ≤ C

|α+β|
2 Cj3〈(x, ξ)〉−ρ(|α+β|+2j)e

1
nϕ
∗
σ(n(|α+β|+2j))e|m|ω(x,ξ), (5.2)

for all α, β ∈ Nd0, 〈(x, ξ)〉 ≥ R. We proceed by induction on j ∈ N0. First, observe that
formula (5.1) implies formula (5.2) for j = 0, since |q0(x, ξ)| ≤ Re|m|ω(x,ξ) for 〈(x, ξ)〉 ≥ R (from
condition (i)). Now, assume that (5.2) holds for all 0 ≤ l < j (where C3 > C2 > C1, and
C2, C3 > 0 are large enough). Then, by the definition of qj(x, ξ), we have

|Dα
xD

β
ξ qj(x, ξ)| ≤

∑
α1+α2+α3=α
β1+β2+β3=β

α!

α1!α2!α3!

β!

β1!β2!β3!
|Dα1

x Dβ1

ξ q0(x, ξ)|
∑

0<|ε+γ|≤j

1

ε!γ!
×

× |τ ||ε||1− τ ||γ||Dα2+ε
x Dβ2+γ

ξ qj−|ε+γ|(x, ξ)||Dα3+γ
x Dβ3+ε

ξ p(x, ξ)|.

We use formula (5.1) for the derivatives of q0(x, ξ), the inductive hypothesis (5.2) for the ones of
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qj−|µ|(x, ξ), and condition (ii) for the derivatives of p(x, ξ). All this implies

|Dα
xD

β
ξ qj(x, ξ)| ≤

∑
α1+α2+α3=α
β1+β2+β3=β

α!

α1!α2!α3!

β!

β1!β2!β3!
C
|α1+β1|
1 〈(x, ξ)〉−ρ|α1+β1|e

1
nϕ
∗
σ(n|α1|)×

× e 1
nϕ
∗
σ(n|β1|)|q0(x, ξ)|

∑
0<|ε+γ|≤j

1

ε!γ!
|τ ||ε||1− τ ||γ|C |α2+ε+β2+γ|

2 C
j−|ε+γ|
3 ×

× 〈(x, ξ)〉−ρ(|α2+ε+β2+γ|+2(j−|ε+γ|))e
1
nϕ
∗
σ(n(|α2+ε+β2+γ|+2(j−|ε+γ|)))e|m|ω(x,ξ)×

× C |α3+γ+β3+ε|〈(x, ξ)〉−ρ|α3+γ+β3+ε|e
1
nϕ
∗
σ(n|α3+γ|)e

1
nϕ
∗
σ(n|β3+ε|)|p(x, ξ)|

= 〈(x, ξ)〉−ρ(|α+β|+2j)e|m|ω(x,ξ)
∑

α1+α2+α3=α
β1+β2+β3=β

α!

α1!α2!α3!

β!

β1!β2!β3!
C
|α1+β1|
1 ×

× e 1
nϕ
∗
σ(n|α1|)e

1
nϕ
∗
σ(n|β1|)

∑
0<|ε+γ|≤j

1

ε!γ!
|τ ||ε||1− τ ||γ|C |α2+ε+β2+γ|

2 C
j−|ε+γ|
3 ×

× e 1
nϕ
∗
σ(n(|α2+β2|+2j−|ε+γ|))C |α3+γ+β3+ε|e

1
nϕ
∗
σ(n|α3+γ|)e

1
nϕ
∗
σ(n|β3+ε|).

(5.3)

To estimate the right-hand side of (5.3) we multiply and divide by

(|α2 + β2|+ 2j − |ε+ γ|)!|α3 + γ|!|β3 + ε|!

Then, as
α!

α1!α2!α3!

β!

β1!β2!β3!
≤ |α|!
|α1|!|α2|!|α3|!

|β|!
|β1|!|β2|!|β3|!

,

we have, by Lemma 5.1,

e
1
nϕ
∗
σ(n|α1|)

|α1|!
e

1
nϕ
∗
σ(n|β1|)

|β1|!
e

1
nϕ
∗
σ(n(|α2+β2|+2j−|ε+γ|))

(|α2 + β2|+ 2j − |ε+ γ|)!
e

1
nϕ
∗
σ(n|α3+γ|)

|α3 + γ|!
e

1
nϕ
∗
σ(n|β3+ε|)

|β3 + ε|!

≤ 1

(|α+ β|+ 2j)!
e

1
nϕ
∗
σ(n(|α+β|+2j)).

Now, we see that

|α|!
|α2|!|α3|!

|β|!
|β2|!|β3|!

|α3 + γ|!|β3 + ε|! (|α2 + β2|+ 2j − |ε+ γ|)!
(|α+ β|+ 2j)!

≤ 2|α1+α3|2|β1+β3|. (5.4)

Indeed, we multiply and divide by (|α1 + α3| + |β1 + β3| + |ε + γ|)! to get, by the properties of
the multinomial coefficients,

|α|!
|α2|!|α3|!

|β|!
|β2|!|β3|!

|α3 + γ|!|β3 + ε|!
(|α1 + α3|+ |β1 + β3|+ |ε+ γ|)!

1( |α+β|+2j
|α2+β2|+2j−|ε+γ|

)
≤ |α|!
|α2|!|α3|!

|β|!
|β2|!|β3|!

1

|α1|!|β1|!
1( |α+β|+2j

|α2+β2|+2j−|ε+γ|
) .

As we have, for α = α1 + α2 + α3,

|α|!
|α1|!|α2|!|α3|!

=
|α1 + α3|!
|α1|!|α3|!

(
|α|
|α2|

)
≤ 2|α1+α3|

(
|α|
|α2|

)
,
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(and in the same way for β = β1 + β2 + β3), we deduce formula (5.4) by Lemma 5.2. We then
have, from (5.3),

|Dα
xD

β
ξ qj(x, ξ)| ≤ 〈(x, ξ)〉

−ρ(|α+β|+2j)e
1
nϕ
∗
σ(n(|α+β|+2j))e|m|ω(x,ξ)×

×
∑

α1+α2+α3=α
β1+β2+β3=β

2|α1+α3|2|β1+β3|C
|α1+β1|
1 C

|α2+β2|
2 Cj3C

|α3+β3|×

×
∑

0<|ε+γ|≤j

1

ε!γ!
|τ ||ε||1− τ ||γ|C |ε+γ|2 C

−|ε+γ|
3 C |ε+γ|.

Since

C
|α+β|
2 Cj3

∑
α1+α2+α3=α
β1+β2+β3=β

(2C1

C2

)|α1+β1|(2C

C2

)|α3+β3|
≤ C |α+β|2 Cj3

∑
α1+α2+α3=α
β1+β2+β3=β

(2CC1

C2

)|α1+α3+β1+β3|

≤ C |α+β|2 Cj3

|α+β|∑
k=0

∑
|η|=k

(2CC1

C2

)k
,

we take C2 > 0 large enough so that

∞∑
k=0

(2dCC1

C2

)k
< 2.

In addition, we put C3 > 0 large enough satisfying∑
0<|ε|≤j

1

ε!

(CC2|τ |
C3

)|ε| ∑
0<|γ|≤j

1

γ!

(CC2|1− τ |
C3

)|γ|
≤
( ∑

0<k≤j

1

k!

(d2CC2 max{|τ |, |1− τ |}
C3

)k)2
≤
( ∞∑
k=1

1

k!

(d2CC2 max{|τ |, |1− τ |}
C3

)k)2
< 1/2.

This proves (5.2). Furthermore, by [1, Lemma 2.9(1)] we have that for all ` ∈ N there exists
C` > 0 such that, for each j,

|Dα
xD

β
ξ qj(x, ξ)| ≤ C`C

|α+β|
2 Cj3〈(x, ξ)〉−ρ(|α+β|+2j)e`ρϕ

∗
ω

(
|α+β|+2j

`

)
e|m|ω(x,ξ),

for all α, β ∈ Nd0 and 〈(x, ξ)〉 ≥ R and, in particular, the estimate of Definition 3.1 follows.
Now, we extend qj(x, ξ) to C∞(R2d) for each j ∈ N0. To this aim, we take φ ∈ Dσ(R2d),

supported in {(x, ξ) ∈ R2d : 〈(x, ξ)〉 ≤ 2R} and equal to 1 when 〈(x, ξ)〉 ≤ R. Then, we
set q̃j(x, ξ) := qj(x, ξ)(1 − φ)(x, ξ), which satisfies q̃j = qj if 〈(x, ξ)〉 > 2R and vanishes if

〈(x, ξ)〉 ≤ R. It is easy to see that 1− φ ∈ GS0,ω
ρ . Hence, by Lemma 5.3, q̃j(x, ξ) ∈ FGS|m|,ωρ .

We identify q̃j = qj and we show that
∑
qj ◦ p ∼ 1. For j > 0, by the definition of qj(x, ξ)

we have

qj(x, ξ)p(x, ξ) = −
∑

0<|ε+γ|≤j

(−1)|ε|

ε!γ!
τ |ε|(1− τ)|γ|(∂γξD

ε
xqj−|ε+γ|(x, ξ))(∂

ε
ξD

γ
xp(x, ξ))

= −rj(x, ξ) + qj(x, ξ)p(x, ξ),
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where
∑
rj :=

∑
qj ◦ p (cf. [1, Proposition 4.13]). Thus, rj(x, ξ) = 0 for j > 0. Also, by

the definition of composition, r0(x, ξ) = q0(x, ξ)p(x, ξ) = 1 if 〈(x, ξ)〉 > 2R, which shows that∑
qj ◦ p ∼ 1. Since

∑
qj is a formal sum in FGS|m|,ωρ , by [1, Theorem 4.6] there exists q(x, ξ) ∈

GS|m|,ωρ such that q ∼
∑
qj . Finally, [1, Proposition 4.14] yields q ◦ p ∼ 1, and the proof is

complete.

Corollary 5.5. Let ω be a weight function and let σ be a weight function that satisfies (α0) with
ω(t1/ρ) = o(σ(t)) as t → ∞. If p(x, ξ) ∈ GSm,ωρ satisfies the hypotheses of Theorem 5.4, any
quantization of the corresponding pseudodifferential operator P is ω-regular.

Proof. By Theorem 5.4 there is a pseudodifferential operator Q such that Q◦P = I+R, being I
the identity operator and R an ω-regularizing operator (as a direct consequence of Theorems 4.2
and 3.11 for τ = 0). Then, u = Q(Pu) − Ru ∈ Sω(Rd) for any u ∈ S ′ω(Rd) with Pu ∈ Sω(Rd).
The same argument is valid for an arbitrary quantization.

6 Global ω-hypoellipticity for mixed classes

In what follows, m,m0 ∈ R, m0 ≤ m, 0 < ρ ≤ 1, and for any given weight function ω, σ denotes
a Gevrey weight function, i.e. σ(t) = ta, for some 0 < a < 1, such that

ω(t1/ρ) = o(σ(t)), t→∞. (6.1)

Definition 6.1. Let a ∈ GSm,ωρ . We say that a is an ω-hypoelliptic symbol in the class
HGSm,m0;ω

ρ , and we write a ∈ HGSm,m0;ω
ρ , if there exist a Gevrey weight function σ satisfy-

ing (6.1) and R ≥ 1 such that

(i) There exist C1, C2 > 0 such that

C1e
m0ω(x,ξ) ≤ |a(x, ξ)| ≤ C2e

mω(x,ξ), 〈(x, ξ)〉 ≥ R.

(ii) There exist C > 0, n ∈ N such that

|Dα
xD

β
ξ a(x, ξ)| ≤ C |α+β|〈(x, ξ)〉−ρ|α+β|e 1

nϕ
∗
σ(n|α|)e

1
nϕ
∗
σ(n|β|)|a(x, ξ)|,

for 〈(x, ξ)〉 ≥ R, α, β ∈ Nd0.

We show in Theorem 6.8 below that Definition 6.1 is independent on the quantization τ for
the case m0 = m. Hence, we extend [3, Proposition 8.4], showing that ω-hypoelliptic symbol
classes are not perturbed by a change of quantization. We observe that any pseudodifferential
operator defined by an ω-hypoelliptic symbol is also ω-regular by Theorem 5.4, but the converse
is not true. For instance, the twisted Laplacian in R2,

L =
(
Dx −

1

2
y
)2

+
(
Dy −

1

2
x
)2

is ω-regular for every weight function ω as it is shown in [4, Example 5.4], but its corresponding
symbol is not ω-hypoelliptic for any given weight function ω by [4, Remark 5.5].

For technical reasons, the class of global symbols for which Theorem 6.8 holds needs to be
smaller than the one introduced in Section 2. Namely, we need to introduce some kind of mixed
conditions. The following is the corresponding definition for symbols:
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Definition 6.2. We say that a ∈ G̃S
m,ω

ρ if a ∈ C∞(R2d) and there exists a Gevrey weight
function σ satisfying (6.1) such that for all λ > 0 there is Cλ > 0 with

|Dα
xD

β
ξ a(x, ξ)| ≤ Cλ〈(x, ξ)〉−ρ|α+β|eλϕ

∗
σ

(
|α+β|
λ

)
emω(x,ξ), α, β ∈ Nd0, x, ξ ∈ Rd.

Definitions 6.1 and 6.2 are independent of the weight function σ, since given two Gevrey
weight functions σ1 and σ2 with (6.1), the Gevrey weight function σ(t) := min{σ1(t), σ2(t)},
t > 1, satisfies (6.1) too.

According to condition (6.1), we have, by [1, Lemma 2.9(1)], that for all λ, µ > 0 there exists
C > 0 such that

λϕ∗σ
( j
λ

)
≤ C + µρϕ∗ω

( j
µ

)
, j ∈ N0. (6.2)

As an immediate consequence we have G̃S
m,ω

ρ ⊆ GSm,ωρ .

Lemma 6.3. Let a ∈ G̃S
m,ω

ρ . Then a ∈ HGSm,m;ω
ρ if and only if there exist R ≥ 1 and C ′1 > 0

such that |a(x, ξ)| ≥ C ′1emω(x,ξ) for 〈(x, ξ)〉 ≥ R.

Proof. The necessity is obvious. For the sufficiency, since a ∈ G̃S
m,ω

ρ , for σ as in (6.1) there
exists C > 0 with

|Dα
xD

β
ξ a(x, ξ)| ≤ C〈(x, ξ)〉−ρ|α+β|eϕ

∗
σ(|α+β|)emω(x,ξ), α, β ∈ Nd0, x, ξ ∈ Rd, (6.3)

which in particular yields

C ′1e
mω(x,ξ) ≤ |a(x, ξ)| ≤ Cemω(x,ξ), 〈(x, ξ)〉 ≥ R. (6.4)

This shows Definition 6.1(i). For condition (ii), by (2.4), eϕ
∗
σ(|α+β|) ≤ e 1

2ϕ
∗
σ(2|α|)e

1
2ϕ
∗
σ(2|β|). Thus,

by (6.3) and (6.4), we have (since C ′1 ≤ C)

|Dα
xD

β
ξ a(x, ξ)| ≤

( C
C ′1

)|α+β|
〈(x, ξ)〉−ρ|α+β|e 1

2ϕ
∗
σ(2|α|)e

1
2ϕ
∗
σ(2|β|)|a(x, ξ)|,

for 〈(x, ξ)〉 ≥ R, α, β ∈ Nd0. Since a ∈ G̃S
m,ω

ρ ⊆ GSm,ωρ , the result follows.

Similar mixed conditions are imposed to amplitudes and formal sums.

Definition 6.4. An amplitude a(x, y, ξ) ∈ C∞(R3d) belongs to G̃A
m,ω

ρ if there exists a Gevrey
weight function σ satisfying (6.1) such that for all λ > 0 there is Cλ > 0 with

|Dα
xD

β
yD

γ
ξ a(x, y, ξ)| ≤ Cλ

〈x− y〉ρ|α+β+γ|

〈(x, y, ξ)〉ρ|α+β+γ|
eλϕ

∗
σ

(
|α+β+γ|

λ

)
emω(x,ξ), α, β, γ ∈ Nd0, x, y, ξ ∈ Rd.

Definition 6.5. A formal sum
∑
pj is in F̃GS

m,ω

ρ if pj ∈ C∞(R2d) and there exist a Gevrey
weight function σ satisfying (6.1) and R ≥ 1 such that for all n ∈ N there exists Cn > 0 such
that

|Dα
xD

β
ξ pj(x, ξ)| ≤ Cn〈(x, ξ)〉

−ρ(|α+β|+j)enϕ
∗
σ

(
|α+β|+j

n

)
emω(x,ξ),

for each j ∈ N0, α, β ∈ Nd0, log
( 〈(x,ξ)〉

R

)
≥ n

j ϕ
∗
ω

(
j
n

)
.
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Definition 6.6. We say that
∑
aj ∼

∑
bj in F̃GS

m,ω

ρ if there exist a Gevrey weight function σ
satisfying (6.1) and R ≥ 1 such that for all n ∈ N there exist Cn > 0, Nn ∈ N such that∣∣Dα

xD
β
ξ

∑
j<N

(aj − bj)
∣∣ ≤ Cn〈(x, ξ)〉−ρ(|α+β|+N)enϕ

∗
σ

(
|α+β|+N

n

)
emω(x,ξ),

for all N ≥ Nn, α, β ∈ Nd0, log
( 〈(x,ξ)〉

R

)
≥ n

Nϕ
∗
ω

(
N
n

)
.

Again by (6.2) it is also clear that G̃A
m,ω

ρ ⊆ GAm,ω
ρ and F̃GS

m,ω

ρ ⊆ FGSm,ωρ .
The amplitudes introduced in Definition 6.4 do not have exponential growth in the variable

y to avoid the increasing in the order m ∈ R in some results in Section 3. For instance, if

a ∈ G̃A
m,ω

ρ , then, following Example 3.7,

pj(x, ξ) :=

∞∑
j=0

∑
|β+γ|=j

1

β!γ!
τ |β|(1− τ)|γ|∂β+γξ (−Dx)βDγ

ya(x, y, ξ)
∣∣∣
y=x
∈ F̃GS

m,ω

ρ . (6.5)

It is easy to check that ϕj (defined in (3.2)) belongs to G̃S
0,ω

ρ . Hence the corresponding symbolic
calculus is developed in the same manner as for the global symbol class GSm,ωρ . In particular,
by [1, Theorem 4.6], we have, from (6.5),

pτ (x, ξ) :=

∞∑
j=0

ϕj(x, ξ)pj(x, ξ) ∈ G̃S
m,ω

ρ (6.6)

for all τ ∈ R. Such symbol is called is the τ -symbol of the pseudodifferential operator associated

to the amplitude a(x, y, ξ) ∈ G̃A
m,ω

ρ . In addition, as a consequence of Theorem 3.11 we obtain
Theorem 3.12 for mixed classes.

Theorem 6.7. Let τ1, τ2 ∈ R. If aτ1(x, ξ), aτ2(x, ξ) ∈ G̃S
m,ω

ρ are the τ1-symbol and the τ2-symbol
of the pseudodifferential operator A, then

aτ2(x, ξ) ∼
∞∑
j=0

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξ D

α
xaτ1(x, ξ)

in F̃GS
m,ω

ρ .

Now we are ready to prove the main theorem of this section.

Theorem 6.8. Let τ1, τ2 ∈ R and let aτ1 ∈ G̃S
m,ω

ρ . If aτ1 ∈ HGSm,m;ω
ρ , then aτ2 ∈ HGSm,m;ω

ρ .

Proof. By (6.6) we have aτ2 ∈ G̃S
m,ω

ρ . Therefore, by Lemma 6.3, it is enough to show that there
exist R ≥ 1, D > 0 such that

|aτ2(x, ξ)| ≥ Demω(x,ξ) (6.7)

for 〈(x, ξ)〉 ≥ R. In fact, by assumption, by the same result there are R1 ≥ 1, D1 > 0 such that

|aτ1(x, ξ)| ≥ D1e
mω(x,ξ) (6.8)

for 〈(x, ξ)〉 ≥ R1. By Theorem 6.7 and Definition 6.6, there exist a Gevrey weight function σ1
satisfying (6.1) and R2 ≥ 1 such that there exist C1 > 0, N1 ∈ N:∣∣∣aτ2(x, ξ)−

∑
j<N

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξ D

α
xaτ1(x, ξ)

∣∣∣ ≤ C1〈(x, ξ)〉−ρNeϕ
∗
σ1

(N)emω(x,ξ)
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for N ≥ N1 and log
( 〈(x,ξ)〉

R2

)
≥ 1

Nϕ
∗
ω(N). By (6.2), there exists A1 > 0 such that ϕ∗σ1

(N) ≤
A1 + ρϕ∗ω(N) for all N ∈ N. Then,∣∣∣aτ2(x, ξ)−

∑
j<N

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξ D

α
xaτ1(x, ξ)

∣∣∣ ≤ C1e
A1R−ρN3 emω(x,ξ), (6.9)

for all N ≥ N1 and 〈(x, ξ)〉 ≥ R3e
1
N ϕ
∗
ω(N), where R3 ≥ R2 will be determined later.

We fix N = N1 ∈ N and we claim that∣∣∣N−1∑
j=0

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξ D

α
xaτ1(x, ξ)

∣∣∣ ≥ D1

2
emω(x,ξ), (6.10)

if 〈(x, ξ)〉 is large enough. The inequality is immediate for N = 1 by (6.8) for 〈(x, ξ)〉 ≥ R1, so
we shall assume that N > 1. First, we estimate∣∣∣N−1∑

j=1

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξ D

α
xaτ1(x, ξ)

∣∣∣.
Since aτ1(x, ξ) ∈ G̃S

m,ω

ρ , there exists a Gevrey weight function σ2 satisfying (6.1) such that there
is C2 > 0 with

|Dα
xD

α
ξ aτ1(x, ξ)| ≤ C2〈(x, ξ)〉−2ρe2ϕ

∗
σ2

(N−1)emω(x,ξ),

for all x, ξ ∈ Rd and 1 ≤ |α| ≤ N−1. Again by (6.2), there exists A2 > 0 such that ϕ∗σ2
(N−1) ≤

A2 + ρϕ∗ω(N − 1). Consider 〈(x, ξ)〉 large enough so that

〈(x, ξ)〉 ≥ R4e
ϕ∗ω(N−1),

with R4 ≥ 1 to be determined. Then

|Dα
xD

α
ξ aτ1(x, ξ)| ≤ C2e

2A2〈(x, ξ)〉−2ρe2ρϕ
∗
ω(N−1)emω(x,ξ)

≤ C2e
2A2(R4)−2ρemω(x,ξ),

for 〈(x, ξ)〉 ≥ R4e
ϕ∗ω(N−1), 1 ≤ |α| ≤ N − 1. On the other hand, by formula [22, (0.3.1)], we

obtain
N−1∑
j=1

∑
|α|=j

|τ1 − τ2||α|

α!
≤
N−1∑
j=1

(d|τ1 − τ2|)j

j!
≤ ed|τ1−τ2|.

So, we deduce∣∣∣N−1∑
j=1

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξ D

α
xaτ1(x, ξ)

∣∣∣ ≤ C2e
2A2(R4)−2ρed|τ1−τ2|emω(x,ξ), (6.11)

for 〈(x, ξ)〉 ≥ R4e
ϕ∗ω(N−1). Hence, by the triangular inequality, from formulas (6.11) and (6.8)

we have∣∣∣N−1∑
j=0

∑
|α|=j

1

α!
(τ1 − τ2)|α|∂αξ D

α
xaτ1(x, ξ)

∣∣∣ ≥ D1e
mω(x,ξ) − C2e

2A2(R4)−2ρed|τ1−τ2|emω(x,ξ)

≥ D1

2
emω(x,ξ),
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which shows (6.10) provided R4 be so that

(R4)2ρ ≥ 2

D1
C2e

2A2ed|τ1−τ2|,

and 〈(x, ξ)〉 ≥ max{R1, R4e
ϕ∗ω(N−1)}. Finally we obtain, by (6.10) and (6.9),

|aτ2(x, ξ)| ≥ D1

2
emω(x,ξ) − C1e

A1R−ρN3 emω(x,ξ) ≥ D1

4
emω(x,ξ)

if RρN3 ≥ 4
D1
C1e

A1 and 〈(x, ξ)〉 ≥ R := max{R1, R4e
ϕ∗ω(N−1), R3e

1
N ϕ
∗
ω(N)}. Then (6.7) is satisfied

for D = D1

4 > 0 and R ≥ 1, and the proof is complete.
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