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Achieving optimal production in microbial cell factories, robustness against changing
intracellular and environmental perturbations requires the dynamic feedback regulation of
the pathway of interest. Here, we consider a merging metabolic pathway motif, which
appears in a wide range of metabolic engineering applications, including the production of
phenylpropanoids among others. We present an approach to use a realistic model that
accounts for in vivo implementation and then propose a methodology based on
multiobjective optimization for the optimal tuning of the gene circuit parts composing
the biomolecular controller and biosensor devices for a dynamic regulation strategy. We
show how this approach can deal with the trade-offs between the performance of the
regulated pathway, robustness to perturbations, and stability of the feedback loop. Using
realistic models, our results suggest that the strategies for fine-tuning the trade-offs among
performance, robustness, and stability in dynamic pathway regulation are complex. It is not
always possible to infer them by simple inspection. This renders the use of the
multiobjective optimization methodology valuable and necessary.
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1 INTRODUCTION

Microbial cell factory development using metabolic engineering seeks to obtain high levels of
products of interest through genetic modification of microorganisms. Natural cells use complex
regulatory networks to preserve robust growth and endure environmental changes by dynamically
adapting cell metabolism (Liu et al., 2018). These regulation strategies are the long-term result of
evolution. In most cases, they are not compatible with the addition of exogenous genes highly
expressed to reach the production levels demanded by the industry. Constraint-based steady-state
models of metabolism using only stoichiometric information and some basic information about the
enzyme regulation have proved very valuable in providing predictions on maximum theoretical
yields, optimal flux distribution to maximize flux towards some metabolite reaction bottlenecks and
required ways of intervention on gene expression, leading to fluxes towards final products that
achieve specified levels in productivity, titer and yield (Otero-Muras and Carbonell, 2021). This
approach seeks the careful optimal selection of the constant expression levels of the exogenous genes
in the pathway of interest and the endogenous ones with relevant interactions. Yet, as it is a static
regulation approach, it fails to address the problem’s dynamic and highly uncertain nature. Indeed,
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the static strategy to regulate a metabolic pathway relies on an
optimization process that is tailor-made for a particular situation,
and therefore it is not able to respond to cell and environmental
changes occurring during fermentation in a bioreactor (Wehrs
et al., 2019).

Considering the metabolic network dynamics allows better
analysis of the sensitivity of the metabolites or fluxes of interest to
the optimal enzymatic intervention points under different
environmental situations. Dynamic network models, from
grey-box to black-box ones, of scales ranging from a subset of
pathways to genome-scale, have been used to this end (Otero-
Muras and Banga, 2017; Li et al., 2018; Yang et al., 2019; Lo-
Thong et al., 2020). The optimal intervention points and
intervention strategies (required up- or down-regulation) can
be assessed using sensitivity analysis methods like metabolic
control analysis (Lo-Thong et al., 2020) dynamic optimization
(Otero-Muras and Banga, 2017; Li et al., 2018; Yang et al., 2019)
and optimal control principles (Tsiantis and Banga, 2020). Thus,
these methods address the fundamental problem of determining
the structure of (optimal) control intervention points in complex
metabolic networks. Yet, there are no generally applicable
algorithms for designing metabolic dynamic feedback
regulation systems to date. The regulation topology is
generally pathway-specific, depending on both the potential
presence of toxic pathway intermediates and the pathway
topology (Hartline et al., 2020). Several typical metabolic
topology motifs are usually considered: linear, branched, and
merging (Blair et al., 2012). Most existing work has dealt with the
dynamic regulation of linear pathways (Oyarzún and Stan, 2013;
Liu and Zhang, 2018) or branched ones (Liu et al., 2018).

Once the optimal signals to be feedback and the intervention
points are obtained, the problem of designing and tuning the
proper dynamic feedback regulation biomolecular controller
remains. Achieving robust optimal production in microbial
cell factories requires considering the dynamic regulation of
the pathway of interest. Dynamic feedback regulation
constitutes a very interesting strategy to construct pathways
with the ability to self-tune upon changing environmental
conditions and to overcome many of the ongoing challenges
faced in metabolic engineering (Liu and Zhang, 2018; Hartline
et al., 2020). For example, it is often challenging to find the proper
enzyme levels that maximize production while avoiding pathway
bottlenecks or the accumulation of toxic intermediates.
Feedback control circuits can solve these problems by
dynamically changing enzyme expression in response to
metabolic inputs and continuously regulating the activity in
the pathway in response to either intracellular or bioreactor
perturbations. This enables the industry to attain higher
process performance indices than static regulation (Stevens
and Carothers, 2015).

Despite the growing number of reported successful cases,
engineering dynamic feedback control strategies in biological
applications remains a major challenge (Gao et al., 2019).
Model-based design, which leverages control engineering
principles, can provide a powerful formalism to design
dynamic feedback regulation circuits. This, together with the
tools of synthetic biology, can lead to robust and efficient

microbial production at the industrial level (Liu et al., 2018;
Segall-Shapiro et al., 2018).

Here, we consider the design and tuning of a biomolecular
controller for the dynamic feedback regulation of a merging
metabolic pathway. Since we restrict to a single metabolic
pathway, determining the dynamic regulation topology,
i.e., the feedback variable and the intervention point, could be
made by simple inspection and previous knowledge of the system.
In this metabolic motif, two substrates, the primary precursor and
an essential metabolite, are converted to an intermediate product
which is subsequently transformed into a target product. The
secondary essential metabolite plays an additional role in cell
metabolism inmany practical situations. Therefore, it is subject to
environmentally-induced fluctuations. Over-expressing the
enzyme that synthesizes this secondary metabolite or
redirecting the flux towards it is not feasible in cases where its
accumulation is toxic for the cell, leading to growth inhibition.
This is the situation encountered in applications like the
production of phenylpropanoids of industrial interest, e.g.,
naringenin (Sheng et al., 2020).

In previous work, we considered the problem of designing a
dynamic regulation topology for the production of naringenin
while coping with fluctuations in malonyl-CoA, the secondary
essential metabolite (Boada et al., 2020). This work considers a
detailed model of the whole system, including the metabolic
pathway, the extended biosensor, and the molecular
biocontroller. We address the problem of optimal choice
(tuning) of the biocontroller and the biosensor components in
the dynamic regulation topology. In particular, we considered a
realistic model for the antithetic controller together with an
extended biosensor based on the QdoR Transcription Factor
(TF) that accounts for a straightforward in vivo
implementation of the system. This gives us more information
than the simplistic models of the antithetic biocontroller used in
the literature that do not consider fundamental aspects like:

• non-linearities in the promoters. In the simplest models, the
expression of proteins and sigma factors is always
proportional to the number of transcription factors,
i.e., there is no saturation of the promoters.

• formation of the antithetic complex, and the unbinding
reaction of the complex.

• dilution rate of all the species due to cell growth. It is known
that the dilution destroys the perfect adaptation property of
the antithetic biocontroller, introducing a steady-state error.
As we comment later, this forces us to use more than one
objective to optimize.

Multiobjective optimization has already been demonstrated to
be an appropriate tool for characterization of gene circuit parts
(Boada et al., 2019a; Boada et al., 2019b), and for the design of
gene circuits with the desired behavior (Boada et al., 2016; Boada
et al., 2017b; Boada et al., 2021). Here, we present an approach to
use multiobjective optimization for the optimal tuning of the gene
circuit parts composing the biocontroller and biosensor in a
dynamic metabolic regulation feedback loop. We show how
this approach can deal with the trade-offs between the
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performance of the regulated pathway and robustness to
fluctuations in the secondary metabolite. We also highlight
that performance indices must include the standard steady-
state industrial ones (e.g., titer) and indices related to the
time-response transient (i.e., stability). As the complexity of
the dynamic biocontrollers and biosensors integrated into the
feedback loop regulation increases, the stability and transient
performance issues that high order dynamics introduce must be
taken into account. In this work, we consider, on the one hand,
the case where having transcription factor (TF) based biosensors
of the target product is not always possible. As an alternative,
extended TF-based biosensors can be used, where an additional
pathway is introduced from the target product to be regulated to a
measurable metabolite (Boada et al., 2020). Yet, these extended
biosensors present extra dynamics in the feedback loop. On the
other hand, to regulate the amount of enzyme that catalyzes the
conversion from the two precursor substrates into the product
naringenin, we consider the use of the antithetic controller, a
biomolecular integral feedback controller that achieves quasi-
perfect adaptation (Briat et al., 2016; Aoki et al., 2019).

We first show our approach using a simple illustrative pathway
that captures the essential topological features of merging
metabolic pathways. We use a feedback regulation strategy

encompassing a simple TF-based biosensor to obtain readouts
of the product and a simplified model of the biomolecular
antithetic controller. In this case, the final titer of the target
product and the robustness to fluctuations in the secondary
metabolite are evaluated. Then, we consider a detailed model
of the metabolic merging pathway of naringenin, the
biocontroller, and the extended biosensor of naringenin
production that we previously introduced in (Boada et al.,
2020). In this case, we use a more realistic model of the
antithetic biocontroller. The extra dynamics introduced by
both the extended biosensor and the biocontroller force us to
consider the transient dynamics of the regulated feedback loop in
the design process. A library of designs is obtained, each one
corresponding to a different trade-off.

2 RESULTS

2.1 Tuning the Dynamic Regulation of a
Merging Metabolic Pathway
To illustrate our approach’s broad scope and usefulness, we first
study a basic metabolic pathway that contains the main common
features of a typical merging motif. As shown in Figure 1A (black

FIGURE 1 | Illustrative model system. (A)Metabolic pathway for the production of metabolite P. Themain substrate S1 and the secondary oneS2 are converted into
the product P by the catalyst enzyme E. In the static regulation strategy (black lines), the expression level of the enzyme E remains constant in time. Conversely, in the
dynamic regulation strategy (orange line), the expression of the enzyme E depends on the amount of product P. (B) Objective functions employed in this work for the
maximization of the production up to a target value (J1) together with the minimization of the production loss after perturbations (J2) as defined in Eq. 9, 10 (C)
Biosensor and antithetic controller configuration for dynamic pathway regulation. The amount of free σmolecule determines the expression of the enzyme E. A TF-based
biosensor detects the product levels and counteracts expressing the anti-σmolecule. When the amount of P decreases, the controller reduces the amount of expressed
anti-σ, thus increasing the amount of free σ to up-regulate the enzyme E. (D) Pareto front of optimal solutions for the dynamical pathway regulation case. Solutions on the
right side have large titer target error J1 (i.e., lower titer) and a small production loss after perturbation J2 (i.e., higher titer after the perturbation). Moving along the Pareto
front towards the left, the titer target error decreases, and the production loss increases. Solutions in the middle of the Pareto front have the best trade-off between the
competing objectives J1 and J2.
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lines), we consider the production of a product metabolite P from
a precursor substrate S1 and a secondary substrate S2. The
reaction is catalyzed by the enzyme E. This metabolic pathway
can be described using the following model:

dS1
dt

� VS1 − VS1 ,S2 − μS1 (1)
dP

dt
� VS1 ,S2 − μP (2)

dX

dt
� μX 1 − X

Xmax
( ) (3)

Where Si and P are the amount of substrates and product. X is
the number of cells in the population. S1 is the primary substrate,
and S2 is the secondary substrate. The first order dilution term
represents the effect of cell growth on the amount of substrates
and products, being μ the specific growth rate. Xmax accounts for
the maximum growing capacity of the population. The metabolic
fluxes are given by the kinetic terms:

VS1 � KS1 (4)
VS1 ,S2 � kcatE

S1S2
KmS1 KmS2 + KmS2S1 + KmS1S2 + S1S2

(5)

Where we assume that the uptake of the precursor S1 has constant
rate KS1 (4), and the substrate S2 is normally available at non-
limiting amount. The flux VS1 ,S2 is described by means of the
Michaelis-Menten kinetics in Eq. 5, where E is the amount of
enzyme catalyzing the pathway, kcat is the enzyme catalytic rate
and KmSi are the Michaelis-Menten constants for the substrates.

In the case of static pathway regulation (Figure 1A, black line),
the flux VS1 ,S2 has a constant maximum value determined by the
amount of the constitutively expressed heterologous enzyme E.
As its expression level is independent of any metabolite in the
pathway, the production of P is affected in the presence of a
sudden change in the availability of the secondary substrate S2, as
shown in the right plot of Figure 1B in dashed grey lines.

On the contrary, in the case of dynamic pathway regulation
(Figure 1A in orange line), the level of expression of the enzyme E
depends on the amount of the product metabolite. A biosensor
provides product metabolite readouts, and a biomolecular
controller changes the enzyme expression level as a function
of the difference between the current amount of product and the
target one encoded in the controller. Thus, when there is a change
in the secondary substrate, the production of the metabolite P is
affected but can recover (up to some extent) closer to its previous
value (Figure 1B, right plot, solid orange line).

Different control architectures can be implemented with
combinations of activation and repression feedback loops.
Here, we focus on a class of biomolecular controller, the
antithetic controller (Aoki et al., 2019), that allows for quasi-
perfect adaptation.

To gain an initial understanding of the design trade-offs in the
dynamic control of the merging metabolic pathway motif, we first
consider a simplified version of the antithetic controller
regulating the amount of enzyme E using a simple TF-based
biosensor to obtain readouts of P (Figure 1C).

The control action is encoded in the amount of free σ
molecules that activate the expression of the enzyme E
through its promoter Pσ. We modeled the promoter using a
generalized Hill function as in (Boada et al., 2020), including the
effect of the plasmid copy number on the promoter activation
function. The resulting dynamics of the amount of enzyme E is:

dE

dt
� CNa0 + CNa1

σ2

kd20C
2
N + σ2

− dE + μ( )E (6)

The acting molecule σ is constitutively expressed (thus
encoding for sort of a target set-point value) and binds the
anti-σ molecule to form an inactive complex, effectively
reducing the amount of free σ. The resulting dynamics of the
amount of free σ molecules is:

dσ

dt
� CNkσ − γσaσ − dσ + μ( )σ (7)

Next, a TF-based biosensor detects the product P expressing
the anti-σ molecule as a function of the product amount. A
constitutively expressed Transcription Factor (TF) (equation
omitted for brevity) binds to the product P inducing the
expression of the anti-σ molecule. The dynamics of the
amount of anti-σ molecules is:

daσ

dt
� CNaσkaσ

C2
N 1 + P

kdp
( )2

C2
N 1 + P

kdp
( )2

+ TF( )2
− γσaσ − daσ + μ( )aσ (8)

When the amount of P decreases, so does the amount of
expressed anti-σ, thus increasing the amount of free σ molecules
and, this way, up-regulating the expression of the enzyme E. Next,
we consider the optimal tuning of the gene circuit parts
composing the antithetic biocontroller and the TF-based
biosensor.

To characterize the trade-offs between reaching the desired
titer target for P together with reducing the production loss after a
perturbation on the level of the secondary metabolite S2, as
illustrated in Figure 1B, we considered two objective
functions. For the first one, we looked for the difference
between the titer of the product P in the bioreactor and the
desired target value (J1). For the second one, we focus on the
production loss (amount of product expressed per cell) after a
perturbation on S2 (J2). The corresponding expressions for both
objectives to be jointly minimized are:

J1 � Target −KPunperturbed T( )∣∣∣∣ ∣∣∣∣, target titer error( ) (9)
J2 � Punperturbed T( ) − Pperturbed T( )

Punperturbed T( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣, production loss after perturbation( ),
(10)

Where Punperturbed(T) is the product amount at the end of the
experiment (time T), K is a conversion constant from the amount
of product to titer, Pperturbed(T) is the amount of product after a
perturbation in the secondary metabolite. As J1 describes the
difference between the desired target titer and the actual one,
lower values of J1 correspond to larger titers. On the other hand, J2
is related to the loss in production after a perturbation. Therefore,
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small values of J2 correspond to low production loss after a
perturbation. That is a better rejection of the perturbation on the
secondary metabolite.

Next, we selected the biosensor and biocontroller set of
parameters to be tuned. We took into account to what extent
these parameters can be changed in the biological
implementation of the system at the lab. Thus, we considered
the set: expression strength for the enzyme E, a1; the dissociation
constant between σ and the enzyme promoter, kd20; and the
expression strength for anti-σ, kaσ. Additionally, the specific
growth rate, μ, was included as a decision parameter to
account for the dependency of the results on cell growth.

The goal is to obtain a library of possible designs, each one
corresponding to a different trade-off between the cost indices J1,
J2. The resulting solutions are all equally optimal in the sense of
Pareto (Boada et al., 2019b). When one of the objectives
improves, the others necessarily deteriorate, so selecting the
most appropriate solution depends on the designer.

We computed the values of the selected parameters as the
solution of the multiobjective optimization problem min (J1, J2)
subject to biologically plausible bounds on the values of the
parameters (see Supplementary Table S1 for a list of the
solutions). Thus, for example, we set a growth rate
corresponding to doubling times between 25 and 90 min, an
upper bound for the dissociation constant of the promoter kd20 <
3.5 μM and an upper bound on the maximum enzyme level of
180 μM. The optimization problem was solved using a
multiobjective optimization genetic algorithm based on
differential evolution. The detailed statement of the
optimization problem is described in the Methods section, and
the parameters used are in Supplementary Table S2
(Supplementary Material).

The resulting Pareto front, Figure 1D, has three distinct
regimes: 1) large titer target error and low production loss, 2)
small titer target error and high production loss, and 3) the
best trade-off regime between the two competing objectives.
The convexity of the Pareto front indicates that the
optimization problem is well-posed, in the sense that both
objective functions oppose each other across the whole space
of optimal solutions. We selected five solutions that represent
the mentioned regimes. These solutions are highlighted in the
Pareto front in Figure 1D. The achieved objective values of

the selected solutions are shown in Figure 2A and the
corresponding tuned optimal values for the controller and
biosensor parameters and the growth rate are shown in
Figure 2B (see Supplementary Figure S1, for details on
the temporal responses of the selected solutions). Thus, the
set of solutions of the optimization constitutes a library of
optimally tuned controller-biosensor pairs.

A detailed inspection of the library of controller and biosensor
pairs obtained (Figure 2B) reveals that the relations between
parameters and objectives are not necessarily monotonous
(Supplementary Table S1, Supplementary Material). For
example, the dissociation constant kd20 must be chosen
smaller to reduce the production loss after perturbation (J2).
Yet, there is no monotonous trend in neither the anti-σ
expression strength kaσ nor in the E enzyme expression
strength a1.

Altogether these results suggest that strategies for fine-tuning
the trade-off between target titer error and production loss in
dynamic pathway regulation are complex and impossible to
obtain by simple inspection even for a simplified case,
rendering the use of the multiobjective optimization
methodology not only helpful but necessary.

2.2 Model of the Dynamic Regulation of the
Naringenin Metabolic Pathway
Naringenin is a flavonoid compound predominantly found in
grapefruits and oranges. It has been reported to have many
pharmacological properties, including anti-dyslipidaemic,
anti-obesity and anti-diabetic (Liu et al., 2008; Zygmunt
et al., 2010; Rahigude et al., 2012). Flavonoids are an
essential subclass of phenylpropanoids, an important family
of plant natural products with diverse uses as food
supplements, antioxidants, flavoring and flavoring agents,
pharmaceuticals, insecticides and colorants. Significant
market opportunities clearly exist for flavonoids with
enhanced bioavailability and bioactivity profiles that are
used, among others, as flavorings and bioactive compounds
for nutraceutical applications.

The naringenin pathway has four enzymatic steps from the
L-tyrosine precursor (see Figure 3). The third step, catalysed
by the naringenin chalcone synthase enzyme (CHS) requires

FIGURE 2 | Pareto solutions. Pareto front and Pareto set of selected solutions. (A) Pareto front showing the solutions of themultiobjetive problem. The values of the
objectives J1 and J2 (x-axis) are represented for different solutions (y-axis). (B) The Pareto set represented with a plot for each tuned parameter. The tuned values of the
parameters (x-axis) are shown for each selected Pareto solution (y-axis). The set of solutions constitutes the library of biocontrollers and biosensors obtained with the
multiobjective optimization tuning process.
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the co-substrate malonyl-CoA, an essential metabolite that is
used in fatty acid production and plays an important role in
cell metabolism. Intracellular concentrations of malonyl-CoA
are typically low (4–40 μM in E. coli) (Xu et al., 2014; Johnson
et al., 2017). Moreover, its concentration is subject to
fluctuations caused by cell environmental heterogeneity.
Accumulation of malonyl-CoA is toxic for the cell, so that
over-expressing it is not a feasible solution.

We considered a detailed model of the naringenin pathway by
obtaining the mass balance equations of the enzyme-catalyzed
reactions of the metabolic pathway from L-tyrosine to naringenin
(see Figure 3). From the mass balance equations, we obtained the set
of rate Eq. 11. The rate equations include the dilution effect of cell
replication at a specific growth rate μ.

dLt

dt
� V0 − VLt − μLt

dpC

dt
� VLt − VpC − μpC

dpA

dt
� VpC − VpA,Ma − μpA

dNc

dt
� VpA,Ma − VNc − μNc

dN

dt
� VNc − VN − μN

(11)

For each reaction, the corresponding flux is Vj (molecules
min−1). Lt is the number of molecules of L-tyrosine, pC is p-
coumaric acid, pA is p-coumaroyl-CoA, Nc is naringenin
chalcone, and N is the target metabolite naringenin. Next, we
assumed that the fluxes Vj follow the Michaelis-Menten kinetics
(Michaelis and Menten, 1913), and the flux V0 from the
L-tyrosine precursor is kept as a constant, obtaining the
equations:

V0 � KLt

VLt � kcatTALTAL
Lt

KmLt + Lt

VpC � kcat4CL4CL
pC

KmpC + pC

VpA � kcatCHSCHS
pAMa

KmpA KmMa + KmMapA + KmpAMa + pAMa

VNc � kcatCHICHI
Nc

KmNc +Nc

VN � kcatF3HF3H
N

KmN +N

(12)
Where Ma is the number of malonyl-CoA molecules naturally
available inside the cell, kcatj is the catalytic rate of each enzyme
(min−1), and Kmj is the Michaelis-Menten constant for each
substrate. The enzyme kinetic parameters, detailed in
Supplementary Table S4 (Supplementary Material) were
obtained from Brenda (Schomburg et al., 2017) and optimized
according to the requirements for the pathway implementation in
the lab.

Malonyl-CoA is one of the major building blocks for cell
metabolism. Its intracellular concentration is tightly regulated
and maintained at small amounts (Yang et al., 2015).
Therefore, our system, the exogenous naringenin pathway,
will compete for this resource. Thus, from the point of view of
our system, any variation in theMa level caused by changes in
the cell will act as a perturbation signal. We considered a basal
value of Ma in the mid-range of values reported in the
literature (Takamura and Nomura, 1988; Xu et al., 2014;
Wu et al., 2015), and avoiding the accumulation of large
amounts of intermediate metabolites that may lead to
growth inhibition.

FIGURE 3 |Dynamic pathway regulation scheme for the naringenin pathway. The target metabolite naringenin is produced from L-tyrosine in four enzymatic steps,
including a merging step catalysed by the enzyme naringenin chalcone synthase (CHS) which incorporates the secondary metabolite malonyl-CoA. The production level
of naringenin is readout using a metabolic extended TF-based biosensor through the downstream metabolite kaempferol. This is sensed using the QdoR TF-based
biosensor and feeds back to an antithetic biomolecular controller. The controller can be activated upstream by means of the external inducer AHL. Its actuating
signal overdrives the basal constitutive expression of the CHS enzyme in the pathway in order to compensate for malonyl-CoA depletion.
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The amounts of the enzymes TAL, 4CL, CHI, CHS, and F3H
involved in the naringenin pathway were previously optimized so
that the flux of precursor L-tyrosine can yield the targeted 1 g/L of
naringenin (see Supplementary Table S4, Supplementary
Material). Compared to other models, we are explicitly
modeling the amount of the enzymes of interest (CHS) as
variables of our model to capture the interaction between the
genetic control level and the metabolic pathway level.

2.2.1 Feedback Regulation via a Metabolic Biosensor
and Biocontroller for the Naringenin Pathway
For the naringenin pathway, we implemented a dynamic regulation
strategy including an extended biosensor to obtain the readout of
naringenin and a biomolecular controller. On the one hand, the TF-
based biosensor provides readouts of the amount of naringenin via a
short metabolic pathway from naringenin to kaempferol (see
Figure 3). Kaempferol is the effector flavonoid measured by the
biosensor promoter region PqdoI and the QdoR transcription factor
(TF) (Siedler et al., 2014).When kaempferol captures QdoR, the TF is
inactivated, and repression of the PqdoI promoter becomes weaker
while leading to an increase of anti-σ factor production. In contrast,
lower concentrations of kaempferol allow higher amounts of QdoR
transcription factor, which inhibits anti-σ expression.

For every i—cell in the population, the kinetics of the enzyme-
catalyzed reactions involved in this extended pathway were
modeled using the set of rate Eq. 13:

d Di

dt
� VN − VDi − μDi

dKa

dt
� VDi − μKa

d Q

dt
� pQCNkQ
dmQ + μ

− dQ + μ( )Q
(13)

Where Di is the number of molecules of Dihydrokaempferol, Ka
is kaempferol, the flux VDi obeys the Michaelis-Menten kinetics
VDi � kcatFLSFLS Di

KmDi+Di, and Q is the constitutively expressed
QdoR protein. All the parameters are listed in Supplementary
Tables S4, S5 (SupplementaryMaterial) and optimized according
to the lab implementation and characterization in (Boada et al.,
2019b; Dunstan et al., 2020).

The antithetic controller used for the dynamic regulation of
naringenin production is depicted in Figure 3. The antithetic
motif relies on the annihilation mechanism between both σ and
anti− σ factor proteins. The σ factor activity is controlled by the anti−
σ factor that binds to and keeps the σ factor sequestered. The anti − σ
is only released and de-repressed in response to the QdoR
transcription factor. The dimer formed by the LuxR protein and
AHL lactone activates the PLuX promoter, inducing the synthesis of σ
factor. The externally added concentration of AHL acts as the desired
reference input for naringenin production. We do not assume the
AHL concentration needed to set the desired value for naringenin
must be equal to this one—implying an unnecessary metabolic
burden—but simply proportional. Free σ factor binds to the P20
promoter to activate expression of the naringenin chalcone synthase
CHS, which subsequently converts p-Coumaroyl-CoA and malonyl-
CoA into the naringenin precursor. In other words, the CHS enzyme
represents the controller output signal.

Considering the same assumptions as those to derive the TF-
based biosensor model, the dynamics of the antithetic controller
for every cell is given by the following set of equations:

dσ · aσ
dt

� k−c
kdc

σ aσ − k−cσ · aσ − dc + μ( )σ · aσ

dσ

dt
� pσCNkσ
dmσ + μ

α + 1 − α( )A2

kdlux
kd2CN

R
( )2

+ A2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − k−c

kdc
σ aσ + k−cσ · aσ − dσ + μ( )σ

daσ

dt
� paσCNaσkaσ

dmaσ + μ
α + 1 − α( ) kdqCN( )2 kdk + Ka( )2

kdqCN( )2 kdk +Ka( )2 + kdkQ( )2
⎛⎝ ⎞⎠ − k−c

kdc
σaσ

+k−cσ · aσ − daσ + μ( )aσ
dCHS

dt
� β

pHc
CNhkH

dmH + μ
+ pHCNhkH
dmH + μ

α + 1 − α( )σ2
kd20 kdσCNh( )2 + σ2

( ) − dH + μ( )CHS

(14)

Where σ · aσ is the amount of molecules from the generated
complex after σ sequestration, σ and aσ are the factor and its
cofactor, respectively. All the parameters are listed in
Supplementary Table S5 (Supplementary Material).

As in (Boada et al., 2020), the desired naringenin set-point is
regulated by the external addition of AHL and the constitutive
expression of the LuxR protein. The passive diffusion of
extracellular AHL inside the cell was modeled as a reversible
pseudo-reaction using mass-action kinetics (Boada et al., 2017a).
This resulted in the set of Eq. 15:

dR

dt
� pRCNkR
dmR + μ

− dR + μ( )R
dA

dt
� D VcAe − A( ) − dA + μ( )A

dAe

dt
� D −xVcAe +∑x

i�1
A⎛⎝ ⎞⎠ − dAeAe

dx

dt
� μ 1 − x

xmax
( )x

(15)

Where R is the number of molecules of LuxR, A and Ae are the
intra and extracellular AHL molecules, respectively, the term
Vc � Vcell

Vext
is the ratio between the cellular and the culture volumes;

and x is the number of cells. The parameters are also listed in
Supplementary Table S5 (Supplementary Material).

Using the set of preliminary parameters in Supplementary Table
S5, we ran computational simulations to obtain the temporal
response of the system to perturbation in Malonyl-CoA. Once
the production of the target metabolite naringenin reached
steady-state, we introduced a perturbation in the availability of
Malonyl-CoA at 65 h of 60%. After that, the amount of σ factor
increases leading to an increased expression of the enzyme CHS.
This results in a slight increase in the naringenin production.
However, as seen in Figure 4, there is room for improvement.
This will be the goal obtained in the next section by means of the
optimal tuning of the regulation strategy.

2.3 Optimal Tuning of the Dynamic
Regulation for Naringenin Production
Having developed a detailed and realistic model of the pathway
dynamic regulation, we optimally tuned the controller and
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biosensor components of the dynamically regulated metabolic
pathway that produces naringenin in Escherichia coli (E. coli).

We first established a baseline production pathway for
naringenin, with the basal level of the CHS enzyme provided
by a constitutive promoter. On top of this, the feedback control
loop regulates the total level of expression of CHS to give a robust
response to the fluctuations in the secondary co-substrate
malonyl-CoA availability and drive the production of
naringenin up to the target industrially relevant value of 1 g L−1.

Next, we used our multiobjective optimization approach to
find a library of optimal biocontroller and biosensor pairs for the
dynamic regulation of the naringenin pathway. As in the previous
example, we aim to determine controller and biosensor designs
that allow reaching a target titer of naringenin production while
minimizing the production loss after perturbations in the
secondary metabolite. However, the extra dynamics introduced
by the extended biosensor used in this case and the ones
introduced by using a more realistic model of the
biomolecular antithetic controller must be considered. These
extra dynamics force us to consider the transient behavior of
the regulated feedback loop in the design process to evaluate the
overall stability properties of the designed system. Thus, we
defined the following three objective functions to be minimized:

J1 � Target −KNunp T( )∣∣∣∣ ∣∣∣∣, target titer error( ) (16)
J2 � Nunp T( ) −Npert T( )

Nunp T( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣, production loss after perturbation( ),
(17)

J3 � Number of oscillations in σ( ), (18)

Where Nunp and Npert are the amount of naringenin before and
after the malonyl perturbation at the time T, respectively, and J3 is
an indirect measure of the frequency and damping factor of the
transient in the antithetic biocontroller (see Methods for a
detailed description).

A preliminary parameter sensitivity analysis of the biological
parts from the biocontroller and the biosensor revealed six
parameters to be tuned in the optimization process (Boada
et al., 2020): the translation rates of both anti-σ and the CHS
enzyme, paσ and pH; the plasmid copy numbers CNaσ and CNh; the
σ anti-σ complex dissociation rate, k−c; and the dissociation
constant between σ and the CHS enzyme promoter kd20. The
majority of these parameters are also easy to tune in the real
implementation in the lab. Additionally, as in the simplified
example before, we also considered the growth rate, μ, as a
decision parameter. We computed them as the optimal

FIGURE 4 | Temporal response of the system including the dynamic pathway regulation scheme for the naringenin pathway. Time-course variation in the
biocontroller species (σ and Anti-σ), malonyl-CoA secondary substrate, CHS enzyme, naringenin, and cellular growth (OD) before (white background) and after 60%
reduction in malonyl-CoA availability (grey background). After the perturbation, the amount of naringenin begins to decline until it recovers steadily thank to the transient
increase in the amount of the CHS enzyme. This increase is generated by the activation of factor when the perturbation occurs.
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solutions of the multiobjective problemmin (J1, J2, J3). The details
of the optimization problem can be found in the Methods section
and details on the obtained solutions can be found in the
Supplementary Material, including the list of the solutions in
Supplementary Table S3, the representation of the Pareto front
in Supplementary Figure S2, the Pareto set in Supplementary
Figure S3 and the temporal responses in Supplementary
Figure S4.

The Pareto front resulting from the optimization is shown in
Figure 5A. Several interesting aspects arise from it. First, all the
solutions found are better than the preliminary configuration that
was not optimized. They have either smaller titer target error or
lower production loss after perturbation or both. Second, the
relevance of considering the objective J3, related to the transient
characteristics, can be clearly seen. This objective is represented
by the size of the circles that correspond to each of the solutions in
the Pareto front. Notice that reducing the production loss can be
achieved at the cost of increasing the titer error as also seen before
in the previous example. But in this case, an increased capacity to
reject perturbations also increases the number of oscillations in
the response, and thus corresponds to a less marginally stable
configuration of the controller.

However, unlike in the previous example, in which the
oscillations were no taken into account in the optimization
process, now it is possible to obtain a compromise design (see
solution a in Figure 5) that has small titer error and low number
of oscillations (a lightly under-damped response in Figure 5B) at
a fairly low production loss cost. Notice that the apparent best
trade-off without considering J3 (with solution b as
representative) has too an under-damped and lengthy
transient, which could be unacceptable in some cases. Extreme
solutions like (c) which has the lowest production loss or (d) with
the smallest titer error may be of interest in particular cases when
one objective has more practical importance than the others.

The trade-off is evident in the case of solutions b,c and d when
only looking at the first two objectives. In this situation, solution b
is the obvious best trade-off between titer error and production
loss as it also clearly seen in Figure 5C. However, taking into
account for the transient response of the biocontroller (J3) shown
in Figure 5B, solution a arises as a better compromise with less
under-damped response. A detailed inspection of the library of
controller and biosensor pairs obtained (Figure 6) again reveals
the complex non monotonous relationship between parameters
and objectives.

FIGURE 5 | Optimal controller and biosensor tuning in the naringenin dynamic pathway regulation. (A) Pareto front of the optimal solutions. The x-axis is the
objective J1 (titer target error), the y-axis is the objective J2 (production loss after perturbation), and the size of the circles represent the objective J3 (number of oscillations)
that take into account the transient response of the controller to a perturbation. Solutions along the Pareto front are identified with color ranging from dark green to dark
violet as the values of objective J1 increase. Green solutions have smaller target error than pink/purple/violet ones. The black triangle represents the preliminary not
optimized configuration. Solutions a-d are representative of the different zones along the Pareto front. (B) Time response of the selected solutions. Top plot: response of
the CHS enzyme after a perturbation in the secondary metabolite Malonyl-CoA. Bottom plot: time response of the production loss after perturbation with respect to the
level achieved before the perturbation for the four selected solutions. In both plots the black dashed line corresponds to the preliminary not optimized solution. (C)
Naringenin titer before and after perturbation of each one of the Pareto solutions. The color codes are common to all the plots in the figure.
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Taking a deeper look into the obtained library, we can also
make an interesting observation: different combinations of
parameters result in similar performances. This is nothing
more than another evidence of the inherent robustness
obtained with negative feedback control. For example, devices
5, 6, and 7 from the library (Figure 6, see Supplementary Figures
S2–S4 in the Supplementary Material for more details) have an
approximately equivalent performance regarding the three
objectives. Still, they significantly differ in their parameter
values. Device 6 works in a faster-growing culture without
losing titer, with a higher CHS translation rate than the other
two devices, but needs a higher biding rate for the (σ ·aσ) complex.
Depending on the available biological parts, one implementation
can be more feasible than another, increasing the importance of
having such a variety of elements in the library.

3 DISCUSSION

Dynamic regulation of metabolic pathways is a crucial strategy to
achieve optimal production in microbial cell factories while coping
with cell and environmental fluctuations. The appropriate dynamic
regulation topology will be particular to the topology and
characteristics of the metabolic pathway to be regulated. Yet, on
the one hand, some basic metabolic motifs that often appear in
practical industrial applications and their appropriate dynamic
regulation topology can be identified. On the other hand, all
dynamic regulation schemes share a set of common features that
determine to a great extent the appropriate methodological tools
required for the optimal selection of the gene circuit parts composing
them. In particular, there is the common need to address a set of
multiple goals related to the system’s performance in terms of both
the production of the targeted product and the rejection of
perturbations affecting it. In addition, the stability issues that arise
as a result of using feedback regulation strategies must be addressed.
This is even more important as we use complex biomolecular
controllers and metabolic extended biosensors that introduce extra
dynamics that may compromise the regulated system’s transient time
response and stability.

In this work, we have shown the application of a general
approach based on multiobjective model-based optimization for
building libraries of gene circuit parts that achieve optimal
performance of a dynamically regulated merging metabolic
pathway. This metabolic motif appears in many situations of
practical interest and, in particular, is a pervasive motif in
producing phenylpropanoid-derived natural products.

The multiobjective optimization approach obtains devices
within resulting libraries with different combinations of
parameter values but similar performances. This is another
sign of the inherent robustness obtained with negative
feedback control. Interestingly, depending on the available
biological parts, one implementation can be more feasible than
another, increasing the importance of having such a variety of
elements in the library.

We used detailed models of the metabolic kinetics and the
biosensor and biocontroller dynamics constituting a sort of in
vivo construction guidelines, as some of the model parameters
can be directly related to biological parts or devices in the
laboratory. Our results show that using this type of model
with enough granularity also forces us to consider the
transient and stability issues that are often disregarded.

The need for enough detailed models arguably includes the use
of host-aware models. Indeed, the library of designs we obtained
might suffer some modifications in case we considered the
interactions between the regulated metabolic pathway and the
host cell caused by competition for cell resources (Santos-
Navarro et al., 2021). Our goal in this work was to present the
general multiobjective optimization approach, emphasizing the
tuning of the biomolecular controller and biosensor. In any case,
the use of host-aware models will not change the general
framework; it will only change the obtained solutions.

Altogether our results suggest that strategies for fine-tuning
the trade-offs between target performance, robustness, and
stability in complex dynamic pathway regulation topologies
are intricate and not possible to obtain by simple inspection,
rendering the use of the multiobjective optimization
methodology not only helpful but necessary. As a
consequence, it will not be generally possible to obtain widely

FIGURE 6 | Library of optimal controller-biosensor devices for the dynamic regulation of the naringenin pathway. Pareto set representing the optimal tuned values
of the controller-biosensor parameters (decision variables). On the x-axis we show the optimal values of the parameters for each solution. Each one of the solutions (in the
y-axis) constitutes an element of the controller-biosensor library. The color code is the same as the one used in Figure 5.
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applicable optimal simple rules for the design. Instead, the
expected outcome of the tuning process should be libraries of
gene circuit components that achieve specific trade-offs and
specific nominal environmental situations.

4 MATERIALS AND METHODS

4.1 Multiobjective Optimization
Generally, a multiobjective problem is faced by building an aggregate
function in order to assemble the objectives in a unique index that
contains a weighting vector for each objective. However, the solution
obtained is determined by the selection of the weighting values. An
alternative option is to use a multiobjective optimization design
(Miettinen, 1999). In multiobjective optimization all objectives are
important, therefore all of them are optimized simultaneously. Instead
of one rarely unique solution, we obtain a set of the best solutions
known as Pareto Front. In this front, all solutions are Pareto-optimal
and only differ from each other in the trade-off of objectives each one
represents. Multiobjective optimization requires at least three
fundamental steps (Miettinen et al., 2008): 1) the multiobjective
problem definition (MOP), 2) the optimization process, and 3) the
multicriteria decision making process (MCDM). The overall
multiobjective optimization design enables us to analyze current
trade-offs between the objectives and select the most suitable
solutions (Reynoso-Meza et al., 2013) that reaches all of our objectives.

4.2 Multiobjective Problem Definition
As referred in (Miettinen et al., 2008), a Multiobjective Problem
(MOP), can be stated as follows:

min
θ

J θ( ) � J1 θ( ), . . . , Jm θ( )[ ]
subject to: K θ( )≤ 0

θi ≤ θi ≤ θi, ∀i � 1, . . . , n[ ]
(19)

Where θ = [θ1, θ2, . . ., θn] is the decision vector that contains the
decision variables for multiobjective optimization; J(θ) is the
objective vector and K(θ), L(θ) are the inequality and equality
constraint vectors, respectively, θi , θi are the lower and upper
bounds in the decision variables spaceΘ. The MOP (4.2) has a set
of solutions whose values in the Pareto front are function of the
decision variables defined as the Pareto Set ΘP. Each solution in
this set corresponds to an optimal objective vector in the Pareto
Front JP. All solutions in the the Pareto Set are Pareto-optimal
non dominated solutions, that is, they differ from each other in
the objectives trade-off each one represents.

4.3 Multiobjective Problem of the Merging
Pathway
Here, the objective vector J(θ) has to be defined to solve the
problem presented in 2.1. We maximized the desired target titer
for product P while minimizing the perturbation effects on the
substrate S2 dynamics. The objective functions J1 and J2 were
defined before in Eqs. 9, 10, and the decision variables θ used for
our optimization are θ = [a1, kd20, kaσ, μ] with their corresponding
lower and upper bounds as detailed in Table 1.

Hence, the MOP in (4.2) can be stated as:

min
θ∈R4

J θ( ) � J1 θ( ), J2 θ( )[ ] ∈ R2

subject to : equations 1 − 8( ) (20)

4.4 Naringenin Pathway as a Multiobjective
Problem
For the dynamic regulation of the naringenin pathway, we
defined three objective functions to tune both antithetic
controller together with the biosensor:

J1 � Target −KNarNunp T( )∣∣∣∣ ∣∣∣∣, mg/L target titer error( ) (21)
J2 � Nunp T( ) −Npert T( )

Nunp T( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣, %production loss after perturbation( )
(22)

J3 � 1
2
∑N
k�1

X k( ) −X k − 1( )( )2, number of oscillations( ) (23)

Where KNar � mw·x(T)
Av

is a constant that converts amounts of
naringenin into grams per liter the titer units, mw = 272.25 (g/
mol) is the naringenin’s molecular weight, Av is the Avogadro’s
number, x(T) is the number of cells at time T, and X(k) �
2 sign((mean(σunp(k))−σunp(k))+1))

2 is the clipped binary version of σ
factor used to detect its zero-crossing and obtain the number
of oscillations of the σ before the malonyl perturbation at the
position k. Additionally, the constraints vector K(θ) set two
significant limitations for the antithetic controller performance
in this pathway:

σ[ ]≥ 4.5μM (24)
σ ≥ aσ, (25)

As we said in Section 2.3, seven decision variables from the
biocontroller and biosensor kinetics in Eqs. 13, 14 were selected.
Particularly, we considered the ones that are prone to be modified
in the wet-lab:

θ � paσ , CNaσ , ph, CNh
, kcσ , kd20, μ[ ], (26)

Table 2 defines the lower and upper limits of the parameters
selected for tuning within standard ranges for the chosen
biological parts. Therefore, altogether can state the MOP of
the naringenin pathway as follows:

min
θ∈R7

J θ( ) � J1 θ( ), J2 θ( ), J3 θ( )[ ] ∈ R3

subject to : equations (11) − (15)
constraints (24) − (25)

(27)

TABLE 1 | Lower and upper bounds for the merging pathway MOP.

Bound kaσ (min−1) kd20 (molec) a1 (min−1) μ (min−1)

Lower 700 100,000 90 0.005
Upper 1,500 350,000 160 0.01
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For the rest of the parameters, a sensitivity analisys was
performed in previous work. Evidently, using different values
of the these parameters may have an impact on the resulting
behavior of the system, however this does not invalidate the whole
methodology we are presenting here.

4.5 Multiobjective Optimization Process
The multiobjective optimization process finds the best
parameters θP* producing the best Pareto front
approximation JP(θP)* for each MOP. Evolutionary
algorithms are one of the suggested optimization
techniques to address optimization problems generally
present in systems and synthetic biology (Moles et al.,
2003). We used a multiobjective evolutionary algorithm
based on differential evolution, which uses a spherical
pruning to approximate the Pareto front. The
implementation comes from the sp-MODEx1 algorithm
that improves: 1) convergence by using an external file to
store solutions and include them in the evolutionary process,
2) spreading by using the spherical pruning mechanism, and
3) pertinency of solutions via a basic bound mechanism in the
objective space (Reynoso-Meza et al., 2014).

4.5.1 Multicriteria Decision Making Process
Choosing the preferable solution according to designer’s
criteria takes place in an a-posteriori multicriteria decision
making stage of the Pareto front obtained. It is desirable to
have tools that simplify the visualization as well as the analysis
of the trade-off among competing objectives. This could be a
non-trivial task when the number of objectives is larger than
three and/or the number of decision variables in the Pareto set
is large enough, like in our case. We used the Level Diagrams
Toolbox (Blasco et al., 2017) from Matlab (LD-Tool2) as the
Pareto front visualization tool, which is freely available for
designers. LD-Tool correlates the design objectives JP(θ) with
their decision variables θ by illustrating two graphs. The first
graph contains each objective, where its Y-axis is the p-norm
‖J(θ)‖p of the objectives vector, and the X-axis corresponds to
each objective value Ji(θ). The second graph shows ‖J(θ)‖p
with respect to every θ, so a given solution will have the same
y-value in all graphs.

4.6 Computational Simulations
All simulations of both the merging metabolic pathway and the
naringenin pathway were performed in Matlab, using a 4 Core

processor, 16 GB RAM @ 3.80 GHz. First, we defined two sets
of model parameters known as nominal parameters for each
system. Then, we computed the number of molecules of each
species from every i − cell in the population over time. These
data allow us to obtain the performance, robustness and
stability of the biosensor and the antithetic controller from
each system. Finally, we tuned the biosensor and the
biocontroller for optimal dynamic pathway regulation
following the multiobjective approach. For the merging
metabolic pathway, the sp-MODEx evolutionary algorithm
evaluated 1,000 the cost function, using 125 generations and
taking 1 h for a simulation time. For the naringenin pathway
dynamic regulation, the sp-MODEx evaluated 10,000 times the
cost function, using 199 generations over 8 h of
simulation time.

All the scripts of the simulations and optimization can be
found in the Github repository https://github.com/sb2cl/
molecular-biocontroller-tuning.
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TABLE 2 | Lower and upper bounds for the naringenin pathway MOP.

Bound pa CNa ph CNh kc kd20 μ

(min−1) (copies) (min−1) (copies) (min−1) (molec) (min−1)

Lower 0.1 1 0.1 1 0.01 1e − 2 0.006 9
Upper 20 15 20 15 20 1e4 0.023 1

1Available in http://www.mathworks.com/matlabcentral/fileexchange/65145
2Available at http://www.mathworks.com/matlabcentral/fileexchange/24042
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