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Abstract

Increasing demands on higher performance and lower fuel consumption and emissions have lead the path for internal
combustion engine development; this race is nowadays directly related of CO2 emissions reduction. In spark-ignited (SI)
engines, knock is one of the major barriers to achieve high thermal efficiency at high loads. The knocking risk is even
higher in heavy-duty (HD) engines due to the size of the cylinders and to the low rotation speed. This paper proposes a
knock detection strategy based on the combination of knock sensors and combustion modeling applied to a HD natural
gas (NG) engine. The aim is to have a reliable, economic and computationally efficient algorithm to be implemented
directly on the engine ECU.

The method proposed has been applied to an extensive set of experimental data acquired on a SI NG heavy-duty
engine. The results of the proposed knock estimation method are benchmarkt with those based on in-cylinder pressure
analysis using piezoelectric transducers. The extension of the method based on in-cylinder pressure to a high displace-
ment heavy-duty NG engine not only represents an innovation, but improves the knock recognition based on in-cylinder
pressure compared with conventional methods as MAPO or IMAP. Besides, the development of an alternative method
based on knock sensor signal, allows to obtain a higher or equal sensitivity compared to the traditional MAPO method
based on in-cylinder pressure, with the advantage of only using knock sensors.
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1. Introduction

In recent years, diverse legislative measures have been
implemented by international regulatory agencies in order
to increase the development of alternative fuels in trans-
port systems [1]. One of the most widely investigated al-
ternative fuels found in literature is Natural Gas (NG) [2],
which is a gas mixture consisting primary of methane, with
smaller percentages of other gases such as ethane, propane,
and butane.

The recent sensibility in the reduction of CO2 emis-
sions from thermal system has pushed the research to the
use of alternative low carbon content fuels, and they dif-
fusion to any possible combustion system [3]. The sector
of heavy duty (HD) engine for road and off-road applica-
tion was not excluded from this phenomena [4]. Since NG
has a higher octane number than gasoline, it is possible
to work with higher compression ratio in spark ignition
(SI) engines [5, 6]. Nevertheless, using a gas instead of a
liquid fuel involves the displacement of some air by NG,
then leading to a reduction in the engine power output
in port fuel injection cases [7]. In order to overcome this
problem, two solutions can be found in literature: on the

one hand, increasing the compression ratio, or in the other
hand using lean combustion [8, 9]. However, the compres-
sion ratio increase is limited by knock phenomena in SI
engines due to higher combustion pressures and tempera-
tures [9, 6], and as regards lean combustion, this has an
operation limit, i.e over lean the mixture may lead to in-
stability and misfire [10, 11].

Knock is an abnormal combustion phenomena in SI en-
gines, related with the uncontrolled combustion of the end
gas [12]. When knock occurs, a rapid combustion is ob-
served due to the high local pressure, which produces shock
waves that heavily excite the in-cylinder resonant modes
[13, 14]. The engine exposition to knock during several
cycles may lead to piston rings braking, piston melting,
engine efficiency decrease and engine damage in general
[15].

On this way, knock recognition techniques are impor-
tant in order to achieve high thermal efficiency. These
methods can be mainly classified in two principal groups:
direct and indirect knock recognition methods [15]. The
first group is based on the in-cylinder pressure measure-
ment, which is directly influenced by the phenomena [13,
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16, 17]. The second group is based on indirect measure-
ments such as cylinder block vibration [18, 19]. Despite
methods based on in-cylinder pressure measurement show
higher reliability and accuracy, their application in mass
production engines is limited by sensors durability and cost
[20, 21].

Classical knock recognition techniques are based on a
fixed threshold, as the Maximum Amplitude of Pressure
Oscillations (MAPO), which consist on comparing the ab-
solute value of the band-pass filtered pressure signal with a
predefined threshold [22]. Some authors developed knock
metrics for knocking recognition [23, 24], or classification
models as is shown in [25], where a machine learning algo-
rithm is presented. Recently, knock recognition methods
had been developed with the aim of being able to recog-
nize knocking events from combustion without the need
of a fixed threshold. For example, in [17] the band-pass
in-cylinder pressure is compared in two windows locations:
at the main combustion process location and at the end
of combustion. The comparison between the signal am-
plitudes at both locations allows to identify low intensity
knocking cycles. Additionally, a knocking threshold based
on Mass Fraction Burned (MFB) evolution is presented in
[13], where knocking cycles are differentiated from normal
combustion using a resonance index which is compared
with the expected resonance index produced by a con-
stant volume combustion of the remaining fuel. Although
these methods show good results and are able to recog-
nize knock, even with low intensity, they are in-cylinder
pressure based, which makes its application expensive in
production engines [26].

Regarding knock recognition methods based on vibra-
tion signal, in recent years several indexes based on Fast
Fourier Transform (FFT) [27], Empirical Mode Decom-
position (EMD) [28] or Walvelet [18] analysis have been
developed. The main problem with these approaches is
the need to set a threshold in order to distinguish knock
from normal combustion.

The objective of the present work is to develop an im-
proved understanding of the information contained in the
knock sensor signal by analyzing two different sensor loca-
tions. The novelty of this work is to extended the method
presented in [13] for a light-duty SI engine based on in-
cylinder pressure signal, to a heavy-duty SI engine basing
the method on knock sensor signals.

This work is organized as follows, first the experimen-
tal set-up and tests performed are presented. Then, a
frequency analysis of both knock sensor signal positions is
performed and compared with in-cylinder pressure signal
information. After, the knock recognition method is pre-
sented, where the MFB model and the knock recognition
procedure are introduced. Then, results and discussions
about the MFB model and the knock recognition are pre-

sented. The final section highlights the main contribution
of the work and proposes future work for control applica-
tions.

2. Experimental set-up and tests

Experimental tests for calibration, illustration and val-
idation proposes were carried out in a heavy-duty NG SI
engine. The engine was coupled with a variable frequency
fast response dynamometer (AVL Dynodur), able to per-
form tests both in steady state than in transient condi-
tions. The engine was full instrumented and monitored,
all low acquisition frequency measures were made by a
National Instruments DAQ device. Instead, high sampling
rate indicated signals were acquired and recorded by means
of an AVL IndiSmart indicating system coupled with the
AVL Indicom software. The main specifications of the en-
gine are collected in Table 1.

Table 1: Engine main specifications

Displaced volume 5883 cc
Stroke 120 mm
Bore 102 mm

Compression ratio 10.3:1
Number of cylinders 6
Valves per cylinder 2

Injection system Multy point. Port Fuel Injection (PFI)
Fuel Methane

Rated power 117kW
Max torque 630Nm

In order to analyze the information contained in the
knock sensor signal and evaluate the knock recognition
method, two cylinders were equipped with in-cylinder pres-
sure sensors (cylinders 1 and 3) as is indicated in Figure
1. The in-cylinder pressure sensor used are two measuring
spark plug with miniature piezo-electric pressure trans-
ducer from Kistler, type 611xC. In addition, signals from
three knock sensors, piezo-quartz accelerometer with inte-
grated discharge resistor (4.8 M Ω), with a nominal sen-
sitivity of 30 mV/g, max mechanical vibrations 70 gpeak,
were installed in different positions of the engine block
were analyzed: two of them in correspondence with the
cylinders 1 and 3 location (Ks A and B) and a third lo-
cated between both cylinders (Ks C).
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Figure 1: In-cylinder and knock sensors configuration.

Knock sensors A and B correspond to a case where
six sensors are required for knock recognition, i.e. one for
each cylinder. On the other hand, knock sensor C repre-
sents the case where two knock sensors are necessary to
evaluate knock in all six cylinders, one near cylinder 2 as
is shown in Figure 1 and a second one near cylinder 5.

The sampling frequency for knock and pressure sensors
was of 0.05 CAD. During the experiments, the engine was
tested at different steady operating conditions by keeping
the speed and load constant while the Spark Advance (SA)
was modified. For every testing point, the SA was progres-
sively advanced from the reference value with 2 CAD steps
until a maximum advance of 6 CAD. The operating condi-
tions in terms of speed and load are represented in Figure
2, where the conditions used for model calibration and val-
idation can be identified. For the analysis of the data the
instantaneous engine speed fluctuations during tests are
negligible.

Figure 2: Calibration and validation tests performed.

3. Frequency analysis of knock sensors signals

During this section, the frequency content of signals
from knock sensors A and B will be compared with the

signal from knock sensor C. For this, each knock sensor
signal is compared with the correspondent in-cylinder pres-
sure signal, i.e. cylinder 1 with A and C, and cylinder 3
with B and C.

In order to estimate the resonance frequencies during
knocking and no-knocking cycles, the approach presented
by Draper [29] is used. In [29], the wave equation was
solved with Bessel functions for a cylindrical geometry,
showing that the characteristic frequency generated in the
combustion chamber can be expressed as:

f(i,j) = as

√
(
B(i,j)

πD
)2 + (

g

2h
)2 (1)

where the axial modes g are neglected near the TDC be-
cause the height is too low (h < D), D is the bore of the
cylinder, as the speed of sound and B(i,j) are the Bessel
constants related with the radial modes, i and j represent
the number of circumferential pressure modes and number
of radial pressure modes. The speed of sound can be cal-
culated by measuring the trapped mass m, the in-cylinder
pressure p, and estimating the instantaneous volume of the
chamber V .

as =

√
γpV

m
(2)

where γ is the specific heat capacities ratio of the gases
inside the cylinder, which can be approximated by divid-
ing the gas mixture in three species, namely air, fuel, and
burnt products, and modeled by polynomial expressions
for the in-cylinder temperature such as suggested in [30].

The spectrogram of each in-cylinder pressure signal (P1
and P3) and knock sensors signals (A, B and C) are shown
in Figures 3 and 4. In Figure 3, cylinder 1 is a knocking
cycle while cylinder 3 a normal combustion cycle, and in
the Figure 4 it is the opposite case, i.e. cylinder 1 normal
combustion cycle and cylinder 3 knocking cycle. In dashed
white line, the resonance frequency computed from Equa-
tion (1) is represented for the first 3 radial modes. The
operating conditions of such spectrograms is 1500 rpm of
engine speed and 525 Nm of load.
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Figure 3: Spectogram of in-cylinder pressure signals (left), and knock
sensors A, B and C. Cylinder 1 is knocking cycle and cylinder 3 a
normal combustion cycle. Cycle 120 of the data set.

Figure 4: Spectogram of in-cylinder pressure signals (left), and knock
sensors A, B and C. Cylinder 3 is knocking cycle and cylinder 1 a
normal combustion cycle. Cycle 78 of the data set.

Analyzing Figures 3 and 4, the resonance components
in the in-cylinders pressure signals are also present in the
three knock sensor signals. For the cases where the knock
sensor is located near the cylinder, knock sensor A for
cylinder 1 and knock sensor B for cylinder 3, the intensity
of the resonance components are higher comparing with
the others knock sensors (as can be seen in the color bar
of each plot). It is noticeable that as the distance from the
knock sensor increases, the intensity of the resonance de-
creases. Notice that the different peaks present in knock
sensor A, B or C corresponds to the different resonance
frequencies computed from Equation (1), as an example 3
resonance modes were represented.

In order to assess several cycles, the correlation be-
tween the information contained in knock sensors signals
and the in-cylinder pressure signals is analyzed by comput-
ing the coherence function between them. The coherence

functions is the the ratio between the cross power spectral
density of the in-cylinder pressure (sub-index p) and knock
sensor (sub-index k) signals Pp,k(f), to the product of the
power spectral density of each signal Pp,p(f) and Pk,k(f).
This relation is computed as [31]:

Cp,k(f) =
|Pp,k(f)|2

Pp,p(f)Pk,k(f)
(3)

where f represents the different frequencies and the power
spectral density of a signal x is defined as:

Px,x(f) =

k=∞∑
k=−∞

rxx[k]e−i2πfk (4)

where rxx is the auto correlation function, which is com-
puted as a sliding inner product of the signal x with itself::

rxx[k] = x[n]x[n+ k] (5)

And the cross power spectral density between two sig-
nals x and y is defined as follows:

Pp,k(f) =

k=∞∑
k=−∞

rxy[k]e−i2πfk (6)

where rxy is the cross correlation function, which is com-
puted as:

rxy[k] = x[n]y[n+ k] (7)

The coherence function between the in-cylinder pres-
sure and knock sensor signals (Cp,k) was evaluated at high
load steady operating condition, 1300 rpm 570 Nm, over
200 cycles in Figure 5, where knocking and no-knocking
cycles were part of the data-set. The black line line rep-
resents the evolution of the coherence function for knock
sensor A while purple and blue show the results for knock
sensors B and C respectively. The left plot shows the re-
sults for cylinder 1, while the results for the cylinder 3
appear in the right plot. Three frequencies has been high-
lighted in red line, these frequencies corresponds to the
maximums of the first three resonance modes for this op-
eration condition. Also notice that the x-axis scale of both
plots it is logarithmic.
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Figure 5: Coherence function between in-cylinder pressure and knock
sensor signals. Cylinder 1 (left) and Cylinder 3 (right).

As can be seen in Figure 5, the coherence with the in-
cylinder pressure signal computed from cylinder 1 is lower
for knock sensor B than for knock sensors A or C. Anal-
ogously, for cylinder 3 case, the lowest coherence corre-
sponds to knock sensor A while sensor B shows the high-
est coherence in the high frequency region. In both cases,
the coherence is related with the distance between cylinder
and knock sensor location. Notice that at the three fre-
quencies highlighted in red the coherence function reach
the maximum value. From these three comparisons, it can
be seen that the mean coherence between the in-cylinder
pressure and knock sensor is high, over 0.5, but in specific
frequency bands, which are related with the in-cylinder
resonance frequency modes computed from Equation (1).

The analysis of high frequencies components of in-cylinder
pressure signals and knock sensor signals was performed by
computing an alternative of the Fourier transform as is de-
scribed in [32]. Here, a resonance index is computed from
in-cylinder pressure signal as following:

Ip(α) =

α=α2∑
α=α1

w(α−α1)pbp(α)e
−2π

∑ψ=α
ψ=0

Bi,j

√
γ(ψ)plp(ψ)V (ψ)

πD
√
m

Ts(α)

(8)
where α1 and α2 define the interval where the resonance
analysis is performed, w is a window function of α2 − α1

length, pbp the band-pass filtered pressure, and Ts(α) is
the sampling period, which is constant only in time-based
acquisition or if the instantaneous engine speed fluctua-
tions are negligible, Bi,j is the Bessel constant [29], D is
the bore of the cylinder, V the combustion chamber vol-
ume, m the trapped mass, and plp the low-pass in-cylinder
pressure.

Analogously to the Equation (8), a resonance index can
be defined from the knock sensor signals, as:

Ik(α) =

α=α2∑
α=α1

w(α−α1)ksbp(α)e
−2π

∑ψ=α
ψ=0

B
√
γ(ψ)kslp(ψ)V (ψ)

πD
√
m

Ts(α)

(9)
where ksbp and kslp are the band and low pass knock sen-
sor signals respectively.

In Figure 6, the resonance index is compared with the
band-pass signal, filtered between 4.5 and 15 kHz. In black
line the resonance index evolution is shown and in grey line
the band pass signal. Three different signals are analyzed
during the same cycle: on the top, in-cylinder pressure
from cylinder 1, on the middle, the knock sensor A, and
on the bottom, knock sensor C.

Figure 6: Resonance index evolution for cylinder 1 resonance eval-
uation: In-cylinder pressure (top), knock sensor A(middle) and C
(bottom).

Analyzing Figure 6 the resonance index from the three
signals during this specific cycle evolves in a similar way.
However, the in-cylinder pressure index maximum is lo-
cated earlier than both knock indexes. When comparing
knock sensor A with C index, the maximum correspond-
ing to knock sensor A is located earlier than C, this could
be due to the fact that the knock sensor A it is located
closer to the cylinder 1. On the other hand, the maximum
amplitude computed from knock sensor A is higher than
knock sensor C.

In order to evaluate resonance in several cycles, from
the resonance index two parameters had been extracted:
the amplitude of the maximum, which is directly related
with the amplitude of the resonance oscillation, and the lo-
cation of such oscillation, i.e the location of the maximum
of the resonance index. Following, the results from knock
sensors signals and the in-cylinder pressure signal had been
compared in Figure 7. On the left plot, the maximum am-
plitude from in-cylinder pressure is represented against the
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maximum from knock sensors signals. On the right plot,
the error between the location of such maximum is shown.
Different colors are used to differentiate the knock sensors
signals, black color is used to represent data obtained from
knock sensor A, and grey color from knock sensor C. In
black the R2 value of all data is shown and in blue the
R2 value of the relative region (over 0.5 bar of resonance
amplitude was considered).

Figure 7: Resonance index parameters obtained from in-cylinder
pressure compared to knock sensors A and C. Left plot: Maximum
amplitude of the indicator. Right plot: error histogram of the max-
imum location of the indicator.

As can be seen in Figure 7 (left), the maximum am-
plitude of the index for knock sensor A is higher than for
case knock sensor C, this is due to the fact that the knock
sensor A is located closer to cylinder 1. For the location
parameter (right plot), the correlation between the ob-
servation from knock sensors and in-cylinder pressure is
slightly affected by the location of the sensors, and for the
case of knock sensor A the error is lower than for knock
sensor C. For the case of the maximum amplitude, left
plot, the R2 value for both cases is over 0.7, which can be
considered a strong effect size, while for the R2 value in
the relevant region is considerable lower in both cases. But
for the location case, right plot, the knock sensor position
has more effect on this parameter, since low amplitude
cases leads to have more deviation from the measurement
from in-cylinder pressure. Despite the lower R2 value for
the relevant zone (high amplitudes of resonance), in later
section during the calibration process of the knock recog-
nition method this point will be addressed.

As it was shown in [13], the maximum amplitude and
location of the resonance index computed from in-cylinder
pressure signal it is highly sensitive to the SA. In cycles
without knock, maximum amplitudes tend to be moderate
and located in the surroundings of the center of combus-
tion (MFB50). On on the other hand, in knocking con-
ditions the amplitude increases and the location of the

maximum happens to be located after the MFB50, closer
to the end of combustion.

Figure 8 shows the distribution of the resonance in-
dex for cylinder 1 using knock sensor A (top plots) and C
(lower plots). The number of occurrences in terms of the
maximum location respect to the MFB50 and the ampli-
tude are shown for 3 SA cases: left cases the SA is set at
the reference value (SAmv), middle and right cases show
results advancing the SA 2,5 and 5,5 CAD respectively.

Figure 8: Number of occurrences in terms of maximum location and
amplitude resonance index respect to cylinder 1. Top plots Ks A and
bottom plot Ks C.

Analyzing Figure 7, the resonance index computed from
knock sensor A is more sensible to the SA change than
knock sensor C, pointing out that, as expected, knock is
easily identified if a sensor is placed near the cylinder.
However, results with knock sensor C, still show poten-
tial for knock detection.

4. Knock recognition method

The knock recognition method presented in [13] is used
to develop a recognition technique based on knock sensor
signal. The knock recognition method is proposed in this
work is shown in Figure 9.
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Figure 9: Scheme of knock recognition method based in knock sensor
signal.

The knock classification is performed by comparing the
resonance index, Ik, obtained from Equation (9), with the
minimum oscillation resulting from the end gas to auto
ignited, Ik,min, which is estimated as:

Ik−min = GkPeg (10)

where Peg is the pressure increase due to constant volume
combustion of the end gas, and Gk represents a gain from
pressure increase to amplitude of the resonance indexes,
which might be calibrated.

The pressure increase due to constant volume combus-
tion of the end gas can be written using the first law of
thermodynamics as:

Peg =
κ− 1

V
mfHp(1−MFBmodel) (11)

where Hp the low calorific value of the fuel, mf the fuel
mass injected and MFBmodel the MFB from the combus-
tion model, and κ is the adiabatic exponent and V is the
cylinder volume.

For this application, the minimum oscillation presented
in Equation (10) instead of using the MFB computed from
in-cylinder pressure signal as described in [13], the MFB
is estimated from a pre-calibrated Wiebe function, which
strongly simplifies the calculations and contributes to a
future ECU implementation. After, following the scheme
on Figure 9, the knock recognition is performed by com-
paring the amplitude of the maximum resonance index,
with the value of the minimum oscillation evaluated at
the crank angle position of the maximum resonance in-
dex, Ik,min(αÎk). The comparison of the amplitude is per-
formed in the crank angle position where the maximum
resonance is reached because, not only the intensity of the
resonance, but also the location with respect to the center
of combustion characterize the cycles with knock or nor-
mal combustion (see Figure 8).

4.1. Calibration process

In this section, the calibration process of the transfer-
ence constant Gk in Equation 10 is explained.

The calibration was performed from the in-cylinder
pressure measurements, where the difference between the
resonance indicator Ip and Ip−min was computed and com-
pared against the difference between the measurement from
knock sensor signal and combustion model, i.e. Ik and
Ik−min. These differences are represented in Figure 10,
where the red dashed line represents the knock on-set de-
tected by the method when in-cylinder pressure is used.

Figure 10: Data from calibration process: Knock sensor A (top) and
knock sensor C (bottom).

Notice that the linear regression used yF it has to be
zero when Ip− Ip−min = 0, as this is the division between
knocking and no-knocking cycles. Here, and even though
the R2 value in Figure 7, it can be notice that the R2 re-
lated to knock evaluation is higher.

The calibration of Gk was performed by minimizing the
distance of the data from the fitted line yF it, i.emin|yF it−
PegGk|. This calibration process was performed for knock
sensors A, B and C separately over the calibration points
detailed in Figure 2.

4.2. Mass fraction burned Wiebe model

In order to simplify the estimation of the MFB a pre
calibrated Wiebe function is used, where the parameters ẋ
of the function are obtained from an Open Loop (OL) map
as in terms of the operating condition (speed and load).
In this work, the End Of Combustion (EOC) is estimated
from knock sensor signal and the Start Of Combustion
(SOC) is assumed to be in the SA.

The model used to estimate the MFB is represented
in Figure 11, where x represents the Wiebe function con-
stants, and α the crank angle.
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SOC = SA
TOC = EOC − SOC 1 − e

−x(1)(α−SOC)
TOC

x 2 +1

Observer
MFBmodelEOC

TOC
SOC

Operating
condition

Ks

x

Figure 11: MFB wiebe model proposed.

The MFB wiebe model was calibrated over the calibra-
tion operating conditions shown in Figure 2. In order to
compensate the model bias when it is applied to operat-
ing conditions different from those used for calibration, an
observer of the combustion duration is introduced.

4.2.1. Observer

From the knock sensor signals the EOC is estimated as
presented in [33], where the signal is denoised with a low-
pass filter in order to remove high frequencies. An example
is shown in Figure 12, where the denoise knock sensor sig-
nal is shown. In [33], the end of combustion is correlated
with the fourth maximum, starting from the first peak.

Figure 12: EOC observer from knock sensor signal.

The low-pass filtered knock sensor signal from A and C
is represented in Figure 13, where in blue the mean MFB
of the data-set is represented and in dashed red line the
average angle of the CA90 is also highlighted.

Figure 13: EOC observer from knock sensor signal.

As can be seen in Figure 13, low-pass signal from knock
sensor A is less noisy than for the case of knock sensor C.
Besides, the amplitude of the 4th peak is lower for knock
sensor C.

The EOC was estimated from the vibration signal for
4 different speeds, results are shown in Figure 14. On the
left, the EOC estimated from vibration signal A is com-
pared with the CA90 computed from in-cylinder pressure
1. On the left, the rsquared over the 4 engine speeds are
shown when computing the EOC from knock sensor A,
filled points, and C, empty points. Different colors are
used to differentiate the operating condition.

Figure 14: Pressure peak location against the CA90 for 4 operating
conditions cylinder 1.

Notice in Figure 14 (left) that the CA90 obtained from
the MFB computed from in-cylinder pressure sensor fit
with the value obtained from the knock sensor estimation,
this can be observed in the right plot, where for all four
operating points the R2 value is over 0.65 for knock sensor
A and over 0.55 for knock sensor C.

Since the vibration signal is susceptible to noise, it is
suggested to estimate the TOC by using an infinite input
response (IIR) filter, as follows:

TOCk = TOCk(1− αf ) + TOCk−1αf (12)

where k is the cycle, and αf a value between 0 and 1, must
be chosen to ensure a fast adaptation in transient operat-
ing conditions. In the present work a value of 0.9 has been
selected.

5. Results and discussion

During this section results from MFB model and knock
recognition method applied to the different knock sensors
signals are analyzed. First, the results from the MFB
model are compared with the measurements from in-cylinder
pressure. Then, the knock recognition method is applied
to cylinders 1 and 3, by running the method for both knock
sensors location for each case.
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5.1. Mass fraction burned model

As already introduced above, the MFB was estimated
by estimating the EOC thought the knock sensors signals
and by assuming the SOC to be at the SA. With these pa-
rameters, a Wiebe function is used to estimate the MFB
evolution during a cycle.

In order to evaluate the error of the MFB estimation
when using knock sensor A, B or C for EOC computation,
three MFBx where computed, that is CA10, CA50 and
CA90. In Figure 15 the absolute error between the esti-
mation of such parameters and the value obtained from
the in-cylinder pressure are shown for two cases: top plots
when computing EOC from knock sensor A and B, and
bottom plots when computing EOC with knock sensor C
over validation point 4. Different colors are used to repre-
sent the different cylinders, grey color is used for cylinder
1 and blue for cylinder 3.

Figure 15: Error histrograms between MFBx obtained from in-
cylinder pressure and MFB model. Top plots knock sensors A and
B, bottom plots knock sensor C. Operating condition point 4.

The estimation of the MFBx was performed over the
validation data set points shown in Figure 2 (points 1 to
5). The error is represented as an error bar plot in Figure
16, where the mean error and its standard deviation are
shown for each operating condition: in black results from
knock sensor A and B, and results from the knock sensor
C are shown in color grey. Top plots represents results
from cylinder 1 and bottom plots results from cylinder 3.

Figure 16: Mean error and standard deviation of CA10 (left), CA50
(middle) and CA90 (right) for all 5 validation points. Cylinder 1
(top) and cylinder 3 (bottom)

As can be seen in Figures 15 and 16, the estimation
of the MFBx from the MFB model it is affected by the
knock sensor location. Therefore, during next section, a
discussion about the impact on the minimum oscillation
calculation will be included.

5.2. Minimum oscillation

The objective of modeling the MFB is to be able to de-
termine the evolution of the minimum oscillation required
to determine if a cycle is normal or knock combustion, as
was shown in Figure 9.

The minimum oscillation required for the end-gas to
auto ignite computed from Equation (10) is represented in
Figure 17: in black the value is computed by obtaining the
MFB from the in-cylinder pressure, in grey line and blue,
computing the MFB from the wiebe model when the EOC
is obtained from knock sensor A and C respectively.

Figure 17: Minimum oscillation required to the end gas to auto ignite
estimation according to Equation (10).Operating condition 1.

In order to evaluate the estimation of such evolution,
the error between the minimum oscillation computed by
the in-cylinder pressure and the knock sensor during a
steady test is analyzed in Figure 18. On top plots, cases for
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cylinder 1 where left plot is the error when the minimum
oscillation is computed from the MFB model considering
the EOC from knock sensor A and right plot knock sensor
C. On the other hand, bottom plots shows cases for cylin-
der 3, where left case the EOC is computed from knock
sensor B and right plot knock sensor C. In grey all 200
cycles and in black the average error are represented.

Figure 18: Relative error between in-cylinder pressure and knock
sensor signal on the minimum oscillation estimation. Operating con-
dition 1.

As can be seen in Figure 18, even if the MFB model
is affected by the knock sensor location as is shown in
Figure 16, when computing the minimum oscillation re-
quired, Ik,min, the relative error of the evolution during a
cycle is not significantly affected by the knock sensor loca-
tion, being the error around 10 %. In Figure 19, the Imin
computed from in-cylinder pressure is represented against
the one obtained from knock sensor signal for the operat-
ing condition 1, the R2 is value is also represented for each
case.

Figure 19: Minimum oscillation (Equation (10)) computed from in-
cylinder pressure vs knock sensor. Left plot cylinder 1 and right plot
cylinder 3. Operating condition 1.

As can be seen in Figure 19, the R2 in both cases is
higher for the knock sensor closer to the combustion cham-
ber, being for all cases a R2 value over 0.65. During the
following section the knock recognition for both locations
will be analyzed in order to evaluate both knock sensor
positions for the recognition of the phenomena.

5.3. Knock recognition

The knock recognition method presented in Figure 9
is applied for knock sensors A or B, for cylinders 1 and 3
respectively, and for knock sensor C. Results during this
section are compared with the knock recognition when in-
cylinder pressure is analyzed as described in [13].

As discussed in section 4, knocking cycles are detected
when the maximum of the resonance index is above the
minimum oscillation produced by the end gas auto igni-
tion, computed from Equation (10). In Figures 20 and 21
the resonance indexes computed from knock sensors and
in-cylinder pressure are analyzed for a normal combustion
and a knocking cycle respectively. On the top plots, the
resonance index evolution with the threshold are repre-
sented, on the left plot for knock sensors signals and on
the right plot for in-cylinder pressure. On the bottom plot,
the HRR and the band-pass in-cylinder pressure is repre-
sented.
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Figure 20: Resonance index evolution and detail cycle (HRR and
pbp) for a normal combustion cycle. Operating condition point 3:
MAPO 0.27 bar

Figure 21: Resonance index evolution and detail cycle (HRR and
pbp) for a knocking cycle. Operating condition point 3: : MAPO
0.26 bar.

As it can be seen in Figure 20 and 21, both cycles have
a similar MAPO amplitude, but the resonance evolution
it is not the same, i.e in normal combustion case the reso-
nance is excited during combustion, near the maximum of
the HRR, and on the other hand, for knocking case reso-
nance is rapidly excited at the end of combustion. Notice
that zoomed plots have the same y-axis length.

The method was evaluated for in-cylinder pressure and
knock sensors signals during different SA settings at steady
state conditions. Results are represented in Figure 22,
where the knock probability is represented as a function
of the SA delay from the calibrated point. The method
proposed is compared with two knock recognition meth-
ods based on in-cylinder pressure, on the one hand, the
MAPO definition with a threshold of 0.4 bar, and on the
other hand the high sensitivity method proposed in [13].

Figure 22: Knock recognition method over a SA sweep point 1 cylin-
der 1. Operating condition point 3.

For the calibration point, SA = SAmv, the knock prob-
ability for the three methods is zero, but when advancing
the SA knock probability increases for the three sensors.
For knock sensor A, the knock probability is closer to the
one recognized by the low sensitivity method based on in-
cylinder pressure. On the other hand, for knock sensor C,
the knock probability also increases when advancing the
SA, but the probability is lower. For all SA settings the
knock probability from knock sensor A is higher than for
MAPO definition, but when delaying the SA until 5.5 from
the calibration point, the knock probability from knock
sensor C is underestimated.

The method was evaluated over five operating condi-
tions, the knock probability computed for each case is rep-
resented in Figure 23, where top plot shows results from
cylinder 1 and bottom plot cylinder 3. Different colors are
used to highlight results from the different methods.

Ks : C$

Figure 23: Knock probability computed from the different knock
sensor location over five operating conditions.

As can be seen in Figure 23, for all operating condi-
tions the knock probability computed from knock sensor
C case is lower than for A and B cases. In all the operating
conditions knock probability for knock sensors A and B is
lower than the high sensitivity method, but higher than
MAPO. On the other hand, for knock sensor C, in oper-
ating condition 3 the method proposed with this sensor is
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underestimating knock when comparing it with MAPO.

6. Conclusions

In this work a low knock recognition method based on
in-cylinder pressure signal was used to develop an alterna-
tive method based on knock sensor signal in a spark ignited
heavy-duty engine. The method makes use of a Wiebe
function and an observer to estimate the knock threshold
evolution during a cycle, which is compare with a reso-
nance index computed from knock sensor signal.

The mass fraction burned model based on a Wiebe
function is evaluated thought different operating condi-
tions, by comparing the MFBx obtained from the model
with the ones computed from in-cylinder pressure mea-
surement. Was demonstrated that for the estimation of
the minimum oscillation required for the end gas to auto
ignite the Wiebe model leads to a 10 % of relative er-
ror, when comparing the minimum oscillation with the one
computed from in-cylinder pressure.

Besides, an analysis of the knock recognition sensi-
tivity for two knock sensor locations has been performed
over different operating conditions and spark advance set-
tings, demonstrating that the method is able to distinguish
knocking events with a high resolution for knock sensors
located near the cylinder heads, while less resolution was
observed by analyzing one knock sensor located between
both cylinders.

The main findings of this work were:

� The low knocking recognition method based on in-
cylinder pressure signal developed for light-duty en-
gines is also valid for heavy-duty engines.

� When the method is extended to knock sensor signal,
the recognized cycles are less than those obtained
with the low knocking recognition method but higher
or equal than when applying a fixed threshold, as
MAPO.

� For one knock sensor per cylinder configuration the
knock recognition resolution is between a high sen-
sitivity method and the classical MAPO limit.

� When the number of knock sensors is halved, the
knock recognition resolution is reduced, but a simi-
lar knock recognition than when applying a MAPO
threshold.
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