
Predicting Coherent Turbulent
Structures via Deep Learning
D. Schmekel1, F. Alcántara-Ávila 1, S. Hoyas2 and R. Vinuesa1*

1FLOW, Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden, 2Instituto de Matemática Pura y
Aplicada, Universitat Politècnica de València, València, Spain

Turbulent flow is widespread in many applications, such as airplane wings or turbine
blades. Such flow is highly chaotic and impossible to predict far into the future. Some
regions exhibit a coherent physical behavior in turbulent flow, satisfying specific properties;
these regions are denoted as coherent structures. This work considers structures
connected with the Reynolds stresses, which are essential quantities for modeling and
understanding turbulent flows. Deep-learning techniques have recently had promising
results for modeling turbulence, and here we investigate their capabilities for modeling
coherent structures. We use data from a direct numerical simulation (DNS) of a turbulent
channel flow to train a convolutional neural network (CNN) and predict the number and
volume of the coherent structures in the channel over time. Overall, the performance of the
CNNmodel is very good, with a satisfactory agreement between the predicted geometrical
properties of the structures and those of the reference DNS data.
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INTRODUCTION

Fluid flow is vital for a large variety of applications such as aircraft, heat pumps, lubrication, etc. [1].
Typically, for many applications, the flow is in a turbulent regime [1]. Such flow is characterized by
being chaotic and highly non-linear, with large mixing amounts. Consequently, turbulent flow is a
challenge to modellers [2]. It has been estimated that turbulence is responsible for up to 5% of the
total CO2 generated by humanity every year [3]. Even small gains in understanding turbulence can be
very impactful. Fluid flow, including turbulent flow, is described by the Navier–Stokes equations,
which are generally impossible to solve analytically. They can be solved numerically, but this has
traditionally been prohibitively computationally expensive—only elementary geometries have been
simulated [4,5]. In recent years, it has become possible to perform high-fidelity simulations of
complex geometries [6–9].

One of the earlier studies on the structure of turbulence was carried out by Kline et al. [10]. Kline
et al. also investigated the statistical properties of turbulence and found that most of the turbulence
production takes place near the walls (at least at low Reynolds numbers). They observed specific
regions in the flow, called coherent turbulent structures, which we will denote as structures. One
essential type of coherent structure is strongly related to Reynolds stresses [11]. Typically, these
Reynolds-stress structures may occupy around 4% of the volume but can be responsible for around
30% of the Reynolds stresses. The structures are also important for the transfer of several properties
such as mass, heat, and momentum [12]. Many models created for studying turbulence are built
upon these structures [13]. Traditionally, the focus of structures has been on hairpins, U-shaped
structures formed near walls going to the outer region[14]. Hairpins were the basic building block in
several models [15–17], which formed hairpin clusters [14]. Objections to these models have arisen
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since they have had problems at higher Reynolds numbers [18].
Instead, momentum-transfer models have been created, focusing
on strong Reynolds-stress and momentum-transfer events. Some
data supports these types of models for modeling momentum
transfer in the logarithmic layer [13].

In this study we will use deep neural networks (DNNs), which
are black-box methods [19,20] and are universal function
approximators. They can approximate any sufficiently smooth
function arbitrarily well. In the DNN framework, it is assumed
that the phenomena under study can be described by some
predetermined parameterizable function f(x; Θ), where Θ are
the parameters. The values of Θ that best approximate the data
are obtained by means of algorithms such as stochastic gradient
descent and the back-propagation [21]. DNNs have been used
successfully for modelling the temporal dynamics of turbulence
[22,23], for non-intrusive sensing [24,25], for identifying patterns
in complex flows [26] and for modelling the Reynolds stresses
[27]. Two overviews of the current applications of DNNs in fluid
mechanics can be found in [2,28]. Here we investigate the
possibilities to predict the temporal evolution of coherent
turbulent structures with machine-learning techniques. To this
end, we create a DNN-based mode and assess the quality of its
predictions, in terms of the number of structures, the total volume
of the structures, and the volume of the largest structure. The goal
is to develop a model capable of estimating plausible future
scenarios of the flow, focusing on the characteristics of the
turbulent structures. We also expect this model to exhibit
appropriate generalization properties [29].

The article is structured as follows: in §2 we discuss the data
collection and the network design; in §3 we present our results;
and finally conclusions and discussions are presented in §4.

METHODS

Numerical Setup
We study wall-bounded turbulent structures in a turbulent
channel flow, consisting of two infinitely large planes parallel
to the x (streamwise) and z (spanwise) directions. The distance
between the planes is 2h. Figure 1 shows an illustration of

problem. A pressure gradient in the streamwise direction
drives the flow, which has a friction Reynolds number Reτ =
125. The friction Reynolds number, defined as Reτ = uτh/], is the
main control parameter in wall bounded turbulence. Here uτ �����
τw/ρ

√
is the friction velocity, ] is the kinematic viscosity, ρ is the

density, and τw is the friction at the wall.
This simulation has been performed in a computational box of

sizes Lx = 2πh, Ly = 2h and Lz = πh. This box is large enough to
accurately describe the statistics of the flow [30,31]. The
streamwise, wall-normal, and spanwise velocity components are
U, V and W or, using index notation, Ui. Statistically-averaged
quantities in time, x and z are denoted by an overbar, �U, whereas
fluctuating quantities are denoted by lowercase letters: U � �U + u.
Primes are reserved for intensities: u′ � uu1/2. The domain is
periodic in x and z. The walls are at rest, and a pressure
gradient drives the flow at the prescribed Reynolds number.
This turbulent flow can be described by means of the mass
balance and momentum equations:

zjUj � 0, (1)
ztUi + UjzjUi � −ziP + 1

Reτ
zjjUi, (2)

where repeated subscripts indicate sumation over 1, 2, 3 and
the pressure term includes the density. These equations have
been solved using the LISO code [4], similar to the one
described by Lluesma-Rodríguez et al. [32]. This code has
successfully been employed to run some of the largest
simulations of wall-bounded turbulent flows [4,33–37].
Briefly, the code uses the same strategy as that described by
Kim et al. [38], but using a seven-point compact-finite-
difference scheme in the y direction with fourth-order
consistency and extended spectral-like resolution [39]. The
temporal discretization is a third-order semi-implicit
Runge–Kutta scheme [40]. The wall-normal grid spacing is
adjusted to keep the resolution to Δy = 1.5η, i.e., approximately
constant in terms of the local isotropic Kolmogorov scale
η � (]3/ϵ)1/4. Note that ϵ is the isotropic dissipation of
turbulent kinetic energy. In wall units, Δy+ varies from
0.3 at the wall, up to Δy+ ≃ 12 at the centerline.

As a consequence of the self-sustaining mechanism, coherent
structures in the form of counter-rotating rolls are triggered by
pairs of ejections and sweeps extending beyond the buffer layer in
a well-organised process called bursting. The ejections carry low
streamwise velocity upwards from the wall (u < 0, v > 0), while the
sweeps carry high streamwise velocity downwards to the wall (u >
0, v < 0). Based on a Reynolds stress quadrant classification,
ejections and sweeps are Q2 and Q4 events, respectively. Lozano-
Duran et al. [13] and Jiménez [18] reported the relation between
counter-rotating rolls, streamwise streaks and Q2-Q4 pairs in
turbulent Poiseuille flow by observing averaged flow fields
conditioned to the presence of a wall-attached Q2-Q4 pair. A
wall-attached event is an intense Reynolds stress structure (i.e.
uv-structure) that approaches a wall below y+ < 20. The reasoning
for this definition is explained later. For a time-resolved view of
the bursting process in turbulent Poiseuille channel at Reτ ≈
4,200, the interested reader is referred to [30]. Gandía Barberá

FIGURE 1 | Reyhnolds-stress structures at the bottom half of the
channel. The structures are coloured by wall-normal distance. The flowmoves
from the left to the right of the figure.
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et al. [41] performed this process again for Couette flows in
presence of stratification.

In order to study the underlying physics of the flow, the
coherent structures responsible for the transport of momentum
are analysed. Jiménez [18] discussed that the intensity of a given
parameter is considered as an indicator of coherence, among
other characteristics. However, the selection of a threshold is only
feasible if the parameter is intermittent enough to separate
between high- and low-intensity regions. After analysing the
intermittency of different parameters, it is found that
quadratic parameters, specially the Reynolds stress, are more
appropriate to describe intense coherent structures.

We are interested in using a DNN to predict how these
structures evolve. Running the code we obtain a three-
dimensional (3D) instantaneous flow fields (snapshots)
sequence. Since the flow in the channel is statistically
symmetric, we will only use the lower half of the channel for
faster calculations. The final snapshots have 96 × 76 × 96 grid
points, in x, y and z respectively.

In order to identify the points that are part of structures in the
velocity field we use the technique described in Lozano-Durán
and Jiménez [30]. Essentially, a point p is said to be part of a
structure if the following holds:

|u x, y, z( )v x, y, z( )|>Hu′ y( )v′ y( ), (3)
where H is the percolation index with a value of 1.75 [30,41]. We
obtain binary 3D fields where a point in the field takes the value of 1
if and only if the point is part of a structure. A total of 1,000 fields
were used for training and testing the DNN models, which are
discussed next.

Deep-Learning Models
DNNs are parameterizable functions. These networks consist of
artificial neurons, which are components originally inspired by

brain neurons. A neuron is a function of the form f (wtxi + b),
where w, b are parameters, named weight and bias, respectively.
Note that f is the activation function, an almost everywhere
differentiable function, and xi is the input vector. We can
create an artificial neural network by using multiple neurons
and connecting them in different ways, typically in layers. For
example, a typical setup is to have a vector of neurons. Its output
is used as input to the neuron in the next layer.

FIGURE 2 | Schematic representation showing how the output is calculated in a two-layer artificial neural network where rectified linear unit (ReLU) is the activation
function.

FIGURE 3 | Representation of a residual block, where two layers are
skipped.
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f w21 f w11xi1 + b11( ) + w22f w1,2xi2 + b12( ) + b2(( ). (4)
This is an example of two layers, where the first layer is fed into

the second one. Figure 2 shows an illustration of a simple neural
network. Since we analyze 3D fields, we use a convolutional
neural network (CNN) [42]. This network is a type of DNN
specifically designed to work with images. He et al. [43] further
demonstrated that it is possible to improve the performance of
CNNs by using skip connections. A skip-connection is a shortcut,
allowing the input to skip layers, as shown in Figure 3 and the
following equation:

f wt
2 xi + f wt

1xi + b1( ) + b2(( ). (5)
Recurrent neural networks (RNN) [44] are DNNs designed for

modeling time series. They use their own previous output hi−1 in
combination with the input xi to calculate the next output:

RNN xi, hi−1( ) � hi. (6)
Ideally the network learns to encode useful information in the

output allowing the network to “remember” the past and predict
better. We will be investigating the potential of using a long-
short-term-memory (LSTM) netowrk [15], since they have
exhibited very good performance [15]. One notable drawback
with LSTMs is the fact that they are not designed for image
analysis. Their memory requirements scales quadratically with
input size, thus requiring to downsample the input. Therefore, we
will investigate two networks, one including an LSTM and one
without it, as discussed below. There are several possible choices
for the activation function. In this work we use the rectified linear
unit (ReLU) everywhere but the last layer, which has the form:

ReLU xi( ) � max xi, 0( ). (7)

This activation function has been shown empirically to exhibit
excellent performance in computer-vision problems [45]. We use
the sigmoid activation function for the last layer to ensure that the
output is in the range [0,1]. We will also use batch normalization
[46], in particular the batch norm, which has been empirically
proven to decrease training time and improve performance [47].
We use the first 800 fields as a training set and the remaining as a
validation set. Our training and validation data is split into
sequences of 16 fields each. The network accepts a sequence,
and for each image in the sequence, predicts the following field in
the time-series. All the hyper-parameters are tuned empirically,
and Figure 4 shows the final architecture.

We train our networks by minimizing the binary cross-
entropy (BCE) between the predicted and the reference fields.
To minimize training and inference discrepancy we will use the
algorithm developed by Bengio et al. [48] during training. Thus,
for a given sample of real fields, xi1, xi2, xi3, . . . , xim, the network
will use the following algorithm:

Algorithm 1 :

FIGURE 4 | Schematic representation of the CNN architecture employed in this study.
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Weanneal p at the speed of the inverse-sigmoid function parameter
k = 30 during the training. At the start, the network will mostly make
predictions based on actual data, while at the end, it will use its
predictions. Several metrics are used for the evaluation of the network.
We assessed the loss of the network during training to confirm that the
network converges as expected. We are also interested in studying
metrics such as the number of predicted structures in the field. Since
the network is not outputting binary images but fields where every
value is in the range [0, 1], we will apply rounding to the output. In this
work, we use the algorithm described by Aguilar-Fuertes et al. [14] to
identify structures and the volume of the minimum enclosing boxes.

RESULTS

This study shows that the CNN-LSTM configuration, shown in
Figure 5, exhibits poorer results. It only managed to learn the

zero mapping, i.e. CNN-LSTM(x) = 0 ∀x. We hypothesize that
this is caused by the field becoming too granular when
downsampling so significantly. Thus, we will focus on the
CNN architecture. Let us start by discussing the training
process of the CNN configuration. In Figure 6 we show the
training and validation losses, which decrease as expected. We
observe that our validation loss starts above the training loss at
around 50 steps but converges to a very similar value at around
200 steps. This significant loss difference is due to us testing in
inference mode. The figure shows that the training loss becomes
noisier at around 150 steps. This result is expected because as we
predict farther into the future, we use more predicted samples
rather than the ground truth, thus leading to the accumulation of

FIGURE 5 | Schematic representation of the CNN-LSTM architecture employed in this study.

FIGURE 6 | Training and validation binary-cross-entropy (BCE) losses
for the CNN architecture as a function of the training epoch.

FIGURE 7 | Predicted and reference number of structures as a function
of the time step for the inner region, i.e. y ≤ 0.2. We observe that the number of
structures is not constant over time.
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errors. Interestingly, the training and validation losses reach the
same value of 0.04 towards the end of the prediction horizon.
Note that, although this could be indicative of under-fitting, using
more complex models (i.e. deeper networks with more channels)
did not produce any improvements in the results. We note that
this is a highly chaotic problem, where instantaneous predictions
are highly challenging, although the dynamic behavior of the flow
can be predicted with excellent accuracy [23].

Next, we will assess the number (and the volume) of the
coherent turbulent structures identified in the reference
simulation and the predicted fields. Figures 7, 8 show the
number of identified structures in the inner (y ≤ 0.2) and wake
(y > 0.2) regions, respectively. The CNN architecture can

accurately predict the evolution of the number of structures in
time, with a small underestimation in the inner region and a
slightly larger underestimation in the wake region. A plausible
explanation for this result is that the network is conservative in its
predictions. Consider the following scenario, where a point has a
10% chance of being part of a structure. The best possible guess
would be a field of zeroes for a whole field, although it is doubtful
that every point is zero. Similarly, the best prediction the network
can make is likely zero for some points. In fact, these are the points
near the edges of the structures that are the most challenging to
predict. Thus we would expect the difference between predicted
and real fields to grow proportionally to the number of structures.
The data supports this explanation since the error is noticeably
smaller when the number of structures is ≈ 150 compared to ≈ 250.

After predicting the number of structures in the turbulent fields,
we analyze the volume of those objects. We show the evolution of
the total volume of the structures in the inner and wake regions in
Figures 9, 10, respectively. It can be observed that the employed
CNN architecture exhibits excellent accuracy in the volume
predictions. In the inner region, the only significant discrepancy
we observe is at around step 400, while in the wake region, a
discrepancy is observed around step 600. These deviations can be
explained by the process to calculate the volume of the structures,
which relies on the volume of the bounding box [13]. Note that a
wrongly predicted zero value (i.e., no structure in that grid point)
may have a significant effect if it disconnects a large structure. In
this case, we will consider the volumes of two smaller boxes instead
of the much larger volume of the complete bounding box.
Interestingly, we do not see any network instance predicting a
much larger volume than that of the real data. We expect the
network to be slightly conservative for the same reasons outlined
above, leading to underestimating the predicted volumes. In
practice, the network only has to accurately predict the largest
structures to obtain a correct prediction of the total volume.
Furthermore, most of the time, these largest structures are not

FIGURE 8 | Predicted and reference number of structures as a function
of the time step for the wake region, i.e. y > 0.2.We observe that the number of
structures is not constant over time.

FIGURE 9 | Predicted and reference volume (scaled with h3) of all the
structures in the inner region (y ≤ 0.2) as a function of the time step. Note that
the network rarely overestimates this volume.

FIGURE 10 | Predicted and reference volume (scaled with h3) of all the
structures in the wake region (y > 0.2) as a function of the time step. Note that
the network rarely overestimates this volume.
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particularly sensitive to individual points. Thus, predicting the total
volume is not a very challenging task.

Finally, in Figure 11we show the predicted and reference volumes
of the largest structure in the domain as a function of the time step.
Firstly, this figure shows that the largest structure is often responsible
for over 50% of the total volume of all the structures in the domain.
Interestingly, the CNN architecture exhibits very accurate results also
when predicting the volume of the largest scales. Around time step
400, it can be observed that the volume difference between the
predicted and real data is about one. The total volume difference
supports our hypothesis that the (limited) discrepancies are
associated with the calculation of the bounding-box volume.
Furthermore, the sharp increase in maximum volume observed at
around time step 750 is due to the merger of two different structures.
All these results indicate that the CNN architecture can very
accurately predict the geometrical properties of the structures,
including the total number of objects and their volumes.

DISCUSSION AND CONCLUSION

In this work, we have designed a DNN capable of predicting the
temporal evolution of the coherent structures in a turbulent channel
flow. The employed CNN exhibits excellent agreement with the
reference data, and some observed deviations are due to the method
to calculate volumes based on bounding boxes. This also leads to
scenarios where larger structures are responsible for a
disproportionally large part of the total volume than their actual
volume. Adding a single point to an edge of the structure is equivalent
to adding a plane using this volume metric. Despite the mentioned
caveats, this metric has been used to facilitate comparisons with other
studies focused on coherent structures in turbulent channels. We also
observe that the network predictions are conservative, with a general
underprediction of the number of structures and their volume. This is

associated with the rounding of the predictions: most points have a
higher probability of being zero than one, and then the network will
likely predict zero. This is not necessarily an issue, but future work
will be focused on investigating the focal binary loss [50], to obtain a
more even distribution. Note that our network shows signs of
underfitting since the training and validation losses have
approximately the same value. This was also the case in more
complex networks investigated in this work. Overall, the
performance of the CNN model is outstanding, with a satisfactory
agreement between the predicted geometrical properties of the
structures and those of the reference DNS data. In particular,
throughout the whole time interval under study, our model leads
to less than 2% error in the volume predictions and less than 0.5% in
the predictions of number of structures.

When it comes to deep-learning models, including temporal
information, we note the potential for further improving the
predictions. This is because these models enable exploiting the
spatial features in the data (as the CNN does) and the temporal
correlations among snapshots, where multiple fields can be used
as an input. In this work, we have also investigated adding a long-
short-term-memory (LSTM) network [49] to handle the
temporal information, although the significantly increased
memory requirements of the new architecture limited its
accuracy. Future work will aim at assessing more complicated
architectures involving better downsampling, as in the U-net
confgiration [50], or more efficient temporal networks such as
temporal CNNs [51] or transformers [52].
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