
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/194680

Sala-Mira, I.; García Gil, PJ.; Diez, J.; Bondia, J. (2022). Internal model control based
module for the elimination of meal and exercise announcements in hybrid artificial pancreas
systems. Computer Methods and Programs in Biomedicine. 226:1-13.
https://doi.org/10.1016/j.cmpb.2022.107061

https://doi.org/10.1016/j.cmpb.2022.107061

Elsevier



Internal model control based module for the

elimination of meal and exercise announcements in

hybrid arti�cial pancreas systems

Iván Sala-Miraa, Pedro Garciaa, José-Luis Díeza,b, Jorge Bondiaa,b,∗

aInstituto Universitario de Automática e Informática Industrial, Universitat Politècnica

de València, 46022, Valencia, Spain
bCentro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas

Asociadas - CIBERDEM, 28028, Madrid, Spain

Abstract

Background and Objectives. Hybrid arti�cial pancreas systems outperform

current insulin pump therapies in blood glucose regulation in type 1 dia-

betes. However, subjects still have to inform the system about meals intake

and exercise to achieve reasonable control. These patient announcements

may result in overburden and compromise controller performance if not pro-

vided timely and accurately. Here, a hybrid arti�cial pancreas is extended

with an add-on module that releases subjects from meals and exercise an-

nouncements.

Methods. The add-on module consists of an internal-model controller that

generates a �virtual� control action to compensate for disturbances. This �vir-

tual� action is converted into insulin delivery, rescue carbohydrates sugges-

Abbreviations: AP, arti�cial pancreas; CGM, continuous glucose monitor; CI, con�-
dence interval; IFB, insulin feedback; IMC, internal model control; SMRC, sliding mode
reference conditioning;
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tions, or insulin-on-board limitations, depending on a switching logic based

on glucose measurements and predictions. The controller parameters are

tuned by optimization and then related to standard parameters from the

open-loop therapy. This module is implemented in a hybrid arti�cial pan-

creas system proposed by our research group for validation. This hybrid

system extended with the add-on module is compared with the hybrid con-

troller with carbohydrate counting errors (hybrid) and the hybrid controller

with an alternative unannounced meal compensation module based on a meal

detection algorithm (meal detector). The validation used the educational ver-

sion of the UVa/Padova simulator to simulate the three controllers under two

scenarios: one with only meals and another with meals and exercise. The ex-

ercise was modeled as a temporal increase of the insulin sensitivity resulting

in the glucose drop usually related to an aerobic exercise.

Results. For the scenario with only meals, the three controllers achieved sim-

ilar time in range (proposed: 85.1 [77.9,88.1]%, hybrid: 84.0 [75.9,86.4]%,

meal detector: 81.9 [79.3,83.8]%, median [interquartile range]) with low time

in moderate hypoglycemia. Under the scenario with meals and exercise, the

proposed module reduces 4.61% the time in hypoglycemia achieved with the

other controllers, suggesting an acceptable amount of rescues (27.2 [23.7,

31.0] g).

Conclusions. The proposed add-on module achieved promising results: it

outperformed the meal-detector-based controller, even achieving a postpran-

dial performance as good as the hybrid controller (with carbohydrate count-

ing errors). Also, the rescue suggestion feature of the module mitigated

exercise-induced hypoglycemia with admissible rescue amounts.
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1. Introduction1

Closed-loop glucose control (also known as arti�cial pancreas) outper-2

forms other insulin therapies treating type 1 diabetes, such as multiple daily3

insulin therapy or sensor-augmented pump [1, 2]. This technology reduces4

time in high glucose values (hyperglycemia) and associated risks such as5

retinopathy, neuropathy, or cardiovascular disease [3, 1]. The arti�cial pan-6

creas also reduces time in low blood glucose values (hypoglycemia), with crit-7

ical short-term complications (e.g., cognitive dysfunction, seizures, or coma8

in severe cases [4]), and enhances the quality of life with reduced anxiety or9

insomnia [2].10

However, external disturbances, namely, meals and exercise, challenge11

the performance of arti�cial pancreas systems. On the one hand, glucose in-12

gested from meals reaches the bloodstream faster than subcutaneous insulin.13

Slow subcutaneous insulin absorption and sensor lag delay the insulin action,14

leading to sizeable postprandial glucose excursions [5]. Insulin stacked in sub-15

cutaneous depots continues to be absorbed even after the meal absorption,16

which may also cause hypoglycemia [6]. On the other hand, exercise is ben-17

e�cial for managing type 1 diabetes: it improves insulin sensitivity, reduces18

cardiovascular risks, improves bones health, etc. [7, 8].However, exercise in-19

�uences the balance between glucose utilization and production; thus, it may20

cause hypoglycemia or hyperglycemia, depending on the kind of exercise, its21

duration, and its intensity [7, 9]. Low-to-moderate aerobic exercise usually22
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lowers glucose; the fear of subsequent hypoglycemia constitutes the main23

reason people with type 1 diabetes give up an active lifestyle [9].24

Commercially available arti�cial pancreas systems � a recent review re-25

ported up to six systems [10]: the Medtronic 670G (Medtronic, Northridge,26

CA, USA), the Medtronic 780G (Medtronic, Northridge, CA, USA), the27

t:slim X2 pump with Control-IQ (Tandem, San Diego, CA, USA), the CamAPS28

FX (CamDiab, Cambridge, UK), the DBLG1 (Diabeloop, Grenoble, France),29

and the Insulet Omnipod 5 (Insulet, Billerica, MA, USA) � are deemed �hy-30

brid� since they require patient intervention to counteract meals and exercise.31

Insulin boluses in hybrid arti�cial pancreas e�ectively reduce postprandial32

glucose excursions, but subjects need to timely provide an accurate estima-33

tion of the ingested carbohydrate to the system. This estimation is challeng-34

ing for them; estimation errors [11], bolusing delays [12], or omissions [13]35

frequently degrade the performance achieved by the system. Hybrid arti�cial36

pancreas systems usually modify glucose reference or basal pro�le to reduce37

the impact of exercise, which requires subjects to announce exercise time or38

intensity even with anticipation [7].39

Several alternatives to meal and exercise control exist in the literature.40

Meal detection is a popular approach to determine the meal occurrence and41

increase the aggressiveness against the glucose rise by delivering boluses42

[14, 15] or retuning the controller [16]. Other approaches rely on disturbance43

observer-based control [17, 18], robust control techniques [19, 20], model-44

predictive control [21] or multi-hormonal systems [22]. Many systems apply45

open-loop-like strategies such as basal reduction or rescue suggestions after46

detecting the exercise to handle unannounced exercise events [2]. For ex-47
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ample, Sevil et al. [23] detect exercise with accelerometry measurements48

or Garcia-Tirado et al. [8] anticipate it using multi-stage predictions fed49

with subject historical patterns. Multi-hormonal systems, namely based on50

glucagon, also have satisfactorily performed against unannounced exercise51

bouts [24].52

Our research group has developed a hybrid arti�cial pancreas controller,53

the SAFE-AP [25, 26], which achieved promising results in postprandial con-54

trol [27]. Ramkissoon et al. [28] and Beneyto et al. [26] added carbo-55

hydrate suggestions to cope with unannounced exercise events � the latter56

with positive results in clinical trials [29] � but both proposals still need57

meal announcements. In addition, Sala-Mira et al. [30] proposed a meal-58

detector-based control to remove the meal announcement in the SAFE-AP,59

but without considering exercise.60

This article proposes an add-on module based on an internal model con-61

trol (IMC, [31]) that eliminates meal and exercise announcements from any62

hybrid controller that includes some restrictions of the insulin-on board. The63

module is implemented in the SAFE-AP described above, but any other64

hybrid arti�cial pancreas with insulin-on-board restrictions could be used.65

Lastly, the complete system is validated with the UVA/Padova simulator.66

The article is organized as follows: Section 2 describes the proposed add-67

on module and its tuning and validation procedure. Section 3 presents and68

discusses the results of the in-silico validation. Finally, Section 4 closes the69

article with some conclusions and limitations.70
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2. Materials and Methods71

The design of any control algorithm embedded in a hybrid arti�cial pan-72

creas system (henceforth denoted as �main controller�) considers that the73

user will inform the system about meal intake and exercise. In the absence74

of subject announcements, the main controller will likely perform unsatis-75

factorily. Figure 1 illustrates a module (see blocks in orange) that replaces76

those announcements with only minor modi�cations in the main controller77

once plugged into it.78

The module implements an internal model control loop (IMC) [32] that79

calculates a �virtual� signal uIMC(t), compensating for the discrepancy be-80

tween the actual output and an output estimated by a nominal model. Then,81

a switching logic decomposes this �virtual� signal in a bolus-like insulin infu-82

sion (uins(t)) and rescue carbohydrates suggestions (uresc(t)) to compensate83

for hyperglycemia and hypoglycemia, respectively. The switching logic also84

makes the tolerated insulin-on-board more restrictive after suggesting a res-85

cue carbohydrate intake.86

The modi�cation of the tolerated insulin-on-board is the only change the87

proposed module applies to the internal parameters of the main controller.88

Most of the hybrid systems constrain the insulin-on-board through gains89

[33, 34, 35] or thresholds [36, 37, 38]; hence the change of the main controller90

is immediate. In this article, the main controller implements the SAFE-AP91

controller [25, 26, 39]. This controller consists of a PID controller with insulin92

feedback that inhibits the plasma insulin [40] and a safety layer based on a93

sliding mode reference conditioning that encloses the insulin-on-board below94

an upper limit [25].95
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Figure 1: Overview of the proposed controller. Blocks with orange background

represent the proposed add-on module: an Internal Model Control (IMC) loop (IVP and

IMC �lter) with a non-linear logic (Switching logic). The add-on module provides three

actions: insulin (blue), rescue carbohydrates (dark green), and maximum insulin-on-board

(IOB) limit command (grey). Negative values for the total control action, uT (t), were not

allowed. Notation: IVP (Identi�able Virtual Patient model).

The following subsections detail the internal model, the switching logic,96

the controller tuning, and the evaluation.97

2.1. Output disturbance compensation through Internal Model Control98

2.1.1. Identi�able virtual patient model99

The IMC loop requires a glucose-insulin model (Block �IVP model� in

Figure 1). Among the several control-oriented models presented in the liter-

ature [41], the Identi�able Virtual Patient (IVP) [42] was selected because of

its structural simplicity and physiological interpretability. The equations of
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the model are de�ned as follows,

İSC(t) = − 1

τ1
ISC(t) +

κ

τ1CI

uT (t) (1a)

İP (t) = − 1

τ2
IP (t) +

1

τ2
ISC(t) (1b)

İEFF (t) = −p2IEFF (t) + p2SIIP (t) (1c)

ḋ1(t) = Aresc
g · uresc(t)−

d1(t)

τresc
(1d)

ḋ2(t) =
1

τresc
(d1(t)− d2(t)) (1e)

Ġ(t) = −GEZI ·G(t)− IEFF (t) ·G(t)+ (1f)

+ EGP +
d2(t)

Vgτresc

where ISC(t) and IP (t) are the subcutaneous and plasma insulin concen-100

trations (µU/mL), respectively. State IEFF (t) represents the insulin e�ect101

(min−1), and G(t) is the plasma glucose concentration (mg/dL). The known102

inputs of the model are the subcutaneous insulin infusion uT (t) (µU/min)103

and the rescue carbohydrate suggestion uresc(t) (mg/min). Any other factor104

a�ecting glucose (meals and exercise among others) will correspond to out-105

put disturbances. A two-compartment model [43], with the glucose masses106

(mg) d1(t), d2(t) as states, models the rescue carbohydrates absorption. The107

parameters τ1 and τ2 (min) stand for time constants related to insulin absorp-108

tion, transport, and clearance. . Parameter p2 is the kinetic rate for insulin109

action (min−1) and Vg is the glucose distribution volume (dL). Parameter110

CI denotes the insulin clearance gain (mL/min), SI represents the insulin111

sensitivity (mL/µU), EGP is the hepatic glucose production (mg/dL/min),112

GEZI corresponds to the extrapolation of the glucose e�ectiveness at zero113

insulin (min−1). Parameter τresc is the time to the peak absorption of the114
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rescue carbohydrate, and Aresc
g is the carbohydrate bioavailability [43]. Fi-115

nally, κ = 60 · 10−6 is a factor that converts the units of uT (t) from µU/min116

(units of the original model [42]) into U/h.117

The parameters of the model (1) were identi�ed from the 10 virtual adults118

of the academic version of the UVa/Padova simulator [44] since the controller119

was evaluated with this cohort (Section 2.4). Table 1 includes the identi�ed120

parameters. The synthetic dataset for identi�cation corresponds to a 2-week121

basal-bolus therapy of 3 daily meals. Populational values were considered122

for the absorption dynamics of rescue carbohydrates, and thus parameters in123

equations (1d)�(1e) were excluded from the identi�cation process. For the124

identi�cation of the rest of the model parameters, an additional meal model125

was considered to match clinical data (including meals). However, it must126

be remarked that this meal model was not part of the IMC controller since127

meals are unannounced, and thus, they are treated as output disturbances.128

The meal absorption model matches the structure of (1d)�(1e) but with129

di�erent signals and parameters involved, e.g., larger doses, longer time con-130

stants, etc. The identi�cation process used information available in practical131

settings (CGM reading, insulin infusion, meal dose, and mealtime). Identi-132

�ability issues � such as parameter correlation � were handled by selecting133

the parameters according to the structural identi�ability [45], the global sen-134

sitivity [46], and the collinearity index [46] (see [47] for a similar approach).135

136

2.1.2. Internal model control �lter137

The IMC loop compares the output of the IVP model (Ĝ(t)) and the138

CGM reading (G(t)) to form the disturbance term d(t), i.e., d(t) = Ĝ(t) −139
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Subject
EGP SI V g p2

(mg/dL/min) (mL/µU/min) (dL) (1/min)

1 1.32 5.17·10-4 2.35·102 2.53·10-3

2 1.20 4.24·10-4 2.48·102 4.08·10-2

3 1.05 3.35·10-4 1.85·102 2.03·10-3

4 1.49 7.23·10-4 2.9·102 3.39·10-3

5 0.762 2.52·10-4 5.81·102 1.12·10-2

6 0.925 2.43·10-4 1.83·102 4.08·10-2

7 0.916 2.84·10-4 2.54·102 2.03·10-3

8 0.925 2.39·10-4 4.57·102 6.9·10-3

9 0.699 3.26·10-4 2.77·102 4.08·10-2

10 1.53 6.03·10-4 2.99·102 6.01·10-3

P
o
p
u
la
ti
o
n
a
l

Aresc
g CI GEZI τ1

(unitless) (mL/min) (1/min) (min)

0.900 1.22·103 2.35·10-3 74.3

τ2 τresc Ameal
g τmeal

(min) (min) (unitless) (min)

45.4 20.0 0.800 40.0

Table 1: Control model parameters corresponding to the virtual adults in

UVa/Padova simulator. The �rst column represents the subject identi�er in the sim-

ulator. Parameters EGP , SI, V g, and p2 resulted from optimization. Parameters CI,

GEZI, τ1, and τ2 are populational values and correspond to the average of the values

in [42]. Parameters Aresc
g and τresc were chosen to represent a fast-acting carbohydrate

rescue; they are populational values too. Meal model parameters (Ameal
g and τmeal) were

retrieved from [43]. Remark that this meal model was only considered for identi�cation

purposes; the IMC controller did not include it since meals were unannounced.
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G(t) (see Figure 1). Then, the IMC �lter Q(s) generates a �virtual� signal140

uIMC(t) (in insulin units) that mitigates the e�ect of d(t) on the output.141

The term d(t) includes everything not modeled by the IVP model: external142

disturbances, such as the e�ect of meal intakes and exercise events, and143

internal disturbances, such as parametric uncertainty in insulin sensitivity144

or absorption. Therefore, reducing the e�ect of d(t) on the output will also145

attenuate all these disturbances. The IMC �lter, Q(s), was selected as in the146

two-degree-of-freedom IMC [48, 32]:147

Q(s) =
uIMC(s)

d(s)
= F (s) ·H−1(s) (2)

where s is the Laplace variable. H(s) is the linearization of the model (1)148

(for uresc(t) = 0, i.e., the linearized e�ect of insulin infusion on glucose when149

d1(0) = d2(0) = 0) given by150

H(s) :=
G(s)

uT (s)
=

SIG
2
0

CIEGP
(

1
p2
s+ 1

)
(τ1s+ 1) (τ2s+ 1)

(
G0

EGP
s+ 1

) (3)

where G0 is the steady-state glucose value reached for the patient's basal151

insulin infusion.152

The �lter F (s) is de�ned as:153

F (s) =
k

(τs+ 1)5
(4)

where k is the gain of the �lter (see Section 2.3 for its tuning). The order of154

the �lter is set to 5 for Q(s) to be a strictly proper transfer function when155

inverting H(s), which is of order 4. The time constant τ determines the156

aggressiveness of the �lter. Meal intakes and exercise strongly impact plasma157
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glucose in the short term, but they fade by their dynamics. In addition, due158

to absorption and measurement lags, the signal d(t) will acknowledge the159

onset of actual disturbances (e.g., meals, exercise, etc.) with a delay. If τ is160

set to a high value, the peak of uIMC(t) will occur much after the disturbance161

peak; hence reducing the disturbance e�ect by the �lter will be negligible and162

even counterproductive (e.g., in postprandial control, delayed insulin may163

lead to hypoglycemia). The �lter must quickly react against any deviation164

in d(t) to reduce the e�ect of disturbances on glucose. For this reason, τ is165

set heuristically to τ = 10min through exhaustive simulations; this is a low166

value close to the CGM reading rate (usually, 5 min).167

2.2. Switching of control actions168

The time constant τ is set to a low value to counteract the insulin absorp-169

tion delay by infusing a large amount of insulin in a short time. However, this170

aggressive tuning ampli�es measurement noise, leading to an oscillatory sig-171

nal uIMC(t) (see Figure 2). The negative values of uIMC(t) would compensate172

for the positive ones, given the low-pass-�lter nature of the glucose-insulin173

system that avoids transferring this measurement noise e�ect to the output.174

However, negative values for insulin are not possible since insulin cannot be175

removed exogenously. If uIMC(t) were delivered without the negative values176

would cause an insulin over-delivery, lowering the glucose and even leading to177

hypoglycemia. Thus, the �rst goal of the switching logic is to ensure that the178

proposed loop only applies a control action after a disturbance by removing179

from uIMC(t) the oscillations caused by measurement noise.180

The switching logic also adequates the type of control action to the e�ect181

of disturbance on the glucose. Insulin is suitable to compensate for the glu-182
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cose rise following a meal. However, aerobic low-to-moderate exercise usually183

leads to a glucose drop and, eventually, hypoglycemia [9], which is unlikely to184

be compensated with only an insulin reduction [8]. To compensate for glucose185

drop � usually related to exercise and insulin overdoses within the postpran-186

dial period � the switching logic reduces the tolerated insulin-on-board and187

suggests rescue carbohydrates to the subject. Therefore, the second goal188

of the switching logic is to convert the �virtual� signal uIMC(t) into three189

feedforward actions: insulin infusion, rescue carbohydrate suggestion, and190

insulin-on-board reduction.191

2.2.1. Hyperglycemia compensation192

The proposed loop compensates for a glucose rise with the insulin infusion193

uins(t) (Figure 1) that follows a three-phase logic (Figure 2):194

1. Dead-zone. The insulin uins(t) is set to 0 if uIMC(t) is lower than a195

positive threshold thins to avoid an insulin overdose due to measurement196

noise ampli�cation in uIMC(t).197

2. Glucose rise mitigation. Meal ingestion will likely lead to a glucose198

rise demanding an uIMC(t) that overpasses thins. To compensate for it,199

uins(t) matches uIMC(t) until it reaches an upper saturation threshold200

thsat, set to avoid overdosing.201

3. Later hypoglycemia prevention. Against a glucose rise, the IMC �lter202

reacts �rst with a positive peak (above phase), but then it will have a203

negative insulin peak (see the green areas in Figure 2). If uIMC(t) is204

higher than thresc, uins(t) will equate uIMC(t) to subtract insulin from205

the main controller, hence avoiding overdosing and the likely related206

hypoglycemia. If uIMC(t) overpasses thres, reducing the insulin from207
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Figure 2: Control logic to compensate for meals. The switching logic processes

the �virtual� action uIMC(t) in three phases: dead-zone (Phase 1), glucose rise mitiga-

tion (Phase 2), and later hypoglycemia prevention (Phase 3). It results in the insulin

infusion uins(t) added to the main controller. Parameters thins, thsat, and thresc are,

respectively, the thresholds to inhibit uIMC(t), saturate it, or convert it into rescue car-

bohydrates suggestions, respectively. Note that uins(t) was allowed to be negative (Phase

3 of Section 2.2.1) to reduce the insulin infusion of the main controller (umc(t)). However,

umc(t) + uins(t) will be saturated to 0 if umc(t) < uins(t).

the main controller may be insu�cient. Therefore, the negative-valued208

insulin is converted into rescue carbohydrates suggestions (uresc, see209

Section 2.2.2), and uins(t) zeroed to avoid coupling both types of control210

actions.211

2.2.2. Hypoglycemia mitigation212

The IMC loop reacts against hypoglycemia with a negative uIMC(t). The213

switching logic module converts the �negative insulin� into rescue carbohy-214
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drate suggestions (see around 200 min in Figure 3) to mitigate the hypo-215

glycemia. To this end, �rst, a �virtual� unquantized carbohydrate signal,216

uint(t), is calculated by integrating uIMC(t) in a sliding window of length tw217

(tw = 60min) as follows:218

u∗
IMC(t) =

uIMC(t) if uIMC(t) ≤ thresc

0 otherwise
(5)

uint(t) = −kresc

∫ t

t−tw

u∗
IMC(τ)W (τ)dτ−

−
∫ t−Ts

t−tw−Ts

uresc(τ)W (τ)dτ

(6)

where Ts is the sampling time. The �rst integral in (6) accumulates the219

�negative insulin� and transforms it into carbohydrates units (g) through the220

gain kresc, similarly to [28]. Noise or unimportant glucose drops may lead to221

small negative values in uIMC(t), i.e., if −thresc ≤ uIMC(t) ≤ 0. To avoid222

suggesting rescue carbohydrates when insulin inhibition may su�ce (as in223

Phase 3 of Section 2.2.1), the �rst integral in (6) includes the signal u∗
IMC(t)224

instead of uIMC(t). In addition, the forgetting factor W (t) attenuates the225

earlier values of u∗
IMC(t) in the sliding window. W (t) is given by:226

W (t∗) = 0.1353 · et∗/30 (7)

for t∗ ∈ [t− tw, t] where t refers to the current time and t− tw the beginning227

of the sliding window (when the earliest value of u∗
IMC(t) is considered). The228

second integral in (6) subtracts the rescue carbohydrates suggested within229

the sliding window to avoid increasing uint(t).230
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The �virtual� carbohydrate signal, uint(t), must be quantized for user231

convenience. The quantized rescue signal, uresc(t), follows the next logic:232

uresc(t) =



⌊
uint(t)

15

⌉
· 15 if uint(t) ≥ 7.5 and

G∗(t) ≤ 70 and

∆tresc > 15

15 if CGM(t) ≤ 70 and

G∗(t) ≤ 54 and

∆tresc > 15

0 otherwise

(8)

where ⌊·⌉ denotes the nearest integer operator and∆tresc, the elapsed time233

between two consecutive rescue carbohydrate suggestions (in min). G∗(t) is234

the 30-min ahead glucose prediction (in mg/dL) computed with the following235

linear extrapolation:236

G∗(t) = CGM(t) + 30 · dCGM(t)

dt
(9)

According to (8), the controller suggests rescue carbohydrates in two situa-237

tions:238

� When the system predicts a moderate hypoglycemia risk and the ac-239

cumulated rescue carbohydrates are large enough. If uint(t) halves the240

minimum rescue dose � as implemented in [24, 26] � the algorithm cal-241

culates a rescue carbohydrate suggestion by approximating uint(t) to242

the nearest multiple of 15 g since available commercial glucose sup-243

plements usually contain 15 g, e.g., Dex4 (Can-Am Care, Alpharetta,244
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GA, USA), Glutose15 (Paddock Laboratories, Minneapolis, MN, USA),245

TruePlus (Trividia Health, Fort Lauderdale, FL, USA), etc. If the pre-246

dicted glucose is outside hypoglycemia risk, the system will not suggest247

a rescue carbohydrate even though uint(t) ≥ 7.5 (see the orange squares248

in Figure 3).249

� When the subject is in moderate hypoglycemia, and the glucose tends to250

a severe hypoglycemia. Here, the system suggests a 15-g rescue regard-251

less of the value of uint(t).252

The algorithm considers a minimum elapsed time of 15 min between res-253

cue carbohydrates suggestions to avoid frequent recommendations.254

Since the exercise impacts the insulin sensitivity even after the exercise255

event, the switching logic also reduces the insulin-on-board limitation of the256

main controller to 70% of its nominal value and zeroes uins(t) within the257

3 h following the last rescue carbohydrate suggestion (see the red area in258

Figure 3). Reducing the insulin-on-board is a common practice in the lit-259

erature to control exercise [9, 26]. The system restores the nominal values260

of insulin-on-board limitation and uins(t) whenever a risk of hyperglycemia261

exists: when CGM(t) ≥ 140mg/dL and G∗(t) ≥ 180mg/dL.262

2.3. Optimization-based controller tuning263

The proposed controller has �ve parameters requiring an individual tun-264

ing for the 10 virtual adults in the simulator: the gain of F (s) (kins), the gain265

factor converting insulin into carbohydrates (kresc), and the three thresholds266

of the switching logic (thins, thsat, and thresc).267
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In this section, the parameters are tuned by optimization to provide a268

common framework for individualizing parameters among the virtual adults269

(Section 2.3.1). However, the optimization procedure might be unfeasible for270

a practical setting (e.g., a clinical trial). Therefore, an alternative tuning271

only relying on open-loop therapy parameters is also proposed in this section272

(Section 2.3.2).273

2.3.1. Optimization setting274

For each subject, the worst-case within 12 simulations of the same virtual275

adult is minimized. The simulations included di�erent sources of variability276

(e.g., sensor noise, circadian changes in insulin sensitivity, variability in meal277

and insulin absorption); the random numbers used to create the variabil-278

ity were di�erent among simulations. Each simulation consisted of a 7-day279

(Tsim = 10080min) scenario with 3 daily meals and 1 daily exercise session.280

The cost applied to each simulation is de�ned as:281

Jsim := JWAIR + JC (10)

This cost penalizes the weighted areas in risk (JWAIR) and constrains the282

magnitude or shape of the control actions (JC). The weighted areas in risk283

consider the areas of the CGM exceeding the thresholds 54, 70, 180, and 250284

as follows:285
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JWAIR = auu ·
∫ Tsim

0

(Guu(τ)− 250) dτ+

+ au ·
∫ Tsim

0

(Gu(τ)− 180) dτ+

+ al ·
∫ Tsim

0

(70−Gl(τ)) dτ+

+ all ·
∫ Tsim

0

(54−Gll(τ)) dτ+

+ aresc ·
∫ Tsim

0

(Gresc(τ)− 140) dτ

(11)

where the scalars auu = 175, au = 1, al = 5000, all = 10000, aresc = 50 are the286

weights. The weights above were tuned so that the areas in hypoglycemia cost287

more than those in hyperglycemia. This �exibility in con�guring the optimal288

performance is not possible in other approaches that rely on standard metrics289

to de�ne the cost [49]. All the integrals were calculated using the trapezoidal290

rule. Signals Guu(t), Gu(t), Gl(t), Gll(t) in (11) correspond to the CGM after291

being saturated to the enclosing thresholds as follows:292
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Guu(t) :=

250 if CGM(t) ≤ 250

CGM(t) otherwise

(12)

Gu(t) :=


180 if CGM(t) ≤ 180

250 if CGM(t) > 250

CGM(t) otherwise

(13)

Gl(t) :=


54 if CGM(t) < 54

70 if CGM(t) ≥ 70

CGM(t) otherwise

(14)

Gll(t) :=

54 if CGM(t) ≥ 54

CGM(t) otherwise

(15)

An insulin overdose might cause a glucose drop that the controller would com-293

pensate with rescue carbohydrates suggestions. The last addend of expression294

(11) weights the glucose rebound after rescue carbohydrate suggestion time295

to better coordinate rescue carbohydrates suggestions and insulin doses. Sig-296

nal Gresc(t) represents the value of the CGM that overpasses 140 mg/dL in297

the �rst 3 h after rescue carbohydrate suggestions. If a meal occurred before298

the 3 h, Gresc(t) was calculated until mealtime as de�ned in:299

Gresc(t) =


CGM(t) if (CGM(t) ≥ 140)

and t ∈ [tresc,min(tresc + 3h, tmeal)]

140 otherwise

(16)
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where tresc and tmeal denote the rescue carbohydrates and meals times, re-300

spectively. Mealtimes were available to de�ne the cost function but were301

unknown to the controller.302

The cost JC penalizes the number of times the IMC activates the in-303

sulin mode (Phase 2 of Figure 2) for uins(t) to behave like a bolus (being304

active for a short time with large insulin doses). In the absence of this pe-305

nalization, the optimizer usually converged to a bang-bang insulin delivery,306

which increased the risk of delayed action and, ultimately, hypoglycemia.307

The cost JC also constrains the size of rescue carbohydrates. To reduce308

the risk of compensating for insulin overdosing with rescue carbohydrates,309

the carbohydrate suggestions followed by meals (meal rescue carbohydrates)310

were weighted more than those followed by exercise sessions (exercise rescue311

carbohydrates). For the exercise-related rescue carbohydrates, the average312

rescue size per exercise event was limited to 45 g. The expression of JC is313

the following:314

JC = bact ·max

(
nimc_act

nmeal

− 1, 0

)
+

+ bmeal_resc ·
nmeal_resc∑

i=1

meal_resci+

+ bex_resc ·max

(∑nex_resc

i=1 ex_resci
45nex_sessions

− 1, 0

) (17)

where bact = 1400, bmeal_resc = 15000, and bex_resc = 4500 are weights.315

Terms nimc_act, nmeal_resc, nex_resc, nex_session denote the number of times the316

IMC enters Phase 2, the number of meal-related rescue carbohydrates, the317

number of exercise-related rescue carbohydrates, and the number of exercise318

sessions, respectively. meal_resci represents the meal rescue sizes (from319
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i = 1 to i = nmeal_resc) and meal_exi the exercise rescue sizes (from i = 1320

to i = nex_resc)321

The min-max problem was solved with the Covariance Matrix - Adapta-322

tion Evolution Strategy (CMA-ES) algorithm, a black-box search optimizer323

suitable for non-linear or non-convex problems [50]. Table 2 includes the324

starting values and the bounds of the parameters. To reduce the compu-325

tational time, the optimization was executed in the computing cluster of326

the Politechnical University of Valencia (Universitat Politècnica de València,327

València, Spain) using 12 cores of 3 GB [51]. Note that this optimization pro-328

cess is only required to tune the algorithm. Once the control parameters are329

obtained, the module can be executed in real-time without any optimization330

procedure.331

Initial

value

Lower

limit

Upper

limit

kins (-) 0.5 0.01 1

thins (U/h) 5 1 30

thsat (U/h) 10 1 30

thresc

(U/h)
1 0.05 5

kresc

(g/U/h)
0.1 0.0005 0.5

Table 2: Initial values and bounds of the parameters in the optimization
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2.3.2. Regression with open-loop parameters332

The method presented in Section 2.3.1 to tune the controllers is only333

feasible for in-silico studies. To provide a starting tuning for a clinical trial,334

the optimal parameters were related to standard parameters of the open-loop335

therapy [52]: the weight (BW , in kg), the total daily insulin (TDI, in U), the336

basal insulin (ub, in U/h), the carbohydrate-to-insulin ratio (CR, in g/U),337

and the correction factor (CF , in mg/dL/U) [53]. The values were available338

in the UVa/Padova simulator. For each optimal parameter, a relation to339

open-loop parameters was found as follows:340

1. The 80 linear models that �t the corresponding optimal parameter with341

the lowest root sum of squares were selected. Models had up to 8 co-342

e�cients, including pairwise interactions of the open-loop parameters.343

The selection was performed with the function regsubset [54] of the344

R software [55].345

2. To mitigate the risk of over�tting, the selected models were �tted using346

leave-one-out cross-validation [56].347

3. The �nal model was the model with the lowest number of coe�cients348

that resulted in a low cross-validation root-mean-squared error and349

satis�ed the diagnosis assumptions (normality and homoscedasticity of350

the residuals).351

2.4. Validation setting352

The proposed add-on module was implemented in an extended version of353

the UVA/Padova simulator for validation purposes. The simulator emulates354

the 5-min sampling time of the CGM; hence the add-on module must be355
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implemented in discrete time. For the implementation, the model in (1)356

was discretized with Euler approximation using a sampling period of 5 min357

(Ts = 5min). The �lter Q(s) in (2) and the integral in (6) were discretized358

using the Tustin approximation [57], also with Ts = 5min.359

The validation targets three purposes: 1) to determine whether the regression-360

based tuning maintains the performance of the optimal tuning, 2) to assess361

the controller against meals, and 3) to assess the controller against meals and362

exercise. The details of the validation are given in the following subsections.363

2.4.1. Validation of the regression-based tuning364

The �t of the regression model to the corresponding optimal parameter365

was assessed with the coe�cient of determination R2 and the root-mean-366

squared error of the cross-validation (RMSEloocv).367

To study if the regression-based tuning degraded the performance of368

the optimal tuning, glucose percentage time-related metrics were compared369

(the %time in range, the %time in hyperglycemia, and the %time in hy-370

poglycemia). To this end, both tunings were simulated for the 10 virtual371

adults of the UVa/Padova simulator academic version [44]. The simulation372

consisted of a 30-day scenario including 3 daily meals � with random sizes373

and timing: 49.5 [33.0, 55.0] g for breakfast at 6.92 [6.75, 7.08] h , 81.0 [72.0,374

93.0] g at 13.75 [13.58, 14.17] h for lunch, and 64 [54, 79] g at 20.9 [20.8,375

21.1] h for dinner, median [interquartile range]) � and 1 daily exercise ses-376

sion. Exercise e�ect on glucose was simulated through a variation of insulin377

sensitivity [58]. This exercise model corresponds to an aerobic exercise of 60378

min at 50% of VO2, approximately [58]. The exercise time was set up to 240379

min after one meal of the day � 12 exercise events after breakfast, 11 after380
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lunch, and 7 after dinner � following a uniform distribution. Exercise events381

beyond midnight were avoided.382

The simulation also included CGM noise (the built-in sensor model dex-383

com25 ) and multiple sources of parametric variability added to the educa-384

tional version of the simulator such as one-day period sinusoidal-type insulin385

sensitivity variation with random amplitude and phase, variation of subcu-386

taneous insulin absorption rate at each meal following a uniform distribution387

of ±30%, or variability of the meal absorption parameters, which nominal388

values where changed at each meal randomly selecting a parameter set from389

the ones provided in the simulator in order to emulate ingestion of di�erent390

meal types.391

2.4.2. Validation of the performance against meals392

The goal of this validation is to quantize the improvement regarding the393

main controller without any meal compensation (henceforth denoted as No-394

Comp) of three controllers with meal compensation: 1) the main controller395

with the IMC loop, tuned with the regression model (denoted as mIMC), 2)396

the main controller with the meal-announcement free compensation feature397

of [30], based on a super-twisting meal detector (referred as MD), and 3)398

the main controller with meal announcements but considering errors in the399

estimation of the carbohydrates according to the model in [11] (denoted as400

Hybrid).401

The simulation features � duration, number of subjects, variability, meal402

size, and timing� were identical to those described in Section 2.4.1, but with-403

out considering exercise.404

To assess the controllers, apart from the standard metrics proposed in405
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[59], percentage-time-related metrics within the postprandial period (from406

mealtime until 3 h after each meal) were calculated. Since the mIMC might407

compensate for insulin over-delivery with rescue carbohydrates suggestions,408

the percentage of meals requiring at least one rescue and the mean size of409

the rescue carbohydrates suggested for those meals were also reported.410

2.4.3. Validation of the performance against exercise411

This validation assessed the likely bene�ts of the rescue carbohydrate sug-412

gestion feature of the mIMC to counteract exercise-induced hypoglycemias.413

To this end, the proposed controller mIMC was compared to two insulin-only414

controllers: 1) the mIMC controller with the rescue carbohydrate suggestion415

feature deactivated (denoted as NoExComp), and 2) the meal-detector based416

controller, i.e., MD.417

The simulation scenario was identical to the one described in Section 2.4.1.418

Besides the metrics suggested by [59], the following exercise-related metrics419

were computed: the %time in hypoglycemia within the exercise period (from420

the exercise time to 3 h after it), the %time above 140 mg/dL up to 3 h after421

each rescue, the percentage of exercise events needing at least one rescue422

carbohydrate, and the mean rescue size suggested for those events.423

In the simulations, subjects ingested the suggested carbohydrates in the424

precise time and size as in [26, 24, 28].425

2.4.4. Statistic analysis426

Results were analyzed with a regression-based inference approach and427

Wald 95% con�dence intervals [60]. Since all the simulations in the study428

shared the virtual cohort, the independence condition assumed by linear429
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models fails. Mixed-e�ect models can handle the dependency of the virtual430

subjects in the sample [61]. For each of the analyzed metrics, the following431

random-intercept mixed-e�ect model, individualized for each subject, was432

�tted:433

ysub = β0 + Ssub +

nC−1∑
i=1

βixi + esub (18)

where ysub is the corresponding metric value for a given subject, sub, and nC434

is the number of controllers to be compared. Ssub is the random intercept, and435

esub are the residuals, following both a zero-mean normal distribution [61].436

Fixed coe�cient β0 is the intercept, and coe�cients βi can be interpreted as437

the mean di�erence regarding the intercept since xi is a dichotomous dummy438

variable related to the controller to be compared with the intercept. These439

coe�cients inform about the e�ect size of the di�erences between structures,440

a pece of more valuable information than the signi�cance analysis of P-values441

[62], especially for in silico analysis where P-values are controversial [63].442

The mixed-e�ect model was �tted with the robust method presented in443

[64] of the R software [55] to handle the outliers appearing in the data.444

3. Results and Discussion445

3.1. Controller tuning446

Table 3 includes the optimal parameters of the controller described in447

Section 2.3. The related regression equations (Table 4) �t the optimal pa-448

rameters with a reduced cross-validation root-mean squared error.449

Furthermore, the mean di�erence in the metrics %time in 70�180 mg/dL450

(0.303%, CI:[−1.30, 1.91]), %time above 180 mg/dL (−0.470%, CI:[−2.29, 1.35]),451
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Subject
kins

(-)

thmin

(U/h)

thmax

(U/h)

kresc

(g/U/h)

thresc

(U/h)

1 0.04 4.43 9.38 0.09 0.48

2 0.17 1.46 14.34 0.31 0.15

3 0.03 1.08 13.20 0.06 0.53

4 0.08 5.50 12.19 0.12 0.07

5 0.11 3.72 25.95 0.09 0.07

6 0.25 7.57 19.62 0.12 2.08

7 0.02 5.42 10.25 0.09 0.12

8 0.14 6.83 15.22 0.05 2.45

9 0.34 2.34 8.08 0.16 0.72

10 0.14 9.69 15.69 0.09 0.35

Table 3: Control parameters that resulted from optimization. The �rst column

represents the virtual adult identi�er in the UVa/Padova Simulator. The second, third, and

fourth columns include the parameters used for meal compensation, while the remaining

columns correspond to the exercise compensation (see Section 2.3).
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and %time below 70 mg/dL (0.0576%, CI:[−0.199, 0.315]) are negligible, which452

indicate that the regression-based tuning preserves the performance achieved453

by the optimal tuning.454

3.2. Performance of postprandial control455

The controllers featuring meal compensation (Hybrid, MD, or mIMC)456

outperform NoComp, as shown in Table 5. The improvement is statistically457

signi�cant since all the �xed-e�ect coe�cients of Figure 4 and Figure 5 �458

interpreted as the mean di�erence of each controller regarding NoComp �459

are far from zero.460

Since the con�dence intervals in Figure 4 and Figure 5 overlap among461

controllers, all the controllers with meal compensation improve to a similar462

degree the performance of NoComp, with the advantage that the MD and463

mIMC controllers free subjects from meal announcements.464

Figure 6 shows the glucose and insulin traces for 2 of the 30 days of465

the simulation. Some behavioral di�erences exist between the controllers.466

The meal announcement in the hybrid controller improves the early phase467

of the postprandial with a lower time in hyperglycemia (see bottom panel of468

Figure 4) and a lower postprandial peak (Figure 6).469

The mIMC tends to be more aggressive, allowing a more rapid recovery470

than the hybrid controller after large meals (see �fth meal in Figure 6). The471

price to pay to achieve a similar time in range to the hybrid controller, but472

without announcement, is a steeper glucose drop after the postprandial (Fig-473

ure 6). In no subject, the glucose drops below 54mg/dL and the %time below474

70 mg/dL never overpasses the 0.5%, which is far from the 4% threshold in-475

dicated in the literature [59]. However, since this is an in-silico evaluation,476
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the results must be interpreted with caution and the module may achieve477

larger time in hypoglycemia under real-life situations.478

Although the rescue suggestion feature plays a role in avoiding hypo-479

glycemia events, its use was sparse: for most of the subjects, the controller480

did not suggest any rescue; for two of them, the controller only recommended481

15 g; and only for the two remaining ones, the controller recommended more482

than one rescue � 10 and 12 rescues �, always of 15 g.483

Finally, the MD achieves a slightly longer time in hyperglycemia than484

the mIMC (Table 5). Since the MD does not suggest rescues [30], it cannot485

mitigate the glucose drop. As a result, unlike the mIMC, one virtual subject486

had severe hypoglycemia.487

3.3. Performance of exercise control488

The carbohydrate suggestion feature in the mIMC signi�cantly reduces489

the time in moderate and severe hypoglycemia (Figure 8) compared to when490

the rescue module is unable (NoExComp). The meal-detector-based con-491

troller (MD) performed like NoExComp as concluded from the con�dence492

intervals � they are small and include the 0 (Table 6, Figure 8). Therefore, the493

�exibility of insulin-only controllers against exercise-induced hypoglycemia is494

limited.495

The mIMC suggested a median of 27.2 g per exercise session to handle496

the exercise-induced glucose drop (Table 6); this value is coherent with other497

results of unannounced exercise events in the literature [26, 24, 28]. Even498

with the additional carbohydrate intake, the controller achieved a time in499

hyperglycemia similar to the NoExComp (Figure 7). The mIMC increases500

the CGM mean a 4.28 mg/dL (CI:2.90 � 5.91) mg/dL on average; although501
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statistically signi�cant, this increase, concerning NoExComp, has a minor502

relevance from the clinical point of view. The rise in the %time above 140503

mg/dL after the rescue carbohydrate suggestion is also permissible (Table 6).504

505

NoExComp MDresc mIMC

Overall

Mean CGM (mg/dL) 138.2 [132.1, 141.7] 140.6 [138.6, 142.7] 141.9 [136.5, 146.2]

CV (%) 33.3 [31.4, 34.4] 30.9 [28.3, 31.6] 29.6 [27.4, 32.0]

> 250 mg/dL 1.6 [0.8, 2.9] 2.2 [1.6, 3.6] 1.6 [1.0, 2.9]

> 180 mg/dL 19.2 [13.5, 21.1] 19.2 [18.2, 20.6] 19.8 [13.6, 20.8]

70 � 180 mg/dL 75.5 [72.7, 81.5] 80.8 [79.4, 81.8] 79.6 [77.5, 85.5]

< 70 mg/dL 5.3 [4.5, 6.6] 0.0 [0.0, 0.0] 0.9 [0.4, 1.1]

< 54 mg/dL 3.7 [2.2, 4.1] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]

Daily insulin (U) 37.9 [33.0, 40.7] 38.1 [32.7, 41.1] 37.7 [33.2, 40.6]

Daily CHO (g) 0.0 [0.0, 0.0] 50.0 [47.5, 57.6] 27.5 [23.9, 31.0]

Exercise control

< 70 mg/dL 38.3 [34.6, 44.1] 0.0 [0.0, 0.3] 6.5 [3.0, 8.7]

< 54 mg/dL 27.0 [17.0, 30.4] 0.0 [0.0, 0.0] 0.1 [0.0, 0.3]

> 140 mg/dL (rescues) - 4.3 [3.7, 5.2] 9.6 [5.6, 12.8]

Events needing rescues (%) 0.0 [0.0, 0.0] 96.7 [96.7, 96.7] 96.7 [96.7, 96.7]

Mean rescues (g) - 48.5 [47.7, 60.2] 27.2 [23.7, 31.0]

506

507

4. Conclusion508

This work has proposed an add-on module based on a modi�ed Internal509

Model Control that removes meal and exercise announcements of a hybrid510

arti�cial pancreas. The module was integrated into a PID-based hybrid ar-511

31



ti�cial pancreas developed previously by our research group. In in silico512

simulations, the module preserved the %time in range achieved by the hy-513

brid arti�cial pancreas, considering carbohydrate counting errors, without514

a relevant increase in the time in hypoglycemia. The rescues suggested by515

the controller counteracted the exercise-induced hypoglycemia, allowing more516

�exibility than insulin-only controllers.517

Despite the positive results, further studies should be performed. For518

tuning the module parameters, the regression models were �tted to just 10519

subjects � the available adult cohort in the educational version of the simu-520

lator � which increases the risk of over�tting. In addition, the latter virtual521

cohort was also used to validate the proposed module. Although the vali-522

dation included a di�erent instance of variability, assessing the module with523

the same virtual cohort used for tuning it may limit the generalization of the524

method to real patients. In the future, the subject cohort must be expanded525

to improve the tuning, for example, using recent subject cloning techniques526

from clinical data [65]. Even though a more extended population was used527

to �t the regression equations, these equations would only provide an ini-528

tial tuning; only adapting the parameters would guarantee an acceptable529

long-term performance against the intra-patient variability.530

Moreover, the study only considered low-to-moderate intensity aerobic531

exercise events, leading to hypoglycemia events. The glycemic impact of the532

exercise is complex, and depending on its type, intensity, duration, or even533

the time of the day it occurs, it might lead to a glucose rise [66, 7], requiring534

a di�erent strategy to handle it.535
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Figure 3: Control logic to compensate for exercise. The switching logic converts the

negative insulin of the IMC (uIMC(t), middle panel) into a continuous carbohydrate signal

(uint(t), bottom panel). If the predicted glucose (G∗(t), upper panel) is in hypoglycemia

and uint(t) ≥ 7.5 (dashed red line in bottom panel), the algorithm suggests a rescue uresc(t)

(bottom panel) by quantizing uint(t). Orange squares illustrate that rescue carbohydrates

are inhibited if no hypoglycemia risk exists. Insulin uins(t) is inhibited after the rescue

carbohydrate suggestion (red area in the bottom panel). Note that uins(t) is in deviation

form regarding the main controller output signal (i.e., the signal umc(t) of Figure 1) was

allowed to be negative (Phase 3 of Section 2.2.1) to reduce the insulin infusion of the main

controller (umc(t)). However, umc(t) + uins(t) will be saturated to 0 if umc(t) < uins(t).
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adjR2 RMSEloocv

k̂ = 14.2 + 6.17 · 10-2 · TDI − 2.59 · ub−

− 1.61 · 10-3 ·BW · CF + 3.93 · 10-3 ·BW · CR−

− 4.67 · 10-3 · CF · TDI − 6.57 · 10-3 · CR · TDI

0.972 0.0471

t̂hins = −51.6 + 28.9 · CR + 0.872 ·BW · ub−

− 2.53 · 10-2 ·BW · CF − 12.9 · CR · ub−

− 0.226 · CF · CR

0.752 1.95

t̂hsat = 4.01 · 102 − 1.05 · 102 · ub − 20.8 · CR−

− 8.82 · 10-2 ·BW · CF + 0.209 ·BW · CR+

+ 0.150 · CF · CR

0.890 3.16

k̂resc = −3.02− 7.6 · 10-2 · CR + 3.11 · 10-4 ·BW · TDI−

− 1.74 · 10-2 ·BW · ub + 1.76 · 10-4 ·BW · CF+

+ 8.18 · 10-2 · CF · ub

0.776 0.0676

t̂hresc = −12.3− 0.133 ·BW − 0.295 · TDI+

+ 0.103 ·BW · ub + 1.48 · 10-2 · CF · TDI−

− 2.55 · 10-3 · CF · CR

0.955 0.209

Table 4: Regression equations of the controller's parameters and related good-

ness of �t metrics Evaluated metrics are the adjusted coe�cient of determination

(adjR2) for multivariable regression models and root-mean-squared error of the leave-one-

out cross-validation (RMSEloocv). The �ve models have a low RMSEloocv and acceptable

coe�cients of determination.

48



NoComp Hybrid MD mIMC

Overall

Mean CGM (mg/dL) 161.6 [158.9, 189.5] 140.6 [139.0, 154.2] 141.8 [139.0, 145.6] 140.0 [132.9, 144.8]

CV (%) 30.5 [28.7, 33.7] 25.2 [23.4, 26.5] 25.8 [24.4, 29.2] 25.2 [24.4, 28.6]

% of time CGM

> 250 mg/dL (%) 8.2 [4.8, 19.5] 1.2 [0.3, 2.3] 1.9 [0.7, 4.0] 1.4 [0.3, 2.3]

> 180 mg/dL (%) 31.8 [29.9, 45.2] 16.0 [13.6, 24.1] 17.3 [16.2, 20.4] 14.7 [11.8, 22.1]

70-180 mg/dL (%) 68.2 [54.8, 70.1] 84.0 [75.9, 86.4] 81.9 [79.3, 83.8] 85.1 [77.9, 88.1]

< 70 mg/dL (%) 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.1] 0.0 [0.0, 0.1]

< 54 mg/dL (%) 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]

Daily insulin (U) 34.7 [29.8, 37.4] 38.6 [34.0, 41.3] 38.3 [32.9, 39.9] 38.5 [34.1, 41.4]

Postprandial control

% of time CGM

> 250 mg/dL (%) 17.5 [9.4, 28.3] 2.6 [0.9, 4.2] 5.1 [1.7, 9.4] 3.5 [0.7, 5.9]

> 180 mg/dL (%) 57.2 [49.1, 62.3] 34.0 [25.7, 35.5] 41.4 [37.6, 47.5] 34.9 [29.4, 45.5]

< 70 mg/dL (%) 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]

< 54 mg/dL (%) 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.0]

Meals needing rescues(%) � � 0.0 [0.0, 1.1]

Mean rescues (g) � � � 15.0 [15.0, 15.0]

Table 5: Performance metrics of meal compensation. Four meal compensation

techniques, which share the same main controllers, were compared: absence of meal com-

pensation (NoComp), announced-based compensation (Hybrid), meal-detector-based com-

pensation (MD), and proposed approach (mIMC). Metrics are expressed in median [25th

percentile, 75th percentile] of the 10 virtual adults. �Overall� metrics aggregate the entire

simulation period (30 days), while �Postprandial control� metrics refer to a speci�c period

of the postprandial: percent of time-related metrics aggregate the 3-h period after the

meal, and rescue-related metrics aggregate the meal-to-meal period.

49



−17.84

−15.97

−19.29
mIMC

MD

Hybrid

−25 −23 −21 −19 −17 −15 −13 −11
Estimates

Overall

−23.32

−13.95

−19.66
mIMC

MD

Hybrid

−30 −28 −26 −24 −22 −20 −18 −16 −14 −12 −10 −8
Estimates

Postprandial

Figure 4: Mean di�erence of the percentage time above 180 mg/dL regarding

the controller without meal compensation (NoComp). Red text labels indicate the

mean di�erence between every controller with meal compensation (Hybrid, MD, mIMC)

and NoComp obtained using robust random-intercept models. Lines represent the Wald

95%-interval con�dence. The upper panel refers to the percentage time of CGM above 180

mg/dL within the 30 days of simulation, while only the 3 h after each meal are considered

in the bottom panel.

50



−23.30

−22.03

−27.02
mIMC

MD

Hybrid

−35 −33 −31 −29 −27 −25 −23 −21 −19 −17 −15
Estimates

CGM mean (mg/dL)

17.83

15.76

19.27
mIMC

MD

Hybrid

11 13 15 17 19 21 23 25
Estimates

%Time in 70 − 180 mg/dL (%)

3.24

2.81

3.44
mIMC

MD

Hybrid

1 1.5 2 2.5 3 3.5 4 4.5 5
Estimates

Daily insulin (U)

Figure 5: Mean di�erence of CGM mean, time in range, and daily insulin re-

garding the controller without meal compensation (NoComp). Red text labels

indicate the mean di�erence between every controller with meal compensation (Hybrid,

MD, mIMC) and NoComp obtained using robust random-intercept models. Lines repre-

sent the Wald 95%-interval con�dence. The upper panel refers to the CGM mean, the

middle panel to the percent time in 70 �180 mg/dL, and the bottom panel to the daily

insulin. All metrics correspond to the 30 days of the simulation.
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Figure 6: Populational glucose and insulin pro�les of Scenario A. It shows 2 of

the 30 days of the simulation comparing four meal compensation techniques: absence of

meal compensation (NoComp), announced-based compensation (Hybrid), meal-detector-

based compensation (MD), and proposed approach (mIMC). The solid lines represent the

median of the 10 virtual adults, the shaded area is the interquartile range, and the dashed

lines are the 25th and 75th percentiles. The black circles in the upper panel represent

meal events whose carbohydrate contents are shown on the right axis.
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NoExComp MD mIMC

Overall

Mean CGM (mg/dL) 138.2 [132.1, 141.7] 136.9 [135.6, 138.5] 141.9 [136.5, 146.2]

CV (%) 33.3 [31.4, 34.4] 34.1 [33.1, 35.1] 29.6 [27.4, 32.0]

% of time CGM

> 250 mg/dL (%) 1.6 [0.8, 2.9] 2.2 [1.5, 3.6] 1.6 [1.0, 2.9]

> 180 mg/dL (%) 19.2 [13.5, 21.1] 19.2 [18.1, 20.6] 19.8 [13.6, 20.8]

70 � 180 mg/dL (%) 75.5 [72.7, 81.5] 76.5 [71.6, 77.0] 79.6 [77.5, 85.5]

< 70 mg/dL (%) 5.3 [4.5, 6.6] 4.6 [4.0, 5.1] 0.9 [0.4, 1.1]

< 54 mg/dL (%) 3.7 [2.2, 4.1] 2.8 [2.0, 3.4] 0.0 [0.0, 0.0]

Daily insulin (U) 37.9 [33.0, 40.7] 37.6 [31.8, 39.6] 37.7 [33.2, 40.6]

Daily CHO (g) 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 27.5 [23.9, 31.0]

Exercise control

% of time CGM

> 140 mg/dL (%) (resc) � � 9.6 [5.6, 12.8]

< 70 mg/dL (%) 38.3 [34.6, 44.1] 34.7 [30.7, 39.2] 6.5 [3.0, 8.7]

< 54 mg/dL (%) 27.0 [17.0, 30.4] 21.6 [16.1, 26.4] 0.1 [0.0, 0.3]

Events with rescues (%) � � 96.7 [96.7, 96.7]

Mean rescues (g) � � 27.2 [23.7, 31.0]

Table 6: Performance against exercise. It includes the results of three controllers: the

meal-detector-based controller (MD), the proposed controller (mIMC), and the proposed

controller disabling the rescue suggestion module (NoExComp). Metrics are expressed

in median [25th percentile, 75th percentile] of the 10 virtual adults. �Overall� metrics

aggregate the entire simulation period (30 days), while �Exercise control� metrics refer to

a speci�c period after the exercise: percent of time-related metrics aggregate the 3-h period

after the exercise, and rescue-related metrics aggregate the exercise-to-exercise period.
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Figure 7: Mean di�erence of CGM mean, time in range, and time in hy-

perglycemia regarding the controller without exercise compensation (NoEx-

Comp). Red text labels indicate the estimated mean di�erence of the controllers MD

and mIMC regarding the controller NoExComp obtained using robust random-intercept

models. Lines represent the Wald 95%-interval con�dence. All metrics correspond to the

30 days of the simulation.
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Figure 8: Mean di�erence of time in hypoglycemia regarding the controller

without exercise compensation (NoExComp). Red text labels indicate the esti-

mated mean di�erence between the controllers MD and mIMC, and the controller NoComp

using robust random-intercept models. Lines represent the Wald 95%-interval con�dence.

The term �ex� added to the name of the metrics denotes that the metric corresponded to

the �rst 3 h after each exercise event, while the remaining metrics considered the 30 days

of the simulation.
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