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Accurately inferring underlying electrophysiological (EP) tissue properties from action

potential recordings is expected to be clinically useful in the diagnosis and treatment

of arrhythmias such as atrial fibrillation. It is, however, notoriously difficult to perform. We

present EP-PINNs (Physics Informed Neural Networks), a novel tool for accurate action

potential simulation and EP parameter estimation from sparse amounts of EP data. We

demonstrate, using 1D and 2D in silico data, how EP-PINNs are able to reconstruct

the spatio-temporal evolution of action potentials, whilst predicting parameters related

to action potential duration (APD), excitability and diffusion coefficients. EP-PINNs are

additionally able to identify heterogeneities in EP properties, making them potentially

useful for the detection of fibrosis and other localised pathology linked to arrhythmias.

Finally, we show EP-PINNs effectiveness on biological in vitro preparations, by

characterising the effect of anti-arrhythmic drugs on APD using optical mapping data.

EP-PINNs are a promising clinical tool for the characterisation and potential treatment

guidance of arrhythmias.

Keywords: cardiac electrophysiology, arrhythmia (any), Physics Informed Neural Network (PINN), atrial fibrillation,

parameter estimation, optical mapping, biophysical modelling, artificial intelligence

1. INTRODUCTION

Cardiac arrhythmias are extremely common pathologies caused by disturbances in the generation
or propagation of electrical signals across the heart. Atrial fibrillation (AF), the most common
sustained arrhythmia, affects 0.5% of the world’s population and accounts for 1% of the NHS’s total
budget through its large impact on patient mortality and morbidity, especially stroke (1). Catheter
ablation of atrial myocardium believed to host the sources of the arrhythmia is the mainstay of AF
treatment, but its long-term efficacy is disappointing (54%), especially in patients with persistent
forms of the disease (43%) (2).

The mechanisms behind AF are very complex, involving the interplay of several factors at
different scales, from changes in membrane proteins to alterations in cardiac tissue composition
and organ shape (3). To characterise the arrhythmia, information about cardiac activity can be
acquired by recording electrical potentials using electrodes placed on the chest (electrocardiogram,
ECG) or, in a catheter lab, placed in direct contact with the myocardium (contact electrograms,
EGMs). Expert analysis of these signals is extremely successful in the clinical diagnosis of
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arrhythmias and other types of cardiovascular disease (1).
However, as sparse measurements of the combined electrical
activity of large areas of the myocardium, electrical signals
provide little direct information about local EP properties.

The ability to perform a detailed EP characterisation in
the clinical setting could lead to improved treatments for
arrhythmias. For example, evidence suggests that areas with
abnormal EP properties (such as fibrotic or ischaemic regions)
and their border-zone are often the sites of the abnormal
electrical activity driving arrhythmias (3). Cardiac regions
characterised by EP changes such as low conduction velocity,
heightened excitability or shortened action potential duration
(APD) could be prime targets for localised therapies such as
catheter ablation, likely improving their efficacy. So far, ablation
strategies that target these EP heterogeneities have not been
successful (4), partly due to the difficulty in identifying suitable
ablation sites.

In this study, we present EP-PINNs, a Physics-Informed
Neural Network, as an artificial intelligence tool capable
of inferring EP properties from sparse measurements of
transmembrane potential, V, in cardiac tissue. We test EP-PINNs
using in silico data from EP biophysical simulations in several
conditions and also in vitro optical mapping data. EP-PINNs
are deployed in forward mode, as high-resolution solvers of
the biophysical equations that control EP systems, and also
in inverse mode, as estimators of EP parameters. Tests are
performed in 1D and 2D for single waves and spiral waves
in homogeneous and heterogeneous conditions. We further
demonstrate a pharmacological application of EP-PINNs, as a
tool to characterise the effect of two different channel blockers
in in vitro optical mapping data.

In the next section, we will introduce the EP biophysical model
used and the PINNs technique, as applied to the EP problem. We
will contextualise our work within the available techniques for
parameter estimation in EP and other cardiovascular applications
of PINNs.

2. BACKGROUND

2.1. Biophysical Models of Cardiac
Electrophysiology
Biophysical models of cardiac electrophysiology (5) are an
important tool to understand how cardiac tissue properties
affect the generation and propagation of cardiac electrical signals
(action potentials, APs). They also offer an ideal means for
the training and development of computational tools that may
aim to infer EP properties from electrical and optical mapping
measurements, such as EP-PINNs.

Several biophysical EP models have been proposed (see
models.cellml.org/electrophysiology), each with varying degrees
of detail aiming to reproduce different EP features, cardiac
regions or animal/human experimental findings.Mathematically,
these EP models usually take the form of a reaction-diffusion
system where a diffusion term or equivalent (6) models the
propagation of the electrical signal across the cardiac tissue. In the
monodomain formulation, a partial differential equation (PDE)

describes the spatio-temporal variations in the electrical potential
across a myocyte cell membrane (V). This PDE is usually coupled
to one or more ordinary differential equations (ODEs) describing
how, at each point in time and space, V and other local state
variables both determine and are determined by the flux of ions
across the cell membrane (5).

The most parsimonious model of the action potential
describes it as a travelling excitation wave followed by a non-
excitable (refractory) region. This representation requires at
least two state variables: V , which spreads (diffuses) across
neighbouring regions, and a non-observable, non-diffusible
recovery variable W which effectively controls the refractoriness
and restitution properties of the model. One of the simplest
models that captures these properties is the 6-parameter
canine ventricular Aliev-Panfilov model (7), which models the
transmembrane ionic currents (V − W relationship) using
smooth, differentiable functions. Furthermore, the diffusion of V
across the cardiac tissue can be described by the monodomain
equation (5), which, when combined with the Aliev-Panfilov
model gives:

∂V

∂t
= E∇ .(D E∇V)− kV(V − a)(V − 1)− VW (1)

dW

dt
= (ǫ +

µ1W

V + µ2
)(−W − kV(V − b− 1)) (2)

The diffusion term E∇ .(D E∇V) reduces to D∇2V in the
case of homogeneous and isotropic conduction, i.e., when
the diffusion tensor D is approximated by the same scalar
throughout. Intuitively, this term quantifies how fast V is able
to spread to its immediate neighbourhood to become more
spatially homogeneous. D is determined mostly by the electrical
conductivity of the myocardium and is a strong determinant
of the propagation velocity of the AP. To prevent a leakage of
V to regions outside the heart domain, the system described
by Equations (1, 2) usually obeys no flux Neumann boundary
conditions: ∂V

∂En = 0 in the boundary of the heart tissue.
The −kV(V − a)(V − 1) − VW term in Equations (1, 2)

models the rapid changes in V caused by ionic fluxes across
the cell membrane. a is related to the excitation threshold (i.e.,
the minimum V value that leads to the onset of an AP). The
model’s APD and refractoriness can, in turn, be controlled using
b. The values for each of the model parameters are typically
chosen empirically to reproduce observed electrical signals -
we use the values listed in Supplementary Table 1. The Aliev-
Panfilov model uses rescaled units: V is adimensional (typically
in the [0, 1] AU interval) and time is measured in temporal units,
referred to as TU throughout this study. 1 TU corresponds to
approximately 13ms (7).

Other more complex EP models exist, through which it is
possible to model individual membrane ionic currents and other
biological components relevant for the AP and its propagation.
One example used in the current study is a 14-current 30-variable
canine atrial model that incorporates different degrees of EP
remodelling caused by atrial fibrillation (8).

By assigning different sets of parameters and/or initial
conditions to EP mathematical models, they can represent the
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FIGURE 1 | Numerical solutions to the Aliev-Panfilov monodomain system for: (a) Planar wave. (b) Centrifugal wave. (c) Spiral wave. (d) Centrifugal wave in the

presence of a square heterogeneity in D. (e) Spiral wave in the presence of a square heterogeneity in D.

electrical behaviour of the heart in both healthy and arrhythmic
conditions. Healthy conditions are usually represented as
unidirectional smooth propagation from a single source
(Figures 1a,b). Large sources produce wave fronts which are
close to planar, whereas point-like wavefronts lead to centrifugal
(convex) wavefronts. Arrhythmias are usually modelled as
one or more re-entrant waves (called spiral waves or rotors in
2D–Figure 1c). Moreover, the wavefronts and/or wavebacks
of spiral waves can, in some instances, fragment (break-up),
leading to complex activation patterns (9). These models can also
consider localised pathology such as fibrosis, scar or ischaemia
as heterogeneities in one or more model parameters. Localised
reductions in D, for instance, can be used to reproduce the
slow-down of AP propagation in fibrotic lesions (10). These
heterogeneities can lead to local changes in the curvature of the
activation wavefront (Figures 1d,e).

2.2. Parameter Estimation in Cardiac
Electrophysiology
Biophysical models are usually employed in forward mode,
with the aim of reproducing the system’s behaviour assuming
that all model parameters are perfectly known. In many
circumstances, such as the identification of pathology from EP
measurements, it is more desirable to use these biophysical
models in inverse mode, inferring the tissue parameters that
underlie an observed system behaviour. This task, often called
parameter estimation (or systems identification), is extremely
challenging for several reasons.

The observed data are typically insufficient to identify a
unique parameter value, since the observations are usually sparse,
incomplete and polluted by noise. This can be handled by

optimisation methods, such as least squares, that fit data and
model in an optimal way, combined with problem-dependent
regularisation terms to stabilise the estimate (11). Typically,
the optimisation requires many forward runs of the underlying
model. Unfortunately, in physical systems that are described by
PDEs such as in EP, the forward runs are very computationally
expensive in realistic 2D and 3D settings. These difficulties are
exacerbated by the fact that the parameters in many EP models
are heterogeneous. Hence, we often do not infer a scalar quantity
but a (discrete) function in space and/or time. This increases the
cost and complexity of the inverse mode even further.

Modern inverse problem solvers such as ensemble Kalman
filters (12) sequential Monte Carlo (13) and parameter estimation
based on Markov chain Monte Carlo (14) are often combined
with reduced order models (15) or multi-fidelity approaches
(16) to decrease the computational complexity of parameter
estimation. These very complex methods typically make
strong assumptions about the statistical distribution of
model parameters and require dedicated problem-specific
parameterisation. It is not clear how well they can generalise
when applied to a different EP model or task.

2.3. Physics Informed Neural Networks
(PINNs)
Physics Informed Neural Networks (PINNs) (17) are an exciting
new tool for the study of physical systems modelled by PDEs
and/or ODEs. PINNs have been shown to both efficiently
find high-resolution solutions (forward problem) and perform
parameter estimation (inverse problem) in a variety of systems
(18). As opposed to most types of neural networks (NNs), whose
inputs are exclusively empirical data, PINNs incorporate explicit
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knowledge about the physical laws that govern a system. This
allows PINNs to compute solutions to initial and/or boundary
value problems with comparatively less training data than
conventional NNs.

Very briefly, PINNsmake use of automatic differentiation (19)
to rewrite the differential equations that a system obeys as the
minimisation of a functional f . For example, for Equations (1, 2),
this functional would be defined as:

fV = −
∂V

∂t
+ E∇ .(D E∇V)− kV(V − a)(V − 1)− VW (3)

fW = −
dW

dt
+ (ǫ +

µ1W

V + µ2
)(−W − kV(V − b− 1)) (4)

PINNs are trained tominimise a hybrid loss function, L, which
ensures the system obeys known physical laws (described by fV
and fW), whilst simultaneously fitting known empirical system
measurements. L thus includes terms to account for:

• agreement with the experimental measurements, Ldata;
• consistency with the physical laws of the system, LfV + LfW ;
• consistency with boundary LVBC and initial value conditions

LVIC .

Mathematically:

L = Ldata + LfV + LfW + LVBC + LVIC (5)

L =
1

N

N
∑

i=1

(V(xi, ti)− VGTi)
2 +

1

Nf

Nf
∑

j=1

(fV (xj, tj)
2+fW(xj, tj)

2)+

1

Nb

Nb
∑

k=1

(
∂V

∂En
(xk, tk))

2 +
1

N0

N0
∑

l=1

(V(xl, t0)− V0)
2 (6)

Each of the terms of the loss function is typically computed in
different domains:

• (xi, ti) are the N measurement points, where ground truth
(GT) experimental measurements,VGT , are known and should
be reproduced as closely as possible.

• (xj, tj) are the Nf residual points, where the fulfilment of the
biophysical equations is tested.

• (xk, tk) are the Nb boundary points, where the network aims to
fulfil the Neumann boundary condition for V .

• (xi, t0) are the N0 initial points, where the known initial
condition, V0, is replicated as closely as possible.

There is an asymmetry in L between measurable (V) and latent
(W) variables: only experimental measurements (and initial
conditions) for V are usually available. Moreover, as W does
not diffuse across the tissue, it does not obey any boundary
conditions.

PINNs have typically been used for two main purposes
(18). In the so-called forward mode, the NN’s parameters are
optimised to provide a representation of the physical system of
interest consistent with observations. Using this representation,
the system’s differential equations can subsequently be solved at
an arbitrarily high spatial or temporal resolution, bypassing the
constraints (e.g., small temporal and spatial steps) of traditional
numerical solvers. In inverse mode, PINNs additionally perform

parameter inference (systems identification) by having the NN
optimise one or more of the equation parameters (which here
represent tissue EP properties) during the training process.

2.4. Cardiovascular Applications of PINNs
PINNs have recently been used in several areas of cardiovascular
medicine, especially for applications related to blood flow.
Examples include the estimation of myocardial perfusion
and related physiological parameters from dynamic contrast
enhanced MRI (20) and the estimation of haemodynamic
parameters from microscopic images of aneurysms-on-a-chip
(21).

In the field of cardiac EP, Sahli-Costabal et al. (22) used
PINNs in forward mode to estimate activation time maps (ATs,
i.e., the arrival times of the action potential) and conduction
velocity (CV) maps in the left atrium at high spatial resolution.
Sahli-Costabal’s method uses PINNs to solve the (isotropic
diffusion) eikonal equation, a simple relationship between ATs
and the spatial gradient of CV. This effectively interpolates AT
and CV across the left atrial surface. Although their PINNs
implementation was exclusively deployed on simulated data, the
proposed application is very clinically relevant, as it aims to
mitigate the low spatial resolution of clinical AT measurements.
Grandits et al. (23) subsequently extended this PINNs-eikonal
equation framework to anisotropic conduction, using it to
estimate high-resolution AT maps and fibre directions from in
silico and patient data. The PINNs method performance was
nevertheless lower than that of a traditional (variational) inverse
solver (24). As they rely on the eikonal equation, these tools are
not well suited to the study of arrhythmic conditions or to the
inference of EP parameters other than AT and CV.

2.5. Optical Mapping for Experimental
EP-PINNs Testing
Maps of transmural electrical potential (V), similar to those
simulated using the Aliev-Panfilov model, can be experimentally
recorded using optical mapping. Optical mapping is a technique
in which voltage-sensitive fluorescent dyes are added to
cardiomyocyte preparations before imaging at high spatio-
temporal resolution (25). It can be used to effectively obtain
uncalibrated measurements of V(Ex, t) in cardiac tissue across
time. Although optical mapping can be challenging in vivo, in
vitro experiments can provide very detailed insights into AP
properties and cellular-level EP properties and gain insights
into arrhythmic mechanisms (26). In particular, optical mapping
can be used to study the effect of anti-arrhythmic drugs on
cardiomyocyte preparations (27). These data were used to test
EP-PINNs in an experimental setting.

3. MATERIALS AND METHODS

In this section, we provide details about the finite differences
(FD) model used, in a variety of settings, to generate training
and test data for EP-PINNs. We then introduce the EP-PINNs
architecture, before giving details about each of the in silico
experiments in which EP-PINNs were deployed. We end this
section by introducing the experimental data (in vitro optical
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mapping) used for testing EP-PINNs. The code used for EP-
PINNs implementation and the generation of in silico GT data
is freely available from github.com/martavarela/EP-PINNs.

3.1. Generation of in silico EP Data
We use an FD solver to generate in silico cardiac EP data, VGT ,
which we use to train and evaluate the performance of EP-PINNs.
Simulations were carried out in two different geometries: in 1D,
in a 2-cm 1D domain cable; and in 2D, in a square with a 1-cm
side. We use in-house code written in Matlab 2020b (Mathworks,
Natick, MA, USA) that relies on central FD and an explicit 4-
stage Runge-Kutta method to solve the isotropic monodomain
Aliev-Panfilov model, as defined in Equations (1, 2) and model
parameters listed in Supplementary Table 1. All simulations use
Neumann boundary conditions and set dt = 5 × 10−3 TU and
dx = 100µm as temporal and spatial steps. All simulations were
run for 300 TU, with the calculated VGT(Ex, t) field saved at every
1TU and at every spatial step (every 100µm).We thus generate in
total 1.4×104 and 7.0×105 data points forVGT(Ex, t), respectively
in 1D and 2D.

Figure 1 shows example time frames of the generated V
maps in 2D. All APs were initialised by adding an external
stimulus current Vstim = 0.12 AU to the right-hand side
of Equation (1) for 1 TU in a sub-domain of the studied
geometry (Figure 1). In 2D simulations, this includes both planar
(Figure 1a) waves (emanating from a rectangular stimulus) and
centrifugal waves (from a point-like excitation) (Figure 1b).
Spiral waves were also created using the cross-field protocol:
as an initial planar excitation propagates, a second planar
excitation wave, orthogonal to the first, is initiated. When timed
appropriately (42 TU after the first stimulus, in our model),
the second planar wave continuously curves as it moves to
non-refractory tissue, giving rise to a sustained spiral wave
(Figure 1c).

The data generated by the FD model is treated as GT data
and is used to both train and test EP-PINNs. As in past studies
(18, 28), we train EP-PINNs on a case-by-case basis, with a small
subset of the data for which parameter inference is going to be
performed. This is in contrast to most supervised NNs, which
are usually trained with large amounts of data acquired in varied
circumstances.

Training data for EP-PINNs, VGT(Ex, t), are provided to the
network as an input and used to minimise the data discrepancy
loss function, Ldata in Equation (6). They amount to 10–20% of
the total generated data, corresponding to a variable number of
data points as detailed below and in Supplementary Table 2. The
remaining data are withheld from EP-PINNs and used, in a post-
processing step, to assess EP-PINNs’ ability to reproduce cardiac
APs, as detailed below.

3.2. Architecture and Training of EP-PINNs
EP-PINNs are designed, trained and deployed using the Python
DeepXDE library (28). As in past successful implementations of
PINNs (18, 28), we use a fully connected network architecture.

As detailed in Figure 2, EP-PINNs take as inputs the spatio-
temporal points, (Ex, t), where they will estimate the main outputs:
V (and W). Experimental measurements of V , VGT(Ex, t), are
also provided to EP-PINNs as inputs in a (training) subset

of (Ex, t). EP-PINNs minimise the hybrid physics-informed loss
function described before (see Equations 5 and 6), by adjusting
the network’s weights and biases (collectively named θ in
Figure 2). In inverse mode, EP-PINNs additionally adjust one
or more parameters of the Aliev-Panfilov model (generically
λ in Figure 2). The number of layers and neurons used by
EP-PINNs is adjusted to the domain size and the complexity
of the problem at hand, as described below and detailed in
Supplementary Table 2.

The optimisation approach used for EP-PINNs also depends
on problem size. For 1D problems, we use Adam optimisation
(29)—see Figure 2C. We empirically determined that, in 2D,
EP-PINNs’ performance improved when initially using Adam
optimisation for only the data agreement term (Ldata in Equation
6), followed by Adam optimisation for the full loss function
and ending in a final phase of L-BFGS optimisation (30)—
see Figure 2C. The initial Adam training phases are used to
rapidly approach the desired minimum and the final L-BFGS
optimisation phase helps the network converge faster towards it
(28).

In the presence of spatially-varying EP parameters (D in the
current study), we use network architecture B (see Figure 2B).
Here, D(Ex, t) is estimated by a parallel NN, NND, with the same
number of layers and neurons as the main NN. In this setup,
D is treated as a system variable (on par with V and W) and
its estimates directly contribute to the loss term that ensures the
agreement with the EP equations: LfV in Equation (6).

The hyperbolic tangent function (tanh) is used throughout
as the differentiable activation function and Glorot initialisation
from a uniform distribution is used for all weights (31).
Additionally, to minimise convergence problems caused by
explosive gradients (28) and enhance the NN’s stability, we
implemented an automatic reset of the training process when
the losses at the first epoch of the training exceeded a predefined
threshold.

EP-PINNs were trained on a high performance machine
with 1 RTX6000 GPU and 4 AMD EPYC 7742 CPUs. Typical
training times varied between 15 min (for 1D problems) and
16h (for heterogeneous spiral wave problems), as detailed in
Supplementary Table 2.

3.2.1. Assessment of EP-PINNs Performance
To assess the performance of EP-PINNs, we calculate, across
all test points Ntest , the root mean squared error (RMSE) for
estimates of V :

RMSE =

√

√

√

√

1

Ntest

Ntest
∑

i=1

(V(i)− VGT(i))2 (7)

The RMSE is, by construction, adimensional and in the same
scale range as V . All experiments were repeated at least 5 times to
probe the variability in RMSE. In inverse mode, we additionally
calculate the precision of the estimated model parameters using
the standard deviation of the parameters estimated by EP-PINNs
in these 5 different runs.
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FIGURE 2 | Network architectures and training schemes for EP-PINNs used in this study. Neurons are represented by σ . In forward simulations only network

parameters θ were estimated, whereas in the inverse setting one or more EP parameters (λ) were also calculated. (A) Architecture used in all forward simulations and

all inverse simulations (1D and 2D) with homogeneous EP parameters. (B) Architecture used in all 2D forward simulations and all inverse simulations where D was a

spatially-varying field. (C) Used training schemes. 1 was used in in silico 1D problems, whereas training scheme 2 was used in 2D problems and for optical mapping

experimental data. The number of NN neurons and layers varied across different experiments, as did the learning rates (lr) and number of iterations (iter) in training

scheme 2. Further details about the architecture and parameterisation of the NNs and training schemes can be found in Supplementary Table 2.

3.3. Forward Solution of EP Models
3.3.1. 1D Cable Geometry
We assessed the accuracy of EP-PINNs when solving the
monodomain equation with the Aliev-Panfilov ionic model
(forward problem) in the 20-cm cable during 70 TU
(corresponding to 903 ms). We divided the GT data from
the FD solver, VGT , into test and training datasets using a
90–10% split. This corresponds to 140 randomly chosen points
across the temporal and spatial domains for training EP-PINNs
and 1,260 points for testing. As for inverse 1D problems, EP-
PINNs were implemented in this instance using architecture A
and training scheme 1 (see Supplementary Table 2).

We used two different training setups:

1. using only in silico experimental VGT measurements as GT, as
in Equation (6).

2. using in silico experimental points for VGT and WGT in
the loss function, by adding an extra term: LWGT =
1
N

∑N
i=1(W(xi, ti)−WGTi)

2 to Equation (5).

Setup 1 more closely resembles an experimental setup, as the
latent variableWGT is not usually measurable.

To gauge whether EP-PINNs performance depended on
model parameter choice, we used EP-PINNs on GT data

synthesised with two different sets of model parameters, as

detailed in Supplementary Table 1.
We additionally evaluated the performance of EP-PINNs in in

silico data corrupted by noise. For this, we added to VGT zero-

mean Gaussian noise with standard deviations of 0.05, 0.10, 0.50

or 1.00 AU (with 1 AU being the approximate amplitude of an
AP).

We also tested the performance of EP-PINNs in the presence

of a reduced number of training data points. For this, we

provided the network with VGT at 1× 104, 5× 103, 1× 103

or 100 random training points within the 1D space-time
domain (compared to 1.40×107 in usual conditions). We used
architecture A with training scheme 1 in all 1D problems (see
Supplementary Table 2).
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3.3.2. 2D Rectangular Geometry
We solved the forward problem in 2D, using the Aliev-Panfilov
model in an isotropic and homogeneous 10-cm side square
over 70 TU. We used 1.4× 105 randomly chosen data points
(across the temporal and spatial domains) from the FD solver
for the training of EP-PINNs (corresponding to 20% of the total
generated points) and reserved the remaining 5.6× 105 points
to assess EP-PINNs’ performance. Simulations were carried out
in three scenarios: planar wave (Figure 1a), centrifugal wave,
emanating from point-like excitation in a corner (Figure 1b) and
a spiral wave (Figure 1c). Here and in the equivalent inverse
setup, EP-PINNs were implemented using architecture A and
training scheme 2 (see Supplementary Table 2).

The point-like excitation and spiral wave scenarios were
also simulated in heterogeneous conditions, where a 2-mm side
square within the spatial domain was assigned a permanent
diffusion coefficient (Dlesion = 0.02 mm2/TU) lower than
that of background tissue (D0 = 0.1 mm2/TU). Architecture
B with training scheme 2 was used for all (forward and
inverse) heterogeneous problems (see Supplementary Table 2).
A sigmoid function was used in the NN dedicated to estimating
D(Ex, t) (NND in Figure 2B) to account for the fact that D(Ex, t)
follows a binomial distribution: D0 in healthy tissue and
Dlesion otherwise.

3.4. Inverse Estimation of EP Parameters
We withheld the value of one or more of the model
parameters from EP-PINNs, which were instead estimated by it.
These parameters were chosen for their comparatively simple
biophysical interpretation, known susceptibility to both disease
remodelling and pharmacological action, and the limited degree
of mathematical coupling between them. They were:

• a, which is related to the tissue excitation threshold (see
Equation 1);

• D, the scalar diffusion coefficient (proportional to the electrical
conductivity of the tissue, see Equation 1);

• b, which controls APD, see Equation 2.
• a and D simultaneously;
• b and D simultaneously.

3.4.1. Homogeneous 1D and 2D Geometries
We solved the inverse problem in the same (1D or 2D)
setup, architecture and training scheme as for the forward
problems and using a similar division of randomly chosen data
points for training and testing. We assumed that none of the
selected parameters varied across time or space (except for D,
in the heterogeneous problem described below) and used the
values listed in Supplementary Table 1 as GT values. In 1D,
we additionally investigated how EP parameter estimation was
affected by experimental noise. For this, Gaussian noise (σ =
0.05 or 0.10 AU) was added to the in silico data as described for
the forward mode in section 3.3.

In addition to EP-PINNs robustness in the presence of
experimental noise, we are also interested in its ability to
cope with model uncertainty. Therefore, to assess EP-PINNs’
ability to generalise beyond the model it is trained on, we

additionally tested it on APs generated on a much more complex
canine atrial EP model (8). These atrial APs are markedly
different from those of the Aliev Panfilov model the EP-
PINNs assumes, both in morphology and restitution properties.
The canine atrial model data were synthesised using Matlab
(https://models.cellml.org/workspace/47c) with central FD and
explicit forward Euler schemes (dt = 5µs and dx = 100µm),
with data saved at every spatial step and at every ms. Using this
model, we created GT data for left atrial cells at 3 stages of AF-
induced remodelling, which differed in APD. We tested, using
the 1D model in inverse mode, whether EP-PINNs could identify
the reduction in APD (detected as an increase in parameter b) in
left atrial APs caused by increasing amounts of AF remodelling.

3.4.2. Estimation of EP Parameter Heterogeneities
We assessed EP-PINNs’ ability to recognise spatial
heterogeneities in model parameters in 2D, as a test for EP-
PINNs potential for identifying spatially-varying lesions such
as fibrosis. For this, we used the same setup as in section 3.3.2,
with D0 = 0.1 mm2/TU reduced to Dlesion = 0.02 mm2/TU
in a similar square region. As before, we estimated D(Ex, t)
on its own and simultaneously with either the a or b global
model parameters.

3.5. Parameter Estimation Using Optical
Mapping Data
We tested EP-PINNs performance on in vitro datasets using
optical mapping data from neonatal ventricular rat myocyte
preparations stained with a voltage-sensitive dye, as described in
detail by Chowdhury et al. (27). Briefly, we used four time series
(movies) of optical mapping images (field of view: 4.1 × 0.1mm,
spatial resolution: 1.2 µm, temporal resolution: 2 ms, duration:
300 ms). In two of these image series, ionic channel modulating
drugs (E-4031 or nifedipine) had been administered at half
maximal inhibitory concentration (IC50): 772.2 nM for nifedipine
and 243.4 nM for E-4031. The other two temporal image series
consisted of matched control (baseline) preparations, to which
no drug had been given.

We manually selected two square regions of interest (ROIs)
with a side of 2.3 µm and with their centres 0.7 mm apart, in the
same image location for each time series. We spatially averaged
the optical signal over each ROI to obtain a signal trace across
time. From this signal, we manually selected two consecutive APs
and normalised the signal to the [0, 1] interval for consistency
with the Aliev-Panfilov model. To improve the signal to noise
ratio (SNR) of this trace, we applied a mean average filter twice,
aligned and averaged the two APs over time to obtain a single
higher-SNR AP. These pairs of post-processed APs were used as
inputs to 1D EP-PINNs in inverse mode, with b as the variable to
be estimated. All model parameters were unchanged from those
in Supplementary Table 1. We used EP-PINNs’ architecture A
with training scheme 2 to estimate b 10 times for each setting.
116-200 points were used for training EP-PINNs and 29–50 to
test it, as detailed in Supplementary Table 2.

We investigated in particular whether EP-PINNs could detect
the effect on APD of E-4031 and nifedipine, which, respectively,
block the hERG voltage-gated potassium channel (IKr current)
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and the L-type calcium channel (ICaL current). Whereas, E-
4031 will extend APD (and thus shorten b in the Aliev-Panfilov
model—see Equations 1, 2), nifedipine will have the opposite
effect, decreasing APD (increasing b).We compared EP-PINNs’ b
estimates for i) E-4031 vs. baseline and ii) nifedipine vs. baseline
and assessed, using a t-test, whether the administered drugs
significantly changed b values.

4. RESULTS

EP-PINNs successfully solved the monodomain equation
coupled with the Aliev-Panfilov model in 1D and 2D, including
in the presence of heterogeneities in D. In inverse mode, the
proposed setup could also successfully perform EP parameter
estimation from in silico and in vitro data, as described below.

4.1. Forward Solution of EP Models
4.1.1. 1D Cable Geometry
EP-PINNs accurately reproduced the features, morphology and
conduction properties of the APs generated by the Aliev-
Panfilov model (Figure 3A). We found that EP-PINNs could
accurately simulate APs even in the absence of GT values for
the latent variable W. Although the error was slightly increased
in the absence of WGT (RMSE = 6.0× 10−3 ± 2.0× 10−3 vs.
9.0× 10−3 ± 4.0× 10−3), the RMSE was still minimal (see top
left inset in Figure 3A) and the estimated V(Ex, t) were visually
indistinguishable fromGT traces in both cases. As a consequence,
in all other experiments described in this study, GT data for W
was not used to train EP-PINNs, whose training relied solely
on VGT .

We found that EP-PINNs could solve the model accurately
in the presence of even small numbers of VGT points for
training, with RMSE ≤ 2.5× 10−2 even when trained with
only 100 points (Figure 3A). As expected, increasing noise
in VGT led to increasing levels of error in V estimates
(Figure 3B), but EP-PINNs were able to converge in the presence
of Gaussian noise with a standard deviation below 0.5 AU
(approximately 0.5 times the amplitude of an AP). When using
a different set of parameters for the Aliev-Panfilov model (see
Supplementary Table 1), EP-PINNs’ accuracy was comparable,
suggesting that the obtained EP-PINNs performance is robust to
different biophysical model settings.

4.1.2. 2D Rectangular Geometry
In homogeneous conditions, EP-PINNs were also able to
reproduce AP propagation in 2D for planar, centrifugal and
spiral waves (see Figures 4a–c), with excellent accuracy (RMSE <

3.0× 10−2 throughout). In the presence of heterogeneities in
D, EP-PINNs were also able to accurately simulate APs with an
RMSE of 5.6× 10−3 ± 6.6× 10−4 for centrifugal waves, which
increased slightly to 2.7× 10−2 ± 4.3× 10−3 for spiral ones
(Figures 4a–c). In the spiral wave scenario, EP-PINNs found it
most difficult to reproduce V in the high wavefront curvature
regions close to the spiral wave tip.

Movies showing the propagation of APs in the 2D rectangular
domain across time (for both GT and EP-PINNs solvers) can be
seen in Supplementary Videos 1–5.

4.2. Inverse Estimation of EP Parameters
4.2.1. Homogeneous 1D and 2D Geometries
EP-PINNs were able to estimate global model parameters in 1D
the presence of varying degrees of noise, as detailed in Figure 5.
As for the forward problem (Figure 3), AP morphology and
main properties were well reproduced even in the presence
of large amounts of noise, with RMSE < 9.0× 10−3 overall.
Example plots of V(t) in inverse mode in 1D are shown in
Supplementary Figure 1.

When estimating only one model parameter, relative errors
(RE) did not exceed on average 27%, even in the presence
of noise. Estimates of b, which determines AP duration,
were the most accurate (|RE| < 3%), followed by D
(|RE| < 35%), which EP-PINNs tended to underestimate.
a estimation was considerably more difficult. Joint estimation
of two parameters led in general to less accurate parameter
estimates (Figure 5), with an error as high as 100% for
a when estimated jointly with D in the presence of noise
(see Figure 5). When performing simultaneous estimation
of two parameters, no evidence of coupling between them
was observed.

EP-PINNs were additionally able to perform robust parameter
estimation on synthetic experimental data generated by a
different EP model (8). When estimating b in APs generated
by a different atrial EP model, it correctly inferred that APD
is reduced (i.e., b is increased) for increasing degrees of AF
remodelling, as shown in Figure 6. Moreover, the main AP
features were well reproduced, with small discrepancies related to
the differences between the two models (Figure 6). Interestingly,
the solution proposed by EP-PINNs consistently shows a less
steep depolarisation than expected from either Aliev-Panfilov
model and the detailed canine model. This mismatch is likely
to be a consequence of the EP-PINNs’ adjustment to slightly
different AP morphologies from those in the Aliev-Panfilov
model in its loss function. This suggests that the cross-model
estimation of parameters related to excitability (e.g., a) may
not be as successful as parameters related to APD (such
as b).

Global parameter estimation in 2D was again successful,
for both unidirectional propagation and spiral wave
conditions, as demonstrated in Figure 7. As in 1D, V
was also correctly reproduced in the different analysed
conditions (Figures 7b–d), with RMSE < 2.3 × 10−2

throughout. Across all experiments, parameter estimation
and V reconstruction were most successful for planar wave
conditions followed by centrifugal waves and less accurate for
spiral waves, as shown in Figure 7a. The comparatively worse
performance of EP-PINNs in spiral wave conditions may be
caused by the spatial dependency of wave front curvature in
this setting.

Errors were largest when estimating two parameters
simultaneously, with EP-PINNs again struggling to estimate
a, especially when in conjunction with D (|RE|a < 100%).
Estimates of b were once again the most accurate (|RE|b < 8%)
and, as in 1D, EP-PINNs tended to underestimate D across
all settings and to underestimate all parameters in the spiral
wave scenario.
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FIGURE 3 | Effect of the number of sampled experimental points (A) and experimental noise (B) on EP-PINNs V estimates. The error in estimation is measured using

the root mean square error (RMSE, see Equation 7) in forward mode in 1D. Representative V (t) plots sampled at a random spatial location are shown as insets for

some of the probed conditions.

FIGURE 4 | EP-PINNs 2D forward solutions to the Aliev-Panfilov monodomain system for the same conditions as the GT data depicted in Figure 1. (a) Planar wave.

(b) Centrifugal wave. (c) Spiral wave. (d) Centrifugal wave in the presence of a square heterogeneity in D. (e) Spiral wave in the presence of a square heterogeneity in

D.

4.2.2. Estimation of EP Parameter Heterogeneities
EP-PINNs were able to estimate D on a pixel-by-pixel basis with

remarkable accuracy, as demonstrated in Figures 8c,d, accurately

identifying the lowD region.RMSED was consistently below 3.5×

10−2 (Figure 8e) and was lower for the centrifugal wave case than

the spiral wave one. As before, V was similarly well reproduced

(Figures 8a,b), especially in the centrifugal wave scenario (see
Figures 8b,d), with RMSE < 3.0 × 10−2. In the spiral wave
scenario, EP-PINNs found the estimation of D hardest near the

spiral tip (see Figure 8d), where the high wavefront curvature
may resemble the wavefront bending caused by low D regions.

Using architecture B, global estimation of a and b was also
possible in the presence of the heterogeneousD field, keeping the
same trends as in the 1D and 2D homogeneous cases (Figure 8e).
As before, no evidence of coupling between the simultaneously
estimated parameters was found. In detail:

• b was very accurately estimated (|RE| < 10%), whereas a
estimates had a larger error (|RE| < 100%);
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FIGURE 5 | Error in global EP parameter estimates by EP-PINNs in the inverse

setting in 1D in the presence of different amounts of experimental noise. We

show the relative error for a, b and D, when estimated separately and in pairs.

• estimating a and b simultaneously with the D field led to small
decreases in accuracy overall;

• estimatingV andD in the spiral wave setting wasmore difficult
than in the presence of a centrifugal wave.

4.3. Parameter Estimation using Optical
Mapping Data
Using optical mapping signals, EP-PINNs were able to
accurately reproduce experimental APs and identify the
actions of nifedipine and E-4031, correctly estimating that they,
respectively, reduce and increase APD (Figure 9). The reduction
in APD caused by nifedipine, an ICaL blocker, was detected by
EP-PINNs as a significant increase in b in the Aliev-Panfilov
model [1b = (2.7±0.9)×10−2, p < 10−5]. The E-4031-induced
increase in APD was more subtle [1b = (−2.1 ± 3.0) × 10−2]
and non-significant (p = 0.38). The reduced effect of E-4031
in these data is consistent with the modest role IKr , the current
blocked by E-4031, is expected to play in rodent APs (32).

5. DISCUSSION

We present EP-PINNs, a successful framework to estimate EP
parameters from measurements of trans-membrane potential
V . We demonstrate EP-PINNs ability to accurately reproduce
AP propagation in 1D and 2D in the presence of very
sparse experimental measurements, experimental noise and
model uncertainty. EP-PINNs can also estimate, for 1D and
2D in silico and in vitro data, global markers of APD,
excitation threshold and/or conductivity (diffusion coefficient,
D). We additionally show that EP-PINNs are further capable of
identifying heterogeneities in EP parameters, such as D, even in
arrhythmic conditions, showcasing their potential for clinically
useful applications.

5.1. Forward Solution of EP Models
EP-PINNs offer a flexible and easy to implement framework
for parameter estimation in EP. Sahli-Costabal et al. (22) and
Grandits et al. (23) had already demonstrated PINNs’ potential
in cardiac EP by estimating high-resolution left atrial AT and
CV maps in sinus rhythm conditions using a simple activation-
only biophysical model. We extend PINNs’ applications in EP
by applying them to a more complex biophysical model, the
monodomain Aliev-Panfilov model (7), which also captures
restitution properties through the inclusion of a latent (non-
measurable) variable, W. For the first time, we use a PINNs
framework for the simulation of arrhythmic conditions, such as
spiral waves, and for the estimation of parameters unrelated to
the AT of V .

Importantly, we show EP-PINNs’ are able to reproduce APs
and perform parameter estimation in the absence of any data
forW, which is not available experimentally. This bodes well for
the deployment of PINNs for even more complex EP models,
which use a higher number of latent variables to model individual
ionic channels. This possibility is also supported by the work of
Yazdani et al. (33), who successfully used PINNs for parameter
estimation across several biological systems described by large
sets of coupled ODEs.

We demonstrate PINNs’ ability to describe AP dynamics
in several circumstances. In 1D, EP-PINNs were able to
reproduce APs even in the presence of very reduced amounts
of experimental data (Figure 3A) and large amounts of
noise (Figure 3B). PINNs’ incorporation of explicit biophysical
equations in the NN’s loss function acts as an effective regulariser
in EP problems, as demonstrated before in many other physical
systems (17, 18). We note that these inherent regularisation
properties allow PINNs to be trained with much lower amounts
of training data than conventional NNs. The main drawback is
the need for a comparatively time-intensive training on a case-
by-case basis, compared to the global training usually employed
with supervised NNs.

In 2D, we were able to accurately replicate AP dynamics
for planar, centrifugal and planar waves, even in the presence
of heterogeneities in the diffusion coefficient (see Figures 4, 8).
We found that a more sophisticated training scheme and, for
spiral waves, an increased NN capacity (5 layers of 64 neurons
vs. 4 layers of 32 neurons, see Supplementary Table 2) were
necessary for convergence in these large and complex problems.
This more complex setup could, of course, have been used to
solve the simpler 1D problems, through a trade-off between
computational time and the convenience of a one-size-fits-all
EP-PINNs approach.

5.2. Inverse Estimation of EP Parameters
It is in inverse mode, when estimating model properties from
sparse measurements of V , that the EP-PINNs framework
showcases its usefulness. Parameter estimation is an important
topic in EP, as it is essential for both the personalisation of models
and for the understanding of the effect of pathology and drugs on
APs. Although parameter estimation in EP has been extensively
discussed as a means of reducing the uncertainty associated with
current biophysical models (34), NNs had not yet been used
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FIGURE 6 | 1D inverse EP-PINNs solution for a detailed canine left atrial model in the conditions of: (A) no remodelling. (B) moderate AF remodelling. (C) severe AF

remodelling. Representative V (t) plots are shown throughout, accompanied by the models 90% APD and EP-PINNS estimates for b, a parameter inversely

proportional to APD.

FIGURE 7 | EP-PINNs inverse solution in homogeneous conditions in 2D. (a) Relative error for global estimates of: a and D and b and D, when estimated separately

or simultaneously. (b–d) Corresponding representative V maps for: planar wave (b), centrifugal wave (c), and spiral wave (d). Compare (b–d) to the corresponding GT

in Figures 1a-c and the forward solutions in Figures 4a–c.

for dedicated model parameter estimation in EP. This contrasts
with the more common use of NNs as efficient solvers of EP
systems (in a similar fashion to the EP-PINNs forward mode in
the current study) (15, 35, 36).

Using EP-PINNs, we were able to estimate, with different
degrees of accuracy, three different biophysical parameters,
each controlling, in an almost uncoupled manner, different
observable properties of the system: APD (through b), excitability
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FIGURE 8 | EP-PINNs 2D inverse solution in the presence of heterogeneities in D. Maps showing representative V and D estimates for: (a,c) centrifugal wave and

(b,d) spiral wave. (e) Error for global estimates of a and b and RMSE for estimates of D across the 2D domain, for all estimated parameter combinations. Compare

(a,b) to the corresponding GT in Figures 1d,e and the forward solutions in Figures 4d,e.

FIGURE 9 | 1D inverse EP-PINNs solution for experimental optical mapping data, in the presence of (A) ICaL channel blocker nifedipine and (B) IKr channel blocker

E-4031. (1b refers to the change in model parameter b in the presence of the drug when compared to the baseline value. Each AP was acquired in separate datasets

and juxtaposed in the figure to allow visual comparisons.

(through a) and conduction velocity (through D). In both
1D and 2D (homogeneous and heterogeneous) problems, the
network was highly successful at estimating b, but struggled
with a, especially when estimating it in tandem with D. This is
likely to reflect a dependency between EP-PINNs’ inverse mode
effectiveness and the solution type that is probed experimentally.
Indeed, when compared to b, the experimental inputs to the
network (VGT(Ex, t)), depend little on a providing the initial
stimulus is supra-threshold. An exception could have been
the spiral wave scenario, whose properties (e.g., the distance
between spiral arms) depend strongly on model parameters
such as a. Model parameters are more strongly coupled in
the properties of spiral solutions, however, explaining the

consistently lower accuracy of EP-PINNs’ estimates in this
scenario (Figures 7a,d). Parameter estimation in the spiral wave
scenario may be improved when EP-PINNs are trained in longer
time series, in which the spiral wave tip samples more of the
spatial domain.

These issues underlie the difficulties of finding a single
experimental design that allows for simultaneous accurate
estimation of several EP parameters. A solution for this problem
may be the training of PINNs using data from the same
system acquired in different experimental conditions, perhaps by
training separate NNs in parallel with a combined loss function,
in an analogous manner to architecture B in this study (see
Figure 2).
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EP-PINNs were additionally able to identify heterogeneities
in D across the 2D domain (see Figure 8), by estimating D in
a separate parallel NN which shared terms of the loss function
(Ldata, see Equation 5) with the main NN. Characterising
heterogeneities in EP parameters from electrical measurements
is an interesting problem from a clinical point of view, as
arrhythmias such as AF are often accompanied by heterogeneous
changes in EP properties. Of these, regions of dense fibrosis
[often modelled as areas with a reduced D (10)] are a promising
candidate for personalised ablation sites (37), whichmay increase
the overall efficacy of these procedures. EP-PINNs are thus well
placed to help locate these putative ablation sites by identifying
spatial heterogeneities in EP parameters such as D.

The inputs to the current EP-PINNs implementation, V(Ex, t)
are not, however, measurable clinically. Future work will
modify EP-PINNs to instead perform parameter inference
from extracellular electrical potentials, φe, which are regularly
measured during clinical procedures using contact electrodes.
φe can be interpreted as a weighted spatial convolution of the
E∇ .(D E∇V) term in Equation (2) (38, 39), making the identification
of localised EP changes more difficult. To take this into account,
EP-PINNs designed for φe analysis may benefit from amove away
from the current fully-connected architecture to incorporate, for
example, convolutional layers.

5.3. Parameter Estimation Using Optical
Mapping Data
An important point for future clinical applications of EP-
PINNs is its ability to generalise beyond the details of the
setup it is trained on. We showed that the proposed EP-PINNs
implementation is model-agnostic, as it was able to perform
robust parameter inference on in silico data generated by a much
more complex atrial EP model (8) than the 2-variable ventricular
one used in its loss function. In particular, EP-PINNs were able to
correctly identify the decrease in APD (manifest as an increase
in b) that is associated with increasing degrees of AF-induced
remodelling in this model (see Figure 6).

In contrast to most previous PINN studies (17, 22, 28, 33,
40), we complemented the in silico studies with an assessment
of the EP-PINNs performance on experimental biological data.
Despite requiring a proportionally higher amount of training
data than in silico experiments, EP-PINNs were able to cope well
with the noise and artefacts unavoidably present in experimental
data to identify the effect on APD of two different drugs: an
IKr blocker and an ICaL blocker. As for the data generated by
a different mathematical model (Figure 6), EP-PINNs coped
well with differences between the experimental data and the
Aliev-Panfilov model, namely in resting membrane potential (see
Figure 9). This ability to generalise well to data with different
characteristics could be due to the use of PDE as a soft constraint
(a term in the loss function) in the EP-PINNs framework, as well
as the lack of assumptions about the distributions from which
data come from.

As demonstrated for the in silico tests, the EP-PINNs
framework can easily be extended to simultaneously infer
the effect of drugs on more than one EP parameter,

which may be useful for the characterisation and safety
assessments of anti-arrhythmic drugs. These applications
may further benefit from the training of EP-PINNs on
more complex biophysical models, to obtain a more fine-
grained characterisation of potential pharmacological (or
pathological) effects.

5.4. Limitations and Future Plans
The current study aims to demonstrate the potential of
PINNs within EP, as an initial necessary step towards
clinical applications of this method. As such, we only
trained EP-PINNs using one comparatively simple EP
model, in 1D and 2D scenarios and for the estimation of
a small number of EP parameters. We additionally did not
test EP-PINNs in the chaotic or pseudo-chaotic scenarios
of spiral wave break-up (9), which may be relevant for
some arrhythmias.

Generalisations of the proposed framework to 2D/3D
geometries representative of cardiac chambers, anisotropic
conditions and more detailed EP biophysical models
can be achieved by further increasing the capacity of
the deployed EP-PINNs, with a concurrent increase in
computational resources. However, promising and less
resource-intensive applications for EP-PINNs may be the
characterisation of pharmacological effects on AP or the
identification of heterogeneities in EP properties from
EGM signals.
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