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A B S T R A C T

To ensure that after-treatment systems (ATS) reduce emissions to the levels for which they were designed, it
is essential that the ATS control can rely on the feedback signals from the sensors and actuators that are part
of the system. Knowing that the amount of ammonia injected into the catalyst governs the Nitrogen oxides
(NOx) reduction, this work addresses the impact of the ammonia injection failure in the Selective Catalytic
Reduction (SCR) on the exhaust emissions and describes a model-based fault diagnosis strategy. The proposed
approach is based on an artificial neural network (ANN) and a sensor signal analysis (SSA) model of the
catalyst, as well as an observer to merge the models and accurately estimate the emissions. The proposed
diagnostic strategy is based on the comparison of the observed NOx and ammonia (NH3) emissions of the
actual system with those expected in the system without ammonia injection failure. Experimental results show
that the proposed strategy can detect failures in ammonia injection above 10%. Once the degradation level
is detected, a correction strategy is applied by increasing the ammonia injector opening time according to
the estimated degradation to increase the injected ammonia up to levels similar to faultless conditions. When
the injection failure was corrected, the proposed strategy was able to mitigate the impact on NOx emissions,
reducing them by 23.33% and approaching the NOx levels without injection failure (5.35% increase).
1. Introduction

Due to the impact of the internal combustion engine (ICE) exhaust
emission on nature [1] and human health [2], the institutional and
governmental appeal has grown [3] and the intrinsic production of
Nitrogen oxides (NOx) emissions in the compression ignition combus-
tion process, has become an important issue for diesel engines [4].
In this sense, emission standards have led ICE to be modified and
significantly improved to increase efficiency and achieve ecological
goals [5]. However, in order to improve ICE, new and complex systems
were added, as well as sensors and control strategies were developed,
consequently increasing the possibility of failures [6,7].

One of the systems added to achieve the emission limit objectives
is the after-treatment systems (ATS). Regarding the NOx emissions, the
most widely used is the Selective Catalytic Reduction (SCR), which is
capable of reducing emissions by up to 95% through ammonia injection
into the catalyst [8,9].

However, for the development of a reliable strategy to reduce NOx
emissions, it is not only necessary to have a robust and efficient strategy
but also to ensure that the actuators and sensors that feedback the
information to the electronic control unit (ECU) work properly [10].
Therefore, fault detection and diagnosis in the peripheral systems of
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the ATS are of great importance and have a considerable impact on
engine performance [11,12].

An example is a failure during the ammonia injector’s life, where
ammonia deposits usually appear, and the relation between the injector
actuation and the ammonia flow can change with time as the engine
ages [13,14]. As an example, Fig. 1 shows how an increase in the
failure level of the ammonia injector leads to higher NOx emissions
downstream of the SCR.

Understanding the importance of the subject, several authors have
addressed techniques and strategies to monitor system failures over the
past few years.

Vignesh and Ashok [14] did a review about the state-of-the-art
of the SCR catalyst for De-NOx strategy, in the section dealing with
failures, when it comes to the control unit faults, authors point out
sensor measurement errors as the main failure for SCR control. When
related to the reductant supply unit, the faults are due to deviations in
ammonia injection, failure of the actuators, and progressive deposition
of ammonia blocking the passage nozzle.

Mora et al. [15] proposed an On-Board Diagnostic (OBD) based
strategy to detect catalyst ageing and ammonia injection failures. The
fault approach uses an estimator that integrates a 400-seconds time
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Nomenclature

Abbreviations

ANN Artificial Neural Network
ASC Ammonia Slip Catalyst
ATS After-Treatment Systems
AWS Accumulation Windows Size
ECU Electronic Control Unit
EGR Exhaust Gas Recirculation
EKF Extended Kalman Filter
FTIR Fourier-Transform Infrared Spectroscopy
ICE Internal Combustion Engine
IF Injection Factor
LNT Lean NOx Trap
LS Least Square
NEDC European Driving Cycle
OBD On-Board Diagnostics
RLS Road Load Simulation
RTS Standardized Random Test
SCR Selective Catalytic Reduction
SCRF Selective Catalytic Reduction Filter
SSA Sensor Signal Analysis
VGT Variable Geometry Turbine
WLTC Worldwide harmonized Light vehicles Test

Cycle

Symbols

KCS NOx sensor cross sensitivity
ṁexh Exhaust mass flow
NH3 Ammonia
NH3,inj Ammonia injected into the SCR
NOx Nitrogen oxides
TSCR SCR catalyst temperature sensor
𝜂NOx SCR NOx conversion efficiency

Superscripts

𝑑𝑠 Downstream
𝑢𝑠 Upstream
𝑡ℎ𝑟 Threshold

horizon and compares the NOx and ammonia (NH3) measured and
estimated. As a result, the methodology proved to be robust and can
be used as feedback to improve control accuracy.

Canova et al. [16] created a model-based fault detection for a
lean NOx trap (LNT) after-treatment system to detect and isolate the
failures in the sensors and LNT parameters. The approach was capable
of robustly and reliably detect critical faults such as sulphur poisoning,
deactivation of catalyst storage due to thermal ageing, and sensor
failures. Finally, it showed that the methodology can be extended to
SCR and DPF systems.

Arsie et al. [17] created a virtual NOx sensor via an artificial neural
network to estimate NOx emissions in a diesel engine and simulated a
system failure that would affect the emission prediction, which can be
accessed through the proposed least square-based (LS-based) algorithm.
When submitted to a simulated failure, the LS-based system was able to
estimate emissions with high accuracy, achieving a relative integral er-
ror index of 0.347% in a Hot New European Driving Cycle (Hot-NEDC)
transient cycle.

Wang et al. [18] created a fault detection and fault tolerant con-
trol of the urea injection system, the proposed strategy uses the line
2

Fig. 1. Increase in total NOx emissions downstream of the SCR catalyst with the
increased failure of ammonia injection in a Worldwide harmonized Light vehicles Test
Cycle (WLTC) cycle (i.e., the data was acquired experimentally simulating an error in
the ammonia injection, for each case the % is in relation to the nominal amount of
ammonia demanded by the system).

pressure sensor feedback combined with a Kalman filter to estimate the
actual effective area of the urea injector orifice, thus the ratio of current
and expected effective area is used to compensate the line pressure. As
a result, the proposed methodology was able to detect and correct an
injection failure when the dosage falls below 80%.

Failures in feedback signals can compromise the correct behaviour
of the entire ATS, in the case of the SCR catalyst, the SCR control unit
is responsible for the supply of the reducing agent (ammonia), further-
more, detecting ammonia under or overdosage is a current requirement
of European OBD regulations [14]. A failure in the feedback signal from
the sensors and/or actuators affects the ammonia dosage, generating a
supply rate different from that required, leading to an inefficient NOx
conversion rate. The impact on ammonia supply is highly damaging as
it reduces the performance of harmful gases converted before they are
released into the environment.

Therefore, this work aims to contribute with a novel methodology
to detect ammonia injection failure in the SCR catalyst and correct it,
avoiding a reduction in the catalyst’s conversion efficiency rate and,
consequently, an increase in NOx and NH3 emissions. The approach
combined control-oriented models and data fusion techniques, such
as the extended Kalman filter (EKF), to accurately predict NOx and
NH3 emissions, even under ammonia injection fault conditions. The
emissions estimated by the EKF observer were compared to those ex-
pected if the ATS was working properly, and through a two-dimensional
statistical model, it was possible to determine the level of failure in the
ammonia injection and correct it for standard operating levels.

The content of the article is organized as follows. The experimental
apparatus and the performed tests are presented in Section 2, ‘‘Experi-
mental set-up’’. Followed by Section 3, ‘Methodology’, which presents
the problem addressed, the feasibility of detecting the ammonia injec-
tion failure through emissions using model-based fault diagnosis, as
well as the statistical methods used and the proposed methodology. The
discussion of the results is presented in Section 4. Lastly, in Section 5,
the conclusions can be found.

2. Experimental set-up

For the development of this work, the engine used was a Euro 6c tur-
bocharged four-cylinder light-duty engine, with high-pressure exhaust
gas recirculation (HP-EGR), a variable geometry turbine (VGT), and a
common rail direct injection system. Additional engine information is

shown in Table 1.
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Table 1
Engine characteristics.

Displaced volume 1499 cm3

Bore × Stroke 75 × 84.8 mm
Compression ratio 16.4:1
Maximum torque 300 N m @ 1750 rpm
Maximum power 96 kW @ 3750 rpm
Emissions standard Euro 6c

Table 2
SCRF catalyst parameters.

Diameter × length 0.07 × 0.3 m
Cell density 600 cpsi
Wall thickness 0.8 mm
SCR storage capacity 80 mol/m3

Surface coverage 0.037431 [–]
Critical surface coverage 0.1995 [–]

Fig. 2. After-treatment system set-up.

The engine was coupled to a Horiba DYNAS3 asynchronous dy-
namometer and controlled by Horiba’s integrated STARS automation
system, where system settings and monitoring were accessed. Through
the road load simulation (RLS) module, it was possible to implement
and perform the driving cycles used to develop this work.

As the ammonia injection needed to be controlled according to
the proposed strategy, created a bypass signal in the INTECRIO plat-
form and built-in the dSpace MicroAutobox system, connected via an
ETK-ECU interface, the ECU calibration was done through the INCA
platform. The main configuration consisted of a Microautobox II real-
time system, ETAS ES910 prototyping and interface module, and an
open electronic control unit (ECU).

Regarding the ATS, which consists of a system that integrates SCR
with a particle filter (SCRF), Table 2 presents additional catalyst infor-
mation.

In addition, several sensors were placed in the exhaust line, such
as NOx, NH3 and temperature sensors. As well as a Fourier Transform
Infrared Spectroscopy (FTIR) gas analyser to compare with the sensors’
measurement. Horiba fuel flow meter and others conventional sensors
(mass airflow, boost pressure, etc.) are also part of the experimental
set-up.

The complete experimental set-up can be seen in Fig. 2, as well as a
more detailed description of the emission and temperature equipment
are shown in Table 3.

Regarding the tests performed, three sets of tests were used. First,
tests were carried out with constant failure in the ammonia injection.
Different Worldwide harmonized Light vehicles Test Cycle (WLTC)
3

Table 3
Equipment specifications.

Equipment Measurement

FTIR NOx 0–2000 ppm ±1.0% of full scale
NH3 0–1100 ppm ±1.0% of full scale

NOx sensor 0–1860 ppm ±15 ppm @0–1000 ppm
±1.5% @≤1000 ppm

NH3 sensor 0–1500 ppm ±1.5% of full scale
Thermocouple −270–1260 ◦C ±2.2% ◦C - Type K

cycles were performed with 3 levels of injection factor (I.F.), 25%,
50% and 75% of the standard injection, which are, respectively, I.F.
= 0.25, 0.50 and 0.75, and with the standard injection (I.F. = 1.00),
these injection failures are artificially produced, bypassing the nominal
value of the ammonia injection multiplied by the I.F., thus changing
the injector opening time. Note that, for I.F. = 0.75, the amount of
ammonia injected is approximately 75% of what is required. However,
the signal feedback to the ECU is the integral value of the injection. The
same strategy has been used to simulate other failure levels. Thus, the
I.F. refers to the level of the ammonia failure invisible to the control
strategy.

Secondly, several WLTC cycles with different I.F. were carried out
in sequence, to validate the proposed methodology.

Finally, a set of tests were performed in a merged cycle, WLTC
plus Standardized Random Test (RTS), as seen in Fig. 3, and without
correction of the injection failure. In cases where injection failure
is considered, a constant degradation rate was applied to check the
capability of the proposed strategy of tracking the injection fault and
applying the proper correction.

3. Methodology

3.1. Proposed strategy approach

The proposed strategy is based on the simple observation that if
there is any failure in ammonia injection, this event must have an
impact on the exhaust emissions [19].

As can be seen in Fig. 4, with the increase of the error in the
ammonia injection, the NH3 slip is reduced since all the ammonia
injected is absorbed and used in the reduction reaction with NOx
entering the catalyst (upper plot). Otherwise, NOx slip remains constant
for errors below 50% (I.F. = [0.5; 0.75; 1.00]) of the nominal injection
(bottom plot). This is related to two main facts: first, due to the strong
NOx restrictions, the SCR catalyst is forced to work with high NOx
conversion rates, which usually leads to some level of NH3 slip [20].
To deal with the NH3 slip appearing, even when the system works
in design conditions, engines are usually equipped with an Ammonia
Slip Catalyst (ASC) [21]. Second, to reduce NOx, the ammonia injected
must be previously absorbed and stored by the catalyst, so the SCR is
a dynamic system with complex relations between ammonia injection
and emissions that makes difficult its control without any slip in
changing conditions such as the WLTC [22].

These concepts are important, since the strategy to detect the level
of ammonia injection failure is based on the comparison of NOx and
NH3 accumulated over a predetermined period, between cycles with
and without ammonia injection failure. Thus, allowing access and
quantifying errors between these situations.

Once it was checked that the failure in the ammonia injection could
be observed through the exhaust emissions, the following steps were
taken in order to verify the viability of the proposed strategy.

• During the engine operation, the NOx emissions before the SCR
are accumulated until reaching a calibrated value. The time
needed to reach these NOx emissions will define a window where
the analysis will be done. Contrary to the strategy adopted by
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Fig. 3. Merged driving cycle WLTC+RTS. Cycle used to validate the proposed methodology.
Fig. 4. Slip of NH3 (upper plot) and NOx (bottom plot) for different levels of ammonia
injection failure.

Mora et al. [15], instead of accumulating in a fixed time-window,
NOx emissions before the catalyst are used as a reference, then
the considered window is adapted to the operating conditions.
The NOx threshold should be calibrated to allow injection fault
detection, considering aspects such as the impact of injection fault
on NOx reduction efficiency, modelling, and sensor errors. The
accumulation windows size number i of a given test (AWSi) will
be determined by the time needed by the NOx emissions up-
stream the SCR to reach a given mass according to the following
expression (Eq. (1)):

AWSi
∑

n=1
NOus

x,n𝛿t = NOup,thr
x , (1)

where, NOus
x [mg/s] is the NOx mass flow before the catalyst,

which is integrated from the start of the window i (n=1) until the
threshold value (NOup,thr

x ) is reached to define the window size
AWSi.
A new window is started once a window finishes or after a
calibrated time, in the case at hand 300 s, so depending on
the conditions, several windows can be run in parallel, with a
maximum of 4 for the current work. Fig. 5 shows an example for
two consecutive WLTCs with NOup,thr

x = 20 g. Note that despite
the first two windows starting with 300 s difference, they both
finish around second 1600 s due to the increase in NOx emissions
as the driving cycle evolves.
4

Fig. 5. Different starting points for the accumulation window of NOx upstream of the
SCR catalyst.

• The AWS found in the previous step is used to integrate the NOx
(Eq. (2)) and NH3 (Eq. (3)) emissions downstream the SCR.

Accumulated NOds
x,i =

AWSi
∑

n=1
NOds

x,n𝛿t, (2)

Accumulated NHds
3,i =

AWSi
∑

n=1
NHds

3,n𝛿t, (3)

Fig. 6 shows the evolution of the NOx upstream and downstream
SCR (top and middle plots) and NH3 downstream the SCR (bot-
tom plots) with the corresponding accumulated values for the first
window. Note how downstream emissions are integrated during
the window and that when the integral of the NOx upstream
reaches the threshold (in the case at hand 20 g), the window is
restarted.

• The previous process is performed for 3 different levels of am-
monia injection failure, 25 (I.F. = 0.25), 50 (I.F. = 0.50) and 75
(I.F. = 0.75) percent of the nominal injection, and the nominal
injection (I.F. = 1.00). In this way, it is possible to create a
distribution of the NOx and NH3 accumulated emissions in the
considered windows for every injection failure.

• The same steps are performed for different values of the threshold
for NOx emissions upstream SCR (NOup,thr

x ), in order to calibrate
the value that allows the separation between the distributions
for the different injection faults. Fig. 7 lower plot shows the
locations in the NOx-NH3 downstream SCR plane of the results
obtained with different NOx upstream thresholds. Upper plots
show the fit to a normal distribution of the results. Note that a
larger accumulation window is required for distributions to be
more separate, consequently requiring a longer time to detect the
injection failure.
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Fig. 6. Emissions evolution of 5 consecutive WLTC cycles. Upper plot: SCR NOx upstream responsible for the definition of the AWS, the windows have different accumulation
times, but the same amount of total NOx (20 g). Middle and bottom plot: signals used to calibrate the NOx and NH3 distribution.
Fig. 7. Normal distribution of NOx and NH3 slip for different levels of ammonia
injection failure and different accumulation windows size (12, 24 and 30 g - upper
plots) using the FTIR emissions signal. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

With the distribution, it was possible to verify that, in terms of NH3,
errors higher than 50% of the nominal injection are indistinguishable
(grey and green distributions). With higher injection faults than 50%,
the amount of ammonia available is so low that all the injected ammo-
nia reacts with the NOx entering the catalyst, being the NH3 slip very
small.

Regarding NOx, it is not possible to differentiate the nominal injec-
tion from errors lower than 25% (yellow and blue distributions). Even
for this level of error the catalyst operates with high efficiency rates.

The proposed methodology was also compared when it uses a fixed
time window to reset the accumulation window, instead of SCR NOx
upstream, as proposed by Mora et al. [15], the distribution results can
be seen in Fig. 8.

Using a fixed time window, it was not possible to separate the
error levels in the ammonia injection failure. The use of a fixed time
window has several drawbacks, as also commented by Wang et al.
[18], mainly because depending on where the time window starts,
5

Fig. 8. Normal distribution of NOx and NH3 slip for different levels of ammonia
injection failure and different accumulation windows size (1400, 1600 and 1800 s
- upper plots) using the FTIR emissions signal.

there will be a big difference in the accumulated values of NOx and
NH3 downstream of the catalyst, this difference makes the distribution
very broad, since the use of AWS fixed does not create any linkage of
pollutants to a physical parameter. The comparison of duration and
number of windows between fixed and variable AWS as can be seen
in Fig. 9.

As the cycle evolves, the AWS duration decreases as the cycle goes
from the low load zone towards the high/very high load zone and
starts to grow when AWS starts the next cycle (the evolution of the
cycles is presented in Fig. 6). This approach allows the use of variable
time windows, but constant in NOx at the catalyst inlet, consequently
in areas where NOx production is low, there is more time for data
collection, allowing enough information to detect the level ammonia
injection failure.

3.2. Observer and model design

The proposed strategy for ammonia injection failure is based on the
comparison of the observed versus the expected emissions in a given
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Fig. 9. Comparison of duration and number of windows for fixed and variable
accumulation window size. Dark dots: fixed AWS. Red dots: variable AWS (proposed
approach). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

time window. One may think that if a model with a suitable accuracy
is calibrated to represent emissions of the system without failure and
an observer of the actual NOx and NH3 emissions are available, the
system can be diagnosed from the deviations between the observed and
modelled values without fault.

From these assumptions, models for NOx and NH3 emissions have
been developed based on the following hypothesis:

(i) In order to maximize the NOx conversion efficiency, current
strategies keep the ammonia coverage ratio of the catalyst
(i.e., the ratio of the amount of ammonia absorbed by the
catalyst to the maximum absorption capacity [23]) at the highest
possible level without excessive NH3 slip [24]. Therefore, NOx
dynamics after the catalyst is mainly dependent on NOx dynam-
ics before catalyst, since the SCR is always working with high
NOx conversion efficiency rates [25].

(ii) The NH3 emissions dynamics are considerably slower than NOx
[25,26]. Since the ammonia coverage varies slowly, the NH3 slip
that depends on it will also vary slowly.

(iii) NOx sensors working properly, being the only deviation be-
tween the actual and measured NOx value due to the impact of
cross-sensitivity to ammonia on the sensor reading.

3.3. Artificial neural network model

The assumptions (i) and (ii) allow to model the catalyst as a dy-
namic input–output system, since it is possible to represent the be-
haviour of the system through the relation of the input and output
data [27]. Due to hypothesis (i), i.e., the NOx dynamics after the SCR
are dominated by the NOx signal upstream the SCR, a two-layer feed-
forward artificial neural network (ANN) was developed to model NOx.
The ANN has four input and one output signal, with one hidden and one
output layer. A set of twenty different tests were used to develop the
ANN, covering engine maps, steady-state conditions and driving cycles.
The ANN was developed as follows:

• Data assembly definition. NOx upstream of the SCR (NOus
x [ppm]),

ammonia injected (NHinj
3 [mg/s]), exhaust gas mass flow

(mexh [kg/h]) and SCR catalyst temperature (TSCR [◦C]) were set
as inputs, whilst NOx slip (NOx,ANN [mg/s]) as output.

• ANN structure. The hidden layer of ANN has ten hidden neurons
and uses a sigmoid transfer function, while the output layer has
one neuron and linear transfer function.
6

• ANN training and validation. The ANN algorithm training uses the
Levenberg–Marquardt back-propagation approach (least squares
analysis widely used to train and solve feed-forward ANN [28]).
The training process recursively adjusts the bias and weight of the
ANN to minimize a given function to its local minimum. For all
training input and output variables, the error was calculated as:

J(b,w) = 1
2

N
∑

n=1

M
∑

m=1
(yn,m − ŷn,m)2, (4)

where b is the bias and w the weight vector; N the inputs; M the
outputs; y the target vector and ŷ the output vector.

The dataset used in each stage of the ANN development can be seen
in Fig. 10.

Through the ANN output (NOx slip), it is possible to estimate the
NH3 slip using the NOx sensor signal downstream SCR [29],

NH3 =
NOx,sensor − NOx

KCS
, (5)

where NOx,sensor [ppm] is the NOx sensor signal concentration,
NOx [ppm] and NH3 [ppm] are the actual NOx and NH3 concentrations
measured by FTIR, and KCS [−] is the cross-sensitivity factor, which
can be modelled as a factor dependent on the NH3 concentration. To
estimate the KCS, a simple model developed by Pla et al. [30] was used:

KCS = 1.1286 − 0.5992 exp(−8.4237 × NH3), (6)

Note that there is an algebraic loop between Eqs. (5) and (6), as
KCS is needed to calculate NH3 and vice versa. Considering the slow
variation in KCS and NH3, a sample delay (0.1 s) in KCS was used.

3.4. Sensors signal analysis model

The sensor signal analysis (SSA) model exclusively uses information
from the NOx sensor placed upstream and downstream of the SCR
catalyst, although the downstream signal is affected by cross-sensitivity,
the model is able to minimize this impact. In addition, unlike ANN, the
model does not depend on the ammonia injection feedback. Therefore,
any error in the signal does not affect the model’s prediction.

The SSA model considering the assumptions (i) and (ii) was devel-
oped as follows:

The NOx sensor signals upstream (NOus
x,sensor [ppm]) and down-

stream (NOds
x,sensor [ppm]) of the catalyst is stored in a calibrated

buffer, and their average values are used to estimate the average NOx
conversion efficiency (𝜂NOx ) in the considered time-window, and is
calculated as follows:

𝜂NOx = 1 −
NOds

x,sensor − KCS × NH3

NOx,sensor
us

, (7)

where NH3 and KCS represent the average values during the time-
indow, calculated from Eqs. (5) and (6), respectively. Considering
ypothesis (i), it is feasible to assume that instantaneous and average
Ox conversion efficiency are equal during the time window 𝜂NOx =

𝜂NOx .
Applying the conversion efficiency calculated by Eq. (7) it is possi-

ble to estimate the NOx slip as:

NOx = NOus
x,sensor(1 − 𝜂NOx ), (8)

The NH3 slip can be computed via Eq. (5) considering an average KCS
and an average NOx slip from Eq. (8),

NH3 =
NOds

x,sensor − NOx

KCS
, (9)

NH3 and NOx are the average emissions during the time-window. Since
the dynamics of the NH3 slip varies slowly, a proper calibration of the
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uffer size allows to estimate the NH3 slip accurately, in the present
ase, a buffer of 200 samples at 10 Hz was used. In this sense and
ccording to hypothesis (ii), it is assumed that: NH3 = NH3.

3.5. Extended Kalman filter applied to the models

Considering a generic dynamic system applied to an observer struc-
ture,

𝑥𝑘 = 𝑓 (𝑥𝑘−1, 𝑢𝑘−1) +𝑤𝑘, (10a)

𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘, (10b)

here xk represents the state estimation of the model, uk and yk are
he measurements of inputs and outputs, respectively. wk is the process
oise, and vk the observation noise. The complexity of the functions f
nd h determine the model accuracy. However, any model has some
evel of uncertainty. In order to increase accuracy and robustness,
q. (10) can be represented in observer form:

̂𝑘 = 𝑓 (�̂�𝑘−1, 𝑢𝑘−1) +𝐾(𝑦𝑘 − �̂�𝑘), (11a)

̂𝑘 = ℎ(�̂�𝑘), (11b)

here ŷk is the output of the observed state estimation x̂k, uk is the
easurement of the inputs and K is the Near-optimal Kalman gain.
here the state of the system is continuously updated by the observer

hrough new measurements (K(yk − ŷk)).
The EKF algorithm consists of two main events: Predict and Update.

he prediction phase uses the state and covariance estimate in the
revious step to obtain an estimate of the current state, and in the
pdate phase, the prediction is combined with the current observation
o refine the state and covariance estimate [31,32].

At each iteration, the EKF algorithm proceeds as follows:

• Prediction step:

– Predict state estimate: x̂k|k−1 = f(x̂k−1,uk) The model is
applied to the previous state observation (x̂k−1) with current
inputs (uk) leading to first state estimation.

– Predict covariance estimate: Pk|k−1 = FkPk-1FT
k + Qk An

initial observer covariance estimation is calculated from
the previous value of the covariance (Pk−1), the process
covariance (Qk) and the Jacobian of the state Fk defined as:
F = |

|

𝜕f |
|

7

k
|
𝜕x
|x̂k−1 ,uk
• Update step

– Measurement residual: êk = yk −ŷk = yk −h(x̂k|k−1) Compute
the difference between the sensor reading (yk) and the
observer estimation of the sensor reading (ŷk = h(x̂k|k−1)).

– Residual covariance: Sk = HkPk|k−1HT
k + Rk The covariance

residual is calculated from the state covariance prediction
(P𝑘|𝑘−1), the measurement covariance (Rk) and the Jacobian
of the model output function (Hk) defined as: Hk = |

|

|

𝜕h
𝜕x
|

|

|x̂k|k−1

– Kalman gain: The gain (K) is directly proportional to the co-
variance prediction and inversely proportional to the resid-
ual one Kk =

Pk|k−1HT
k

Sk

– Update state estimate: x̂k = x̂k|k−1 + Kkêk The observer
state update is calculated from the predicted state, and the
measurement residual weighted with the Kalman gain.

– Update covariance estimate: Pk = (I − KkHk)Pk|k−1

Regarding the dynamic system, it is composed of two states, x1 =
NOx and x2 = NH3, where 𝜁NOx is the NOx bias and NH3 is the NH3
oncentration downstream of the SCR. Two inputs u1 = NOx,sensor and
2 = NOx,ANN obtained from NOx sensor and ANN model, respectively,
nd one output measurement (y), whose behaviour is governed by the
ollowing equations:

k = f(xk−1,uk−1) =

⎧

⎪

⎨

⎪

⎩

x1,k = x1,k−1 + w1,k

x2,k = u1,k−1−(u2,k−1+x1,k−1)
KCS(x2,k−1)

+ w2,k
(12)

yk = h(xk) = x2,k + vk (13)

here w1 and w2 are the noises associated to the states. Note that, in the
irst state (x1), the bias in the NOx estimate is assumed not to change
bruptly and the changes are only associated with noise, the second
tate (x2) is calculated according to Eq. (5), and NH3 slip of the SSA
odel is considered as a measurement (y).

For the system to be considered observable, the observability matrix
nd the number of states of the system must be equal. [33], where the
bservability matrix is defined by:

=
⎡

⎢

⎢

𝜕ℎ
𝜕𝑥

[

𝜕ℎ
] [

𝜕𝑓
]

⎤

⎥

⎥

(14)

⎣ 𝜕𝑥 𝜕𝑥 ⎦
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Fig. 11. Flowchart of inputs and outputs of control-oriented models, EKF and ammonia
injection correction strategy.

From the dynamic system Eqs. (12) and (13):

𝜕ℎ
𝜕𝑥

= [0 1] (15a)

𝜕𝑓
𝜕𝑥

=
⎡

⎢

⎢

⎣

1 0

− 1
KCS(x2,k−1)

−
𝜕Kcs
𝜕x2

(u1,k−(u2,k+x1,k−1))

KCS(x2,k−1)2

⎤

⎥

⎥

⎦

(15b)

Therefore, the observability matrix becomes:

Ω =
⎡

⎢

⎢

⎣

0 1

− 1
KCS(x2,k−1)

−
𝜕Kcs
𝜕x2

(u1,k−(u2,k+x1,k−1))

KCS(x2,k−1)2

⎤

⎥

⎥

⎦

(16)

The system is observable, since the rank of Ω is 2 and the system
has 2 states. Therefore, the EKF approach can be applied to ANN and
SSA models.

The complete structure of inputs and outputs of the models, EKF
and the proposed ammonia injection correction strategy can be seen in
the following flowchart (Fig. 11).

3.6. Fault detection strategy extended to observer and models

The method proposed essentially extends the analysis of the emis-
sions sensitivity to injection faults represented by Fig. 7 to be applied
online. To this aim, the ANN model is assumed to be representative of
the emissions without injection failure (I.F. = 1), while the observer
is assumed to represent the actual emissions. In this sense, the ratio
between the observed and modelled emissions is an estimation of the
ratio between the emissions with a given injection fault (I.F. < 1) and
without fault (I.F. = 1).

The same procedure presented in Section 3.1 is applied to the
models to create a probability distribution.

Note that, in this case (Fig. 12), the distribution is not directly the
normalized value itself, but the relation between the model’s behaviour
and the observer. This relation can be used, since ANN depends on
the feedback signal from the ammonia injector, its error in estimat-
ing emissions tends to increase as the ammonia injector failure also
increases.

With this distribution, it is possible to verify that, in terms of
NOx, with increased injection failure, less ammonia is injected and,
consequently, there is a lower conversion rate of NOx. Since the actual
NOx emissions are higher than those estimated by ANN that would
be representative of the system without injection fault, the probability
distribution tends to values greater than one. The opposite is true for
NH3 emissions, since the real NH3 slip is lower than estimated by the
ANN, the probability distribution tends to be lower than one.

It is worth mentioning that the accuracy of the diagnosis will depend
on the correct calibration of the upstream NOx SCR threshold (Eq. (1))
and on the accuracy of the models themselves to estimate NOx and
NH3 emissions, being these estimates impacted by the intrinsic error
of the computational models, but also after a long period of time by
the catalyst ageing.
8

Fig. 12. Normal distribution of NOx and NH3 slip for different levels of ammonia
injection failure and different accumulation windows size (12, 24 and 30 g - upper
plots) using the model/observer ratio emissions signal.

Fig. 13. Actual level of the ammonia injection failure and estimate at the end of the
accumulation window for 20 consecutive WLTC cycles.

4. Results and discussion

4.1. Real-time strategy application for constant failure in ammonia injection

In order to assess the capacity of the proposed strategy to track the
level of the ammonia injection failure, the model was tested in 20 WLTC
cycles in sequence, with different fault levels. In Fig. 13, the upper
part, the dark dashed line is the current level of the ammonia injection
failure, and the red circles, the model estimation for the failure level at
the end of the AWS.

As can be seen in Fig. 13, at the end of each accumulation window,
the model was able to estimate the level of error that the system
was subjected to during the previous period. In the current case, to
accumulate 24 g of NOx before the SCR catalyst, more than one
complete WLTC cycle is needed, for this reason, the estimated failure
level (red circles) represents the current failure level to which the
system is mostly subjected during the accumulation window.

In Fig. 14, it is possible to verify where each estimated point was
placed in the normal distribution graph. As can be seen, not all the
points were within the range of distributions, but classifying the points
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Fig. 14. Estimated results of the ammonia injection failure level in the normal
istribution graph of NOx and NH3 slip in a 24 g accumulation window.

s their closest clusters provides accurate results (red x).

.F. = argmin
j

√

√

√

√

√

(

NOobs
x

NOmodel
x

− CNOx
j

)2

+

(

NHobs
3

NHmodel
3

− CNH3
j

)2

, (17)

where, j = [0.25, 0.50, 0.75, 1.00] and C it is the centroid of each
istribution.

.2. Real-time strategy application for ammonia injection system degrada-
ion

The correction application in the degradation of the ammonia in-
ection system was carried out in two steps: first, a merged cycle
WLTC and RTS) was performed, where no correction was made in the
mmonia injection, this test was performed to validate the capacity of
he proposed methodology in detecting the degradation of the ammonia
njection system. In the second step, the same cycle was carried out,
nd the correction was applied to the ammonia injection from the error
evel detected. It consists of increasing the demand of ammonia to
ompensate the injection error. This test was performed to assess the
ethodology’s capacity to correct the injection failure.

Since the strategy is aimed to correct the ammonia injection, failure
evels greater than 50% of the nominal injection (I.F. = 0.50) are not
xpected. Therefore, the NOx distribution is unnecessary, as it only
istinguishes I.F. = 0.25 from I.F. = 0.50, as shown in Fig. 12.

In Fig. 15, it is possible to see the ratio between the applied ammo-
ia injection and the reference injection without failure for both cases:
ithout correction (grey) and with the proposed correction (black).
s the cycle evolves, injector degradation makes the injector factor
ecrease, while corrections lead to an increase in the injector factor
fter the fault diagnosis. The red markers refer to the points at the end
f the accumulation window, being the circles and the stars, without
nd with correction of the ammonia injection, respectively.

At the end of each accumulation window, the proposed strategy
as able to detect and correct the level of ammonia injection, at the

ame time reducing the impact of system degradation. Of course, the
orrection is not able to keep the I.F. = 1 since, it requires some time
where degradation is evolving) for diagnosis, and both the model and
bserver have some error.

Fig. 16 shows where each estimated point was placed at the end of
ach accumulation window in the NH3 distribution. As can be seen, for
mmonia injection without correction, point 3 (the end of the complete
ycle) has an error level of 50% of the nominal injection (I.F. = 0.50),
hile with the correction the error level remains 25% (I.F. = 0.75).

As final results, Figs. 17 to 19 show the NOx and NH3 emissions and
lso the ammonia injection. Dark lines refer to signals with correction
9

Fig. 15. Injection factor level during a WLTC+RTS merged cycle and degradation of the
ammonia injection system, with (dark line) and without (grey line) ammonia injection
correction. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 16. Estimated results of the level of failure in ammonia injection in terms of NH3
slip.

in ammonia injection, grey lines to signals without correction, both for
tests with constant degradation of ammonia injection, and red lines to
signals when there is no degradation of the ammonia injection system.

Fig. 17 shows the NOx slip emissions, as can be seen, when the
ammonia injection is corrected it tends to similar levels as when there
is no injection failure, being slightly higher (5.35%). However, when
compared to degradation of the ammonia injection system without
correction, NOx emissions rise by 23.33%.

It is possible to verify that up to approximately 2700 s the NOx
conversion level remains similar for all cases, even in the case of the
injection system degradation without correction is about 70%, this is
in line with the previous discussion (Fig. 4), for injection failure levels
around 75% the SCR catalyst is still capable of converting NOx with
high efficiency, since the NOx conversion occurs by the amount of
ammonia previously stored [23].

In terms of NH3 slip, as can be seen in Fig. 18, there is an increase in
NH3 emissions for both cases, being 18.67% and 46.41% for tests with
and without correction in the ammonia injection, respectively. This
behaviour was already expected for two main reasons, firstly, current
ammonia injection strategies aim to reduce NOx emissions as much
as possible, being on the limit between storing the maximum amount
of ammonia inside the catalyst without starting the slip. Second, the
estimation of the catalyst load is performed through models, and esti-
mating it accurately is a difficult task when applied to dynamic systems,

consequently leading to unwanted NH3 slip.
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a

r

Fig. 17. NOx slip with (dark line) and without (grey line) ammonia injection correction
nd NOx slip without ammonia injection failure (red line) during a WLTC+RTS merged

cycle. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 18. NH3 slip with (dark line) and without (grey line) ammonia injection correction
and NH3 slip without ammonia injection failure (red line) during a WLTC+RTS merged
cycle. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Regarding the total amount of ammonia injected during the cycle,
the correction of ammonia injection reaches a similar level to the
standard injection strategy, being slightly smaller (5.65%), and as
expected, the level of ammonia injected when there is a degradation of
the injection system without correction is considerably lower (27.83%).

5. Conclusions

This article explored a novel methodology to detect the failure level
in the degradation of an ammonia injection system, as well as to correct
it. Through a strategy that uses computational models and statistical
methods of normal distribution for different levels of failure in am-
monia injection, it was possible to verify that the proposed strategy is
capable to estimate and satisfactorily correct such errors. In this way,
the proposed methodology can be used in real-time applications for
control and diagnostic strategies. The main specific contributions of this
work are as follows:

• The proposed model was able to detect and correct ammonia
injection in all failure situations. Both in cases with constant
failure in standard driving cycles, as well as in a degradation of
the injection system in a merged cycle (WTLC+RTS).

• With the ammonia injection correction strategy in cases of failure
in the ammonia injection system, it was possible to reduce NOx
10
Fig. 19. Ammonia injection with (dark line) and without (grey line) correction and
ammonia injection without failure (red line) during a WLTC+RTS merged cycle. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

emissions by 23.33% in a merged cycle. Achieving almost the
same level as the standard strategy where there is no failure in
the ammonia injection system.

• The proposed methodology, through the use of a variable time
window linked to a constant NOx threshold at the SCR input,
can be applied to the most diverse cycles and engine operating
conditions.
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