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Abstract: A new procedure was presented with the objective of proving that it is the generalization
of current attempts in designing compressed members and structures which is able to solve cases
where other authors have problems. It is the further development of the former methods published
by Chladný, Baláž, Agüero et al., which are based on the shape of the elastic critical buckling
mode of the structure. Chladný’s method was accepted by CEN/TC 250 working groups creating
Eurocodes. Both current Eurocodes EN 1993-1-1:2005 and EN 1999-1-1:2007 in their clauses 5.3.2(11)
enable applying the geometrical equivalent unique global and local initial (UGLI) imperfection.
The imperfection has the shape of the elastic critical buckling mode with amplitude defined in
5.3.2(11). UGLI imperfection is an alternative to the global sway and local bow initial imperfections
defined in 5.3.2(3) and to the imperfections described in the clause 5.3.2(6). The determination of
the location and value of UGLI imperfection proved to be onerous by some authors, especially in
cases of members with variable cross-sections or/and axial forces. The paper also provides for special
cases a procedure to detect the critical cross-section along the member which is defined as the one
in which the utilization factor obtains maximum values. The new approach is validated by the
investigation of five complex structures made of steel and one made of aluminum alloy solved by
other authors. Comparisons of the results with those of other authors and with the Geometrically and
Materially Nonlinear Analysis with Imperfections (GMNIA) results showed very good agreements
with negligible differences. The information concerning the differences between current Eurocodes
EN 1993-1-1:2005 and EN 1999-1-1:2007 is provided. Working drafts of Eurocodes of new generation
prEN 1993-1-1:2020 and prEN 1999-1-1:2020 are also commented on.

Keywords: buckling in plane of the structure; UGLI imperfection based on buckling modes; steel;
aluminum alloy; EN 1993-1-1; EN 1999-1-1

Highlights

- A new procedure is presented to obtain the location of the critical section and the value of the
amplitude of unique global and local initial (UGLI) imperfection having the shape of elastic
critical buckling mode. The new procedure is also used for the structures consisting of strongly
irregular members in compression.

- Validation of the procedure by the investigation of five complex structures made of steel and one
made of aluminum alloy solved by other authors.
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- Verification of the procedure by comparisons with results of other authors and Geometrically and
Materially Nonlinear Analysis with Imperfections (GMNIA) results.

- Information about differences in methods given in four Eurocodes: EN 1993-1-1:2005,
EN 1999-1-1:2007, prEN 1993-1-1:2020 and prEN 1999-1-1:2020.

1. Introduction

1.1. Overview and Analysis of Current State

According to Eurocode EN 1993-1-1 [1] and EN 1999-1-1 [2], second order effects and initial
imperfection depending on the type of frame structure may be taken into account in global analysis.
The design of steel structures with compression elements must consider the existence of residual
stresses and geometric imperfections such as initial out-of-plumbness, flatness and fit tolerances.
The negative effects of all these imperfections are covered in the global analysis by equivalent
geometrical imperfection with a relevant shape and value of amplitude. There are the following types
of imperfections in [1]: (i) global initial sway imperfection for the global analysis of frames; (ii) local
initial bow imperfection for global and member analysis; (iii) imperfection for the analysis of bracing
systems; and (iv) unique global and local initial (UGLI) imperfection based on elastic critical buckling
modes. In this paper, the global analysis with UGLI imperfection is utilized.

Section 5.3.2(11) of [1] provides formulae which are the base of a procedure for obtaining UGLI
imperfection. Unfortunately, the procedure in [1] is limited to the structures with a uniform cross-section
under uniform axial force distribution. No iterations are needed in such cases. The critical section will
take place where the curvature has maximum value. The detailed description of the development of
this method is given by Chladný in [3]. The procedure described in [3] is without the above limitations
and may be used for the most practical cases. Generally, the critical section must be found by iterations.
The more general procedure without above limitations is given in EN 1999-1-1 [2]. The new generation
of Eurocodes is in preparation and it should be available to the technical public in 2023. In the
working drafts prEN 1993-1-1 [4] and prEN 1999-1-1 [5] the more general procedure was improved.
The formulation in draft [5] is more useful and clear compared to its former edition [2]. The working
draft prEN 1993-1-1 [4] differs from its former edition [1] and from [2] and [5]. In Eurocode [4],
the partial material safety factor γM1 was removed from the formula for the imperfection amplitude e0

of the equivalent member. The consequence is that the value of imperfection amplitude e0 is in [1,2,5]
greater than in [4].

The working draft Eurocode prEN 1999-1-1:2020 [5] contains the following formulae for:

(i). The characteristic value of the initial imperfection amplitude of the equivalent member related to
the critical section m:

e0,k,m = α
(
λm − λ0

)MRk,m

NRk,m
(1)

(ii). Design value of the initial imperfection amplitude of the equivalent member related to the critical
section m:

e0,d,m = e0,k,m

1− χmλ
2
m

γM1

1− χmλ
2
m

= α
(
λm − λ0

)MRk,m

NRk,m

1− χmλ
2
m

γM1

1− χmλ
2
m

(2)

Note that the symbol e0,d,m used in Equation (2) must not be confused with the amplitude of the
initial local bow imperfection eo given in [1] or [2] in Table 5.1.
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(iii). Design value of UGLI imperfection amplitude ηinit,max:

ηinit,max = e0,d,m
Ncr,m

EIm
∣∣∣η′′ cr,m

∣∣∣ (3)

For the simply supported members with a uniform cross-section and uniform axial force
distribution ηinit,max = e0,d,m. The symbols e0,k,m and ηinit,max are used here for the better understanding
of the procedure. They are not explicitly used in Eurocodes [1,2,4,5].

The differences of Eurocodes [1,2,4] compared with the working draft Eurocode prEN
1999-1-1:2019 [5] are as follows:

(i). Current Eurocode EN 1993-1-1:2005 [1] contains the above Equations (2) and (3) but in
Corrigendum AC (2009) the index “d“ was removed and some print errors were corrected.

(ii). Current Eurocode EN 1999-1-1:2007 [2] contains the above Equations (2) and (3) but in Amendment
A2 (2013) [2] there are several changes and index “d“ was removed.

(iii). Working draft Eurocode prEN 1993-1-1:2020 [4] removed from the above Equations (2) and (3) the
partial material safety factor γM1 and index “d”. Removing γM1 from Equation (2) destroyed the
main assumption of Chladný’s method defined below, but the code committee followed this idea
because it leads to an ease of use in practical applications [6]. The authors intend to publish the
results of the study showing the consequences of this decision leading to an important difference
between the values of UGLI imperfection amplitude calculated according to [4] or [5].

Eurocodes use the symbol ηinit,max for the design value of UGLI imperfection amplitude. In the
paper, the symbol η0 = ηinit,max is also used, which is not in Eurocodes. The symbol η0 is used in the
text, Equations and Tables because it is shorter than ηinit,max. The critical section is indicated in this
paper by symbol xcr and not by index “m“ as it is done in Eurocodes. Equation (4) can be rearranged in
the form of Equation (5):

ηinit,m(x) = e0,d,m
Ncr,m

EIm
∣∣∣η′′ cr,m

∣∣∣ηcr(x) = ηinit,maxηcr(x) (4)

where χ is the reduction factor for the relevant buckling curve depending on the relevant cross-section,
see 6.3.1.

Equation (4) is used in Eurocodes in the clauses: 5.3.2(11) [1], 5.3.2(11) [2], 7.3.6(1) [4] and
7.3.2(11) [5]. Equation (5) is just another form of (4). It is more convenient for programming.
When flexural buckling occurs about the strong axis, UGLI imperfection may be written in the form:

ηinit,w(x) =


α
(
λy − λ0

)
λy

2

1−
λy

2
χy

γM1

1− λy
2
χy

fy

E·
(

Iy
Wy

d2ηcr,w
dx2

)


xcr

ηcr,w(x) = η0ηcr,w(x) (5)

When flexural buckling occurs about the weak axis, UGLI imperfection is as follows:

ηinit,v(x) =


α
(
λz − λ0

)
λz

2

1− λz
2
χz

γM1

1− λz
2
χz

fy

E·
(

Iz
Wz

d2ηcr,v
dx2

)


xcr

ηcr,v(x) = η0ηcr,v(x) (6)

The method with UGLI imperfection was developed by Chladný and published with necessary
details and applications in [3,7,8]. The first applications of Chladný’s method may be found in [9],
where two examples were solved: a portal frame and a member with a non-uniform cross-section.
In the second edition [10], the same two examples as in [8] may be found together with an example
of the steel structure of three-story building. Baláž, who participated in developing Chladný’s
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method (see pages 693–694 [7]), derived this method in a different way and published the details of
a step-by-step procedure for non-uniform members in [11]. Baláž and Koleková published detailed
illustrative numerical examples in [12,13]. They investigated in [14] the in-plane stability of the large
two-hinged arch bridge (Žd’ákov bridge in Czech Republic). Baláž showed that for the uniform
members, UGLI imperfection amplitude has important geometrical meaning, which enables doing
calculation and results verification by “hand calculation”. The importance of so called “hand calculation”
was illustrated in several examples in [15]. In [3,7,8], Chladný solved in detail a member with a
non-uniform cross-section and three-story building as in [8] and three new examples relating to the
stability of parts of bridge structures: (i) the bottom flange of the continuous composite steel and
concrete road bridge; (ii) the upper chord of the steel railway half-through truss bridge; and (iii)
the basket handle type of the arch bridge. Numerical examples in [3,7,8] provide guidance of the
proper application of Chladný’s method. Chladný showed there the good agreement with other
methods of Eurocode EN 1993-1-1:2005 described in clauses 5.2.2(3) and 5.3.2(3). The guidance for
the design of members of the steel basket handle arch bridges is given in the clause NB.3 of Slovak
National Annex to Eurocode STN EN 1993-2 Design of steel structures—Part 2 Steel bridges. Chladný
pointed out there that it is not enough for a such type of bridges to take into account only the first
buckling mode. The members of such bridges are in biaxial bending. Chladný in [3,7,8] generalized his
method for members when flexural buckling occurs about both axes. For a member in biaxial bending,
UGLI imperfection may be defined as follows:

{
ηinit,v(x)
ηinit,w(x)

}
=


α
(
λ− λ0

)
λ

2

1− λ
2
χ

γM1

1− λ
2
χ

fy

E·
(

Iz
Wz

d2ηcr,v
dx2 +

Iy
Wy

d2ηcr,w
dx2

)


xcr

{
ηcr,v(x)
ηcr,w(x)

}
= η0

{
ηcr,v(x)
ηcr,w(x)

}
(7)

The new methodology has been developed in recent years in different works. Generalization for:
(i) flexural torsional buckling of member due to compression was given by Agüero et al. in [16,17]:

ηinit,v(x)
ηinit,w(x)
ηinit,θx(x)

 =

α(λTF−λ0)

λ
2
TF

1−
λ

2
TFχTF
γM1

1−λ
2
TFχTF

fy

E·
(

Iz
Wz

d2ηcr,v
dx2 +

Iy
Wy

d2ηcr,w
dx2 + Iw

WB

d2ηcr,θx
dx2

)


xcr


ηcr,v(x)
ηcr,w(x)
ηcr,θx(x)

 = η0


ηcr,v(x)
ηcr,w(x)
ηcr,θx(x)

 (8)

and for (ii) lateral torsional buckling of member due to bending moment by Agüero et al. [16,18]:

{
ηinit,v(x)
ηinit,θx(x)

}
=

αLT(λLT−λLT,0)

λ
2
LT

(
1−
λ

2
LTχLT
γM1

)
(
1−βλ

2
LTχLT

) fy

E·
(

Iz
Wz

d2ηcr,v
dx2 + Iw

WB

d2ηcr,θx
dx2

)


xcr

{
ηcr,v(x)
ηcr,θx(x)

}
= η0

{
ηcr,v(x)
ηcr,θx(x)

}
(9)

The method with UGLI imperfection was also used by two Baláž’s Ph.D. students: Kováč [19]
and Dallemule [20], where other numerical examples may be found. Dallemule created a general
computer program based on Chladny’s method. Bijlaard et al. [21] and Wieschollek et al. [22] have
also generalized the equations given in [1] for the lateral torsional buckling of a member in bending,
and Papp [23] investigated the buckling of member under bending and compression.

Brodniansky [24], another Ph.D. student from Bratislava, used a modified Dallemule’s computer
program and pointed out some numerical obstacles when calculating the location of the critical section
xcr for the column with step change in cross-sectional parameters and step change in normal force
along the members.

1.2. Research Significance, Contributions and Basic Assumptions of Presented New Method

The innovation of the presented research is the numerical method for obtaining the equivalent UGLI
imperfection amplitude for metal members susceptible to buckling due to axial forces. The method is
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consistent with the Eurocode procedure and allows to obtain the location of critical section xcr and
consequently UGLI imperfection amplitude for any case.

Several assumptions are considered in this work:

(i). The first assumption is that the first buckling mode of the examined structural member is
dominant and therefore the effect of the higher buckling modes can be neglected. However,
in some cases, the higher buckling modes have to be considered in the design. See suggestions by
Agüero et al. [17].

(ii). The second assumption is that Chladný’s method given in [3] remains valid. Quoting Chladný [3],
where experimentally established values are unavailable, the amplitude of the equivalent
imperfection in the shape of the elastic buckling mode may be determined assuming that the
buckling resistance of a structure with axially loaded members shall be equal to the buckling
resistance of the equivalent member. The buckling resistance of axially loaded columns is
defined in clauses 6.3.1.1–6.3.1.4 [1]. The relative slenderness λ relates to the critical section.
The equivalent member has pinned ends, its cross-section and axial force are the same as in the
critical cross-section m of the frame and its length is such that its critical force equals the axial
force in the critical cross-section m at the critical loading of the structure. The position of the
critical cross-section m is determined by the condition that the utilization Um, with allowance for
the effect of the axial force and bending moments due to imperfections in the critical cross-section
m, is greater than the utilization U(x) at all other cross-sections of the verified member or
frame structure.

(iii). The third assumption is that the linear interaction Formula (22) is used to verify the member
according to Eurocodes and [25,26].

(iv). The fourth assumption is that if plastic cross-section resistance is taken into account, a maximum
plastic shape factor of 1.25 may be taken into account [4,26]. This means that if the criterion is
applied with reference to the plastic resistance, the design value of the moment resistance Mc,Rd

should be limited to 1.25 Mel,Rd for both a strong axis and weak axis.
(v). The fifth assumption accepts the common method for finding the equivalent local bow

imperfections given in [1] 5.3.2 (3). For the new generation of Eurocodes, intensive investigations
were done to enhance these values, now in draft [4] see 7.3.3.1 (1) [25,26]. In practice, we often
deal with members under compression and bending. If the external bending moments are present,
the results may be more unfavorable, because a larger part of the cross-section in longitudinal
direction may be plastified, thus leading to a stiffness reduction and therefore higher necessary
bow imperfections for simplified calculations. If this is neglected, the load carrying capacity may
be underestimated. In our cases of centrally loaded members, there is no need to use the fourth
and fifth assumptions.

2. Method for Obtaining UGLI Imperfection Amplitude

According to Eurocodes [1,2], Equation (4) shall be used to obtain the value of the initial
imperfection amplitude of the equivalent member. The following method is presented when buckling
about the y axis takes place. This can be applied in a similar way for buckling about the z axis.
The presented method and Chladny’s method as well may be used in both cases: when buckling about
the y axis and z axis takes place.

The buckling shape has been scaled to have a maximum value of 1.0, i.e., max(ηcr,w) = 1.0.
The meaning of η0 is the amplitude of UGLI imperfection. The flow chart is shown in Figure 1.
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and the unique global and local initial (UGLI) imperfection amplitude η0. Illustrative example.

Steps for Obtaining UGLI Imperfection

The first step is obtaining the buckling load αcr and buckling shape {ηcr}. They can be computed
using finite element method, for instance, according to Trahair [27].

The second step is the calculation of bending moments and stresses related to the buckling mode
as follows:

My,η = −EIy
d2ηcr,w

dx2 (10)

σM =
EIy

d2ηcr,w
dx2

Wy
(11)

The third step is the first iteration.
Initial guess:

αult,1 = min(
A· fy

NEd
)→

−

λ1 =

√
αult,1

αcr
→ χ1 → αb,1 =

αult,1·χ1

γM1
(12)

Another initial guess may be considered in the location where the stress calculated according
Equation (11) has a maximum value:

The imperfection (scale factor Ω1(x)) needed at each section in order to reach the cross-section
resistance when the buckling load level is reached αb,1 is calculated from formula:

NEd · αb,1

A
+

Ω1(x)(
αcr
αb,1
− 1

) EIy
d2ηcr,w

dx2

Wy
=

fy

γM0
(13)
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Ω1(x) =

(
fy

γM0
−

NEd · αb,1

A

)(
αcr

αb,1
− 1

)
Wy

EIy
d2ηcr,w

dx2

(14)

The minimum of those scale factors is the objective in the first iteration, i.e., η0,1 takes place at the
critical section xcr,1:

η0,1 = min(Ω1(x)) = Ω1(xcr,1) (15)

The fourth step is the second iteration:

αult,2 =
A(xcr,1)· fy(xcr,1)

NEd(xcr,1)
→

−

λ2 =

√
αult,2

αcr
→ χ2 → αb,2 =

αult,2·χ2

γM1
(16)

The imperfection (scale factor Ω2(x)) needed at each section in order to reach the cross-section
resistance when the buckling load level is reached αb,2 is calculated as follows:

Ω2(x) =

(
fy

γM0
−

NEd · αb,2

A

)(
αcr

αb,2
− 1

)
Wy

EIy
d2ηcr,w

dx2

(17)

η0,2 is the amplitude at the second iteration. It takes place at the critical section xcr,2:

η0,2 = min(Ω2(x)) = Ω2(xcr,2) (18)

If the critical section is the same as in the previous iteration, the critical section is found and
consequently the value of UGLI imperfection amplitude may be calculated. If the critical section is
different, then the other iteration is needed starting from the fourth step. Finally, the distribution of
UGLI imperfection ηinit(x) is calculated: {

ηinit
}
= η0

{
ηcr

}
(19)

3. Validation of Presented Procedure

Three Chladný’s complex examples [3,7,8] are very interesting in order to validate the presented
method. The fourth example shows that differences are negligible between αb values calculated by
the new procedure and αb values obtained by Marques et al. [28] with the help of Geometrically and
Materially Nonlinear Analysis with Imperfections (GMNIA).

Plots of the following parameters are implemented to have a full understanding of the examples:

- The relative UGLI imperfection is plotted along the beam. The values are divided by the maximum
value of imperfection in order to obtain the relative UGLI imperfection with maximum value 1.0.

- The distribution of relative bending moments due to UGLI imperfection is plotted along the beam,
the values are divided by the maximum bending moment value in order to have a maximum
value 1.0:

η0

(αcr − 1)
EIy

d2ηcr,w

dx2 (20)

- The distribution of the relative shear forces due to UGLI imperfection is plotted along the beam.
The values are divided by the maximum shear force in order to have a maximum value 1.0:

η0

(αcr − 1)
EIy

d3ηcr,w

dx3 (21)

- The plot of utilization factors U distribution: due to axial forces UN, due to bending moments
UM and the global utilization factor UN+M. This factor shows how close each section is to its
maximum strength and the influence of axial forces and bending moments:
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UN+M = (UN) + [UM] =

 NEd

A
(

fy
γM0

)
+

 η0

(αcr − 1)

EIy
d2ηcr,w

dx2

Wy

(
fy
γM0

)
 (22)

- The value of the scale factor distribution along the member is plotted showing the first, the second
and the last iteration. The minimum value of each plot is η0,i. The maximum value shown is
10 times η0:

Ωi(x) =

(
fy

γM0
−

NEd · αb,i

A

)
·

(
αcr

αb,i
− 1

)
·

Wy

EIy
d2ηcr,w

dx2

(23)

η0,i = min
{
Ωi(x)

}
= Ωi(xcri) (24)

The values of UGLI imperfection amplitude η0, the location of critical section xcr and other values
have been compared with Chladný’s values which are given in brackets. Very good agreements were
achieved. In the Examples 3 and 4, the influence of the local buckling is neglected. It is beyond the
scope of this paper. The authors have solutions of these examples which also take into account local
buckling. They will be published with all the necessary details in another paper.

Example 1. The Example 1 is described in Figure 2. It is the scheme of the bottom flange of the continuous
composite steel and concrete road bridge. More details about the bridge may be found in Section 5.4 [7].
Steel grade S355 and γM1 = 1.1 are taken into account.
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may be analyzed by modeling the elements as a column subjected to the compression force NEd and 
supported by continuous and discrete elastic restraints modeled as springs (Figure 2). The springs 
stiffnesses are C1 = 10 kN·mm−1, C2 = C3 = C4 = 4 kN·mm−1. The elastic restraint due to the cross-
section web is c = 5.863 kN·m−2. The axial force distribution is given by formula NEd (x) = −9000 1062 x 
– 17.49 x2 (kN). 

 

Figure 2. Example 1: description taken from [7], Section 5.4. Figure 2. Example 1: description taken from [7], Section 5.4.

The bottom flange of the steel cross-section in compression is subjected to lateral buckling. It may be analyzed
by modeling the elements as a column subjected to the compression force NEd and supported by continuous
and discrete elastic restraints modeled as springs (Figure 2). The springs stiffnesses are C1 = 10 kN·mm−1,
C2 = C3 = C4 = 4 kN·mm−1. The elastic restraint due to the cross-section web is c = 5.863 kN·m−2. The axial
force distribution is given by formula NEd (x) = −9000 1062 x − 17.49 x2 (kN).

The distributions of UGLI imperfection, bending moment M(x) and shear force V(x) due to UGLI
imperfection and utilization factors U(x) are plotted in Figure 3. The critical section takes place after several
iterations at xcr = 1.44 m. The significant step in shear force distribution V is located where the column is
supported by the spring with the greatest stiffness. The scale factor is plotted in Figure 4. The minimum value at
the last iteration gives the amplitude of the imperfection η0 = 39 mm. Chladný’s values in the brackets confirm
the very good agreements of the results (Figure 3). According to the direct method [23] the critical section takes
place where the second order effects have a maximum. This method gives a value of amplitude η0 = 29 mm which
differs from 39 mm a lot. In all the other examples, the direct method gave similar results as Eurocode’s method.
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The value η0 = 39 mm given in Figure 4 was obtained after seven necessary iterations. Table 1 shows all
the details of the iterations.

Table 1. Example 1: key values for each iteration.

Iteration αult
−

λ χ αb xcr,i
η0 ,i
η0

1 1.2228 0.4557 0.8106 0.9011 1.9200 1.6435

2 1.5532 0.5136 0.7698 1.0870 1.0200 0.7413

3 1.3762 0.4835 0.7910 0.9896 1.6800 1.2012

4 1.5023 0.5051 0.7757 1.0594 1.3200 0.8779

5 1.4311 0.4930 0.7842 1.0203 1.5000 1.0586

6 1.4660 0.4990 0.7800 1.0396 1.4400 0.9702

7 1.4542 0.4970 0.7814 1.0331 1.4400 1.0000
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Example 2. The Example 2 is described in Figure 5. It is a schema of the upper chord of the steel railway
half-through truss bridge. More details about the bridge may be found in Section 5.5 [7]. Steel grade S235 and
γM1 = 1.1 are taken into account.
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Figure 5. Example 2: description taken from [7] Section 5.5.

The truss chord under compression that is subjected to the lateral buckling may be analyzed by modeling
the elements as a column subjected to the compression force NEd and supported by discrete elastic restraints
modeled as springs. The springs stiffnesses are C0 = 11 MN/m and C = 5.068 MN/m. Input values for
the iterative procedure [7] are given in Figure 5. In the two edge fields on both sides of the truss chord:
A = 0.01909 m2, I = 96.4 × 10−6 m4, W = 459 cm3, in the four middle fields of the truss chord: A = 0.02898 m2,
I = 177.525 × 10−6 m4, W = 845 cm3. The loading is defined in Figure 5.

The distributions of UGLI imperfection, bending moment M(x) and shear force V(x) due to the imperfection
and the utilization factors U(x) are plotted in Figure 6. The steps in the shear force distribution are due to steps in
the axial forces and in spring supports. The critical section takes place at xcr = 13.15 and 18.25 m simultaneously
due to the symmetry of the problem. The scale factor is plotted in Figure 7. The scale factor minimum led to
UGLI imperfection amplitude η0 = 9 mm. The significant values are shown in Table 2. Only one iteration was
needed. The comparison with Chladný’s values given in brackets shows very good agreement.
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Table 2. Example 2: key values for each iteration.

Iteration αult
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η0
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Chladný used the method also for more complicated cases, where the simplified method is not applicable,
e.g., for the Maria Valeria Bridge across the Danube, Štúrovo–Esztergom. See Note 5 in [7] referring to [29].

According to the direct method, the same results are obtained.

Example 3. The Example 3 is described in Figure 8, with steel grade S355 and γM1 = 1.0
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Figure 8. Example 3: description taken from [9,10] and [7] Section 5.2.

The member is fabricated from an IPE 400 section. It was cut in two pieces and consequently welded
together in such a way that the depths of its cross-section at the ends are 560 and 240 mm.

The distributions of UGLI imperfection, bending moment M(x) and shear force V(x) due to the imperfection
and the utilization factors U(x) are plotted in Figure 9. The critical section is found at xcr = 12 m. The scale
factor minimum led to UGLI imperfection amplitude η0 = 36.31 mm (Figure 10). The significant values for all
iterations are shown in Table 3. Only two iterations were needed.



Appl. Sci. 2020, 10, 8174 12 of 22Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 24 

 
Figure 9. Example 3: UGLI imperfection ηinit, bending moment M, shear force V, and utilization factor 
U. Values in brackets are from [7,10]. 

 
Figure 10. Example 3: the scale factor Ω(x). Utilization factor UN+M = 1.0. 

  

Figure 9. Example 3: UGLI imperfection ηinit, bending moment M, shear force V, and utilization factor
U. Values in brackets are from [7,10].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 24 

 
Figure 9. Example 3: UGLI imperfection ηinit, bending moment M, shear force V, and utilization factor 
U. Values in brackets are from [7,10]. 

 
Figure 10. Example 3: the scale factor Ω(x). Utilization factor UN+M = 1.0. 

  

Figure 10. Example 3: the scale factor Ω(x). Utilization factor UN+M = 1.0.



Appl. Sci. 2020, 10, 8174 13 of 22

Table 3. Example 3: key values for each iteration.

Iteration αult
−

λ χ αb xcr,i
η0 ,i
η0

1 1.3674 0.7834 0.7346 1.0045 11.95 1.2343

2 1.4777 0.8144 0.7155 1.0574 12 1

Chladný’s values are in brackets and they confirm the very good agreement of the results (Figure 9).
The direct method gives the value of imperfection amplitude η0 = 34.56 mm which approximately equals

value 36 mm (Figure 10).

Example 4. (a) The Example 4 was published by Marques et al. [28], with steel grade 235, and γM1 = 1.0.
It is a tapered column similar to that in Figure 8 but made from IPE 200, with different boundary conditions.
The linearly varying height is defined by the taper ratio of hmax/hmin = 3. It is simply supported at both ends,
L = 12.9 m. The member is restrained against out-of-plane buckling. The compression force NEd = 500 kN
was applied. The computed load factor αb = 1.004 with GMNIA. The method proposed by the authors leads to
αb = 0.991. The difference is −1.29%.

In Example 4(a), GMNIA was performed by Marques et al. [28] using ABAQUS software taking into account
a geometrical imperfection with the shape of the buckling mode and an amplitude of L/1000, also considering the
residual stresses of a welded cross-section.

The distributions of UGLI imperfection, bending moment M(x) and shear force V(x) due to the imperfection
and the utilization factors U(x) are plotted in Figure 11. The critical section is found at xcr = 10.2 m. The scale
factor minimum led to UGLI imperfection amplitude η0 = 28.04 mm (Figure 12). The significant values for all
iterations are shown in Table 4. Three iterations were needed.
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Figure 12. Example 4(a): the scale factor Ω(x). Utilization factor UN+M = 1.0.

Table 4. Example 4: key values for each iteration.

Iteration αult
−

λ χ αb xcr,i
η0 ,i
η0

1 1.2828 0.8319 0.7046 0.9038 10.0878 1.4135

2 1.5123 0.9033 0.6591 0.9967 10.268 0.9775

3 1.4975 0.8989 0.6619 0.9912 10.268 1

In the Example 4(a), the maximum moment Mmax(x = 7.654 m) can be obtained from Equation (25),
which serves to verify the value Mmax(x = 7.654 m) = 30.441 kNm given in Figure 11:

Mmax =
FEd · η0(
1− 1

αcr

) =
500 · 28/1000(

1− 1
1.852

) ≈ 30.441 kN ·m (25)

According to the direct method, the imperfection amplitude is η0 =25.86 mm. It is a similar result.
(b) In Figure 13, the αb values calculated for different slenderness at the critical section are compared with

the GMNIA results of Marques et al. [28]. The maximum difference is −8% for relative slenderness λ = 0.773
(buckling curve b). This analysis is performed for a hot-rolled tapered column b = 100 mm, tf = tw =10 mm,
hmin = 100 mm and hmax = 400 mm, steel S235 with a linearly varying height, and a simply supported member.
The uniform axial force NEd = Npl,Rd,min = 658 kN.
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Figure 13. Example 4(b): comparison of αb values calculated for the different slenderness obtained by
GMNIA and by the proposed procedure of the authors.

In Example 4(b), GMNIA was performed by Marques et al. [28] using ABAQUS software taking into
account a geometrical imperfection with the shape of the buckling mode and amplitude of L/1000, also considering
the residual stresses of a hot-rolled cross-section.

4. Application to the Case Where Problems Were Found to Obtain the Critical Section and to the
Member Made of Aluminum Alloy

Following the other examples, these are solved where the step changes in the cross-section and
in the axial forces create numerical problems to find the critical section xcr. These are pure academic
problems found in the literature, however, there is the need to show that they may be solved.

Example 5. A Ph.D. student wrote in [24] about the obstacles of the method because he was not able to obtain
the location of the critical section due to the never-ending cycle by going from finding the “critical section” to the
other one and back. The Example 5 shows that proposed method has no such problem. A cantilever column with
a step change in the cross-sectional parameters and axial forces is investigated (Figure 14). The material used
in [24] is the steel grade S355. The safety factor γM1 = 1.0.
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The position of the section xU where the greatest utilization factor UN+M,max < 1.0 takes place may depend
on the load level. The position of the section xU may differ from the location of the critical section xcr defined
in the nomenclature. This is case in Figures 15 and 16. In the rare cases, as it is in Example 5 (Figure 14),
the location of the critical section xcr may be found in accordance with its definition given in nomenclature only if
UN+M,max = 1.0 (Figure 17). The cases in which the almost identical values of UN+M,max appear in the same time
in more than one section are very rare. Example 5 is a such rare case. The comparison of the values UN+M,max
(xcr = 10 m) = 1.0 with UN+M (x = 0 m) = 0.9378 is shown in Figure 17. These values would be closer if steel
S235 would be used instead of steel S355: 1.0 and 0.9965, and the value of η0 would be decreased from 101 to
77 mm.
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The distributions of UGLI imperfection, bending moment M(x) and shear force V(x) due to the imperfection
and the utilization factors U(x) are plotted in Figure 15. The resulting critical section is xcr = 10 m. The minimum
value of the scale factor led in the second and the last iteration to UGLI imperfection amplitude η0 = 101 mm
(Figure 16). The significant values for all iterations are shown in Table 5. With the procedure of the authors
presented in this article, there is no problem for solving this example. The utilization at the buckling load level is
shown in Figure 17. The buckling resistance αb = 1.189 was calculated according to authors’ procedure and
checked with GMNIA value αb = 1.24 (Figure 15).

Table 5. Example 5: key values for each iteration.

Iteration αult
−

λ χ αb xcr,i
η0 ,i
η0

1 3.0523 1.5139 0.3372 1.0292 0.0 2.0485

2 9.5979 2.6845 0.1224 1.1749 10 1

In Example 5, GMNIA was performed by the authors (Figure 15) using the Open System for Earthquake
Engineering Simulation (OPENSEES) software taking into account a geometrical imperfection with the shape
of the buckling mode and amplitude of L/500 (Lcr/1000), also considering the residual stresses of a hot-rolled
cross-section.

In Example 5, the maximum moment Mmax(x = 0 m) can be obtained from Equation (26), which serves to
verify the value Mmax(x = 0 m) = 101.731 kNm given in Figure 15:

Mmax =
FEd1·η

x = 15
init

(1− 1
αcr )

+
FEd2·η

x = 10
init

(1− 1
αcr )

+
FEd3·η

x = 5
init

(1− 1
αcr )

=

= 101/1000
(1− 1

1.313 )
(95 + 0.41 · 225 + 0.095 · 550) ≈ 101.731 kN ·m

(26)
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If the value of the force of FEd,2 = 225 kN (Figure 14) changes, the values of UGLI imperfection amplitude
and the critical section position xcr are given in Table 6. There is no problem to find the location of the critical
section xcr. From Table 6, it can be concluded that UGLI imperfection amplitude has the step change when the
critical section position changes from xcr = 10 to 5 m. It changes from η0 = 101 to 145 mm for steel grade S355.

Table 6. Example 5: influence of the value of FEd,2 and the steel grade. Values in brackets are from [24].

Steel FEd,2 (kN) 100 125 150 175 200 (225) 250 275 300 325

S 235 η0 (mm) 68.8 71.1 73.4 75.7 78 77.7 113 115.5 115.5 115.3

S 275 η0 (mm) 75 77.4 80 82.4 85 87.4 126.1 126 126 125.8

S 355 η0 (mm) 86 88.8 91.6 94.5 97.4 101 (100.9) 145 145 144.9 144.7

xcr (m) 10 10 10 10 10 10 (10) 5 5 5 5

In Table 7, the buckling resistance αb calculated according to the authors’ procedure is checked with the
GMNIA value for steel grades 235, 275 and 355.

Table 7. Example 5: buckling resistance αb calculated according to the authors’ procedure and with GMNIA.

Steel FEd,2 (kN) 100 125 150 175 200 225 250 275 300 325

S 235
αb (Authors) 1.381 1.333 1.287 1.242 1.2 1.159 1.065 1.023 0.985 0.949

αb (GMNIA) 1.455 1.396 1.346 1.294 1.246 1.193 1.138 1.09 1.07 1.03

S 275
αb (Authors) 1.397 1.348 1.301 1.256 1.213 1.171 1.082 1.04 1.001 0.965

αb (GMNIA) 1.46 1.41 1.37 1.318 1.26 1.22 1.15 1.11 1.07 1.04

S 355
αb (Authors) 1.42 1.37 1.322 1.275 1.231 1.189 1.148 1.064 1.025 0.988

αb (GMNIA) 1.48 1.45 1.39 1.34 1.29 1.24 1.21 1.169 1.121 1.08

In Brodniansky’s work [24], where for UGLI imperfection the incorrect name EUGLI is used, the critical
section xcr could not be found using the utilization factor matrix due to numerical issues. According to the
procedure proposed in this work, the critical section xcr is possible to find. It may be concluded that Chladný’s
method has no obstacles.

Example 6. Höglund solved in [30] by equivalent member method given in [2] the member made of aluminum
alloy EN AW-6005A-T6, buckling class A, with a yield strength fo = 215 MPa, ultimate strength fu = 260 MPa
and γM1 = 1.1. He also took into account welds located in the fixed end and in the place where a member changes
his cross-section.

We took from example 6.11 [30] only the geometry L = 5 m and loading. The purpose was to show that also
in example 6.11 [30], which is similar to Example 6, the presented procedure may obtain desired results without
problems. Our member (Figure 18) is made of the aluminum alloy EN AW-6061-T6, buckling class A, E = 70,000
MPa, fo = 240 MPa, fu = 260 MPa (Table 3.2b [2]), γM1 = 1.1. The section properties of EP (extruded profile)
are A1 = 38.8 cm2, I1 = 1673 cm4, W1 = 220 cm3 and A2 = 91 cm2, I2 = 8091 cm4, W2 = 736 cm3.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 20 of 24 

The section properties of EP (extruded profile) are A1 = 38.8 cm2, I1 = 1673 cm4, W1 = 220 cm3 and A2 = 
91 cm2, I2 = 8091 cm4, W2 = 736 cm3. 

 
Figure 18. Example 6: description of the member made of aluminum alloy taken from [30] example 
6.11. 

Nothing may be compared with Höglund’s example 6.11, except the values of buckling lengths, 
which are the same. 

The distributions of UGLI imperfection, bending moment M(x) and shear force V(x) due to the 
imperfection and the utilization factors U(x) are plotted in Figure 19. The critical section takes place 
at xcr = 0 m. The minimum value of scale factor led in the last iteration to UGLI imperfection amplitude 
η0 = 56 mm (Figure 20). The influence of the welds is beyond the scope of this paper. The authors 
intend to take it into account in another paper. 

 
Figure 19. Example 6: UGLI imperfection ηinit, bending moment M, shear force V, and utilization factor 
U. 

Figure 18. Example 6: description of the member made of aluminum alloy taken from [30] example 6.11.



Appl. Sci. 2020, 10, 8174 19 of 22

Nothing may be compared with Höglund’s example 6.11, except the values of buckling lengths, which are
the same.

The distributions of UGLI imperfection, bending moment M(x) and shear force V(x) due to the imperfection
and the utilization factors U(x) are plotted in Figure 19. The critical section takes place at xcr = 0 m. The minimum
value of scale factor led in the last iteration to UGLI imperfection amplitude η0 = 56 mm (Figure 20). The influence
of the welds is beyond the scope of this paper. The authors intend to take it into account in another paper.
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5. Conclusions

A new more general procedure is presented based on Chladný’s method, which was accepted by
CEN/TC 250 working groups for Eurocodes [1,2,4,5]. It enables to obtain the geometric equivalent
UGLI imperfection ηinit (x), the critical section xcr and UGLI imperfection amplitude η0 for complex
slender metal structures. This procedure has been validated by the recalculation of several examples of
steel members published by Chladný [7], Papp [23] and Marques et al. [28]. The comparison of the
results showed very good agreement with the results of other authors and results of GMNIA. It is
shown that the presented procedure is also able to solve case [24] in which the critical section xcr could
not be found. The example of the member made of aluminum alloy investigated by Höglund [30] is
also solved without problem.

The paper provides information about: (i) the history of method development used in Eurocodes
and (ii) differences between the current Eurocodes [1,2] and their newest working drafts [4,5].
The method is described in detail in such a way that the users of Eurocodes will also be able to use it
for complex frame structures made of steel or aluminum alloys.

The topics which are beyond scope of this paper are namely the influence of: (i) partial safety
factor γM1; (ii) local buckling at steel structures; and (iii) transverse or longitudinal welds at structures
made of aluminum alloys, will be investigated in the next papers. The results of direct method are very
close to the ones obtained by the authors’ method, except the results in the Example 1. Further studies
should be performed to determine if the direct method could be an alternative to the current method
proposed in the Eurocodes.
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Nomenclature

α is the imperfection factor related to the flexural buckling curve (Tables 6.1 and 6.2 of EN 1993-1-1 [1]; Tables
3.2 and 6.6 in EN 1999-1-1 [2]). αLT is the imperfection factor for lateral torsional buckling related to buckling
curve (Tables 6.3, 6.4 and 6.5 in EN 1993-1-1 [1]; 6.3.2.2 in EN 1999-1-1 [2]). αcr is the minimum load amplifier
for the axial force configuration in members to reach the elastic critical buckling load (5.2.1(3) in [1]; 5.2.1(3) in
[2]). αult is the amplifier for the load of members to reach the characteristic resistance of the critical cross-section
(6.3.4(2) in [1], where more the convenient symbol αult,k is used; [2] does not know such quantity and symbol). αb
is the load amplifier of members to reach the ultimate buckling load (see Equations (12) and (16); the symbol is
not used in [1,2]). γM0 is the partial safety factor for the resistance of cross-section whatever the class is (6.1 in
[1]; [2] does not know such quantity and symbol). γM1 is the partial safety factor for the resistance of members
to instability assessed by member checks (6.1 in [1] and 6.1.3; Table 6.1 in [2]). χ is the reduction factor for the
relevant buckling curve (6.3.1.2 in [1]; 6.3.1.2 in [2]). λ is the relative slenderness (6.3.1.2 in [1]; 6.3.1.2 in [2]). λ0 is
the plateau length of buckling curves (for steel [1]: 0.2; for the aluminum alloy [2]: 0.1 for buckling class A and 0.0
for buckling class B). λLT is the relative slenderness for lateral torsional buckling (6.3.2.2 and 6.3.2.3 in [1]; 6.3.2.2
in [2]). λTF is the relative slenderness for torsional flexural buckling. λLT,0 is the plateau length of lateral torsional
buckling curves. β is the correction factor for lateral torsional buckling curves (6.3.2.3 in [1]; [2] does not know
such quantity and symbol). η0 is the amplitude of UGLI imperfection. {ηinit} is UGLI imperfection in the shape
of elastic critical buckling mode. {ηcr} is the shape of elastic critical buckling mode. ηcr,w is the displacement of
the buckling shape component perpendicular to axis y along the x axis. ηcr,v is the displacement of the buckling
shape component perpendicular to axis z along the x axis. ηcr,θx is the torsional rotation of the buckling shape
component about shear center axis along the x axis. A is the cross-sectional area. E is the modulus of elasticity
(210,000 MPa for steel [1]; 70,000 MPa for aluminum alloy [2]). e0,d (e0,k) is the design (characteristic) value of the
initial imperfection amplitude of the equivalent member used in the calculation of UGLI imperfection amplitude.
It is given in 5.3.2(11) [1,2] or in 7.3.6(1) [4] or in 7.3.2(11) in [5]. The indices d and k are sometimes omitted.
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e0 is the local bow imperfection given in Table 5.1 [1,2] or in 7.3.3.1(1) [4] or in 7.3.2(3)b) [5]. It is used when
performing second order analysis including member imperfections related to flexural buckling. It is not used in
UGLI imperfection method and must not be commuted with the above amplitude. Iy, Iz are the second moments
of area with respect to the y, z axes. Iw is the warping constant. Ncr is the elastic critical force of the relevant
buckling mode based on the gross cross-section properties. NEd is the design value of normal force. NRk is the
characteristic resistance of normal force in the critical section (depending on Class 1, 2 and 3 cross-section). MRk is
the characteristic resistance of bending moment in the critical section (depending on Class 1, 2 and 3 cross-section).
Wz is the section modulus about z axis (depending on Class 1, 2 and 3 cross-section). Wy is the section modulus
about y axis (depending on Class 1, 2 and 3 cross-section). WB is the warping section modulus. xcr is the critical
section where the utilization factor is greater than at all the other sections.
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