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We show the remarkable fact that the nonlocal property of the discrete N -
dimensional fractional Laplacian acting in the second variable of the lattice N×ZN

can be exchanged with an equivalent memory corresponding to a power of a one-
dimensional operator that acts only on the first variable of the complete lattice 
Z ×ZN . This property allows to reduce the number of calculations and leads to more 
complete analytical solutions of mathematical models on lattices. The connection 
is established by showing that a first order equation in the first variable, and of 
fractional order α > 0 in the second, has the same solution as another of order 1/α
in the first variable and integer order in the second. As a result, we provide for the 
first time the fundamental solution for the N -dimensional heat equation discrete in 
time and space.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license 
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1. Introduction

In recent years, much attention has been paid to the discrete fractional Laplacian operator as the 
natural counterpart of the continuous one [1,6–8,23,18,24,25]. One of the most natural definitions in the 
N -dimensional case can be found in [18, Section 6] where it is defined as

(−Δd,N )αf(n) = 1
Γ(−α)

∞∫
0

(etΔd,N f(n) − f(n)) dt

t1+α
, n = (n1, ..., nN ) ∈ ZN , (1)
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whenever 0 < α < 1 and f ∈ �∞(ZN ). Here etΔd,N is the semidiscrete heat semigroup generated by the 
N -dimensional discrete Laplacian Δd,N defined as

Δd,Nf(n) =
N∑
j=1

(f(n + ej) − 2f(n) + f(n− ej)) ,

where ej denotes the unit vector in the positive direction of the j-th coordinate. It is known [18, Section 6]
that the semidiscrete heat semigroup is represented by

etΔd,Nϕ(n) =
∑

k∈ZN

Tt(n − k)ϕ(k), t ≥ 0, n ∈ ZN ,

where the kernel is given by

Tt(n) =
N∏
j=1

e−2tInj
(2t), t ≥ 0, n ∈ ZN ,

and In denotes the modified Bessel function.
The 1-dimensional case has been extensively studied in recent articles by Ciaurri et al. [6,8,18]. The 

operator (−Δd,1)α can be used to describe the non-local motion of a particle (electron) in a one-dimensional 
chain with atoms located at all integer lattice points in Z, see [22]. Tarasov [27] provides a formulation of 
fractional calculus for N -dimensional lattices. See also [28] for the exact discretization of the fractional 
Laplacian for N -dimensional spaces.

On the other side, when we consider anomalous diffusion processes, several classes of fractional in time
operators have been proposed in the literature, the most popular being the Riemann-Liouville or Caputo 
type. In the discrete context, there are several approaches that might be appropriate from either an applied 
or analytic perspective [11,17,20].

One of the most important facts why this type of fractional operators (in space and time) is relevant in 
the current literature, is due to their ability to capture memory effects in the mathematical modeling, which 
are absent in the integer case. This type of phenomenology has been shown widely. However, the existence 
of a probable relationship between memory in time and memory in space for fractional operators, as well 
as a plausible explanation for this kind of interaction, has been an open problem for some time.

Probably the first insight about this kind of relationship was given in 2002 by Kulish and Lage in [16], 
where, in the context of fluid mechanics, they establish the existence of a relationship between the operators 
Δ (the Laplacian) and D1/2 (half order Riemann-Liouville) proving that a PDE of first order in time and 
second order in space has the same solution as a PDE of half order in time and first order in space. One of 
the main advantages of this conversion is the fact it can significantly reduce the number of computations 
as well as lead to more comprehensive analytical solutions [13, Section 6.1.2.4], [16, Section 4].

This problem was later considered in [14, Theorem 1.1], where the authors proved a link between integer 
powers of operators acting in space, An, and the fractional powers, D1/n, of the Riemann-Liouville operator 
acting in time, under the condition that A is the generator of a C0-semigroup (in case n = 2) as well as 
generalized families of operators related to the abstract Cauchy problem of fractional order (in case n �= 2). 
This result explains previous studies by Baeumer, Meerschaert and Nane [5] among others. See also [4] for 
further developments in this research line in the context of stochastic processes.

The connection between the discrete fractional Laplacian (−Δd)α, and the continuous in time fractional 
order operator of Liouville type (left side) LD1/α, was made in [7]. This result has subsequently been useful 
for discussions on generalized diffusion of graphs by Estrada et al. in [9], and by Padgett et al. in [22, 
Section 2.3] in the context of anomalous diffusion in one-dimensional disordered systems. This result closes 
the problem in the case of operators acting on a semi-lattice.
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However, the connection between the discrete fractional Laplacian with some discrete time fractional 
order operators, that is, operators acting on a complete lattice, remains open.

In this paper, we solve this problem, by showing a relationship between the discrete fractional Laplacian 
and the following discrete in time fractional order operator defined in [19, formula (28)] by Ortigueira et 
al., in the context of signal analysis:

Dβ
∇f(n) :=

n∑
j=−∞

Γ(−β + n− j)
Γ(−β)(n− j)! f(j), n ∈ Z, (2)

which is initially defined for all β > 0 except positive integer values (see (7) below for an extension). It 
is worth mentioning this operator approximates the forward Liouville derivative [19]. We also note that 
similar definitions have appeared in relation to fractional partial difference-differential equations in articles 
by Abadias et al. [2,3].

Our main results in this article can be summarized as follows: We first show that (1) is equivalent to 
convolving f with a distinguished kernel. In particular, this allows us to extend the definition given in (1)
for all α > 0 and to conclude that there is a connection between the fractional Laplacian as defined in (1)
and the Riesz derivative (see [21, Section 5.2]). Then, we find by the first time the fundamental solution 
for the following N -dimensional heat equation discrete in time, and equipped with a discrete fractional 
N -dimensional Laplacian

⎧⎪⎨
⎪⎩

v(m + 1,n) − v(m,n) = −(−Δd,N )αv(m + 1,n), n ∈ ZN , m ∈ N,

v(0,n) = φ(n)
(3)

for any α > 0. We note that fundamental solutions for the heat and wave equations, but only on a semi-
lattice, have been already shown by other authors. See e.g. [10,15] and references therein.

Our main result shows that in case α = 1
p , p ∈ N, the solution of (3) coincides with the solution of 

the following equation, equipped with the fractional order operator defined in (2) acting in discrete time 
(m ∈ N), and the N -dimensional Laplacian acting in discrete space (n ∈ ZN )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dp
∇v(m,n) = (−1)p+1Δd,Nv(m,n), n ∈ ZN , m ∈ N,

v(0,n) = φ(n)

v(−j,n) = (Id + (−Δd,N )1/p)jφ(n), j ∈ N.

(4)

This fact reveals the significant property that the spatial memory of the N -dimensional fractional Laplacian 
−(−Δd,N )1/p can be exchanged with the (one-dimensional) temporal integer derivative Dp

∇, being the spatial 
memory converted into temporal memory that is hosted in the past, or history, of the model.

To exemplify how this result helps to reduce the number of computations, we illustrate the case p = 2, 
N = 1 where the model (3) admits a complicated structure while the model (4) supports the simple form:

v(m,n) = v(m,n + 1) + v(m,n− 1) − 2v(m− 1, n) + v(m− 2, n), m ∈ N, n ∈ Z,

with given initial condition v(0, n) and the only knowledge of v(−1, n) in the past. Finally, we show that the 
lattice equations v(m + 1, n) − v(m, n) = (−Δd,N )αv(m + 1, n) and D1/α

∇ v(m, n) = Δdv(m, n) with initial 
condition v(0, n) = ϕ(n), defined on the lattice Z × ZN , have the same solution for any 0 < α ≤ 1

2+log2 N

and the amount of memory that depends on α in the discrete fractional Laplacian, appears in the initial data 
for negative values of m in the second named equation. In other words, we show that the spatial memory 



4 C. Lizama, M. Murillo-Arcila / J. Math. Anal. Appl. 511 (2022) 126051
of the discrete fractional Laplacian for an equation defined on the half lattice N × ZN appears in the past 
history of a discrete in time equation on the entire lattice Z ×ZN .

2. Preliminaries

In what follows we denote N = {0, 1, 2, 3, . . .}. The discrete time Fourier transform for a sequence φ is 
defined by

FZN (φ)(θ) ≡ φ̂(θ) :=
∑

j∈ZN

eij·θφ(j), θ = (θ1, θ2, . . . , θN ) ∈ [−π, π]N . (5)

The inverse discrete time Fourier transform is stated as follows:

φ̌(n) := 1
(2π)N

∫
[−π,π]N

φ(θ)e−in·θdθ, n ∈ ZN . (6)

In what follows δi(j) denotes the Kronecker delta. Given β ∈ R, we consider the sequence:

kβ(n) =

⎧⎪⎪⎨
⎪⎪⎩

Γ(β + n)
Γ(β)Γ(n + 1) n ∈ N, β ∈ R \ {−1,−2, ..},

(δ0 − δ1)∗(−β)(n) n ∈ N, β ∈ {−1,−2, ...},

(7)

where Γ is the Euler gamma function and p∗n = p ∗ p ∗ . . . ∗ p︸ ︷︷ ︸
n-times

where ∗ denotes the convolution of sequences 

given by (u ∗ v)(n) =
n∑

j=0
u(n − j)v(j). In [17], it was proven the generating function of the sequence 

(kβ(j))∞j=0:

∞∑
j=0

kβ(j)zj = 1
(1 − z)β , β ∈ R, |z| < 1 (8)

and some other properties concerning the sequence kβ.
It should be noted that defining kβ instead of using binomial coefficients or using the Pochhammer symbol 

has several advantages, as it has been demonstrated in recent articles, see e.g. [11] and its references. Observe 
that the (negative) integer case of β, i.e. the second part of (7), is motivated by the formula (8) and the 
property δi ∗ δj = δi+j .

Remark 2.1. Concerning convergence of the series (8), we note that if −β is neither a natural number nor 
zero, the series converges absolutely for |z| < 1 and diverges for |z| > 1. For z = −1, the series converges for 
β < 1 and diverges for β ≥ 1. For z = 1, it converges absolutely for β < 0 and diverges for β > 0. If −β = n

is a natural number, the series (8) is reduced to a finite sum (binomial formula), see [12, Formula 1.110].

We recall that the forward Euler operator of a given sequence f is defined by

D1
Δf(n) := f(n + 1) − f(n), n ∈ N.

The following definition can be found in [19, formula (27) with h = 1].
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Definition 2.2. Given β ∈ R+, the fractional difference of order β of a given bounded sequence f is defined 
by

Dβ
∇f(n) :=

n∑
j=−∞

k−β(n− j)f(j) =
∞∑
j=0

k−β(j)f(n− j), n ∈ Z. (9)

Observe that the series converges because k−β has order O(1/nβ+1), see [11, Proposition 3.1]. As an 
illustrative example, we note that formula (9) when β = 2 reads as follows:

D2
∇f(n) =

n∑
j=−∞

k−2(n− j)f(j) =
n∑

j=−∞
(δ0 − δ1)∗2(n− j)f(j) (10)

=
n∑

j=−∞
(δ0 − 2δ1 + δ2)(n− j)f(j) = f(n) − 2f(n− 1) + f(n− 2), n ∈ Z.

Remark 2.3. In [19] it is shown that the fractional operator Dα
∇f(n) approximates the forward Liouville 

derivative of order α > 0 given by Dα
t f(t) = ∂m

∂tm

∫ t

−∞ gn−α(t − s)f(s) where m = �α	 + 1, t ∈ R and, for 
every t > 0, gβ(t) := tβ

Γ(β) .

3. Main results

We begin with the following result, that generalizes [7, Theorem 2] to the N -dimensional case.

Theorem 3.1. For all 0 < α < 1 and f ∈ �∞(ZN ) the following holds:

(−Δd,N )αf(n) =
∑

j∈ZN

Kα(n− j)f(j), n ∈ ZN ,

where

Kα(n) := 1
(2π)N

∫
−[π,π]N

⎛
⎝ N∑

j=0
4 sin2(θj/2)

⎞
⎠

α

e−in·θdθ, n ∈ ZN , α > 0. (11)

Proof. By [18, Lemma 6.5] we have

FZN ((−Δd,N )αf)(θ) =

⎛
⎝ N∑

j=1
4 sin2(θj/2)

⎞
⎠

α

FZN (f)(θ).

On the other hand, we have

FZN (Kα)(θ) =

⎛
⎝ N∑

j=1
4 sin2(θj/2)

⎞
⎠

α

, (12)

and the claim follows from the convolution and uniqueness properties of the Fourier transform. �
Since the formula for Kα holds for any α > 0, we could extend the definition of the fractional Laplacian 

to the case α ≥ 1 by means of the right-hand side of the above theorem. As a further consequence, the 
following property of associativity holds:
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(−Δd,N )α(−Δd,N )β = (−Δd,N )α+β whenever α + β > −1. (13)

For the 1-dimensional case, see [7,18] and the references therein.
In light of the above result, it is worth comparing the definition of fractional Laplacian given here with the 

two-sided fractional derivatives introduced by Ortigueira [21]. According to [21, Definition 2.1] a two-sided 
Grünwald-Letnikov type fractional derivative of a real function f is defined by

Dβ
θ f(x) = lim

h→0

1
hβ

∑
n∈Z

(−1)nΓ(β + 1)
Γ(β+θ

2 − n + 1)Γ(β−θ
2 + n + 1)

f(x− nh), (14)

where β > −1 is the derivative order and θ ∈ R is an asymmetry parameter. Define:

Kβ
θ (n) = (−1)nΓ(β + 1)

Γ(β+θ
2 − n + 1)Γ(β−θ

2 + n + 1)
, n ∈ Z. (15)

Choosing θ = 0 and β = 2α we obtain

K2α
0 (n) = (−1)nΓ(2α + 1)

Γ(α− n + 1)Γ(α + n + 1) , n ∈ Z, (16)

which matches (11) in the 1-dimensional case (see [7, Remark 1]). The above observation shows that there 
is an interesting connection between the fractional Laplacian as defined in (1) and the Riesz derivative (see 
[21, Section 5.2]).

The first result of this article is the following theorem.

Theorem 3.2. For any α > 0, and φ ∈ �∞(ZN ), the N -dimensional heat equation with discrete time and 
discrete space ⎧⎪⎨

⎪⎩
D1

Δv(m,n) = −(−Δd,N )αv(m + 1,n), n ∈ ZN , m ∈ N,

v(0,n) = φ(n)
(17)

admits as unique solution the formula

v(m,n) =
∑

j∈ZN

Gα
m(n− j)φ(j) n ∈ ZN , m ∈ Z, (18)

where

Gα
m(n) := 1

(2π)N

∫
[−π,π]N

e−in·θ(1 + (
N∑
j=1

4 sin2(θj/2))α)−mdθ. (19)

Proof. Let check that v(m, n) =
∑

j∈ZN Gα
m(n − j)φ(j) is a solution of (17). Indeed, let denote aθ :=∑N

j=1(4 sin2(θj/2)), then for every n ∈ ZN and m ∈ N we have:

D1
ΔGα

m(n) = 1
(2π)N

∫
[−π,π]N

e−in·θ[(1 + aαθ )−(m+1) − (1 + aαθ )−m]dθ (20)

= −1
(2π)N

∫
[−π,π]N

e−in·θaαθ (1 + aαθ )−(m+1)dθ.
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As a result,

D1
Δv(m,n) =

∑
j∈ZN

D1
ΔGα

m(n− j)φ(j) (21)

= −
∑

j∈ZN

1
(2π)N

∫
[−π,π]N

e−i(n−j)·θaαθ (1 + aαθ )−(m+1)φ(j)dθ n ∈ ZN , m ∈ N.

On the other hand, from Theorem 3.1 and Fubini’s theorem, we get for each n ∈ ZN and m ∈ N that:

(−Δd,N )αGα
m(n) = 1

(2π)N

∫
[−π,π]N

⎛
⎝ ∑

j∈ZN

Kα(j)e−i(n−j)·θ

⎞
⎠ (1 + aαθ )−mdθ (22)

= 1
(2π)N

∫
[−π,π]N

e−in·θaαθ (1 + aαθ )−mdθ,

where we used the identity (12) in the last equality. Consequently, we get

(−Δd,N )αv(m + 1,n) =
∑

j∈ZN

(−Δd,N )αGα
m+1(n− j)φ(j) (23)

=
∑

j∈ZN

1
(2π)N

∫
[−π,π]N

ei(n−j)·θaαθ (1 + aαθ )−(m+1)φ(j)dθ,

where n ∈ ZN , m ∈ N. It is not difficult to see using (5) and (6) that

v(0,n) =
∑

j∈ZN

Gα
0 (n− j)φ(j) =

∑
j∈ZN

1
(2π)N

∫
[−π,π]N

e−i(n−j)·θφ(j)dθ (24)

= 1
(2π)N

∫
[−π,π]N

e−in·θ

⎛
⎝ ∑

j∈ZN

eij·θφ(j)

⎞
⎠ dθ

= 1
(2π)N

∫
[−π,π]N

e−in·θφ̂(θ)dθ = φ(n), n ∈ ZN .

Combining this last equation with (21) and (23) we conclude that v is a solution of problem (17). �
Remark 3.3. We note that in the 1-dimensional and non-fractional case (N = 1, α = 1), the heat equation 
takes the form

v(m + 1, n) − v(m,n) = v(m + 1, n + 1) − 2v(m + 1, n) + v(m + 1, n− 1)

which is slightly different from the more usual form v(m + 1, n) − v(m, n) = v(m, n + 1) − 2v(m, n) +
v(m, n − 1). The solution is already known in case of continuous time and discrete space variable (see 
e.g. [26, Section 5.2]). In contrast, the representation given here for discrete space and discrete time is 
new. It is worth noting that the representation (18) reveals some qualitative behavior of the solution. For 
example, the asymptotic behavior lim

m→∞
v(m, n) = 0 can be deduced from the corresponding of the sequence 

(1 + (
∑N 4 sin2(θj/2))α)−m as m → ∞.
j=1
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Our next result shows that the N -dimensional discrete fractional Laplacian operator (−Δd,N)α is related 
with the “α-root” of the forward difference operator D1

Δ, namely, the operator D1/α
∇ . We provide two results 

of this type. In the first one we consider the heat equation previously analyzed where we find a positive 
answer in case α = 1

p , p ∈ N.

Theorem 3.4. Given φ ∈ �∞(ZN ), for each α = 1
p , p ∈ N the expression given by (18) solves the problems

⎧⎪⎨
⎪⎩

D1
Δv(m,n) = −(−Δd,N )1/pv(m + 1,n), n ∈ ZN , m ∈ N,

v(0,n) = φ(n)
(25)

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dp
∇v(m,n) = (−1)p+1Δd,Nv(m,n), n ∈ ZN , m ∈ N,

v(0,n) = φ(n)

v(−j,n) = (Id + (−Δd,N )1/p)jφ(n), j ∈ N.

(26)

Proof. Let α = 1
p . Observe the fact that expression given by (18) solves problem (25) is already proven in 

Theorem 3.2. It only remains to show that it also solves problem (26). Indeed, let aθ :=
∑N

j=1(4 sin2(θj/2)), 
then we have for every n ∈ ZN and m ∈ N:

Δd,Nv(m,n) =
∑

j∈ZN

Δd,NGα
m(n− j)φ(j) (27)

=
∑

j∈ZN

1
(2π)N

∫
[−π,π]N

Δd,Ne−i(n−j)·θ(1 + aαθ )−mφ(j)dθ

=
∑

j∈ZN

1
(2π)N

∫
[−π,π]N

N∑
k=1

(e−i(n−j+ek)·θ − 2e−i(n−j)·θ + e−i(n−j−ek)·θ)×

× (1 + aαθ )−mφ(j)dθ

=
∑

j∈ZN

1
(2π)N

∫
[−π,π]N

e−i(n−j)·θ
N∑

k=1

(e−iθk − 2 + eiθk)(1 + aαθ )−mφ(j)dθ

=
∑

j∈ZN

1
(2π)N

∫
[−π,π]N

e−i(n−j)·θ
N∑

k=1

(2 cos θk − 2)(1 + aαθ )−mφ(j)dθ

=
∑

j∈ZN

1
(2π)N

∫
[−π,π]N

e−i(n−j)·θ
N∑

k=1

(−4 sin2(θk/2))(1 + aαθ )−mφ(j)dθ

=
∑

j∈ZN

1
(2π)N

∫
[−π,π]N

e−i(n−j)·θ(−aθ)(1 + aαθ )−mφ(j)dθ.

Also, we have:
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D
1/α
∇ v(m,n) =

∑
j∈ZN

D
1/α
∇ Gα

m(n− j)φ(j) (28)

=
∑

j∈ZN

1
(2π)N

∫
[−π,π]N

e−i(n−j)·θD
1/α
∇ (1 + aαθ )−mφ(j)dθ n ∈ ZN , m ∈ N.

Define qθ := 1 + aαθ . Considering Definition 2.2 we have for every m ∈ N:

D
1/α
∇ q−m

θ =
∞∑
j=0

k−1/α(j)q−(m−j)
θ = q−m

θ

∞∑
j=0

k−1/α(j)qjθ. (29)

Since α = 1
p we obtain by Remark 2.1

Dp
∇q−m

θ = q−m
θ

p∑
j=0

(−1)j
(
p

j

)
qjθ = q−m

θ (1 − qθ)p = (1 + aαθ )−m(−1)p(aαθ )p = (1 + aαθ )−m(−1)paθ. (30)

Using equality (30) in (28) we arrive to:

Dp
∇v(m,n) = (−1)p

∑
j∈ZN

1
(2π)N

∫
[−π,π]N

e−i(n−j)·θaθ(1 + aαθ )−mφ(j)dθ n ∈ ZN , m ∈ N. (31)

Comparing (31) with (27) we arrive to the first equation in (26).
It only remains to show that v satisfies the initial conditions given in the third equation of (26). Indeed, 

let first compute:

Gα
−m(n) = 1

(2π)N

∫
[−π,π]N

e−in·θ(1 + (
N∑

k=1

4 sin2(θk/2))α)mdθ

=
m∑
s=0

(
m

s

)
1

(2π)N

∫
[−π,π]N

e−in·θ(
N∑

k=1

4 sin2(θk/2))αsdθ =
m∑
s=0

(
m

s

)
Kαs(n).

As a result, we obtain

v(−m,n) =
∑

j∈ZN

Gα
−m(n− j)φ(j) =

m∑
s=0

(
m

s

) ∑
j∈ZN

Kαs(n− j)φ(j)

=
m∑
s=0

(
m

s

)
[(−Δd,N )α]sφ(n) = (Id + (−Δd,N )α)mφ(n) n ∈ ZN , m ∈ N, (32)

where in the next-to-last equality we have employed property (13). �
Remark 3.5. When p = 1 problems (25) and (26) coincide. Indeed, from (7)

D1
∇v(m,n) =

∞∑
j=0

(δ0 − δ1)(m− j)v(j,n) = v(m,n) − v(m− 1,n)

and then equation
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D1
∇v(m,n) = −Δdv(m,n), n ∈ ZN , m ∈ N

reduces to

D1
Δv(m,n) = −Δdv(m + 1,n), n ∈ ZN , m ∈ N.

Example 1. In case p = 2 and N = 1 and using [15, Example 2.1] we have that equation (25) equals to

v(m + 1, n) − v(m,n) = 4
π

∑
k∈Z

v(m + 1, n− k)
(2k − 1)(2k + 1) , n ∈ Z, m ∈ N, (33)

with prescribed initial condition v(0, n), whereas equation (26) reads

D2
∇v(m,n) = −[v(m,n + 1) − 2v(m,n) + v(m,n− 1)], m ∈ N, n ∈ Z. (34)

Using (10), we obtain that (34) is equivalent to

v(m,n) = v(m,n + 1) + v(m,n− 1) − 2v(m− 1, n) + v(m− 2, n), m ∈ N, n ∈ Z, (35)

with given initial conditions v(0, n) and v(−1, n). Note the presence of history (or memory) in the model 
(35) represented by the second initial condition v(−1, n). In contrast, the history is represented by the 
fractional power α = 1/2 (or right-hand term) in the model (33). By Theorem 3.4 we conclude that the 
equations (33) and (35) have the same solution. Of course, the last equation is computationally simpler than 
(33). This observation ratifies the claims about the advantages of the connections presented in this article, 
such as previously stated in references [13] and [16].

In our second result we consider a diffusion-like equation.

Theorem 3.6. Given φ ∈ �∞(ZN ) the expression given by:

v(m,n) =
∑

j∈ZN

Hα
m(n− j)φ(j) n ∈ ZN , m ∈ Z,

where Hα
m(n) := 1

(2π)N

∫
[−π,π]N

e−in·θ(1 − (
N∑
j=1

4 sin2(θj/2))α)−mdθ solves the problem

⎧⎪⎨
⎪⎩

D1
Δv(m,n) = (−Δd,N )αv(m + 1,n), n ∈ ZN , m ∈ N,

v(0,n) = φ(n)
(36)

for any α > 0 and also the problem
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D
1/α
∇ v(m,n) = −Δd,Nv(m,n), n ∈ ZN , m ∈ N,

v(0,n) = φ(n)

v(−j,n) = (Id− (−Δd,N )α)jφ(n), j ∈ N,

(37)

whenever 0 < α ≤ 1 .
2+log2 N
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Proof. Recall that aθ :=
∑N

j=1(4 sin2(θj/2)). Replacing (1 + aαθ ) by (1 − aαθ ) in formulas (20), (21), (22)
and (23) it is easy to see that v(m, n) =

∑
j∈ZN Hα

m(n − j)φ(j) is a solution of (36). Let now see that v
also solves problem (37). Indeed, following the proof of Theorem 3.4 we have for every n ∈ ZN and m ∈ N:

Δd,Nv(m,n) =
∑

j∈ZN

1
(2π)N

∫
[−π,π]N

e−i(n−j)·θ(−aθ)(1 − aαθ )−mφ(j)dθ. (38)

Also, we have:

D
1/α
∇ v(m,n) =

∑
j∈ZN

1
(2π)N

∫
[−π,π]N

e−i(n−j)·θD
1/α
∇ (1 − aαθ )−mφ(j)dθ n ∈ ZN , m ∈ N. (39)

Let qθ := 1 − aαθ . We claim that |qθ| < 1 whenever qθ �= ±1 (which imply aαθ �= 0). Indeed, the hypothesis 
implies the inequality 22α+α log2 N ≤ 2, or, equivalently 22N ≤ 21/α. Hence N − 21/α−1 ≤ −N . Since 
−N ≤

∑N
j=0 cos(θj) ≤ N we obtain the inequality 0 ≤ N−

∑N
j=1 cos(θj) ≤ 21/α−1. Therefore 0 ≤

∑N
j=1(1 −

cos(θj)) ≤ 21/α−1. Then, using the identity 1 −cos θ = 2 sin2(θ/2), we obtain 0 ≤
∑N

j=0 4 sin2(θj/2)) ≤ 21/α. 
This shows that 0 ≤ aαθ ≤ 2 and, consequently, |qθ| = |aαθ −1| < 1 whenever qθ �= ±1. This proves the claim.

Considering Definition 2.2 we have for every m ∈ N:

D
1/α
∇ q−m

θ =
∞∑
j=0

k−1/α(j)q−(m−j)
θ = q−m

θ

∞∑
j=0

k−1/α(j)qjθ = q−m
θ (1 − qθ)1/α = (1 − aαθ )−maθ, (40)

where in the last equality we have used the generating formula given by (8). Note that the cases qθ = ±1
follow from Remark 2.1. Using equality (40) in (39) we arrive to:

D
1/α
∇ v(m,n) =

∑
j∈ZN

1
(2π)N

∫
[−π,π]N

e−i(n−j)·θaθ(1 − aαθ )−mφ(j)dθ n ∈ ZN , m ∈ N. (41)

It only remains to show that v satisfies the initial conditions given in the third equation of (37). Indeed, we 
proceed as in the last part of the proof of Theorem 3.4 obtaining this time

Hα
−m(n) = 1

(2π)N

∫
[−π,π]N

e−in·θ(1 − (
N∑

k=1

4 sin2(θk/2))α)mdθ =
m∑
s=0

(
m

s

)
(−1)sKαs(n).

Therefore

v(−m,n) =
∑

j∈ZN

Hα
−m(n− j)φ(j) = (Id− (−Δd,N )α)mφ(n) n ∈ ZN , m ∈ N, (42)

where we have employed property (13). Combining (38) and (41) we have proven that v also solves problem 
(37) and then problems (36) and (37) have the same solution. �
Remark 3.7. It should be noted that one of the advantages of our analysis on complete lattices for fractional 
order operators, compared to continuous analysis, is that it allows to make the language of distribution 
theory, which is always present in the continuous variable case, more transparent through simpler computa-
tions, replacing the Dirac’s delta by the Kronecker delta. This type of approach serves as a microstructural 
basis for the analysis of continuous fractional models and to describe the non-local properties of different 
types of media at the nanoscale and microscale [27,28].
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