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GENERALISED MUTUALLY PERMUTABLE PRODUCTS AND
SATURATED FORMATIONS

A. BALLESTER-BOLINCHES, S. Y. MADANHA, AND M. C. PEDRAZA-AGUILERA

Abstract. We say that a group G = AB is the weakly mutually permutable product
of the subgroups A and B, if A permutes with every subgroup of B containing A∩B
and B permutes with every subgroup of A containing A ∩ B. We prove that some
known results for mutually permutable products remain true for weakly mutually
permutable ones. Moreover, if G′ is nilpotent, A permutes with every Sylow subgroup
of B and B permutes with every Sylow subgroup of A, we show that GF = AFBF,
where F is a saturated formation containing U, the class of supersoluble groups. This
generalises the corresponding result on mutually permutable products.

1. Introduction

All groups considered here will be finite.
If a group G = AB is a product of two subgroups A and B, the question arises

what can be said about the structure of the factorised group G if the structure of the
two subgroups A and B is known. There are many group theoretical properties that
do not carry over from the factors A and B to the factorised group G. Indeed, if one
experiments with properties such as nilpotency, supersolubility and solubility, one soon
realises the difficulty of using the factorisation to obtain information about the structure
of the group. This problem is much more treatable if the subgroups of the factorised
group are connected by certain permutability properties. In a seminal paper [2], Asaad
and Shaalan introduced the notion of mutually permutable products and since that time
many people have considered such products, usually imposing additional conditions on
A and B in order to see how the structure of G is further restricted (see [3], [5], [6],
[8]).

Recall that a group G is the mutually permutable product of the subgroups A and
B if G = AB and A permutes with every subgroup of B and B permutes with every
subgroup of A.

If G is a mutually permutable product of the subgroups A and B and U and V are
subgroups of A and B respectively such that either A ∩ B ≤ U or A ∩ B ≤ V , then U
permutes with V (see [3, Proposition 4.1.16(2)]). Therefore the behaviour of mutually
permutable products with respect to saturated formations containing the class U of all
supersoluble groups depends heavily on the family of subgroups of A and B containing
A ∩B (see [3]).

The main object of the present work is to introduce and study a new type of products
which helps to better understand the structure of mutually permutable products.

Definition 1.1. Let A and B be two subgroups of a group G such that G = AB. We
say that G is the weakly mutually permutable product of A and B if A permutes with
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every subgroup V of B such that A ∩ B 6 V , and B permutes with every subgroup U
of A such that A ∩B 6 U .

Mutually permutable products are weakly mutually permutable, whilst the converse
is not necessarily true as the following example shows.

Example 1.2. Let G = Σ4 be the symmetric group of degree 4. Consider a maximal
subgroup A of G which is isomorphic to Σ3, the symmetric group of degree 3, and
B = A4, the alternating group of degree 4. Then G = AB is the weakly mutually
permutable product of the subgroups A and B. However, G is not a mutually permutable
product of A and B because A does not permute with a subgroup of order 2 of B.

We study here the behaviour of the residuals associated to saturated formations
containing U in weakly mutually permutable products.

Recall that if F is a saturated formation, the F-residual GF of a group G is the
smallest normal subgroup of G with quotient in F.

The first and third named authors proved the following result:

Theorem 1.3. [4, Theorem A] Let F be a saturated formation containing U, the class
of all supersoluble groups. Let the group G = AB be the mutually permutable product
of the subgroups A and B. If G′ is nilpotent, then GF = AFBF.

However, Theorem 1.3 does not hold for weakly mutually permutable products even
when the saturated formation is the class of all supersoluble groups as the following
example shows:

Example 1.4. We are constructing a group G = AB which is the weakly mutually
permutable product of A and B such that GU = 〈AU, BU〉 6= AUBU. Consider H =
A4 = V S the alternating group on {1, 2, 3, 4}, being V = 〈v1, v2〉 with v1 = (12)(34),
v2 = (13)(24) and S = 〈x〉 with x = (123). Let M be the natural permutation module
for Alt(4) over F2 with permutation basis {x1, x2, x3, x4}. We set

y1 = x1x2, y2 = x1x3, z = x1x2x3x4 ∈M,

Y = 〈y1, y2〉, Z = 〈z〉 and W = 〈y1, y2, z〉 = Y × Z which is an H-submodule of M .
Let G = [W ]H be the corresponding semidirect product. More precisely H acts on W
as follows:

yx1 = y1y2, yx2 = y1, zx = z; yv11 = y1, yv12 = y2z, zv1 = z; yv21 = y1z, yv22 = y2, zv2 = z.

In particular we have that: Z = Z(G), and Y is a nontrivial irreducible S-submodule
of W .

Let A = WS = ZY S and B = ZV S = ZH. Then G = AB, AU = Y,BU = V and
GU = WV = 〈AU, BU〉 6= AUBU. Moreover A ∩ B = ZS. We prove that A and B are
weakly mutually permutable. Since Y is an irreducible S-module, it is clear B permutes
with every subgroup of A containing ZS, they are ZS or A. Also B = Z × Alt(4),
therefore the unique subgroups of B containing ZS are ZS and B and A permutes with
them. It is clear that G′ which is a 2-group is nilpotent.

We show the following result.

Theorem A. Let F be a formation. Assume that either F = U or F is a saturated
Fitting formation containing U. Let G = AB be the weakly mutually permutable product
of the subgroups A and B. If G′ is nilpotent, then GF = 〈AF, BF〉.
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Unfortunately, Theorem A does not hold for saturated formations containing U as
the following example shows:

Example 1.5. Define a formation function f as follows:

f(p) =

{
{G : G abelian group of exponent dividing p− 1} if p 6= 17,

{G : G abelian group of exponent dividing 48} if p = 17.

Consider the subgroup-closed saturated formation F = LF (f) locally defined by f .
It is clear that F contains U. Let B be a cyclic group of order 9. Then B has an
irreducible module V over the finite field of 17 elements of dimension 2 which is also
irreducible for the maximal subgroup C of B (see [7, B, Theorem 9.8]). Let G = [V ]B be
the corresponding semidirect product. Then G = AB is the weakly mutually permutable
product of A = V C and B. A and B belong to F but G is not an F-group.

An additional condition allows us to obtain an extension of Theorem 1.3.

Theorem B. Let F be a saturated formation containing U. Let the group G = AB
be the weakly mutually permutable product of the subgroups A and B. Suppose that A
permutes with every Sylow subgroup of B and B permutes with every Sylow subgroup of
A. If G′ is nilpotent, then GF = AFBF.

2. Preliminary Results

We first show that factor groups of weakly mutually permutable products are also
weakly mutually permutable products.

Lemma 2.1. Let G = AB be the weakly mutually permutable product of A and B and
let N be a normal subgroup of G. Then G/N = (AN/N)(BN/N) is the weakly mutually
permutable product of AN/N and BN/N .

Proof. We have that G/N = (AN/N)(BN/N). Suppose that H/N is a subgroup of
AN/N such that AN/N ∩ BN/N 6 H/N . Then U = H ∩ A is a subgroup of A such
that H = UN and A ∩ B ≤ U . Since U permutes with B and H = UN , it follows
that H permutes with BN . Analogously, it can be showed that AN/N permutes with
every subgroup of BN/N containing AN/N ∩BN/N and therefore G/N is the weakly
mutually permutable product of AN/N and BN/N . �

Lemma 2.2. Let G = AB be the weakly mutually permutable product of A and B.

(a) If H is a subgroup of A such that A ∩ B 6 H and K is a subgroup of B such
that A ∩ B 6 K, then HK is a weakly mutually permutable product of H and
K.

(b) If A ∩ B = 1, then G is the totally permutable product of the subgroups A and
B, that is, every subgroup of A permutes with every subgroup of B.

Proof. We have that B permutes with every subgroup L of H such that A ∩ B 6 L
and A permutes with every subgroup M of K such that A ∩ B 6 M . Then LM =
L(A∩B)M = (A∩LB)M = AM∩LB = MA∩BL = M(A∩BL) = M(A∩B)L = ML.
Hence L permutes with M and HK is the weakly mutually permutable product of H
and K.

Statement (b) holds immediately from (a). �
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Lemma 2.3. Let G = AB be the product of the subgroups A and B. If A permutes
with every Sylow subgroup of B and B permutes with every Sylow subgroup of A, then
A ∩ B also permutes with every Sylow subgroup of A and B. In particular, A ∩ B is a
subnormal subgroup of G.

Proof. Let Ap be a Sylow p-subgroup of A. Then B permutes with Ap and so BAp is a
subgroup of G. Furthermore, BAp ∩ A = Ap(A ∩ B). Therefore A ∩ B permutes with
Ap. We have shown that A∩B permutes with every Sylow subgroup of A. Applying [3,
Theorem 1.2.14(3)], A ∩B is a subnormal subgroup of both A and B. By [3, Theorem
1.1.7], we have that A ∩B is a subnormal subgroup of G. �

Lemma 2.4 ([4, Lemma 1]). Let F be a saturated formation. Let G = AB be the
product of the subgroups A and B. If G′ is nilpotent, and G ∈ F, then A ∈ F and
B ∈ F.

Corollary 2.5. Let F be a saturated formation. Let G be a group. If G′ is nilpotent,
then HF ≤ GF for every subgroup H of G.

Proof. The group G/GF is the product of the subgroups G/GF and HGF/GF. Since
G/GF ∈ F, it follows that H/H ∩ GF ∼= HGF/GF belongs to F by Lemma 2.4. Hence
HF ≤ GF.

�

Lemma 2.6. Let F be a formation. Assume that either F = U or F is a saturated Fitting
formation containing U. Let G = AB be the weakly mutually permutable product of the
subgroups A and B. Assume that G′ is nilpotent. If A ∈ F and B ∈ F, then G ∈ F.

Proof. Suppose that the theorem is not true and let G be a minimal counterexample.
Then A and B are proper subgroups of G. Let N be a minimal normal subgroup of
G. Then G/N is the weakly mutually permutable product of the subgroups AN/N
and BN/N by Lemma 2.1, AN/N ∈ F, BN/N ∈ F and (G/N)′ is nilpotent. By the
minimality of G, it follows that G/N ∈ F. Since F is saturated, we have that G is a
primitive soluble group. Then CG(N) = N = F(G) = GF = G′ is the unique minimal
normal subgroup of G, and N is a Sylow p-subgroup of G which is complemented in
G by an abelian Hall p′-subgroup of G. Moreover, by [1, Lemma 1.3.2], there exist
Hall p′-subgroups Ap′ and Bp′ of A and B respectively such that H = Ap′Bp′ is a Hall
p′-subgroup of G. Then G = NH and H is abelian.

Note that X = AN = A(X ∩ B) is the weakly mutually permutable product of the
F-subgroups A and X ∩B, and Y = NB is the weakly mutually permutable product of
the F-subgroups B and Y ∩ A by Lemma 2.2 and Corollary 2.5. Since CG(N) = N , it
follows that Op′p(X) = Op′p(Y ) = N . Assume that X and Y are both proper subgroups
of G. Then X and Y belong to F by the minimal choice of G. Then Ap′

∼= X/N ∈ F (p)
and Bp′

∼= Y/N ∈ F (p), where F is the canonical local definition of F. Since H is abelian
and F (p) is a formation, we have that H ∈ F (p). Therefore, G ∈ SpF (p) = F (p) ⊆ F
(see [7, IV, Proposition 3.8(a)]). This contradiction shows that either G = X or G = Y .
Assume that G = Y . Then N ∩ B = 1 and B is an abelian Hall p′-subgroup of G. In
particular, N is contained in A and so A = N(A ∩B). Moreover, every subgroup of B
belongs to F by [7, IV, Theorem 1.14].

Let N1 be a minimal normal subgroup of A contained in N . Then N1(A ∩ B) is a
subgroup of A and N1B is a subgroup of G. Since B is a maximal subgroup of G, it
follows that G = N1B and N = N1. Hence N is a minimal normal subgroup of A and
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A ∩ B is a maximal subgroup of A. Moreover, since N is a faithful and irreducible B-
module, it follows that B is cyclic by [7, B, Corollary 9.4]. Assume that |B| is not a prime
power. Let C be a Sylow subgroup of B. Then AC is a proper subgroup of G which is the
weakly mutually permutable product of the F-subgroups A and (A∩B)C by Lemma 2.2.
Then AC ∈ F, and so AC/Op′p(AC) = AC/N ∈ F (p). Hence (A∩B)C ∈ F (p). By [7,
IV, Theorem 1.14], it follows that C ∈ F (p). Since B is a direct product of its Sylow
subgroups, it follows that B ∈ F (p). Thus G ∈ SpF (p) = F (p) ⊆ F, a contradiction.
Hence B is a cyclic group of prime power order. Assume that A ∩ B = 1. Then G is
the totally permutable product of A and B. By [5], G ∈ F. Therefore A ∩ B 6= 1. Let
M be the maximal subgroup of B. Then AM is a maximal subgroup of G which is the
weakly mutually permutable product of the F-subgroups A and M by Lemma 2.2. By
the choice of G, MA ∈ F and so M ∼= AM/Op′p(AM) = AM/N ∈ F (p).

Assume that F = U. Then M is a cyclic group of exponent dividing p − 1. Since
N is an irreducible M -module, it follows that N is of order p by [7, B, Theorem 9.8].
Consequently, G is supersoluble, a contradiction.

Assume that F is a saturated Fitting formation containing U. Then F (p) is a
subgroup-closed Fitting formation by [7, IV, Proposition 3.16]. Since 1 6= M ∈ F (p),
we can apply [7, IX, Lemma 1.8] to conclude that B ∈ F (p). Hence G ∈ SpF (p) =
F (p) ⊆ F, a contradiction. Therefore no counterexample exists. �

Assume that G = AB is the weakly mutually permutable product of the subgroups
A and B. Assume further that A permutes with every Sylow subgroup of B and B
permutes with every Sylow subgroup of A. Then, by Lemma 2.3, A ∩ B is subnormal
in G. In this case, we cannot have a minimal configuration as in Lemma 2.6. Therefore
we have:

Lemma 2.7. Let F be a saturated formation containing U. Let G = AB be the weakly
mutually permutable product of the subgroups A and B. Suppose that A permutes with
every Sylow subgroup of B and B permutes with every Sylow subgroup of A. If G′ is
nilpotent and A and B belong to F, then G belongs to F.

3. Main Results

Proof of Theorem A. Suppose that the result is not true and let (G,A,B) be a min-
imal counterexample. Then A and B are proper subgroups of G. Let N be a minimal
normal subgroup of G. Then G/N is the weakly mutually permutable product of the
subgroups AN/N and BN/N by Lemma 2.1, and (G/N)′ is nilpotent. By the minimal-
ity of G, we have that GFN = 〈AF, BF〉N . Since G/GF = (AGF/GF)(BGF/GF) ∈ F, we
have that AGF/GF ∈ F and BGF/GF ∈ F by Corollary 2.5. So 〈AF, BF〉 ⊆ GF. Hence
GF = 〈AF, BF〉(GF∩N). Therefore if GF∩N = 1, then GF = 〈AF, BF〉, a contradiction.
We may assume that GF = 〈AF, BF〉N for every minimal normal subgroup N of G.
This means that CoreG(〈AF, BF〉) = 1.

On the other hand, GF is contained in G′ which is nilpotent. So AF and BF are
subnormal subgroups of G. By [7, A, Theorem 14.4], 〈AF, BF〉 is a subnormal subgroup
of G. Using [7, A, Lemma 14.3], we have that Soc(G) ⊆ NG(〈AF, BF〉) and so 〈AF, BF〉
is a normal subgroup of GF.

Let p be a prime such that p divides |N | for a minimal normal subgroup N of G.
Since G is soluble, N is an abelian p-group. Then GF/(〈AF, BF〉) is an abelian p-group
and so Op(GF)(GF)′ is contained in 〈AF, BF〉. Since Op(GF)(GF)′ is a normal subgroup
of G and CoreG(〈AF, BF〉) = 1, it follows that Op(GF)(GF)′ = 1 and so GF is an abelian
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p-group. Since every minimal normal subgroup of G is contained in GF, we have that
F(G) = Op(G) and F(G) is the unique Sylow p-subgroup of G since G′ 6 F(G).

Let Ap and Bp denote the Sylow p-subgroups of A and B, respectively. By [1, Lemma
1.3.2], F(G) = ApBp. Consider Ap(A∩B) and Bp(A∩B). These are normal subgroups
of A and B containing A ∩ B, respectively. Hence ApB and ABp are subgroups of G
by Lemma 2.2.

Assume that B /∈ F. Suppose that ApB < G. Then G′ 6 F(G) 6 ApB and so ApB
is a normal subgroup of G. Since ApB is the weakly mutually permutable product of
Ap(A ∩ B) and B by Lemma 2.2, we have that 〈(Ap(A ∩ B))F, BF〉 = (ABp)

F by the
minimality of G. Note that (Ap(A ∩ B))F 6 AF by Corollary 2.5, and (ABp)

F is a
normal subgroup of G. Hence (ABp)

F = 〈(Ap(A ∩ B))F, BF〉 6 CoreG(〈AF, BF〉) = 1
and so B ∈ F, against our assumption. Consequently, ApB = G.

Let M be a maximal subgroup of G containing B. Then M is the weakly mutually
permutable product of M ∩ A and B by Lemma 2.2. By the minimality of G, MF =
〈(M ∩ A)F, BF〉. Applying Corollary 2.5, we have that (M ∩ A)F ≤ AF. Hence MF is
contained in 〈AF, BF〉. Moreover, A = Ap(M ∩ A), because G = ApM = F(G)M .

Suppose that GF is not contained in M . Then G = MGF. Since GF is abelian, MF is
normal in GF. It follows that MF is normal in G since MF is a normal subgroup of M .
But MF 6 CoreG(〈AF, BF〉) = 1 and so B ∈ F, against our supposition. This means
that GF is contained in M .

Let N be a minimal normal subgroup of G. Then N 6 GF 6 M . Since G =
MF(G) and F(G) centralises N , it follows that N is a minimal normal subgroup of
M . If N ∩MF = N , then N 6 〈AF, BF〉 and GF = 〈AF, BF〉, a contradiction. Hence
N ∩MF = 1 and NMF/MF is a minimal normal subgroup of M/MF ∈ F. Moreover,
N is F-central in M and so N is F-central in G. Using [7, V, Theorem 3.2], we have
that N is contained in every F-normalizer of G. Let E be one of these F-normalizers.
Then G = GFE and E ∩GF = 1 by [7, IV, Theorem 4.2 and Theorem 5.18]. However,
N 6 E ∩GF, a contradiction.

Consequently, B ∈ F. Arguing analogously with the subgroup A, we conclude that
A ∈ F. By Lemma 2.6, G ∈ F, our final contradiction. �

Proof of Theorem B. Suppose that the result is false and derive a contradiction. Let
(G,A,B) be a counterexample with |G|+ |G : A|+ |G : B| as small as possible. Then G
is soluble and A and B are proper subgroups of G. Let N be a minimal normal subgroup
of G. Then G/N is the weakly mutually permutable product of the subgroups AN/N
and BN/N by Lemma 2.1, and (G/N)′ is nilpotent. By [3, Lemma 4.1.10], AN/N
permutes with every Sylow subgroup of BN/N and BN/B permutes with every Sylow
subgroup of AN/N . Our assumption about G gives GFN = AFBFN . Moreover, AF

and BF are both contained in GF by Corollary 2.5. Consequently, Soc(G) is contained
in GF and GF = AFBFN for every minimal normal subgroup N of G.

Let p be a prime divisor of |N | for an arbitrary minimal normal subgroup N of G.
We claim GF is a p-group. Suppose that GF is not a p-group. Since GF is nilpotent,
it has a unique normal Hall p′-subgroup (GF)p′ 6= 1 and (GF)p′ is the product of the
Hall p′-subgroup (AF)p′ of AF and the Hall p′-subgroup (BFN)p′ of BFN . Since N is
a p-group, we have that (BFN)p′ = (BF)p′ is a Hall p′-subgroup of BF. Now (GF)p′ =
(AF)p′)((B

F)p′) is normal in G. In particular, AF(GF)p′ = AF(BF)p′ is a subgroup of G.
Analogously, AF(GF)p = AF(BF)p is a subgroup of G, where (BF)p is the unique Sylow
p-subgroup of BF. This implies that AFBF is a subgroup of G. Let N1 be a minimal
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normal subgroup of G contained in (GF)p′ . Then GF = AFBFN1 = AFBFN . Since N is
a p-group and N1 is a p′-group, it follows that GF = AFBF. This contradicts the choice
of G. Hence GF is a p-group for some prime p.

Since Soc(G) is contained in GF, it follows that Op′(G) = 1 and F(G) = Op(G).
Hence G′ is a p-group and F(G) is the unique normal Sylow p-subgroup of G. Moreover,
by Lemma 2.3, A ∩ B is a subnormal subgroup of G and, by [3, Proposition 4.1.16],
A ∩ B permutes with every Sylow subgroup of A and B. Let Ap and Bp be the Sylow
p-subgroups of A and B respectively such that F(G) = ApBp.

Assume that B /∈ F. The subgroups Ap(A ∩ B) and B of G permute and so ApB =
Ap(A ∩ B)B is a subgroup of G which is the weakly mutually permutable product of
the subgroups Ap(A∩B) and B by Lemma 2.2. Since G′ 6 ApB, it follows that ApB is
a normal subgroup of G. Let X be a Sylow subgroup of B. Since A∩B permutes with
X, we have that (Ap(A∩B))X = (Ap(A∩B))((A∩B)X) = (X(A∩B))(Ap(A∩B)) =
X(Ap(A ∩ B)), that is, Ap(A ∩ B) permutes with every Sylow subgroup of B. Also,
since A∩B is a subnormal subgroup of T = Ap(A∩B) and | T : A∩B | is a p-number,
we have that A ∩ B contains every Sylow q-subgroup of T for every prime q 6= p and
hence B permutes with every Sylow subgroup of T = Ap(A∩B). Therefore Ap(A∩B)
satisfies the hypotheses of the theorem. If ApB < G, then (Ap(A ∩ B))FBF = (ApB)F

by the choice of G. Since (ApB)F is a normal subgroup of G and (Ap(A ∩ B))F is a
subgroup of AF by Corollary 2.5, we have that

AFBF = AF(Ap(A ∩B))FBF

= AF(ApB)F

= (ApB)FAF

= BF(Ap(A ∩B))FAF

= BFAF.

Therefore AFBF is a subgroup of G and (ApB)F ≤ AFBF. Since B /∈ F and BF ≤ (ApB)F

by Corollary 2.5, AFBF contains a minimal normal subgroup of G, which implies that
GF = AFBF. This contradicts the choice of G. Hence G = ApB. Since A ∩ B, Ap and
Bp are subnormal subgroups of G, we have that A is a subnormal subgroup of G by [7,
A, Theorem 14.4].

Let M be a normal maximal subgroup of G containing A. Then M = A(M ∩ B) is
the weakly mutually permutable product of A and M∩B by Lemma 2.2. Since M∩B is
normal in B, we have that every Sylow subgroup X of M∩B is of the form X = M∩Y for
some Sylow subgroup Y of B. Therefore AX = A(M ∩Y ) = M ∩AY = M ∩Y A = XA
and A permutes with every Sylow subgroup of M ∩ B. Now, if Z is a Sylow subgroup
of A, then Z permutes with B. Hence Z(M ∩ B) = M ∩ ZB = M ∩ BZ = (M ∩ B)Z
and M ∩ B permutes with every Sylow subgroup of A. Consequently, M satisfies the
hypotheses of the theorem. The minimal choice of G implies that MF = AF(M ∩ B)F.
Assume that MF 6= 1. Then MF contains a minimal normal subgroup of G because
it is normal in G. Consequently, GF = MFBF = AF(M ∩ B)F. By Corollary 2.5,
(M ∩ B)F ≤ BF. Hence GF = AFBF. This contradicts our supposition. Thus M ∈ F
and so A ∈ F by Corollary 2.5. In particular, GF = BFN for every minimal normal
subgroup N of G. This implies that (GF)′ ≤ BF and so (GF)′ = 1. Hence GF is abelian.
By [7, IV, Theorem 4.2 and Theorem 5.18 and V, Theorem 3.2], GF does not contain
any F-central chief factor of G.

Assume that CoreG(B) 6= 1 and let N be a minimal normal subgroup of G contained
in CoreG(B). Since G = F(G)B and F(G) centralises N , we have that N is a minimal
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normal subgroup of B. Now GF 6= BF implies that BF ∩N = 1 and N is an F-central
chief factor of B. Therefore N is F-central in G, a contradiction. Hence CoreG(B) = 1.

Write E = CoreA(A ∩ B) 6= 1. Then the normal closure EG = EB is a normal
subgroup of G contained in B. Thus EG ≤ CoreG(B) = 1. In particular, E = 1
and A ∩ B is nilpotent by [3, Theorem 1.2.14]. The subnormality of A ∩ B yields
A ∩B ≤ F(G). Hence A is a p-group.

Let L be a maximal subgroup of G containing B. Then L = B(A ∩ L) is the weakly
mutually permutable product of B and A ∩ L by Lemma 2.2. The same arguments to
those used above with M show that L satisfies the hypotheses of the theorem. The
minimality of G yields LF = BF(A ∩ L)F = BF.

Assume that C is a subgroup of L containing A ∩ L. Then C = (B ∩ C)(A ∩ L)
and A ∩ B ≤ B ∩ C. Since A permutes with B ∩ C, we have that A permutes with
C. Let D be a Sylow q-subgroup of L for some prime q 6= p. Then there exist a
Sylow q-subgroup J of B and elements b ∈ B and a ∈ A ∩ L such that D = J ba.
By hypothesis, AJ b is a subgroup of G and so is AD. Therefore A permutes with
D. Since A permutes with the Sylow p-subgroup of L, we have that A permutes with
every Sylow subgroup of L. Now, if K is a subgroup of A containing A ∩ L, then K
contains A∩B and so K permutes with B and so K permutes with L. We have shown
that the triple (G,A,L) satisfies the hypotheses of the theorem. If B were a proper
subgroup of L, we would be have that GF = AFLF = LF = BF by the choice of G. This
contradicts our assumption. Consequently, B = L is a core-free maximal subgroup of
G and G is a primitive soluble group. Then F(G) is a minimal normal subgroup of G
and B ∩ F(G) = 1. In particular, A ∩ B = 1 and G is the totally permutable product
of A and B. Applying [3, Theorem 5.2.7], GF = AFBF, a contradiction.

Consequently B ∈ F. Arguing analogously with A, we conclude that A ∈ F. By
Lemma 2.7, G ∈ F. This final contradiction proves the theorem.
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[5] A. Ballester-Bolinches and M. D. Pérez-Ramos, A question of R. Maier concerning formations,

J. Algebra, 182 (1996), 738—747.
[6] J. C. Beidleman and H. Heineken, Mutually permutable subgroups and group classes, Arch.

Math. (Basel) 85 (2005), 18–30.
[7] K. Doerk and T. O. Hawkes, Finite Soluble Groups, Walter De Gruyter, Berlin-New York, (1992).
[8] R. Maier, A completeness property of certain formations, Bull. London Math. Soc. 24, (1992),

540–544.



GENERALISED MUTUALLY PERMUTABLE PRODUCTS 9
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