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Objective: To summarize evidence for use of advanced MRI techniques as monitoring
biomarkers in the clinic, and to highlight the latest bench-to-bedside developments.

Methods: The current evidence regarding the potential for monitoring biomarkers was
reviewed and individual modalities of metabolism and/or chemical composition imaging
discussed. Perfusion, permeability, and microstructure imaging were similarly analyzed in
Part 1 of this two-part review article and are valuable reading as background to this article.
We appraise the clinic readiness of all the individual modalities and consider
methodologies involving machine learning (radiomics) and the combination of MRI
approaches (multiparametric imaging).
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Results: The biochemical composition of high-grade gliomas is markedly different from
healthy brain tissue. Magnetic resonance spectroscopy allows the simultaneous
acquisition of an array of metabolic alterations, with choline-based ratios appearing to
be consistently discriminatory in treatment response assessment, although challenges
remain despite this being a mature technique. Promising directions relate to ultra-high field
strengths, 2-hydroxyglutarate analysis, and the use of non-proton nuclei. Labile protons
on endogenous proteins can be selectively targeted with chemical exchange saturation
transfer to give high resolution images. The body of evidence for clinical application of
amide proton transfer imaging has been building for a decade, but more evidence is
required to confirm chemical exchange saturation transfer use as a monitoring biomarker.
Multiparametric methodologies, including the incorporation of nuclear medicine
techniques, combine probes measuring different tumor properties. Although potentially
synergistic, the limitations of each individual modality also can be compounded,
particularly in the absence of standardization. Machine learning requires large datasets
with high-quality annotation; there is currently low-level evidence for monitoring biomarker
clinical application.

Conclusion: Advanced MRI techniques show huge promise in treatment response
assessment. The clinical readiness analysis highlights that most monitoring biomarkers
require standardized international consensus guidelines, with more facilitation regarding
technique implementation and reporting in the clinic.
Keywords: high-grade glioma, glioblastoma, treatment response, monitoring biomarker, MRI, spectroscopy,
CEST, radiomics
1 INTRODUCTION

Contemporaneous, accurate, and reliable monitoring biomarkers
are required for high-grade glioma treatment response assessment
as important challenges limit the use of conventional structural
MRI protocols. The current evidence regarding the potential for
monitoring biomarkers based on advancedMRI techniques shows
that the methodology has developed considerably. Although some
techniques have evolved and matured over three decades, several
new state-of-the-art methods are poised to contribute to
the imaging armamentarium. However, limitations for all
techniques remain. High level evidence (level 1 or 2) (1) of
clinical diagnostic accuracy typically is lacking. Clinical
implementation of standardized tools generally remains
challenging, and some recent techniques are in their infancy.
Many of these findings were shown following review of the
modalities of perfusion, permeability, and microstructure
imaging, described in Part 1 (High-Grade Glioma Treatment
Response Monitoring Biomarkers: A Position Statement on the
Evidence Supporting the Use of Advanced MRI Techniques in the
Clinic, and the Latest Bench-to-Bedside Developments. Part 1:
Perfusion and Diffusion Techniques) of this two-part review article.

The challenges limiting the use of conventional structural
MRI protocols as monitoring biomarkers and the need for novel
monitoring biomarkers are also described in Part 1. To complete
a summary of the evidence for the use of advanced MRI
techniques as monitoring biomarkers in the clinic, and to
2

finish highlighting the latest bench-to-bedside developments,
we now focus on the individual modalities of metabolism and/
or chemical composition imaging. We also appraise the clinic
readiness of all the individual modalities. Furthermore, we
consider post-processing methodologies involving the
combination of MRI approaches (multiparametric imaging) or
machine learning (radiomics).
2 MATERIALS AND METHODS

The review method is described fully in Part 1. Briefly, experts in
advanced MRI techniques applied to high-grade glioma
treatment response assessment, convened through a European
framework. The consensus decision was to focus on monitoring
biomarkers that can reliably differentiate post-treatment-related
effects (PTRE) from true tumor progression during (or before)
the point when contrast enhancement on longitudinal relaxation
time T1-weighted MRI images first increases.

Advanced imaging technique analyses were compiled by
subject matter experts and incorporated into a manuscript and
circulated to the working group members.

To determine clinical diagnostic accuracy, we performed
MEDLINE (including PubMed), Embase and Cochrane
Register searches for recent systematic reviews and meta-
analyses, favoring those which followed Preferred Reporting
Items for Systematic Reviews and Meta-Analysis: Diagnostic
February 2022 | Volume 11 | Article 811425
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Test Accuracy (PRISMA-DTA) methodology (2). We also
performed searches to analyze individual clinical studies
related to each advanced imaging technique since the time of
the included systematic review; if a systematic review was
published before 2015, we confined our searches to 2015–2021.
3 RESULTS

3.1 Advanced MRI Techniques
3.1.1 Spectroscopy-Based Techniques
3.1.1.1 Methodology
Proton magnetic resonance spectroscopy (1H MRS) is a technique
that enables noninvasive characterization of certain biochemicals
that are intermediates or end products of cellular metabolism,
referred to as metabolites, within tissues based on the chemical
shift of molecule resonances in relation to water. The area under a
metabolite peak in a magnetic resonance (MR) spectrum is directly
proportional to the tissue concentration of this metabolite. The
major peaks in the brain include resonances of N-acetyl-aspartate
(NAA), choline (Cho), creatine (Cre), and glutamate (Glu), but the
total number of quantifiable metabolites depends mainly on the
pulse sequence used, sequence parameters (e.g., echo time), and
static magnetic field strength (3).

It is well known that spectra acquired from brain tumors are
markedly different from spectra acquired from healthy
Frontiers in Oncology | www.frontiersin.org 3
brain tissue (4). An elevated Cho concentration and reduced
NAA concentration can often be identified in tumors. A decrease
in NAA is often interpreted as a loss or dysfunction of neural tissue,
while increased Cho levels are thought to reflect the increased cell
membrane turnover in tumors. Additional commonly usedmarkers
for tumor proliferation and tumor metabolism include increased
lactate, myo-inositol, and lipid levels. In normal brain tissue, lactate
is present in a barely MRS-detectable concentration. Elevated lactate
levels may be the result of anaerobic glycolysis (i.e., the Warburg
effect), necrosis, or ischemia. The exact role of myo-inositol is not
fully elucidated, but studies have shown that it may reflect the
number of viable glial cells in brain tumors (5). Lipid levels correlate
with a breakdown of cell membranes through necrosis and, as such,
are a marker for high-grade tumors (6). Because the direct
estimation of biochemical concentrations in tumor tissue with in
vivo MRS remains challenging, clinical and research outputs are
normally described as ratios to NAA or Cr.

1H MRS data can be acquired either as single voxel
spectroscopy (SVS, Figure 1) or from multiple voxels by
spectroscopic imaging [2D or 3D magnetic resonance
spectroscopic imaging (MRSI), Figure 2]. SVS is easy to
implement and less time consuming than MRSI. However, the
acquisition of a single, rather large, voxel may result in either
incomplete sampling of the tumor or the inclusion of
peritumoral regions in the sample, which may confound the
analysis of heterogeneous tumor tissue.
FIGURE 1 | Example of single-voxel 1H MRS data acquired in a healthy volunteer (left) and a patient with diffuse astrocytoma with IDH-mutation, WHO grade 2.
Data were acquired with a sLASER sequence at 7 T (TE 110 ms, TR 5000 ms) dedicated for detection of 2HG. The location of the MRS voxel is indicated by the red
box in the structural images. An elevated Cho and Lac level and reduced NAA level are clearly visible in the tumor. Choline (Cho), Creatine (Cre), N-acetyl-aspartate
(NAA), lactate (Lac), myo-Inositol (mI), glutamate (Glu). For illustrative purposes, a low-grade glioma is used.
February 2022 | Volume 11 | Article 811425
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Recently, the MRS community has tried to move forward and
reach a standard consensus regarding MRS methodology
developments of the last decade (8–11), but reproducibility
studies have not been able to adequately reflect these recent
discussions. In particular, multicenter reproducibility studies
remain limited to only a few MRS applications (12, 13).

3.1.1.2 Evidence From Clinical Studies
The utility of MRS to distinguish recurrent tumors from
radiation necrosis has been evaluated in two meta-analyses to
date (Table 1). The first meta-analysis (23), comprising 13
studies, evaluated the diagnostic effectiveness of 1H MRS (both
SVS andMRSI) in differentiating recurrent tumor from radiation
necrosis. This study showed that the Cho/Cr and Cho/NAA
ratios are higher in tumor recurrence compared with radiation
necrosis (pooled difference: 0.77, 95% CI = 0.57 to 0.98 for Cho/
Cr; pooled difference: 1.02, 95% CI = 0.03 to 2.0 for Cho/NAA).
In another meta-analysis of 18 studies (20), the pooled sensitivity
and specificity of Cho/Cr and Cho/NAA in discriminating
recurrent glioma and radiation necrosis are reported to be
between 80–90%. Therefore, the authors recommended using
MRS as an add-on to the structural MRI.
Frontiers in Oncology | www.frontiersin.org 4
In a meta-analysis comparing the diagnostic accuracy of
anatomical and advanced MRI [i.e., apparent diffusion
coefficient (ADC), dynamic susceptibility contrast-enhanced
(DSC), dynamic contrast enhanced (DCE), arterial spin
labeling (ASL), and 1H MRS (SVS and MRSI)] for treatment
response assessment in high-grade gliomas, 1H MRS was found
to have the highest diagnostic accuracy, with a sensitivity of 91%
and specificity of 95%, among all the advanced MRI techniques
(21). Various metabolite ratios were used in the MRS studies
included in this meta-analysis, but in the majority of the studies
Cho/Cr turned out to be the best predictor to differentiate true
tumor progression from PTRE. It is noteworthy that in all of the
studies above, no explicit description was given as to which part
of the tumor (e.g. contrast-enhancing, T2-weighted hyperintense,
or necrotic component) was assessed.

The utility of MRS to differentiate pseudoprogression from
tumor recurrence is less well studied, but a few studies show its
effectiveness. The potential of 3D MRSI was illustrated in a
recent study using 3D echo planar spectroscopic imaging in
glioblastoma patients (24). Here, Cho/NAA and Cho/Cr maps
were co-registered to anatomical images and mapped on
different regions of the neoplasm. Higher Cho/NAA and
FIGURE 2 | Postsurgical 7 T MRSI scan of a patient with oligodendroglioma, IDH-mutant, 1p/19q deleted, grade 3. Free induction decay-acquisition and patch-
based super-resolution, 3.4 × 3.4 × 8 mm³ nominal resolution (7). The ratios of three metabolites (Cho, mI, Gln) to Cr and NAA as common references are mapped.
Both in a left frontal second focus as well as around the primary focus resection cavity posterior to the splenium, increased ratios for all six are clearly discernible and
relate to morphological findings. Specifically, for the Gln ratios, changes between normal-appearing brain tissues and suspected neoplastic growth are in the range of
over a magnitude, making it an attractive potential biomarker, but will require ultra-high-field systems for quantification. Similar techniques could be applied for the
spatial identification of neoplastic activity during therapy. Choline (Cho), Creatine (Cr), N-acetyl-aspartate (NAA), myo-Inositol (mI), glutamine (Gln).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Booth et al. MRI Techniques as Monitoring Biomarkers
Cho/Cr ratios specifically in the contrast-enhancing part of the
tumor were found in patients with tumor progression
compared with patients with pseudoprogression, with a
discriminatory accuracy of 94%. Similar results were found
in another MRSI study where a threshold of Cho/NAA ≥ 1.3 in
the contrast-enhancing part of the tumor was proposed to
determine tumor recurrence (25).

3.1.1.3 Strengths and Weaknesses
The main strength of MRS techniques for in vivo tumor
assessment is the ability to acquire an array of metabolic
alterations in one measurement and the flexibility to optimize
methods for specific targets of interest. The main limitations of
Frontiers in Oncology | www.frontiersin.org 5
SVS and, to a lesser extent MRSI, are the relatively large voxel
size and poor spatial coverage (3). This can lead to partial volume
effects between active tumor, treatment-induced changes, and
necrosis, as well as the omission of potentially neoplastic
tissues. Furthermore, scan time is typically long, artifacts from
transcranial lipids or susceptibility differences reduce spectral
fitting reliability, and extensive offline processing is usually
required. Advanced acquisition techniques can address most of
these limitations but require expert operators and tools, and have
led to a multitude of published methodologies lacking direct
comparability. Therefore, MRS often is not included in routine
clinical protocols. Recent initiatives for consensus on MRS
methodology and applications are expected to lead to a more
TABLE 1 | Meta-analyses of advanced MRI treatment response monitoring biomarkers. Post-processing methodology meta-analyses are not included here, and are
described in the relevant sections below.

Paper Quality
assessment

Period Modality Studies/
patient (n/n)

Sample size
range(n-n)

Prospective
Studies (n/n)

Progression
compared to:

Pooled measure (n
studies)

Sensitivity Specificity

Yu et al.
(14)

Q2 2012-
2017

DWI/ADC 6/214 20-68 1/6 PSP ADC mean (3) 5th

centile ADC
(2) relative ADC (1)

95 (89-98) 83 (72-91)

Zhang
et al.
(15)

Q2 2007-
2014

DWI/ADC 9/284 20-210 1/9 RN ADC ratio (7) ADC
value (2)

82 (75-91) 84 (76-91)

Okuchi
et al. (16)

Q2 2011-
2015

DCE 9/298 14-79 3/9 PTRE All 88 (74-95) 86 (78-91)

– Ktrans (6) 75 (63-84) 79 (68-87)
– Toft/Extended Toft (6) 77 (65-86) 85 (75-92)
– Model independent (4) 94 (86-98) 85 (74-93)

Patel et al.
(17)

Q2 2009-
2015

DSC 15/897 9-169 7/28 PTRE DSC best parameter 90 (85-94) 88 (83-92)

– DSC max nCBV (5) 93 (86-98) 76 (66-85)
– DSC mean nCBV (8) 88 (81-94) 88 (78-95)

2011-
2015

DCE 7/581 18-57 2/7 – best parameter 89 (78-96) 85 (77-91)

Wan et al.
(18)

Q2 2011-
2016

DSC 11/116 20-68 1/11 PsP nCBV 88 (84-92) 77 (89-84)

Deng et al.
(19)

Q 1992-
2013

DSC 7/174 10-57 0/18 No progression rCBV (6) 88 (82-93) 85 (75-92)

Zhang
et al. (20)

Q2 MRS 12/262 8-40 1/12 RN Cho/Cr 83 (77-89) 83 (874-
90)

9/213 13-38 1/12 – Cho/NAA 88 (81-93) 86 (76-93)
van Dijken
et al. (21)

Q2 2009-
2014

DSC 18/708 7-90 8/18 PTRE Best parameter 87 (82-91) 87 (77-91)

2011-
2013

DCE 5/207 13-79 2/5 – – 92 (73-98) 85 (76-92)

2006-
2014

MRS 9/203 12-40 4/9 – – 91 (79-97) 95 (65-99)

2010-
2014

ADC 7/204 16-51 4/7 – – 71 (60-80) 87 (77-93)

2008-
2013

Structural
MRI

5/166 7-93 2/8 – – 68 (51-81) 77 (45-93)

Wang et al.
(22)

Q2 2009-
2019

DSC 20/939 16-98 5/20 PTRE nCBV (17) max rCBV (3) 83 (79-86) 83 (78-87)

2013-
2019

DCE 4/250 40-98 1/4 – Ktrans 73 (66-80) 80 (69-88)

2013-
2018

ASL 3/160 29-69 0/3 – nCBF 79 (69-87) 78 (67-87)
February 2022 | Vo
lume 11 | Art
RN, radiation necrosis; PSP, pseudoprogression; PTRE, post-treatment related effects; Q, QUADAS (Quality Assessment of Diagnostic Accuracy Studies) tool; Q2,
QUADAS-2 tool.
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“even playing field” and standardized approaches that will make
future studies more comparable (9, 26, 27).

3.1.1.4 Future Developments
In most studies on PTRE, only the most prominent MRS peaks (i.e.,
NAA, Cho, and Cr) have been evaluated as these produce the most
signal and are least affected by J-coupling under long echo times.
The use of ultra-high field 1H MRS (i.e., ≥ 7 Tesla [T]) results in an
increased signal-to-noise ratio and an improved ability to separate
overlapping peaks (28). Applying 3D MRSI may overcome the
barrier of incomplete tumor sampling in SVS, and this has
motivated the development of fast and high-resolution
spectroscopic imaging sequences (29). With this, additional
markers for tumor proliferation and tumor metabolism, including
glycine (Gly), Glu, and glutamine (Gln), can be evaluated
unambiguously (30). Recently, it was shown in preoperative
patients that metabolic differences between tumor regions and
peritumoral tissue, beyond decreased NAA levels and elevated
Cho levels, could be detected at 7 T (31). For example, high levels
of Gln and Gly (which are difficult to separate from Glu and myo-
inositol, respectively, at lower fields) were found within the tumor
region, which may reflect cancer cell proliferation in the case of Gly
and malignant metabolic changes for Gln. Whether these high-
resolution 3D metabolite maps could aid in identifying PTRE is yet
to be determined. There are high expectations for the application of
machine-learning-driven classification of neoplastic tissues that
could help to reach this goal (32).

A specific metabolite of interest is 2-hydroxyglutarate (2HG).
2HG is an oncometabolite, produced in glial tumor cells bearing
an isocitrate dehydrogenase (IDH) gene mutation, either IDH1
or IDH2. The discovery that 2HG can be detected in vivo by
dedicated MRS sequences has led to several successful studies
showing the ability to determine IDH status noninvasively by
MRS (33). Additionally, a potential role for 2HG MRS has been
proposed in treatment response imaging. In patients with
IDH-mutant tumors, 2HG levels decrease following adjuvant
radiation and chemotherapy (34, 35) and increase in the case of
tumor progression (35). Furthermore, monitoring 2HG levels
could be of specific interest in evaluating the effects of IDH-
inhibitors, as was shown in a phase 1 clinical trial (36).

Although 1H MRS gives insight into steady-state metabolite
concentrations, protons are not the only nuclei with resonances
of interest. Techniques using other nuclei can be used such as
31P MRS and MRSI (37), deuterium metabolic imaging (DMI),
and (hyperpolarized) 13C MRS and MRSI, which enable the
evaluation of tissue metabolism in vivo (Figure 3). For example,
31P-MRSI has been applied to the imaging of inter- and
intracellular pH in gliomas, finding increased pH values both
at 7 T (37) and 9.4 T (38) in proof-of-concept studies.

These techniques can be used to detect different sets of
molecules important to tumor metabolism, such as glucose or
ATP, and there is the potential for deriving enzyme activity or
acidity. Currently, these techniques are used mainly in a research
setting but are potentially promising for distinguishing PTRE, as
metabolic reprogramming is one the hallmarks of cancer. For
example, it was shown that DMI can be used to visualize tumor
Frontiers in Oncology | www.frontiersin.org 6
tissue metabolism beyond glucose uptake and, thus, map the
Warburg effect, which is typically only seen in active tumor cells
(39). As such, DMI may be potentially useful to differentiate
between treatment-induced necrosis and tumor progression.

3.1.2 Chemical Exchange Saturation Transfer
3.1.2.1 Methodology
Chemical exchange saturation transfer (CEST) MRI is a
technique in which labile protons on endogenous proteins can
be selectively targeted to generate contrast (40). In a typical CEST
examination in patient studies at 3 T, B1 saturation pulses are
used with a range of off-resonance frequencies centered around
on-resonance B1 saturation pulses to generate a Z-spectrum.
Labile protons that are bound to mobile proteins are hereby
saturated and will lead to saturation of the free water pool when
exchanging with the free water protons, depending on their
abundance and exchange rate. Endogenous CEST effects that can
be targeted include saturation transfer of protons in amide (3.5
ppm), amine (3 ppm), total creatine (Cre) (2 ppm), and hydroxyl
(0.9 ppm) bonds. Additional effects of application of off-
resonance saturation pulses that will be present within Z-
spectra include broad magnetization transfer (MT) effects in
semisolid macromolecules, relayed nuclear Overhauser
enhancement (NOE) in mobile macromolecules (−1 to −4
ppm) (41), and direct saturation of free water protons (i.e.
spillover effect) (42). Note that, in particular at 3 T due to
broad spectral linewidths, these effects are either close to or even
overlapping with the endogenous CEST effects that are often the
target of CEST studies. Several approaches exist to best isolate all
of the above effects, such that the CEST effect of interest can be
measured. For instance, increasing main magnetic field strength,
e.g. using 7 T instead of 3 T systems, aids in separation of all of
these effects because it leads to decreased spectral linewidths of
the individual effects. Optimizing duration and power of B1
saturation pulses can be used to sensitize CEST experiments to
protons exchanging with different rates. Analysis approaches
include magnetization transfer ratio asymmetry (MTRasym) (43),
in which signals with off-resonance frequencies with matching
positive and negative shift around 0 ppm are subtracted from one
another (Figure 4), and multiple pool fitting approaches of the
Z-spectrum which are used to explicitly isolate individual
contributions, such as the NOE, spillover and broad
magnetization transfer effects (41, 44). Additionally, a range of
methodologies accounts for changes in parameters that will affect
the CEST contrast generated. These include additional
acquisitions and/or analysis to correct for inhomogeneities in
the main magnetic (B0) (45) and saturation (B1) (46) field, or a
change in the T1 (47).

A full overview of CEST MRI acquisition and analysis
approaches is beyond the scope of the current review and has
been given previously (40). However, in using CEST MRI for
brain tumor imaging some confounding factors do require
explicit attention. For example, the T1 relaxation time of the
free water pool and the broad MT effect both directly affect the
measured signal in CEST studies. In brain tumors, the T1

relaxation time is often found to be increased compared to
February 2022 | Volume 11 | Article 811425
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healthy white matter, which is generally attributed to increased
tissue water content (48), while changes in macromolecular
background in tumor tissue are thought to be the cause for
commonly found decreases in MT in brain tumors (49–51).
Additionally, B1 saturation powers mostly used in CEST brain
tumor studies are relatively low (< 2 µT), giving rise to strong
NOE effects (41). However, NOE is known to change in brain
tumors as well (52). The above highlights the difficulty of
isolating the individual components contributing to CEST
contrast and that care should be taken when changes in CEST
contrasts are attributed to underlying physiological processes.
This is an important aspect to keep in mind when reviewing the
latest research in applications of CESTMRI to find biomarkers of
treatment response in high-grade glioma.

Currently, imaging guidelines are not available (although in
preparation). Some technical validation has been performed in
healthy subjects in 7 T systems (53).

3.1.2.2 Evidence From Clinical Studies
Amide proton transfer (APT)-weighted CEST is the most
investigated CEST technique to derive biomarkers of treatment
Frontiers in Oncology | www.frontiersin.org 7
response. In 2011, it was first shown in preclinical models that the
APT-weighted signal of lesions immediately decreases when
radiation necrosis occurs (in five animals) (54) or after
treatment with temozolomide (five controls, six treated) (55).
Increased APT-weighted signal within the lesion after treatment
was thought to be indicative of increased cell proliferation in
tumor progression, a hypothesis supported by a positive
correlation between APT-weighted CEST and Ki67, an
immunohistochemical marker of cell proliferation. This
correlation has since been reproduced in human gliomas (56)
and has led to the first results of increased APT-weighted CEST
contrast after treatment to be associated with tumor progression
rather than PTRE. However, the application of CEST MRI to
differentiate tumor progression from PTRE is a relatively recent
development, which has led to only a handful of clinical studies on
this topic (see Table S1). Two research groups (57, 58) have found
that in small cohorts of patients diagnosed with glioblastoma and
scanned after chemoradiotherapy or radiotherapy alone, APT-
weighted CEST improved differentiation of tumor response from
PTRE compared with conventional imaging alone (with a
combination of perfusion-weighted and APT-weighted CEST
FIGURE 3 | Simplified schematic illustration of key metabolic pathways probed with spectroscopy. Glu (from brain-feeding arteries) is taken up by tumor cells and
converted into pyruvate, which enters the tricarboxylic acid cycle and undergoes oxidative metabolism, for the production of energy (ATP). 1H MRS visible
metabolites are marked with a black *, where ** denotes that a dedicated MRS sequence is needed. Green *: includes pathways visible with 13C or DMI. Red *:
visible with 31P MRS. Adenosine triphosphate (ATP), Glucose (Glu).
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giving the best differentiation). An example of this is presented in
Figure 5. One of these research groups showed that in even
smaller cohorts, APT-weighted CEST outperformed 1H MRS (59)
and methionine positron emission tomography (PET) (60) at
determining tumor progression. Retrospectively comparing
APT-weighted CEST with diffusion and perfusion MRI
biomarkers also indicated the added value of CEST to elucidate
Frontiers in Oncology | www.frontiersin.org 8
tumor progression in 36 glioblastoma patients treated with
chemoradiotherapy or radiotherapy in a recent work (61). In
another recent study where APT-weighted CEST was obtained in
32 patients within three months after treatment, increased APT-
weighted CEST was seen in tumor progression with radiological
confirmation after six months of follow-up (62). Moreover, in a
previous, prospective study (50) 19 glioblastoma patients
were systematically scanned before, during, and after
chemoradiotherapy and an increase in APT-weighted CEST was
shown to differentiate progressors from non-progressors as early
as two weeks into treatment.

Although the above-referenced studies illustrate clinical
findings of elevated APT-weighted CEST at 3 T by several
research groups, recent work (63) did not find elevated APT-
weighted CEST to be correlated to tumor progression in 12
glioblastoma patients scanned at 7 T. However, when these
authors used a combination of image acquisition and analysis
aimed at isolating the APT signal from the upfield relayed-
nuclear Overhauser enhancement effects, they found that
changes in the latter were able to differentiate tumor
progression from PTRE. In line with this are the results of
prospective studies (64, 65), where patients were scanned with
CEST MRI at 7 T before treatment and APT was isolated from
NOE effects. This showed that CEST contrasts before treatment
are significantly correlated to overall and progression free
survival (i.e., a prognostic biomarker). Taken together, these
ultra-high field studies highlight the potential of CEST MRI to
be used as a prognostic and monitoring biomarker candidate
for treatment response assessment, although the different
contrasts used indicate yet again that, although CEST
contrasts can certainly differentiate active tumor tissue from
PTRE, the exact mechanisms causing these contrasts remain to
be elucidated.

Other studies optimize CEST image acquisition to be pH-
weighted by including (66) or focusing on (67) amine proton
exchange, which is thought to be more sensitive to pH changes
than cell proliferation. Preclinical work (68) has shown that pH-
weighted CEST contrast increases when intracellular pH
decreases (i.e., becomes more acidic) in glioblastoma due to
chemotherapy. Furthermore, clinical proof-of-concept of using
pH-weighted CEST to assess treatment response has been
demonstrated in patients after anti-angiogenic treatment (69)
and patients treated with combined chemoradiotherapy (70).

3.1.2.3 Strengths and Weaknesses
A strength of CEST MRI for clinical diagnostics in tumor
imaging is that those contrasts most explored for tumor
imaging arise from endogenous markers and, therefore, no
contrast agents are required. Additionally, the process of
exchange inherently increases the signal-to-noise ratio of CEST
imaging compared with MRS, which allows for a smaller voxel
size to be used to probe heterogeneous tissues/pathologies, such
as tumors. With these strengths, the potential of CEST MRI to
improve differentiation of tumor progression from PTRE is clear.
However, weaknesses include the multitude of options to acquire
and analyze CEST MRI data, the variation in the timing of CEST
MRI included during treatment, the retrospective nature of some
A

B

C

D

FIGURE 4 | Chemical exchange saturation transfer. (A, B) Solute protons
(blue) are saturated at their specific resonance frequency in the proton
spectrum (here 8.25 ppm for amide protons). This saturation is transferred to
water (4.75 ppm) with exchange rate ksw and non-saturated protons (black)
return. After a saturation period (tsat), this effect becomes visible on the water
signal (B, right). (C) The Z-spectrum, showing normalized water saturation
(Ssat/S0) as a function of irradiation frequency. When irradiating the water
protons at 4.75 ppm, the signal disappears due to direct (water) saturation.
This frequency is assigned to 0 ppm in Z-spectra. At short saturation times,
only this direct saturation is apparent. At longer tsat, the CEST effect
becomes visible at the frequency of the low-concentration exchangeable
solute protons, now visible at 8.25 – 4.75 = 3.5 ppm in the Z-spectrum.
(D) Result of MTRasym analysis of the Z-spectrum with respect to the water
frequency to remove the effect of direct saturation. Image adapted with
permission from (42).
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of the current clinical studies investigating APT-weighted CEST
for tumor treatment response, and the small number of patients
in the above-referenced studies. These weaknesses currently
prevent a definitive summary of this imaging technique for
treatment response assessment, in terms of indications for
when to measure and which threshold values to use to separate
tumor progression from PTRE.

3.1.2.4 Future Developments
To develop the application of CEST MRI for differentiation of
treatment effects and tumor progression, a consensus from all
relevant stakeholders regarding image acquisition and analysis is
required to enable multicenter and multi-vendor trials. This is an
area of active research, where a working group of international
CEST experts is working toward an open source consensus CEST
acquisition and analysis protocol (71).

3.1.3 Emerging MRI Techniques
There are several emerging techniques that may be shown to be
monitoring biomarkers in future proof-of-concept studies.
Frontiers in Oncology | www.frontiersin.org 9
Here, we focus on some studies where proof-of-concept has
already been shown.

3.1.3.1 Vascular Architecture Mapping and Oxygenation
Imaging
Vessel caliber imaging, or vessel architecture mapping, is based
on the fact that when a contrast agent passes through the
vasculature and perturbs the local magnetic field, MRI signal
from a gradient echo readout is sensitive to large arteries and
capillaries, while with a spin echo readout signal is mostly
sensitive to capillaries (72). Vessel architecture imaging hereby
refers to the modelling framework that aims to assess subvoxel
microvascular parameters, such as vessel density and vessel
diameter, where vasculature with diameters < 200 µm are
targeted (73). This imaging approach is included in recent
“tumor microenvironment mapping,” which combines vessel
architecture imaging with oxygen metabolism imaging, i.e.,
measurement of the oxygen extraction fraction with
quantitative blood oxygenation level dependent imaging. One
study allowed five different tissue types within tumors to be
identified (necrosis, hypoxia with/without neovascularization,
oxidative phosphorylation, and glycolysis) (74). In 21 tumors
scanned pre- and post-treatment, a change in the presence of
these five metabolic profi les demonstrated recurrent
glioblastoma. Although these results are still very preliminary,
this proof-of-concept work shows the potential of this emerging
technique to become a future monitoring biomarker.

3.1.3.2 Non-Proton MRI Techniques
Sodium (23Na) imaging has established itself in MRI research
due to the diverse role of sodium ions in tissue homeostasis (75).
Unlike other non-proton techniques such as 31P and 13C, the
23Na signal does not yield a metabolite spectrum, but only a
single resonance in most environments such as human tissue
(76). Therefore, imaging (as opposed to spectroscopy) is almost
exclusively performed for 23Na.

Although 23Na MRI has been performed successfully in brain
cancers since the late 1980s (77), more recent publications have
shown its benefit in predicting IDH mutation status and tumor
progression (78). Sodium concentration mapping has been
performed in recurrent glioblastoma after radiotherapy (79) and
also chemoradiotherapy (80). The authors of the former case
report showed that the 23Na images provided similar information
as those contained in [18F]fluoro-ethyl-tyrosine (FET) PET images
and postulate that 23Na images may therefore be able to provide a
substitute for PET in MRI-only examination settings (79).
Similarly, the authors of the second study noted that the 23Na
images were sensitive to “real-time” changes in treatment volume
that could be used to alter the course of treatment early on (80).
Most recently, a study investigated whether whole tumor
(excluding necrosis) measured immediately after chemotherapy
with a follow-up 6 weeks later could predict stable or progressive
disease, but did not find any significant correlations either with
treatment response or overall survival (81). As with the other
emerging techniques, 23Na imaging is best considered as a
proof-of-concept technique that may prove to be a future
monitoring biomarker.
FIGURE 5 | Images illustrating APT-weighted imaging (MTRasym at 3.5
ppm) in two patients after treatment with radiotherapy. Contrast
enhancement on T1-weighted images was seen in patient 1, 62 months
after radiotherapy treatment and resection for grade 2 astrocytoma (A).
The additional increased MTRasym in the same patient (C) illustrates
tumor recurrence, which was confirmed as grade 4 glioblastoma after
repeat surgery. Contrast enhancement on T1-weighted images was seen
in patient 2, 14 months after chemoradiotherapy of grade 3 astrocytoma,
with regional anaplastic oligodendroglioma (B). The additional MTRasym in
patient 2 (D) illustrates low values, indicating treatment effect, which was
confirmed as radiation necrosis with histopathology after repeat surgery.
Image adapted with permission from (58).
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3.2 Advanced Handling of MRI Data
3.2.1 Multiparametric Imaging
3.2.1.1 Multiparametric Advanced MRI
The combination of multiple modalities may be of value for
tissue characterization and help differentiate tumor from PTRE
by providing complementary information of tumor biology and
thus overcome limitations of individual techniques.

3.2.1.2 Evidence From Clinical Studies
Ameta-analysis (82) of seven studies of multiparametric MRI (at
least two of the following advanced MRI techniques: diffusion
tensor imaging (DTI), diffusion-weighted imaging (DWI),
DSC, DCE, ASL, and MRS) in patients with suspected
pseudoprogression showed a pooled sensitivity and specificity
of 84% and 95%, respectively, but the authors noted that the
accuracy of multiparametric imaging was not different from that
of monoparametric imaging determined in a meta-analysis of
individual techniques (21). Table S2 shows results of studies
reporting separate and combined diagnostic performance of ≥ 2
parameters (e.g., PET, DWI, DSC, or MRS). The studies
Frontiers in Oncology | www.frontiersin.org 10
generally showed improved diagnostic accuracy when
combining modalities, although the added value may be
marginal when compared with the best performing single
modality. Combined sensitivity and specificity may even be
lower when compared with the single modality that has the
highest sensitivity or specificity.

3.2.1.3 Strengths and Weaknesses
The main advantage of multiparametric imaging is related to
reducing both false positive and false negative results of single
modalities, either by providing complementary information on
biology (e.g., perfusion and metabolism) or compensating for
technical limitations of one modality (e.g., limited coverage of
DSC in the presence of susceptibility artifacts). Interpreting
advanced multiparametric data routinely in the clinic, however,
may be difficult and time consuming due to the amount and
complexity of data processing and integration. Figure 6 illustrates
the complexity of multiparametric imaging. Such a challenge may
be particularly true for methods requiring longitudinal data such as
relative cerebral blood volume and ADC parametric response maps
FIGURE 6 | Multiparametric imaging. Example of multiparametric imaging for prediction of tumor recurrence. Baseline images prior to radiotherapy in a patient with
glioblastoma show contrast-enhancing lesion (green) on (A) post-contrast T1-weighted images, (B) non-enhancing volumes (purple) on T2 fluid attenuated inversion
recovery, (C) radiotherapy dose plan with gross tumor volume (red), clinical target volume (white), and planning target volume (cyan), (D) [18F]FET PET, (E) [18F]FDG
PET, (F) DCE blood volume, (G) DTI fractional anisotropy, (H) DTI mean diffusivity, (I) DCE extravascular extra-cellular volume, (J) DCE mean transit time, (K) DCE
blood flow, (L) DCE permeability. Follow-up imaging shows recurrent tumor in red on (M) post-contrast T1-weighted images and (N) [18F]FET PET imaging. Lower
right image shows recurrence probability map superimposed on radiotherapy dose plan gross tumor volume (red) and actual recurrence boundary (white). Adapted
with permission from (83).
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combinations, which appear promising in determining treatment
response (84). A further limitation is, as this review has shown, a
paucity of high-level evidence for individual modalities especially
relating to established frameworks for technical and clinical use as
well as clear thresholds with understood confidence intervals to give
a robust radiological outcome; therefore, combinations of individual
modalities might compound error or lead to increased uncertainty
of outcome.

3.2.1.4 Future Developments
One key area of development is to determine which modalities and
parameters should be analyzed and integrated to give a clinically
useful single diagnostic measure. One simple approach is to apply a
scoring system, where each modality is rated as positive or negative,
and the number of positive markers is added to a total score. One
early study combining ASL, DCE, DSC, andMRS found that a score
of ≥ 2 yielded a specificity of 94% as opposed to 77–84% for single
modalities (85). To take into account lesion heterogeneity, one study
of pseudoprgression compared to true progression applied scoring
of different tumor components identified by automated voxel-based
multiparametric clustering, resulting in final volume-weighted
scores of the entire lesion. Applying this method in an
independent test set, 87–89% of the lesions were correctly
classified using the summed cluster score, compared with 76–83%
using single modalities (86).

Others have applied machine learning approaches (described
in more detail below) for automated voxel-wise classification of
recurrence or pseudoprogression based on structural MRI, DSC,
and ADC (87), or by providing maps predicting voxels where
there will be downstream tumor progression (i.e., prognostic
biomarkers) based on one-off multiparametric imaging prior to
surgery (88) or radiotherapy (83), or through observing temporal
changes in the images over time (89). A recent systematic review
concluded that the integration of machine learning with
multiparametric data was promising for visualization of
diffusely infiltrating tumor cells before and after treatment. The
review also concluded that because study cohorts are small,
further studies are required to determine optimal methodology,
and there is a need for larger cohorts to improve model
performance (90). An advantage of machine learning is that
wide data can be handled relatively easily (91) which might allow
the wide spectrum of advanced imaging signatures to be
captured together and thereby improve performance accuracy.
However, to reiterate, a disadvantage when compared to a single
modality approach is that combinations of outputs from
individual modalities that are without frameworks for technical
and clinical use, might compound inter-center variability and
reduce generalizability considerably.

3.2.1.5 PET/MRI
PET is increasingly being used in the management of brain tumors
as an adjunct to MRI. Table 2 provides an overview of the most
frequently applied (or methodologically relevant) PET tracers in
gliomas, grouped according to the mechanism of uptake. PET data
is most frequently obtained on standalone PET/computed
tomography systems and then fused to MRI, but hybrid PET/
MRI systems have the advantage of allowing the simultaneous
Frontiers in Oncology | www.frontiersin.org 11
acquisition of PET and both advanced and conventional MRI
within a single imaging session. Among the available tracers, only
the amino acid tracers, such as [18F]fluoro-ethyl-tyrosine (FET),
and the glucose analogue [18F]fluoro-deoxy-glucose (FDG) PET
have been included in joint European Association of Nuclear
Medicine/European Association of Neuro-Oncology (EANO)
guidelines (98, 99). Amino acid tracers are generally preferred
over FDG due to more specific tumor uptake (as illustrated in
Figure 6). Repeatability of amino acid PET using [18F]FET has
been investigated in animal models only (100). Because the main
variability of PET imaging is related to the tracer and less so to the
site or scanner, vendor-site-related differences are expected to be
minor when consensus guidelines are followed, and PET tracers
have been applied reliably in multicenter studies (101, 102).

Several reviews have highlighted the potential of combining
PET acquired simultaneously with advanced MRI by using a
hybrid PET/MRI system (Figure 7), but the number of studies
actually investigating the value of multimodal approaches in
distinguishing recurrent gliomas from PTRE is limited. Recent
studies combining [18F]FDG (105) or amino acid tracers (106–
109) with DSC, DWI, and/or MRS (see Table S2) suggest that
such multimodal imaging may provide complementary and
additive information, leading to an improved overall diagnostic
accuracy, but the optimal combination of modalities is not clear.

3.2.2 Machine Learning and Radiomics
3.2.2.1 Methodology
“Radiomics” (Figure 8) is the extraction of underlying
quantitative information from the imaging dataset to develop
biomarkers that may not be readily visible to individual human
raters. Typically, radiomics consists of the following phases:
preprocessing images, feature estimation (quantifying or
characterizing the image), feature selection (dimensionality
reduction to remove noise and random error in the underlying
data, and, therefore, reduce overfitting), classification (decision
or discriminant analysis), and evaluation (111). Evaluation in
image analysis research initially consists of analytical validation,
where the accuracy and reliability of the biomarker are assessed
(112). Clinical validation is the subsequent clinical testing of
biomarker performance, typically in a clinical trial.

Some studies have used applied statistical models, some have
employed machine learning models, and many have leveraged both.
The basic difference between them is that statistics draws population
inferences from a sample, and machine learning finds generalizable
predictive patterns (113). Recentworkhasmadeuse of developments
in technology to allow the use of much more complex supervised,
unsupervised, andreinforcementmachine learning, including theuse
of deep (multiple layered) neural networks, which allows automation
of both feature estimation and selection steps (91).

3.2.2.2 Strengths and Weaknesses
Several barriers exist in translating machine learning high-grade
glioma monitoring biomarkers to the clinic (114). These
predominantly relate to the requirement of large datasets that
have been accurately labeled to train models. However, machine
learning has some additional weaknesses. Accuracy-driven
performance metrics have led to a trend towards increasingly
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opaque models (115), although recent developments in
interpretability and explainability may help to mitigate this to
some extent (116). Furthermore, linking the empirical data to a
categorical analysis neglects an intrinsic ambiguity in the observed
phenomena (117), which might adversely affect the intended
performance (118). Also, algorithms may be unreliable due to
several technical constraints: domain adaptation is currently
limited, and more solutions are required to help algorithms
extrapolate well to new centers. This is particularly true of
advanced imaging where the lack of established frameworks for
technical acquisition and clinical handling leads to spatial
heterogeneity of data across hospital sites. Multi-parametric
combinations of advanced imaging exacerbates the heterogeneity
further and increases the challenge of model generalizability further.
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Robustness to unintended data, such as artifacts, is also a technical
constraint that needs to be overcome. Finally, the presence of more
than one pathology (e.g., abscess associated with a tumor following
treatment) can also confound algorithms as these cases are scarce
and often unlabeled.

Nonetheless, machine learning models have several key
advantages. They require less formal statistical training given the
huge developments in software (119), and the programming
expertise for researchers has now been transformatively reduced,
enabled by standardized implementations of open source software
(120, 121). Machine learning models also have the ability to
determine implicitly any complex nonlinear relationship between
independent and dependent variables (119), and have the ability to
determine all possible interactions between predictor variables (115).
TABLE 2 | Frequently studied PET tracers used to differentiate progression from post-treatment related effects.

Target
Mechanism of uptake

Tracers Clinical
evidencea

Sensitivity
(%-%)/
Specificity
(%-%)b

Advantages/Disadvantages

Glucose metabolism
GLUT 1/3 transport and
hexokinase

[18F]fluoro-deoxy-glucose
(FDG)

+ S:43-100/40-
100
M: 76-84/82-84

High availability
High physiological uptake in normal structures and
inflammatory foci

Amino acid transport
Large amino acid transporters
(LAT1 and LAT2)

[11C]methionine (MET) + S:75-91/88-100
M:93-94/82

Short half-life and need for onsite cyclotron
higher uptake in inflammatory lesions.

[18F]dihydroxy-phenylalanine
(DOPA)

++ S: 84-100/61-
100
M:86/72

Higher physiological in uptake basal ganglia

[18F]fluoro-ethyl-tyrosine (FET) ++ S: 84-100/86-
100
M:90-92/85-88

Added accuracy of time activity curves from dynamic imaging

All: extensively studies and used in clinical routine, low
physiological uptake

Hypoxia
Trapping in hypoxic cells [18F]fluoromisoinodazole

(FMISO)
n.a – High background activity and need for delayed imaging

Profileration
Thymidine kinase 1 [18F]fluorothymidine (FLT) + S:82/50 Not superior to FDG

Dot not cross BBB
Neuroinflammation
Mitochondrial translocator protein
(TSPO)

[11C]PK11195 n.a. – [11C]PK11195: short half-life and need for on-site cyclotron

[18F]GE-180 n.a. – heterogeneity and uptake in PTRE
Perfusion

[13]NH3 (+) S:78-83/86 Both:
freely-diffusible tracers allows quantification of perfusion

[15O]H2O n.a. – short half-life and need for on-site cyclotron
Vascular endothelium
PSMA [68Ga]PSMA
Cell membrane synthesis
Choline [11C]Choline + S:74-92/88 [11C]short half-life and need for on-site cyclotron uptake in

non-tumor
[18F]Fluorocholine + Both: Uptake partially BBB dependent

Angiogenesis
avb3 (RGD) [18F]FPPRRGD2 n.a. – Both: Do not cross BBB
Bevacizumab [89Zr]Bevacizumab n.a. –

Cancer-associated fibroblast
Fibroblast-activation protein [68Ga]FAPI02/04 n.a. – Possibly BBB dependent
Selection of tracers based on recent large/systematic reviews (92–95). Footnotes: aadapted from Werner et al. (95) where ++ = high diagnostic accuracy, + = limited diagnostic accuracy,
(+) = limited data available, n.a. not applicable (only preliminary/no data available); bRange reported in single studies (S) or meta-analyses (M) reported in (92, 93, 96, 97).
Also shown are some tracers of potential use for this indication.
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3.2.2.3 Evidence From Clinical Studies
As shown elsewhere, multiple studies have attempted to develop
monitoring biomarkers to determine treatment response. Many
incorporate machine learning as a central pillar of the process. A
review of studies up to 2018 (91), a systematic review of studies from
2018 – 2020 (122) using PRISMA-DTA methodology and a meta-
analysis from 2018–2021 (123) indicated that those taking
advantage of enhanced computational processing power to build
monitoring biomarker models (e.g., using deep learning methods
such as convolutional neural networks) have yet to show an
Frontiers in Oncology | www.frontiersin.org 13
advantage in performance compared with machine learning
techniques using explicit feature engineering and less
computationally expensive classifiers (e.g., using “classical”
machine learning methods support vector machine). It is also
notable that studies applying machine learning to build
monitoring biomarker models have yet to show an overall
advantage over those using traditional statistical methods. There is
good diagnostic performance of machine learning models that use
MRI features to distinguish between progressive disease and
diagnostic accuracy measures comprise recall = 0.61 – 1.00,
A

B

FIGURE 7 | Examples of hybrid PET/MRI protocols. MRI data were acquired during acquisition of (A) static 20-minute or (B) dynamic 40-minute PET data. Adapted
with permission from (103) and (104), respectively.
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specificity = 0.47 – 0.90, balanced accuracy = 0.54 – 0.83, precision =
0.58 – 0.88, F1 score = 0.59 – 0.94, and AUC= 0.65 – 0.85 (122, 123).
The recent meta-analysis of ten studies showed a pooled true
positive rate (sensitivity) = 0.769 (0.649 – 0.858), a false positive
rate (1-specificity) = 0.352 (0.251 – 0.468) and a summary AUC-
ROC = 0.765. Other pooled metrics showed derived measures of
balanced accuracy = 0.706 (0.623–0.779); positive likelihood ratio =
2.220 (1.560–3.140); negative likelihood ratio = 0.366 (0.213–0.572);
and diagnostic odds ratio = 6.670 (2.800–13.500) (123). It is
noteworthy that the small numbers of patients included in these
studies, the high-risk of bias and concerns of applicability in the
study designs, and the low level of evidence given that the
monitoring biomarker studies are retrospective, suggest that
limited conclusions can be drawn from the data. The results show
that glioblastoma treatment response monitoring biomarkers
developed through machine learning are promising but are at an
Frontiers in Oncology | www.frontiersin.org 14
early phase of development and are not ready to be incorporated
into clinical practice to distinguish tumor progression from PTRE.
Furthermore, no practice guidelines exist for this specific
application. All published studies would benefit from
improvements in the methodology. Future studies would benefit
from analytical validation using external hold-out tests, as well as
from larger datasets to reduce overfitting.

3.2.2.4 Future Developments
Advances in brain tumor database curation will facilitate integration
of imaging, clinical, demographic, andmolecularmarker information
to create large databaseswhichwill allowmachine learningmodels to
be trainedand testedat a greater scale towhathasoccurredpreviously
(114). The capture of large volumes of data and the inclusion of a
wider spectrum of imaging phenotypes typically results in improved
diagnostic performance during machine learning or statistical tasks;
FIGURE 8 | The phases of a radiomics study. Explicit feature engineering is represented by a series of boxes from left to right, starting off with pre-processing
and finishing with classification of a hold-out test set. Implicit feature engineering (deep learning) is represented below these boxes by a neural network which
incorporates many steps of explicit feature engineering. As with explicit feature engineering, to achieve analytical validation, classification of a hold-out test set must
be performed. Once analytical validation is achieved, ideally a clinical trial tests the model to achieve clinical validation in the same way a new therapeutic agent or
surgical intervention is subject to a trial. Radiomics is image based, however, additional information can be incorporated such as clinical or demographic information.
All studies require some pre-processing, whether that is data cleaning or converting file format from DICOM to NIfTI, for example. With explicit feature engineering,
additional pre-processing is typically required such as image segmentation. In the example shown here, hyperintense voxels associated with a grade 4 glioblastoma
in a T2-weighted image are segmented as a region of interest for radiomic analysis. The mask is extracted using 11 different grey-scale thresholds to give binary
combinations of black and white pixels. Thereafter, carefully designed image analysis features (or “estimated features”) can be applied to the pixels. In the example
shown, these are topological descriptors of image heterogeneity (white pixel area = 1; white pixel perimeter = 4; rings subtracted from holes, i.e., genus = 0) (110).
The most discriminant features can be selected using statistical or machine learning techniques, and undergo classification using a machine learning algorithm. In the
example shown, a support vector machine is used (the machine learning algorithm is described as “classical” to distinguish it and other similar algorithms from deep
learning algorithms), and progression (solid black dots) and pseudoprogression (empty black dots) cases are determined.
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the relative improvement of deep learning model performance is
particularlymarked (124–126). Fordeep learning, thedependencyon
very large datasets can be reduced by data augmentation and transfer
learning; the latter, where an already-developed model for a task is
reused as the starting point for amodel on a second task, is especially
advantageous for medical tasks, since these pretrained models not
only obviate the need for very large datasets but are less
computationally expensive (116, 127, 128). One- or few-shot
learning is related to this and allows classifiers to be built from very
small labeled training sets (129).

Once established, incoming data from large-scale live repositories
will allow ongoing refinement and assessment of outcomes.
Furthermore, distributed machine learning approaches, in
particular federated learning, will enable training on a large body of
decentralized data (130). Federated learning is one instance of the
more general approach of bringing the code to the data, instead of the
data to the code and mitigates the fundamental problems of privacy,
ownership, and locality of data.Although this technique is at the early
research stage, federated learning appears to be fit-for-purpose for
privacy-preserving medical applications (131, 132), and for high-
grade glioma monitoring biomarkers in particular. However, the
potential privacy and performance trade-off is unknown. Once
established, federated learning will likely speed up the validation of
the proposed methods, since fewer administrative data access
requirements will be required, yet the sample will continue to be
expanded by new data arriving from several sites.

3.3 Acceptance
3.3.1 Endorsement in Guidelines
Although diagnostic accuracies of most modalities appear high
enough for clinical application, and this should encourage their
clinical use, acceptance in clinical guidelines is limited for a variety
of reasons associated with clinical readiness, which is summarized in
Table 3. In the recent EANO/Society for Neuro-Oncology
guidelines for management of glioblastoma (144) and EANO
guidelines for diffuse gliomas (145), only perfusion MRI and
amino acid PET are suggested as being helpful, and they are only
mentioned in the case of suspected pseudoprogression. In the 2017
modified Response Assessment in Neuro-Oncology (RANO)
criteria (141), it is noted that advanced MRI techniques, such as
DSC, DCE, and amino acid PET, “have shown promise but
additional work is necessary to standardize these approaches and
improve their sensitivity and specificity” and “issues of cost and
accessibility will need to be addressed before they can be widely
adopted in clinical trials.” Accordingly, the RANO criteria remain
based on post-contrast T1-weighted images only (and the T2-
weighted/fluid attenuated inversion recovery in 2010 RANO
guidelines, albeit not quantified). In the proposed minimum
imaging protocol from the Jumpstarting Brain Tumor Drug
Development Coalition (143), designed to be widely applicable to
a variety of MR scanners, only DWI (three b-values) is included in
addition to these conventional structural sequences. DWI also has
been included in the proposed minimum imaging protocol in the
pediatric high-grade glioma RANO recommendations due to its
widespread use and “potential benefit,” while perfusion MRI and
MRS are considered experimental (149). A summary of a survey of
national imaging guidelines conducted among GliMR-associated
Frontiers in Oncology | www.frontiersin.org 15
countries are included within Table 3 (methodology and results in
Supplementary Material). Specifically, we determined whether
there are guidelines for incorporation (routine or optional) of
advanced MRI techniques in clinical practice for determining
treatment response in high-grade gliomas.

3.3.2 Clinical Use of Advanced MRI
Published evidence of the current use of advanced MRI in daily
clinical practice is limited. European surveys have reported that
advanced MRI techniques are widely available (150) and also
applied to brain tumor imaging (147, 151, 152) with substantial
national differences. A survey of 220 European centers (3% survey
yield) showed that despite widespread availability of advanced MRI
techniques, to differentiate radiation necrosis from progressive
disease, perfusion imaging is used most commonly (56% of
centers), whereas MRS and DWI are used rarely (6% and 5%
of centers, respectively) (147). A predominantly US survey of
perfusion MRI (5% survey yield) reported widespread availability
for brain imaging (all indications) offered by 81% of centers, with
DSC being the most frequently offered (87%) followed by DCE
(41%) and ASL (35%) (148). Among those offering perfusion MRI,
the most frequent indication was post-treatment evaluation of intra-
axial brain tumors (87%), in particular differentiating progression
from radiation necrosis (96%) or pseudoprogression (84%). The
authors note that perfusion imaging is widely adopted despite the
lack of reimbursement and the limited support for perfusion
imaging in guidelines at the time of the survey, suggesting that
both the radiologist and the referring physician find value in these
techniques. However, although there appears to be a wide adoption
of advanced MRI, the results of the US and European surveys may
be confounded by unrepresentative samples with > 95% of non-
responders. A UK survey of post-operative imaging of all neuro-
oncology centers (100% survey yield) showed that most centers
(> 80%) included DWI in the standard protocol, while other
advanced MRI techniques (DSC, DCE, or MRS) were applied
routinely by only 10% of centers during follow-up, and in selected
cases where there was possible pseudoprogression by 35% (153). Of
interest, neuroradiologists were the main advocates for the use of
advanced imaging, while neuro-oncologists were more likely to
suggest that further evidence is needed.
4 CONCLUSION

The biochemical composition of high-grade gliomas is markedly
different from healthy brain tissue. MRS allows the simultaneous
acquisition of an array of metabolic alterations with Cho-based
ratios appearing to be consistently discriminatory in treatment
response assessment, although challenges remain in this
technique despite it being mature. Promising directions relate
to ultra-high field strengths and high-resolution MRSI, 2HG
analysis, and the use of non-proton nuclei. Labile protons on
endogenous proteins can be selectively targeted with CEST to
give high-resolution images. The body of evidence for clinical
application of APT imaging has been building for a decade, but
more evidence is required to confirm the use of CEST as a
monitoring biomarker. Multiparametric methodologies,
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TABLE 3 | State of development of advanced MRI techniques.

Track &
Domaina

Perfusion MRS Diffusion CEST PET Criteria

DSC
(133)

DCE
(133–
136)

ASL
(133,
137,
138)

Single CSI ADC DTI APT
(53)

AA
(100,
102,
139)

Technical validation
Test-retest repeatability T2 Yes, with current

standard
implementation

Yes, but with other
implementation or
patient group/animal
model

None
available

Cross-vendor
reproducibility

T2 n.a. Yes, with current
standard
implementation

Yes, but with other
implementation or
patient group

None
available

Multisite reproducibility T3 Yes, with current
standard
implementation

Yes, but with other
implementation or
patient group,
phantom or analysis

None
available

Clinical evidence
Proof of concept in
patients

C1 Differentiation tumor
from PTRE

Differentiation tumor
from normal brain

None
available

Evaluated in clinical
studies

C2-3 Multiple single center Few or preliminary
studies

None
available

Evaluated in multi-center
studies

C3 Good quality with
relevant question

Small, preliminary or
only method stability/
not relevant question

None
available

Evaluated in meta-
analysis

Consistent result with
standard measures

Not standard
measure/method, or
low number studies/
patients

None
available

Established diagnostic
accuracy, cut-offs/criteria

C3 Consistent in multiple
single center studies

Few or preliminary
studies

None
available

Acceptance
Method guidelines/
recommendations

T Available and
updated

Available, but not
updated or not
specific for tumor
imaging

None
available

Included in clinical trial
guidelinesb

Included in
suggested standard
protocol

Mentioned, but clinical
value uncertain

Not
mentioned

Included in national
imaging guideline

Endorsed by majority Only endorsed but a
minority

Not
mentioned

Included in international
clinical guidelinesc

Endorsed by major
international society
guidelines

Mentioned, but clinical
value uncertain

Not
mentioned

In clinical use for brain
tumor imagingd

n.a. Widely implemented
(>50%)

Intermediate (<50%) Uncommon

In clinical use for PTRE vs
glioma recurrenced

n.a. Widely applied
(>50%)

Intermediate (<50%) Uncommon

Implementation
Sequence availability T2 n.a. Comparable

sequence available
as clinical from all
major vendors

No standard
implementation or
only work in progress

Research
sequence at
singles sites

Post-processing software
availability

T2 On-line scanner/
reading work station
with best practice
implementation

Off-line, commercially
available software

In-house
software

Subjective ease of data
acquisition (scanner
operator e.g. clinical
radiographer)

T2 Minimal need for
training

Special training/
attention required

Difficult to
obtain good
quality data

(Continued)
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including the incorporation of nuclear medicine techniques,
combine probes measuring different tumor properties.
Although potentially synergistic, the limitations of each
individual modality can also be compounded, particularly in
the absence of standardization. Machine learning requires large
datasets with high-quality annotation; currently, there is low-
level evidence for monitoring biomarker clinical application.

In conclusion, advanced MRI techniques show huge promise
in treatment response assessment. The clinical readiness analysis
highlights that most monitoring biomarkers require
standardized international consensus guidelines, with more
facilitation regarding technique implementation and reporting
in the clinic. The benefit of technique standardization will be
multiplied in terms of multiparametric imaging and will also
help leverage the enormous potential of machine learning tools.
AUTHOR CONTRIBUTIONS

Authors TB and OH served as overall editors. The individual
sections were drafted by: Introduction (TB), DSC-MRI (KS and
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Track &
Domaina

Perfusion MRS Diffusion CEST PET Criteria

DSC
(133)

DCE
(133–
136)

ASL
(133,
137,
138)

Single CSI ADC DTI APT
(53)

AA
(100,
102,
139)

Subjective ease of post-
processing (within clinical
department e.g. clinical
radiologist)

No post-processing
needed

Extra processing/
training needed, but
not time consuming

Expert or
time
intensive
processing
required

Subjective ease of data
interpretation (clinician
e.g. clinical radiologist)

Visual reading or only
simple manual steps
required

Special training/
expertise required

Highly
specialized in
single
centers
Februa
ry 2022 | Volume 11 | A
aImaging biomarker roadmap (140); bResponse assessment in neuro-oncology (RANO) (141), modified RANO criteria (142), standardized imaging protocol in clinical trials (143); cSociety
for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on management of glioblastoma (144), EANO guidelines on diffuse gliomas (145), EANO
guideline on adult astrocytic and oligodendroglial gliomas (146); dEuropean survey on advanced MRI (147), American Society of Neuroradiology survey on perfusion imaging (148).
T, technical validation; C, clinical validation; Domain 1, discovery; Domain 2, validation (lower level evidence); Domain 3, validation (higher level evidence). Also included is amino acid PET.
n.a., not applicable.
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4. Horská A, Barker PB. Imaging of Brain Tumors: MR Spectroscopy and
Metabolic Imaging. Neuroimaging Clin N Am (2010) 20:293–310.
doi: 10.1016/j.nic.2010.04.003

5. Castillo M, Smith JK, Kwock L. Correlation of Myo-Inositol Levels and
Grading of Cerebral Astrocytomas. AJNR Am J Neuroradiol (2000)
21:1645–9.

6. Kuesel AC, Sutherland GR, Halliday W, Smith IC. 1h MRS of High Grade
Astrocytomas: Mobile Lipid Accumulation in Necrotic Tissue. NMR
BioMed (1994) 7:149–55. doi: 10.1002/nbm.1940070308
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