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Abstract
Consider a directed tree U and the space of all finite walks on it endowed with a quasi-
pseudo-metric—the space of the strategies S on the graph,—which represent the possible 
changes in the evolution of a dynamical system over time. Consider a reward function act-
ing in a subset S

0
⊂ S which measures the success. Using well-known facts of the theory 

of semi-Lipschitz functions in quasi-pseudo-metric spaces, we extend the reward function 
to the whole space S. We obtain in this way an oracle function, which gives a forecast of 
the reward function for the elements of S , that is, an estimate of the degree of success for 
any given strategy. After explaining the fundamental properties of a specific quasi-pseudo-
metric that we define for the (graph) trees (the bifurcation quasi-pseudo-metric), we focus 
our attention on analyzing how this structure can be used to represent dynamical systems 
on graphs. We begin the explanation of the method with a simple example, which is pro-
posed as a reference point for which some variants and successive generalizations are con-
secutively shown. The main objective is to explain the role of the lack of symmetry of 
quasi-metrics in our proposal: the irreversibility of dynamical processes is reflected in the 
asymmetry of their definition.
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1 Introduction

Artificial intelligence tools use fundamental mathematical objects as structural support for 
the learning algorithms. Although the forms in which they are presented and applied are 
varied and flexible, machine learning (ML) algorithms and, in particular, reinforcement 
learning (RL) methods rely on strict formal structures. Often the vector representation of 
the data is used, which facilitates the information items to be considered as elements of 
normed spaces. When a distance is needed for the construction of the algorithm, a natural 
option is to choose a norm. The Euclidean distance is the first candidate (Kubat, 2017); the 
reader can find an explanation in Sect. 3.2 of this work. This is, for example, a classic way 
of dealing with the problem of text analysis, in the context of vectorial representation of 
meaning, which lies in the idea that the words in a text can be associated with the vectors 
of a normalized space—vector embedding,—and the words that share a similar context 
should be close in the vector space—measured with the norm—, which means that they 
have similar semantics (Camacho-Collados & Pilehvar, 2018).

Similarity functions, which need not in general be distances, can also be used to quan-
tify metric-like notions. Cosine similarity is a canonical example of such a tool (see Xia 
et al., 2015) and references therein). In these cases, it is used as a representation technique, 
an embedding of the data set in a normed space, where the distance associated to the norm 
is the only structural feature that is intended to be preserved. When the relations among 
the elements of the data set are better understood—for example, when addition of vectors 
or product by scalars are introduced in the model,—the representation can be enriched and 
the results improve accordingly.

However, these classical frameworks are not the only suitable formal supports for the 
models. Other mathematical structures than normed spaces are used as well to support 
machine learning models (Bronstein et al., 2017). Graph theory provides such a theoretical 
support, and there are a lot developments that explote the possibilities that this fundamen-
tal framework provides, specially when metric tools are added to the underlying structure 
(Buckley & Harary, 1990; Graham et al., 1977; Hakimi & Yau, 1965). The reader can find 
some of them in the papers by (Cao et al., 2012, 2016)—metric learning— (Chami et al., 
2020; Driessens et  al., 2006)—reinforcement learning—(Kyng et  al., 2015)—Lipschitz 
learning;—updated surveys on these topics can be found in the references (Goyal & Fer-
rara, 2018) and (Nickel et al., 2015). However, combining the graph structure with compat-
ible topological tools is not as common. In particular, although metrics on graphs are often 
used, quasi-metrics for finding similarities in datasets have only recently been considered. 
As explained in the Introduction of the work by Zhang et  al. (2019), it is usual to con-
sider both metric spaces (Chávez et al., 2001; Hjaltason & Samet, 2003) and graphs (Wu 
et al., 2016), but the tools known in these contexts seem to be inefficient when considered 
together. The framework provided by the so-called attribute graphs (Xu et al., 2012) could 
be considered in a sense to be similar to the graph/quasi-metric approach, but they differ in 
some crucial points (Zhang et al., 2019).

Let us mention that there is a rich literature on the topic from which we start our con-
struction: graph-based metric spaces. Most of these topological structures were created for 
supporting resolution methods to applied problems, and is not strange to find new metrics 
and ideas that were primarily introduced in an applied contexts, as chemistry and other 
fields, see for example (Bu et  al., 2014; Chebotarev 2011; Klein and Randić 1993), and 
of course in artificial intelligence (Bunke & Shearer, 1998; Chen & Safro, 2011; Gao 
et al., 2010). In fact, this is a well-known classical setting Entringer et al. (1976) for the 
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development of new network analysis methods (Barnes & Harary, 1983; Brandes, 2005; 
Goddard & Oellermann, 2011), including fundamental tools for solving nowadays classical 
routing problems (Bellman, 1958; Goldberg, 1993).

Thus, in this paper we are interested in considering a special structure for the set of 
items/states of the system (a graph) that can both be connected with the dynamic character 
of the actions on the set (i.e. discrete dynamical systems) and with a causal relation among 
them, for example dependency graphs (Barrett et  al., 2004). Note that the nomenclature 
(states, actions,...), and some aspects of our formalism have been adopted from some clas-
sical dynamical systems and machine learning environments. Thus, we propose an asym-
metric topological approach for reinforced learning on graph-based structures. Walks on 
these graphs can be considered as elements of a new quasi-metric space, in which the 
graph impose some structural constrains on the topological properties. Taking into account 
that we are interested in models for dynamical systems, we will center our attention on acy-
clic connected and directed graphs, often called polytrees or simply trees (Bondy & Murty, 
1976).

Our main idea is that quasi-metrics—more than metrics—allow us to consider the 
intrinsic asymmetry that underlies the graphs used as models of evolutionary processes. As 
time goes by, the directionality at the edges of the associated graphs—arrows—, becomes 
the main property, and the notions of the metric type used in the model have to represent 
this asymmetry. The consecutive (time) step between two states v1 and v2 of a system can 
be represented by an arrow from v1 to v2 in the graph model. Thus, the distance from v1 to 
v2 can be small—the dynamic process goes in this direction,—while returning from v2 to 
v1 should be impossible if, for example, the process is not reversible, and therefore the dis-
tance should be infinite.

This characteristic asymmetry in the definition of metric tools is fundamental to intro-
duce the notion of quasi-metrics. Indeed, the main property of the quasi-metric versus the 
metric is exactly that q(v1, v2) does not necessarily coincide with q(v2, v1). That is, it is not 
assumed that one of the three axioms of a definition of a metric—symmetry–is maintained. 
The main objective of this paper is how to introduce this metric asymmetry into graph-
based models, and to show how this can be used. To illustrate our ideas we will develop a 
particular framework: polytrees endowed with bifurcation quasi-metrics.

The second fundamental part of the problem we face in the paper is its dynamic nature. 
We are interested in metric graphs, but not considered as static structures but as dynamic 
ones. That is, we want to analyze how a dynamic (discrete-time) system can be rep-
resented using metric notions on a graph, since the ultimate goal is to demonstrate that 
non-symmetric distances are suitable tools to build automatic decision making algorithms 
that provide reinforcement learning tools. Consequently, the main reference we find in the 
dynamical systems research is the framework of the Markov Decission Proccesses (MDPs). 
Already in the early literature regarding this topi (Bellman, 1957; Howard, 1960), metric 
notions where used as fundamental tools (Puterman, 1994). The fact of the non-symmetric 
nature of the evolution processes is well-known and has been introduced in the context of 
the Markov Decission Processes (MDPs) research at all levels. For example, in multia-
gent MDPs, to introduce this fact becomes a basic instrument to reduce the size of the 
st of interactions between agents (Dolgov & Durfee, 2006), see also Boutilier (1999) and 
Singh and Cohn (1998). As we will explain later on, the framework of the MDPs is closely 
related to our in what respects the dynamic nature of the processes we want to model, 
and reinforcement learning algorithms could be designed using non-symmetric distances 
(quasi-metrics). In this paper we intend to show with simple examples how this asymme-
try in the measurement of distances can provide a fruitful context, instead of the absolute 
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notions of asymmetry that are commonly used in graphs, mainly the directionality of 
arrows in directed graphs. Simplistically, MDPs can be viewed as dynamic Bayesian net-
works (a dynamic probabilistic directed acyclic graph). The non-symmetrical distance can 
help to relax the assumption about the directionality of the graph by allowing some grada-
tion in its description.

Concretely, the elements of our models are finite directed walks on the graph, that we 
call strategies. A reward function is then defined to evaluate the best solutions to the prob-
lem, and its extension—the oracle function—will give the main tool for the forecast on 
the dynamical system. As predictive tool we will use the extension expressions provided 
by the classical formulas of McShane and Whitney, adequately adapted for the case of 
semi-Lipschitz functions on quasi-pseudo-metric spaces. Our aim is to provide new models 
for understanding success reward systems in which there is an intrinsic asymmetry in the 
definition of the metric, and where the items of the systems are represented as walks in a 
graph. This is the case, for example, when we want to introduce a directionality given by 
the time variable in evolutionary systems, or the case when the topology must reflect a 
hierarchical relation among the nodes of the graph. As we said, the natural underlying met-
ric structure in a graph representing a dynamical system is not symmetric: non-symmetric 
distances model in an optimal way the evolution of the system with the time. It must be 
said that a (symmetric) distance is often used for non-directed graphs: the so called path 
distance, defined as the infimum of the number of edges (maybe weighted) in all possible 
paths that connect different nodes of a graph; it can be found for example in the book by 
Deza and Deza (2009). The experienced reader knows that this kind of structure is concep-
tually related to the theoretical setting of the bayesian networks, that use these construc-
tions as models, and also with the so called Markov networks. Although the relationship 
with these approaches is evident, we must indicate that our mathematical framework is 
not the same, since we are not using probabilistic arguments, as the reader will notice. Our 
method could allow to model two problems that we are interested in, and are often solved 
using the mentioned tools: causal graphs and paths in time evolutionary systems (Chen & 
Giménez, 2010; Casteigts et al., 2011) (see also the references therein).

Once the basic structure of the system is defined—an underlying directed tree, a set of 
strategies, a quasi-pseudo-metric on it,—we use classical extension formulas for Lipschitz 
functions on (quasi-pseudo)-metric spaces as main tools for the construction of our learn-
ing algorithms. The definition of an adequate reward function on a training set of strategies 
S0 together with an extension rule will give an estimate of the oracle function O for all 
the strategies in S. The increase of the training set S0 would leave to a better estimate for 
O, constituting in this way a reinforcement learning algorithm that will be checked in the 
last section of the paper. The increase in the set of evaluated successful paths (which are 
included in S0 at each step) plays the role of the cumulative reward that is usually given by 
the value function in RL algorithms. We have already used this method in general metric 
spaces in the applied context of the prospective in financial markets (Calabuig et al., 2020).

An example of how our results can help is provided by the increasing interest of 
the so called graph embedding algorithms, which embed a graph into a vector space. 
The structure and the main properties of the graph are preserved in this embedding, but 
some properties, as the asymmetric transitivity in the graph inherent to directed graphs 
cannot be adequately represented. Some new ideas have been already proposed to solve 
this problem (Ou et al., 2016), which could be also faced by introducing non-symmetric 
distances, which also allows to correctly model transitivity properties. Our ideas can 
also help as theoretical framework for other current problems in deep reinforcement 
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learning (Sutton & Barto, 2017), that often uses graph-based representations as opera-
tional tool (Waradpande et al., 2020).

As we have said, the most similar framework to the one we propose here are Markov 
Decision Processes, and the evolved versions of these in reinforcement learning (such 
as Q-learning) constitute the most similar reference that can currently be found in the 
scientific literature. Indeed, the contextual framework of the proposed ideas is the one 
for which the Markov decision processes applies. The notions of state —the current 
situation of the agent—, and actions that define the dynamics of the process, are the 
main elements that are considered. Also the concept of reward assigned to each action, 
that supports the decision of the consecutive steps of the proccess, is key in our formal-
ism. So, in some sense, Q-learning methods and updated current procedures based on 
the same principles are the natural methodological partners of our method. However, 
the way we face the problem is opposite to the one in which Markov processes are per-
formed: while some stochastic notions are inherent to our arguments too, the defini-
tion of the quasi-metric space from which the extension function provides the tool for 
decision making is deterministic, and the constitution of the metric space from which 
we extend is absolutely history-dependent. Indeed, the size of the quasi-metric space is 
increasing while the process evolves, but all the “experience” accumulated in the previ-
ous steps are equally considered for proposing the next action on the system. This will 
be clear in the examples we provide at the end of the paper. The interested reader can 
find an exhaustive explanation of Markov Decision Processes and their applications as a 
reinforcement learning method in Sigaud and Oe (2013). But the main references about 
similar general working philosophy are more connected to recent developments on his-
tory-dependent adaptation of Q-learning (POMDPs,...), and in general, as we already 
said, MDPs related methods. The articles by He et  al. (2020); Daswani et  al. (2013); 
Majeed and Hutter (2018) and the references therein provide examples of this methodo-
logical approach. However, as we said before, our method is based on other ideas: non-
symmetric topological structures and semi-Lipschitz extensions for history-dependent 
reinforcement learning.

The structure of the paper is as follows. After the explanation in Sect. 2 of the basic 
topological and graph-theoretical structures, we define suitable quasi-pseudo-metrics on 
graphs in order to represent appropriate topologies for these spaces. In the first part we 
analyze some options for defining quasi-pseudo-metrics that would be useful for mode-
ling graphs constructed over sets of action sequences on a given system. The second step 
consists of the development of the extension method for the reward function acting in 
the space. To do so, we follow some theoretical tools related to the ones developed by 
(Mustăţa, 2001, 2002). Specifically, we analyze the minimal extensions provided by the 
quasi-metric version of the McShane and the Whitney extension formulas for (semi)-
Lipschitz maps. Interpolation among these situations could be interesting candidates for 
meaningful extensions of Lipschitz maps, which will be the starting point of our method. 
We show all these elements in Sect.  3. After presenting the main theoretical results, we 
will show some situations in which our ideas can be set. The first one deals with a prob-
lem that involves sequences of states and actions in a particular decision system, which we 
call the “problem of the drunk man crossing a bridge" (DBProblem) (Sect. 4). Sect. 4.2 is 
devoted to analyze in an applied context the properties of the extension functions, as cor-
nerstones of the algorithm that provides the decision of the system. In Sect. 6, a specific 
example of application of non-symmetric distances is explained, and some relevant aspects 
as efficiency or scalability of the algorithm are discussed. This example has been designed 
to show that asymmetry is crucial for solving the problem: proper quasi-metrics—and no 
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metrics—, are used, showing the advantages of these tools instead. A final section with the 
main conclusions of the paper is also included.

2  Preliminaries

In this paper we will analyze reward functions defined on the (quasi-pseudo-metric) graphs 
that model the original structured system. The method proposed provides a forecast for 
strategy success. This is done using a Lipschitz extension method given by a convex com-
bination of the McShane and the Whitney extensions of real functions defined on sub-
spaces of (quasi-pseudo-)metric spaces. Roughly speaking, after fixing the graph that mod-
els the problem, we have to find a (quasi-)metric subspace of strategies on the graph for 
which the reward function is known. After computing its Lipschitz constant, we apply both 
the McShane and the Whitney formulas for extending the reward function to the whole 
quasi-pseudo-metric space of strategies; quasi-pseudo-metric versions of such formulas 
will be needed. We will call that extension an oracle function, that can be used to design 
new prediction tools for graph analysis.

Probably the most widespread tool for dealing with this type of problems are non-his-
tory dependent methods based on the assumptions of Markov processes. Markov decision 
processes, as well as Q-learning methods, are typical sources of algorithms for this type of 
analysis. However, our approach is radically different: essentially, only metric notions are 
considered for the extension of the value and reward functions, and all the experience accu-
mulated during the evolution process is used to obtain the best extension at a given step. 
The probabilistic character of the last steps is only introduced at the end, using some basic 
Monte Carlo type arguments. The interested reader can find a full explanation of these non-
history-dependent methods in Sigaud and Oe (2013).

The main difference with other approaches that use the extension of functions acting in 
metric spaces, is that we are introducing non-symmetric distances instead of conventional 
metrics. The reason is that for the modeling of evolutionary processes it is convenient to 
take into account that in general they are not reversible, so distances that "look at the past" 
cannot behave as if they "look at the future". Quasi-metrics are perfect tools to model this 
fact, as we intend to explain in this paper.

Thus, there are some recently published papers in which some related (metric) ideas can 
be found. (Dong et al. 2018) propose a technology based on the use of Lipschitz extensions 
of (real) functions acting in metric spaces; see also the papers by (Gottlieb et  al., 2014; 
Uv and Bousquet, 2004; Jia et al., 2015). Indeed, nowadays there is an increasing interest 
in the study of minimal extensions of Lipschitz maps defined on graphs. This topic was 
originally studied in the context of the development of new methods related to reinforce-
ment learning. In fact, it started to be used in metric learning at the end of the XX Century, 
and nowadays has become a relevant tool in metric learning, as can be seen in the work 
of (Dong et al., 2018; Shaw et al., 2011) (see also the references therein). The reader can 
find an updated survey on the topic in the first chapter of the work of (Rao, 2015), and in 
the papers of (Driessens et al., 2006; N’Guyen et al., 2013). However, the framework is 
restricted to Lipschitz extensions of functions acting in (symmetric) metric graphs, while 
our theoretical approach is essentially non-symmetric. Moreover, the most used distances 
come from standard norms defined on finite dimensional linear spaces, but this is not the 
only way of introducing metrics in machine learning. For example, Mahalanobis distances 
instead of Euclidean distances are often used for performing a distance learning approach, 
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assuming an underlying linear structure in the representation. However, Lipschitz conti-
nuity on general metric spaces—with no linear structure—has also being applied to rein-
forced learning recently by (Asadi et  al., 2018); related developments are referred also 
in this work. Since the problems that motivate our research are non-symmetric, metrics 
must be substituted by quasi-metrics for the aim of constructing forecasting methods. In 
this direction —and in order to give conceptual support to our research,—we point out 
that the theoretical setting for extending semi-Lipschitz maps in quasi-metric spaces have 
been investigated in recent years (Mustăţa, 2001, 2002; Romaguera & Sanchis, 2000). This 
opens the door to extend the application of the Lipschitz extension technique to this non-
symmetric context.

Let us introduce now some formal definitions that will be needed. As usual, we will use 
the words “metric” and “distance” interchangeably. A quasi-pseudo-metric is a function 
d ∶ M ×M → ℝ

+, where M is a set and such that for a, b, c ∈ M , 

1. d(a, b) = 0 if a = b , and
2. d(a, b) ≤ d(a, c) + d(c, b).

(ℝ+ is the set of non-negative real numbers.) Such a function is enough for defining a topol-
ogy by means of the basis of neighborhoods that is given by the open balls. If 𝜀 > 0 , we 
define the ball of radius 𝜀 > 0 and center in a ∈ M as

 This topology is given by the (countable) base of neighborhoods provided by the balls 
B1∕n(x) = {y ∈ X ∶ d(x, y) ≤ 1∕n} , n ∈ ℕ . The resulting metric/topological structure (M, d) 
is called a quasi-pseudo-metric space.

If d(a, b) = d(b, a) for a, b ∈ M, then it is called a pseudo-metric. If d(a, b) = 0 only in 
the case that a = b it is called a quasi-metric, and if both requirements are satisfied, d is 
called a metric or a distance. The function d−1, given by

can also be defined: it is also a quasi-pseudo-metric, that is called the conjugate quasi-
pseudo-metric. If d is a quasi-metric, we have also that

is a metric.
The set of real Lipschitz functions acting in a metric space M is defined by such func-

tions f ∶ M → ℝ that satisfy that

The Lipschitz constant of f is the infimum of all the constants K satisfying the inequality.
The reader can find all the information on Lipschitz functions that is needed in the book 

by Cobzaş et al. (2019). The problem of extending Lipschitz functions acting in subsets of 
graphs has been recently considered, both from the theoretical and the computational points 
of view (Kyng et al., 2015; Rao, 2015). In this research the attention is centered in the case in 
which the topology defined on the graph is given by a (strict) metric, in particular a weighted 
graph distance. A weight—a positive real number—is given to each edge of the graph; then 

B
𝜀
(a) ∶=

{
b ∈ M ∶ d(a, b) < 𝜀

}
.

d−1(a, b) ∶= d(b, a), a, b ∈ M,

max{d(a, b), d−1(a, b)}, a, b ∈ M,

|f (a) − f (b)| ≤ Kd(a, b).
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the distance among the nodes a and b of the graph is defined as the infimum of all the sums 
of weights associated to each path that connect a and b. In this paper we introduce differ-
ent topologies on the graph that are defined by non-symmetric functions—that is, by quasi-
pseudo-metrics—not necessarily defined in this way. Moreover, the research presented by 
Kyng et al. (2015) and Rao (2015) do not use the McShane—or the Whitney—formula(s), 
since they are interested in finding extensions with higher order of smoothness.

The main tools that we use in our development is the extension of Lipschitz functions 
acting in subspaces of a metric space to the whole metric space. We will consider the non-
symmetric version. A classical result of the mathematical analysis establishes that this can 
always be done: indeed, the McShane-Whitney theorem says that if B is a (metric) subspace of 
a metric space (M, d) and T ∶ B → ℝ is a Lipschitz function with Lipschitz constant K, there 
is always a Lipschitz function T̃ ∶ M → ℝ extending T and with the same Lipschitz constant: 
that is, T̃(a) = T(a) for all a ∈ B.

In particular, the function

that is called the McShane formula, provides such an extension. The Whitney formula, 
given by

provides a different extension. We will use the as constructive tools for our approximation.
We have used the Lipschitz extension method for (symmetric) distances in a recent paper, 

in which a reinforcement learning procedure for time series problems is presented Calabuig 
et al. (2020). The problem proposed there is essentially different in that it is based on a vector-
valued representation and a real function defined on it, but the use of Lipschitz extensions 
appears in it. As we already explained, this is our methodological purpose and can be applied 
in a wide class of different problems. In the cited paper, the comparison is made with neural 
networks, which are a standard technique that can be directly applied to the proposed problem. 
However, the situation in the case at hand (the present work) is different: the theoretical foun-
dations needed are somewhat more complicated, since we need to clearly define the element 
space as a graph-quasi-metric space, and the action space as a similar space with some kind of 
duality with the previous one. New definitions of quasi-metrics and the proof of the essential 
facts concerning them are also needed, as well as some examples to illustrate the setting.

So, we are interested in using such extensions for real functions acting in quasi-pseudo-
metric spaces. The theoretical results extending the McShane-Whitney theorem to this situ-
ation are easy to prove in the same way that the original theorem, and were essentially pre-
sented by Mustăţa (2001, 2002). As far as we know, these are the earliest references for these 
results. But the asymmetry of the quasi-metric functions change the results, that have to be 
rewritten. We write the main result below for the aim of completeness. New definitions are 
needed.

Let (S, q) be a quasi-pseudo-metric space. We say that a real function f ∶ S → ℝ is semi-
Lipschitz if there is a constant K > 0 such that for all s, t ∈ S,

TM(x) ∶= sup
a∈B

{T(a) − K d(x, a)}, x ∈ M,

TW (x) ∶= inf
a∈B

{T(a) + K d(x, a)}, x ∈ M,

max{
(
f (s) − f (t)

)
, 0} ≤ Kq(s, t).
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 As far as we know, a systematic study of such operators was firstly done by Romaguera 
and Sanchis (2000). The following results can be easily proved using the same computation 
than in the original proofs of McShane and Whitney.

McShane extension for semi-Lipschitz maps. Let (S, q) be a quasi-metric space, a subspace 
(S0, q) and a semi-Lipschitz function f ∶ S0 → ℝ with constant K > 0. Then the formula

 provides a semi-Lipschitz extension with the same constant K.
A c-semi-Lipschitz real function f ∶ S → ℝ is a map that satisfies the inequalities

 We use this name because such a map is a semi-Lipschitz map in the conjugate space 
(S, d−1)

Whitney extension for c-semi-Lipschitz maps. Let (S, q) be a quasi-metric space, a subspace 
(S0, q) and a c-semi-Lipschitz function f ∶ S0 → ℝ with constant K > 0. Then

is a c-semi-Lipschitz extension with the same constant K.
Finally, let us define the basic concepts regarding the graph structure that will be needed. 

All the definitions that we use can be found in the introductory sections of the book (Bondy 
and Murty 1976). The main graph type that will be considered here is what is called a pol-
ytree, which is a directed acyclic graph whose related undirected graph is a tree. Recall that 
a tree is an undirected graph that is connected, but has no cycles. Note that it is assumed that 
the graph is connected, but becomes unconnected if any edge is removed. Also, any couple of 
vertices in a tree can be connected by a unique simple path.

Although some other type of graph could be considered, having such an structure is neces-
sary for the definition of what we call the bifurcation metric to make sense. It should be noted 
that this (quasi)-metric is not defined on the original graph, but on the space of all paths start-
ing from the root (or a suitable subset of these paths) that can be defined on it, and which itself 
has again a graph structure. Indeed, the set of all these paths has itself a directed tree structure, 
that is defined in the obvious way (an arrow is defined from a path to any other path that coin-
cides with it but has a new step).

We will clarify this in the next section. In order to do this, we need to define the following 
concept: given two paths in the graph s and t, the minimum path is the element s ∧ t given by 
the common part of the branch in the directed tree that belongs to both of them, starting from 
the same root. In case we extend the notion to disjoint unions of polytrees (called forests), if 
there is no common part to s and t, we define s ∧ t to be the empty path. This will be explained 
formally in Sect. 3 below.

3  Quasi‑metric spaces of strategies and reinforcement learning

As we said in the Introduction, our arguments are based on the assumption of an underly-
ing graph structure in the original space of the states of the system, which allows us to 
consider an adequate set of strategies—sequences of states—on it. Thus, each “real world” 
strategy is represented by a walk through the graph, as in the scheme below (in red).

f M(s) = sup
t∈S0

{f (t) − Kq(t, s)}, s ∈ S,

max{
(
f (s) − f (t)

)
, 0} ≤ Kq(t, s), s, t ∈ S.

f W (s) = inf
t∈S0

{f (t) + Kq(t, s)}, s ∈ S,
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In order to design our AI model of dynamical system based on topological graphs, we 
begin by introducing in this section a quasi-pseudo-metric structure for spaces of strategies. In 
a second step, we will implement the reward function, which will be the main prediction tool 
of the model. Note that the space of the states has a natural graph structure provided by the 
time evolution. Therefore, the fact that we consider quasi-metrics together with metrics is cen-
tral. The intrinsic asymmetry that underlies the definition of a quasi-metric can be used to rep-
resent in the model the fact that, in general, time-dependent processes are not reversible. Using 
quasi-metrics we can model this fact: while the quasi-distance from a previous step to the next 
one can be a positive real number, the opposite step—representing going back in time—can 
be modeled to be forbidden by giving the quasi-metric a value equal to 0 or ∞, depending on 
the particular model.

3.1  Quasi‑pseudo‑metric spaces of strategies

Let U be a graph representing the states of a system and an associate space of strategies S , that 
is the space of finite sequences (vectors with a finite set of coordinates) of states starting from 
the root of the tree endowed with a (quasi-pseudo)-metric q. The underlying graph is assumed 
to be a directed multiply connected graph with no cycles. Each step in any sequence of S rep-
resents a change from a state in U to another state in U . We call “actions” to a change from a 
state to another.

It could be assumed that the graph U is also endowed with a quasi-pseudo-metric p; in this 
case, the properties of p could give some clues for a proper definition of the quasi-pseudo-met-
ric q, using some duality relations. In this sense, Definition 1 in Zhang et al. (2019) provides a 
specific class of graph quasi-metric for U that could be used for this purpose.

In general, for defining such a quasi-pseudo-metric q we can consider several functions. In 
this section we will fix two of them. As we will see, together they represent the basic proper-
ties of the metric notions that are needed to model the (discrete) dynamical systems in which 
we are centering our study. These definitions are, as far as we know, unknown, and can be 
successfully adapted to the ML context we are interested in studying, together with the frame-
work for implementing quasi-metrics to general RL schemes.

For the first one, we consider the discrete metric d in U ∪ {0}, where 0 is a new symbol not 
belonging to U. It allows to represent finite sequences by embedding them in (U ∪ {0})ℕ as 
s = (s1,… , sn) ↦ (s1,… , sn, 0, 0, 0, ...) . Thus, if a, b ∈ U ∪ {0} we have that

Then we can define a function � in S as follows. If s, v ∈ S,

d(a, b) = 1 if a ≠ b and d(a, a) = 0.
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where si denotes the i-th coordinate of s, vi denotes the i-th coordinate of v, wi are non-
negative real numbers representing suitable weights and W = {w

i
∶ i ∈ ℕ

+ ∪ {0}}.

Lemma 1 The function �W ∶ S × S → ℝ
+ is symmetric and satisfies

Proof A direct computation proves the result; indeed, if s = (s1,… , sn), v = (v1,… , vm) and 
t = (t1,… , tk) and we identify these elements with sequences in ℝ as (s1,… , sn, 0, 0, 0, ...), 
(v1,… , vm, 0, 0, 0, ...) and (t1,… , tk, 0, 0, 0, ...) , we have that the sequences are eventually 
equal to 0. Thus, the sum conains only a finite set of terms, and so we can use the triangle 
inequality for the discrete metric d to obtain

Finally, note that it is clear by the definition, the fact that the sums have only a finite set of 
terms and the symmetry of d that �W (s, v) = �W (v, s).   ◻

However, it seems more convenient for the design of models for machine learning to con-
sider the set of strategies based on the set of actions instead of the set of states of a system. 
That is, an strategy is a finite sequence of actions. In this case, the “bifurcation quasi-met-
ric” would be more convenient. Let us explain this distance. The set S is defined by all the 
finite sequences of actions. It is based on the idea that a sequence of actions must represent 
a dynamics in a system. In fact, the elements of S can be understood as paths in a connected 
graph. A variation in an action of a sequence at a given point changes completely the states 
involved in the rest of the sequence, due to the nature of the involved quasi-metrics and of 
the underlying graph itself. That is, two sequences s1 and s2 that coincides in the first three 
actions produce up to this point exactly the same state of the system. However, a change in 
the fourth position changes the state produced in the system, at this moment and until the end 
of the sequence, even if the rest of the coordinates in both sequences—from the fifth on,—are 
the same. In the implementation of the quasi-norms we will use some stochastic elements to 
produce several possible states, from which we will choose the best one using a quasi-metric 
based reward function.

This motivates the definition of the following metric, that we denote by �0 . We call it the 
bifurcation metric. Consider the space of all finite sequences of actions with the following 
lattice operation: if s = (s1, s2,… , sm) and t = (t1, t2,… , tr) , we define s ∧ t as the sequence 
given by

where n is the maximum value for which s1 = t1, s2 = t2, ... sn = tn. In case that there is no 
concidence in the first coordinate, we write s ∧ t = �.

Then we define

�W (s, v) =

∞∑
i=1

wid(si, vi)

�W (s, v) ≤ �W (s, t) + �W (t, v), s, t, v ∈ S.

�W (s, v) =

∞∑
i=1

wid(si, vi) ≤

∞∑
i=1

wid(si, ti) +

∞∑
i=1

wid(ti, vi) = �W (s, t) + �W (t, v).

s ∧ t = (s1, s2, ...sn),

�0(s, v) = max{length(s), length(v)} − length(v ∧ s),
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where length(z) is the number of nontrivial coordinates of the sequence of actions z, and 
z ∧ h is defined as above. If s ∧ v = � we put length(s ∧ v) = length(�) = 0.

Since we are interested in the construction of the most general analytic tool for 
including asymmetric effects, we will show in what follows that this metric can be 
defined as the maximum of a meaningful quasi-metric q and its conjugate q−1.

We can define now a bifurcation quasi-metric q as follows. If s, t ∈ S, we define.

in the same way, we can consider the conjugate quasi-metric, given by

Note that, if t is defined as the first n coordinates of s, then q(s, t) = 0; in fact this is the 
only case for which q equals 0, as can be easily seen. Note also that, as a consequence of 
this fact,

if and only if s and v coincide.

Remark 1 As we said before, the definition of these quasi-metrics is done with the aim 
of introducing into the model the asymmetry imposed by the fact that evolution over time 
is not generally a reversible process. That is why we work under the assumption that the 
graph is a tree. A process that advances with time cannot return to a previous state, so the 
quasi-norm takes a positive real value when time advances, but it could be infinite, or zero 
(this depends on the concrete case) if the opposite step is considered and the algorithm 
tries to return. Also, the metric of the bifurcation does not make sense if the graph contains 
cycles, although we believe that the definitions could be adjusted in some cases.

Let us next show that q is indeed a quasi-metric, and therefore qs = �0 is a metric as 
a direct consequence. It must be said that, although easy to prove, this lemma is central 
to the development of our results; the reason is that the McShane and Whitney formu-
las, necessary for the key step of extending semi-Lipschitz functions while preserving 
their constant, are no longer true if these inequalities fail. This assertion can be easily 
checked in examples.

Lemma 2 Consider a set of strategies S defined by a set of actions. Then for every 
r, s, t ∈ S, we have that

Consequently, and taking into account that the formula max{q(s, t), q(t, s)} defines a 
metric, we have that q is a quasi-metric.

Proof By definition, we clearly have that

Thus we obtain that

q(s, t) = length(t) − length(s ∧ t);

q−1(s, t) = q(t, s) = length(s) − length(s ∧ t).

qs(s, t) = max{q(s, t), q−1(s, t)} = max{q(s, t), q(t, s)} = �0(s, t) = 0

q(r, t) ≤ q(r, s) + q(s, t).

length(r ∧ t) ≥ min{length(r ∧ s), length(s ∧ t)}.



1777Machine Learning (2022) 111:1765–1797 

1 3

Therefore

  ◻

The next result summarizes the description and main properties of the set of quasi-
pseudo-metrics that will be considered in the present paper.

Proposition 1 Let U be a graph satisfying the requirements explained before. Let S be the 
associated set of strategies—sequences of actions, paths in the actions graph. Then 

1. �W is a pseudo-metric that becomes a metric if wi > 0 for every i ∈ ℕ.

2. q and q−1 are quasi-metrics, and qs is a metric.
3. For every �

�
, �s, �q, �q−1 non-negative real numbers that sums 1,  we have that the formula 

 defines a quasi-pseudo-metric. Moreover, it is a metric if �
�
≥ 0, 𝛼s > 0 and 

�q = 0 = �q−1 .

Proof 1. is a consequence of Lemma 1 and a simple argument for proving by contradic-
tion that, if any wi is zero, then we can find two different elements s,  v of S such that 
�W (s, v) = 0 (just take s = (s1,… , si−1, 0, 0, 0, ...) and v = (s1,… , si−1,w, 0, 0, ...) for w ≠ 0

).
The statements in 2. are just consequences of Lemma 2 and the other arguments above. 

Finally, 3. is obvious, just taking into account 1. and 2.   ◻

3.2  Lipschitz maps in spaces of strategies

Consider now a finite subset S0 ⊆ S . It represents the strategies that have been already 
checked, for which we already have an evaluation. We can consider now an evaluation 
map—a reward function—, that is a real function f ∶ S0 → ℝ which, as we said, is sup-
posed to be known. We consider it as a Lipschitz map. Since S0 is finite, the associated 
Lipschitz constant K(f) is always finite.

We can always obtain a Lipschitz extension f̂  of the evaluation function f to the whole 
space preserving the Lipschitz constant by using a McShane-type extension for Lipschitz 
functions. For example, we can use a convex combination of the McShane and Whitney 
formulas. Thus, we extend the evaluation function to the whole space of strategies, under-
stood as sequences of possible actions. It can be already used to evaluate any strategy of 
the set, and so it provides a method for generating experience “to feed the system” from 
completely new situations that have not been checked in the real world. The options to 
be chosen will be given by a random election process, from which these new cases are 
obtained. This is the main tool of our purpose of reinforced learning, which have been 

length(r ∧ s) + length(s ∧ t) ≤ length(r ∧ t) + length(s).

q(r, t) = length(t) − length(r ∧ t)

≤ length(s) − length(r ∧ s) + length(t) − length(s ∧ t) = q(r, s) + q(s, t).

�(s, v) = �
�
�W (s, v) + �s q

s(s, v) + �q q(s, v) + �q−1 q
−1(s, v), s, v ∈ S,
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already used in the context of the financial markets (Calabuig et al. 2020). Note that we can 
use either the metric �W or the quasi metrics q and q−1 for extending the reward function f,  
since we know the corresponding extension theorems for all these cases (see Sect. 2).

The universe of states and the actions can be represented together as a directed graph 
as explained in Sect. 3.1. Often this representation allows a clear picture of the problem to 
be drawn (Driessens et al. 2006, Sect. 6.1.1). We will use such representation through the 
paper, since it also facilitates the use of some graph-based analytic programs that could be 
used for the design of more complete algorithms, as Neo4j or Gephi.

Remark 1 In Proposition 1 we have set the starting point to build the topological context of 
our models. However, if we are interested in the use of these ideas into a distance learning 
framework, this initial formula has to be modified in a recursive process, once it has been 
fixed in the definition of a metric � with the corresponding weight in each term. We can use 
the extension of the reward function for this aim. Indeed, using the extension of the Lip-
schitz function f̂  we can get a quasi-pseudo-metric qf̂  depending exclusively on the values 
of this function that will allow to define a new metric in the space. Thus, a formula like

for a coefficient 0 ≤ � ≤ 1, could give the next formula for a quasi-pseudo-metric defined 
in the space in the next recursive step. For example, a natural expression for qf̂  would be 
given by

that can be improved by increasing the set S0 used to compute the extension f̂ .

4  First test examples: “The drunk man crossing the bridge" 
(DBProblem)

In this section we consider the extension of a particular reward function acting in a con-
crete metric space that models the following system. Consider a universe U with 3 possible 
situations at each state, and a set of 3 actions in them: “going ahead"—go ahead right = 1, 
go straight = 2, go ahead left = 3. The process begins with the “drunk man" at the begin-
ning of the bridge and in the central position. Strategies are defined as finite sequences of 
actions. A strategy fails when a particular sequence of actions occurs in such a way that the 
“drunk man" falls off the bridge. For example, twice in a row to the right puts the drunk 
man in the water. The following chart (Table 1) represents a successful 5-step strategy. The 
process begins in the left central part of the table (asterisk), which represents the initial 
state 1 in step 0; after continuing to the left, the drunk man is still on the bridge after step 1 
(state 2), and so on.

We use the bifurcation metric considered above. The evaluation function v is given in 
this case by the length of the strategy. It is supposed to represent the effectiveness of a 
strategy: the longer the drunk lasts on the bridge, the better the strategy. This of course 
can be computed for all the sequences, but we want to compare its values with the predic-
tion of v provided by the Lipschitz extension of this evaluation function based in its values 
for a little number of strategies. The McShane formula will be considered together with 

p(s, v) = 𝛼 𝜏(s, v) + (1 − 𝛼) qf̂ (s, v), s, v ∈ S

qf̂ (s, v) =
||f̂ (s) − f̂ (v)||, s, v ∈ S,
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the (symmetric) distance �0 = qs —that is, � = 1 and � = �0 in the general metric model 
explained in Remark 1.

4.1  A first “Handmade” example

After some experiments rolling a die—that adds to the procedure an elementary (but nec-
essary) probabilistic character,— we get the following sequences of actions. (The symbol 
0/0 in the following computations is evaluated as 0.) In a well-structured algorithm, this 
first step should be performed following a typical Monte Carlo construction, after estimat-
ing a suitable probability distribution.

Note that some of them are repeated. Following the notation of Sect. 3.2, we will consider 
the subset of strategies S0 ⊂ S defined by S0 = {H1,H2,H3}. The idea is to develop a man-
ageable example with a small set of states —just 3—, for which the evaluation function is 
known. Later we will compare the values of v̂ —the Lipschitz extension of v— for the test 
set {H4,H5,H6,H7,H8,H9} with the values of v for the elements of this test set, which can 
also be computed.

Indeed, a direct computation shows that

We will show now how we can get a Lipschitz estimate v̂ for v using the values of v for the 
elements of S0. We will consider the McShane formula in this example. 

(1) Since one of them is repeated, we get a pseudo-distance instead of a distance (that is 
in this case, symmetric) with representing distance matrix 

 Of course, this can be avoided just by removing repetitions in the experience. How-
ever, since we have obtained it as a result of an “experimental” process, we prefer to 
keep it as a different element: this is allowed by our pseudo-metric formalism.

(2) We compute the Lipschitz constant K = maxi,k=1,2,3
|v(Hi)−v(Hk)|

d(Hi,Hk)
. We have that 

H1 = (2, 3, 2, 3), H2 = (1, 1), H3 = (1, 1),

H4 = (2, 3, 3), H5 = (2, 3, 3), H6 = (1, 1),

H7 = (1, 2, 1), H8 = (3, 3), H9 = (3, 1, 2, 3, 3, 3).

v(H1) = 4, v(H2) = 2, v(H3) = 2, v(H4) = 3, v(H5) = 3,

v(H6) = 2, v(H7) = 3, v(H8) = 2, v(H9) = 6.

D =

⎡⎢⎢⎣

0 4 4

4 0 0

4 0 0

⎤⎥⎥⎦
.

Table 1  Scheme of an strategy on the bridge

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 ⋯

∗ ⋯

∗ ∗ ⋯

∗ ∗ ⋯
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 Therefore, K = 1∕2.

(3) Let us show the computation of the estimate for several Hi, i > 3.

◦  ̂v(H4) = max
k=1,2,3{v(Hk

) −
1

2
d(H

k
,H4)} = max

k=1,2,3{4 −
1

2
2, 2 −

1

2
3, 2 −

1

2
3} = 3.

  Comparing with the value of v, we get v(H4) = 3 = v̂(H4). The predictive value 
of the McShane extension works in this case.

◦  ̂v(H6) = max
k=1,2,3{v(Hk

) −
1

2
d(H

k
,H6)} =max

k=1,2,3{4 −
1

2
4, 2 −

1

2
0, 2 −

1

2
0} = 2.

  Obviously in this case v̂(H6) = v(H6) , since in fact H6 = H2 = H3.

◦  ̂v(H7) = max{2, 1, 1} = 2. In this case, we get v̂(H7) = 2, while v(H7) = 3 . Thus, the 
values are not coinciding, but they are similar yet.

◦  ̂v(H9) = max{4 −
1

2
6, 2 −

1

2
6, 2 −

1

2
6} = 1 , while v(H9) = 6. The values in this case are 

quite different.

It can be seen that the method provides some reasonable predictions for the extension of the 
function v,   although it might seem that we do not control to what extent we can trust the 
results obtained. However, note that the extension of v has to preserve the Lipschitz inequality 
for the constant K = 1∕2, so that at least we have a uniform limit for the error.

4.2  An example involving quasi‑metrics and semi‑Lipschitz functions: the oracle 
function

We follow with the DBProblem but considering a new reward function and a genuine asym-
metric structure to define the topology. In this case, the McShane and Whitney extensions give 
significantly different results, which is not surprising: we analyze them in two different sec-
tions below. We will use both q and q−1 —the bifurcation quasi-metrics,—and a new function 
that represents just the resulting state of an strategy: the oracle function, which takes the value 
0 if the drunk falls into the river and one if he stays on the bridge.

4.2.1  The McShane semi‑Lipschitz extension of the oracle function

Let us define the oracle function acting in the set of strategies as follows. We introduce a new 
character ∅ . When it appears in a sequence, it means that the depicted strategy is over, as the 
drunk is already in the river.

If s = (s1,… , sn) is a complete strategy —that is, a strategy that has finished when the 
drunk jumps into the river—, a sub-strategy is a sequence as (s1,… , sr), for r ≤ n. Consider a 
set S0 ⊆ S generated by a set S0,0 of complete strategies by considering all the sub-strategies 
of all the elements of S0,0 . In the model that supports this example, it is supposed that these 
strategies have been “experimentally" checked; of course, we compute them directly, since the 
algorithm for doing this is clearly defined. The oracle function is a map O ∶ S0 → ℝ defined 
as

|v(H1) − v(H2)|
d(H1,H2)

=
|4 − 2|

4
=

1

2
,
|v(H1) − v(H3)|

d(H1,H3)
=

1

2
,
|v(H2) − v(H3)|

d(H2,H3)
=

0

0
.

O(s) = 0 if the next step/coordinate expected in s is �
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and O(s) = 1 otherwise. As we said, this function is intended to represent the possibility of 
“survival" after the subsequent implementation of several actions: if after the application of 
a sequence of actions s = (s1,… , sn), the system is still “alive" —that is, (s1,… , sn) is not 
a complete strategy,—then the value is O(s) = 1. Note that the same strategy can appear 
several times, according to our random way of generating the sample: in case of multiple 
values for a particular sub-strategy, we put the mean.

Let us compute now the semi-Lipschitz McShane extension Ô = O
M for a particular subset 

of complete actions of the set considered in Sect. 4.1. We chose in this case the set S0,0 defined 
by

whose elements represent complete strategies, to generate the test set S0 , that is then 
defined as

The computed values of O are:

The semi-Lipschitz constant is the maximum of the next values.

It is easy to see that the semi-Lipschitz constant equals 1,   and this is the case for every 
set S0 constructed as above. In our simulated experiments, we have found that the control 
of this constant is crucial for the competitiveness of the algorithm, and could be one of 
the reasons why it is inadequate or not recommended: if the constant increases rapidly, 
the results are progressively worse. Therefore, in this case the result is the semi-Lipschitz 
extension of O using the McShane formula, Ô, that is

An example: if we take H = (2, 1, 1) , we have that

which gives the expected positive result, since this strategy is complete. In general, in this 
case it can be noted that by the definition of Ô , the only elements H such that Ô(H) = 1 are 
the ones that are (strictly) subsequences of a sequence in the original set S0,0, that is, the 
elements of S0 that are not complete actions.

S0,0 ∶= {H1 = (2, 3, 2, 3), H2 = (1, 1), H4 = (2, 3, 3)},

S0 = {(2), (2, 3), (2, 3, 2), (2, 3, 2, 3), (1), (1, 1), (2, 3, 3)}.

O((2)) = 1,O((2, 3)) = 1,O((2, 3, 2)) = 1,O((2, 3, 2, 3)) = 0,

O((1)) = 1,O((1, 1)) = 0,O((2, 3, 3)) = 0.

O((2)) −O((2, 3, 2, 3))

q((2), (2, 3, 2, 3))
=

1

3
,
max{O((2, 3, 2, 3)) −O((2)), 0}

q((2, 3, 2, 3), (2))
=

0

0
,

O((2, 3)) −O((2, 3, 2, 3))

q((2, 3), (2, 3, 2, 3))
=

1

2
,
max{O((2, 3, 2, 3)) −O((2, 3)), 0}

q((2, 3, 2, 3), (2, 3))
=

0

0
,

O((2, 3, 2)) −O((2, 3, 2, 3))

q((2, 3, 2), (2, 3, 2, 3))
=

1

1
= 1,

max{ O((2, 3, 2, 3)) −O((2, 3, 2)), 0}

q((2, 3, 2, 3), (2, 3, 2))
=

0

0
.

Ô(H) = max
s∈S0

{O(s) − q(s,H)}, for every strategy H.

Ô(H) = max
s∈S0

{O(s) − q(s,H)} = max{1 − 2, 1 − 2, 1 − 3, 1 − 2, 0 − 3, 0 − 2, 0 − 3, 0} = 0,
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4.2.2  The Whitney semi‑Lipschitz extension of the oracle function

The formula that gives the extension in this case is,

However, we cannot apply it; using the setting that we shown in the example of the previ-
ous section, we have that

what means that the oracle function O cannot be considered as a c-semi-Lipschitz function. 
Following Romaguera and Sanchis (2000, p.294), we can say that the reason is that this 
function is not ≤q−1-increasing. Therefore, the Whitney semi-Lipschitz extension of O can-
not be constructed in this case.

5  Semi‑Lipschitz extensions as decision tools: examples 
of the forecasting method

In this section we show how the extension of Lipschitz-type functions behaves in order 
to predict the evolution of a system. To do so, we focus on the prediction step, that is, on 
the calculation of the extension based on the experience stored in the memory. In the next 
step, the iterative learning algorithm to build a typical machine learning procedure would 
consist in the storage of the information obtained in each step, that would increase the size 
of the metric space from which the extension can be computed. We use the example of the 
DBProblem as a benchmark. We will consider the oracle function O studied in Sect. 4 as 
reward function and a slight modification of its values including some probabilistic esti-
mate. These functions can be computed for every strategy in the model, so we can compare 
the estimate that the model provides—what will be called the success function I,—with its 
exact value to test the effectiveness of the procedure. This function I will be computed as a 
Lipschitz extension of the oracle function when it is evaluated in a specific small training 
set B . Concretely, it will be defined as the mean of the McShane extension and the Lip-
schitz extension of O , originally defined in an eight-vectors-set B.

Recall that we are considering the set of strategies defined as sequences of actions over 
the three-position states underlying the DBProblem. Over this space we consider the bifur-
cation metric defined in Sect.  3.1. Again, we take a small set of strategies in the set of 
actions for checking the model. Recall that 1 means that “the drunk is still on the bridge,” 
(DonB) and 0 that “the drunk is already in the river” (DinR). We use an algorithm for 
checking some particular situations. As we said we consider a success function I—that 
plays the role of extension of the reward/oracle function studied in the previous section,—
and gives an estimate of the expected success of an strategy. Our success function I is 
defined as the mean of the McShane and Whitney extensions of the oracle function pro-
vided in the previous section. This function takes the value 0 if DinR, 0.5 to indicate that 
the algorithm does not give any estimate for the given case, and 1 if DonB.

Let us show three specific computations to explain how the algorithm works. We 
do not try to prove fundamental properties of the proposed algorithms (tractability, 

O
W (s) = inf

t∈S0
{f (t) + Kq(t, s)}, s ∈ S0,

O((2)) −O((2, 3, 2, 3))

q((2, 3, 2, 3), (2))
=

1 − 0

1 − 1
=

1

0
,



1783Machine Learning (2022) 111:1765–1797 

1 3

scaling,...), we intend to show how the algorithm provides right answers even when it is 
supported by very small data sets.

Example 1 We start by considering a very small set of strategies. It is assumed that it 
comes from a direct experiment and that the system has stored only these cases at an early 
stage of the evolutionary process. Remember that, in this section, we are focusing on the 
analysis of the efficiency of the extension procedure, based on the following set of eight 
strategies together with the corresponding values of the oracle function. Our idea is to 
show that, even with such a small training set, the method provides a relevant rate of suc-
cessful prospective results. Also relevant is the fact that the algorithm does not fail: if it 
cannot provide a reliable solution, it gives “indeterminate” as response.

Strategy Oracle Strategy Oracle Strategy Oracle Strategy Oracle

(2,2,3,1) 1 (2,2,3,3) 0 (1,2,3) 1 (2,3,3) 0
(1,2,3,1,3,3) 0 (2,3,1) 1 (1,1) 0 (1,2,1) 1

 To check this, we consider the set of all the 3-steps walks on the bridge as testing 
set, even if “the drunk man falls in the water" in the second step. This means that it 
is allowed to try to enter the bridge again on the third step, although in the game we 
assume that, once he has fallen, the walk cannot be considered successful.

As we said, we choose as extension I of the oracle function O the mean of the 
McShane and the Whitney extensions, that is,

The 3-steps walks are ordered as follows (by rows). Note that, as we said above, strategies 
that have already finished at the second step, as for example (1, 1, 2)—the drunk man is 
already in the water after two steps—, are considered to be evaluated in the third step. Of 
course, the evaluation has to be 0 in this case. 

(1,1,1) (1,1,2) (1,1,3) (1,2,1) (1,2,2) (1,2,3) (1,3,1) (1,3,2) (1,3,3)
(2,1,1) (2,1,2) (2,1,3) (2,2,1) (2,2,2) (2,2,3) (2,3,1) (2,3,2) (2,3,3)
(3,1,1) (3,1,2) (3,1,3) (3,2,1) (3,2,2) (3,2,3) (3,3,1) (3,3,2) (3,3,3)

 Next we show a comparison of I with O (whose exact value can be directly computed) 
to illustrate the power of the algorithm as a forecasting tool. In Fig. 1, the exact values of 
the function O are shown. The following Fig. 2 shows the success function I—that is, the 
extension of the oracle function— for these 21 strategies. Each point represents the value 
of the order position—first coordinate—and the corresponding extension of the oracle 
function—second coordinate—for each strategy.

Thus, the set of eight initial vectors allows to obtain an estimate for all the 3-steps 
strategies for which the algorithm decides. Since we define it as the mean of the 
McShane and the Whitney extensions, we get also values of 0.5 for the success function 
I, that represent in the model the 3-steps walks for which the algorithm cannot provide a 
reasonable estimate.

I(s) = 1∕2
(
McShane(s) +Whitney(s)

)
, for each strategy s.
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For the rest of the cases, the algorithm gives also some information: obviously, it gives 
a right result when the 3-steps walk that is considered belongs to the original training set. 
But it also is right for other cases, the ones at the beginning of the list. It can be seen that 
the results are consistent with the "honesty" of the algorithm: it gives results for the case 
that we can trust these results, minimizing the probability of getting a wrong answer. Sum-
marizing, we have obtained the following. 

* Indeterminate Cases (the algorithm gives the information that it cannot provide any 
estimate): we get that only for 7 of 27 cases the algorithm gives an answer. That is, the 
rate of indetermination is 74.07%.

* Success Rate (for the cases for which the algorithm gives an answer): for the 7 cases 
for which the algorithm gives a prediction, we get a 100% of success; 4 of these cases 
belong to the original training set, so the algorithm gives a positive answer for 3 cases.

* The algorithm does not give wrong results. In cases where the information is not suf-
ficient to give a correct answer, the algorithm gives the value 0.5,  indicating that it is 
not able to find a right result.

Fig. 1  Representation of the 
exact values of oracle function of 
Example 1

Fig. 2  Representation of the 
extension I of the oracle func-
tion—the estimate obtained by 
using our extension technique—
of Example 1
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Example 2 Let us now use all the 2-step strategies as training set S0 . They can be seen in 
Table 2, together with the corresponding values of the oracle function. We consider the set 
ordered by rows. In this case, we change the definition of the oracle function, that is now 
defined by the uniform probability of staying on the bridge in the next step from the posi-
tion defined by the given 2-step walk. As in the case of Example 1, forecasting is made also 
on walks that could be already out of the bridge.

With this training set and using the bifurcation (quasi-)metric, we analyze the prospec-
tive on the oracle function for all the sets of 3-steps and 4-steps.

Thus, the results for the case of 3-step walks, when the training set that we consider is 
the one given by all the 2-step walks, is

The quadratic error is = 1

21

�∑21

i=1

���O(si) − I(si)
���
2

= 0.0605.

Concretely, the values of the reward—the exact oracle function—can be found in 
Tables 3 and 4. In the first one we find the exact values of the reward function, where we 
have considered the order by rows, while the estimate of this function provided by the algo-
rithm are presented in the next Table 4. The comparison of these results are presented in 
Fig. 3.

It can be seen that there are 8 cases for which the algorithm gives the value 2/3 while 
the correct one is 1,  and there are just 4 cases for which the algorithm gives 2/3 and the 
exact value is 0. For the resting 9 cases the algorithm gives the right result.

Let us show now the results for the all the 4-step walks. They can be seen in Fig. 4. 
In this case, we have the same relative error of 0.1975,  while the relative quadratic error 
is 0.0349. The reader can note that the forecasts provided for these cases are similar to 
the cases of 3-steps and 4-steps walks, and the undefined cases—cases for which we only 
have the probabilistic estimate—do not disappear, but neither do they increase dispro-
portionately. As can be seen in Fig. 5, even for these cases the algorithm provides useful 
information.

Of course, this is not in general the case. In real world applications, we will find some 
known situations from which we will extend the model to all the possible cases. In the 
context of distance learning, this will be done improving the topology of the graph by add-
ing some experimental information as explained in Sect. 3.2. In the next section we will 
explain a typical context for applying this methodology. A predictive tool to compute the 
behavior of a financial market is presented, with the aim of giving a systematic way of 
improving the original distance given for the space, that is constructed by using the bifur-
cation metric.

Relative Error =
1

21

21∑
i=1

||O(si) − I(si)
|| = 0.1975.

Table 2  Set of strategies in the 
training set S

0

Strategy Oracle Strategy Oracle Strategy Oracle

(1,1) 0 (1,2) 2/3 (1,3) 1
(2,1) 2/3 (2,2) 1 (2,3) 2/3
(3,1) 1 (3,2) 2/3 (3,3) 0
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6  Asymmetric reward functions: a computational example

The use of metrics defined by the symmetrization of an asymmetric distance, as an essen-
tial step of a reinforcement learning algorithm, has been shown in the academic example 
presented in the previous section. Given a closed set of "experiences" in the context of the 
DBProblem, we have shown how the system can create an evaluation tool to choose the 
next step in the algorithm , using Lipschitz extensions of adapted indices. However, this 
example does not show all the main properties that the proposed methodology can offer. 
First, the non-symmetric ideas underlying the definitions involved do not appear explicitly 

Table 3  Exact values of the 
oracle function for 3-step walks 0 0 0 0 1 1 1 1 1

0 1 1 1 1 1 1 1 0
1 1 1 1 1 0 0 0 0

Table 4  Estimate I of the 
oracle function for 3-step walks 
(success function)

0 0 0 2/3 2/3 2/3 1 1 1
2/3 2/3 2/3 1 1 1 2/3 2/3 2/3
1 1 1 2/3 2/3 2/3 0 0 0

Exact values of the oracle function.

Extension of the oracle function.

(a)

(b)

Fig. 3  Comparison of the oracle function and its extension for all the 3-step walks
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in the formulas, although we have used them for the design of the tool. Secondly, a rein-
forcement learning procedure has to include the recursion tool to show the progress of the 
algorithm.

The fact that the set of actions considered in the systems under study define a tree 
(a directed graph), suggests that the natural tools to face it must be asymmetric. In fact, 
we will show in this section that for the complete construction of a reinforcement learn-
ing algorithm, it is more convenient that the associated metric notions—as well as the 
McShane-Whitney extension formulas that appear,—are the non-symmetric versions of the 
bifurcation metric.

The problem we present now can be understood as a general version of the DBProblem. 
Note that it can be made as large as we want, so it is an easy benchmark to check to what 
extent the algorithm could be efficient. This matter will be considered at the end of this 
section. There is a “field"—a rectangular grid,—of length N full of hidden holes, and the 
device has to cross it with the help of an automatic system. At each step, the device can 
advance left, forward or right, and for that it has to choose which—among a succession of 
randomly generated paths,—it considers as a possibility to advance on the board, and pays 
a fee to check its success.

The algorithm follows by successive steps with the following rule: 

Exact values of the oracle function.

Extension of the oracle function.

(a)

(b)

Fig. 4  Comparison of the oracle function and its extension for all the 4-step walks
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(1) The agent “sends” D times a device that follows random walks composed by n steps 
( 1 ≤ n ≤ N ), and gets a final score E for all of them: E(s) = 0 in case the device has 
found a hole, or E(s) = 1 in case the robot is still “on the board". For simplicity, we 
assume that there is a natural number R such that N = R ⋅ n.

(2) These steps are registered in the memory of the system: D0(1) is the set of walks with 
score equal to 1 and D0(0) the walks with score equal to 0.

(3) The agent chooses randomly again a set A of D walks composed by 2 ⋅ n steps. The 
bifurcation quasi-metrics are now considered: for every t ∈ A, we compute 

Extension of the oracle function for 5-step walks.

Extension of the oracle function for 6-step walks.

Extension of the oracle function for 7-step walks.(c)

(b)

(a)

Fig. 5  Extension of the oracle function for longer walks (5, 6 and 7-step walks)
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 Note that the meaning of the evaluation of these quasi-metrics concerns the compari-
son of the trajectories involved: q(s, t) represents the similarity of the proposed new 
walks s that go beyond, with the reference set of successful paths t ∈ D0(1) , while 
q−1(s, t) gives how similar the new paths are to the unsuccessful ones t ∈ D0(0). A 
simple computation (similar to the ones done in the previous sections) gives that the 
Lipschitz constant K associated to the inequality E(s) − E(t) ≤ K ⋅ q(s, t) is equal to 1. 
This justifies the definition of the next reward tool.

(4) We use the quasi-metric q−1 to exclude wrong paths of the set A :  if q−1(s, t) = 0 for 
any t ∈ D0(0), then s cannot provide a successful path, so we will only consider the set 
A0 ⊂ A given by 

 In particular, for all the elements t ∈ A0 we have that E(t) = 1. Now, we use the non-
symmetric McShane extension formula to evaluate the better options among the paths 
of the set A0 ∶

 We choose the subset A1 ⊆ A0 of the walks for which the values of EM attain the 
maximum value. We evaluate them and choose the new sets D1(1) ⊆ A1—successful 
walks,—and D1(0) ⊆ A1—unsuccessful walks.

(5) We repeat the process from Step (2) on by choosing D0(1) ∪ D1(1) and D0(0) ∪ D1(0) 
to play the roles of D0(1) and D0(0). If there is not a “wall of holes" for the set of all the 
involved trajectories, the algorithm stops with a right complete path after R iterations.

It should be noted that the cost of the procedure is focused on the experimental verification 
of the success of a certain path, rather than on the calculation of the McShane extension 
for a new path obtained at random: remember that the board is unknown. Thus, the algo-
rithm has to store also the success rate of the randomly generated paths as a function of the 
McShane extension, in order to choose the best distribution of the randomly generated sub-
set to check at each step. This distribution provides information about how the “local” fill 
rate of the board (here “local” means “around the successful paths” tested in the previous 
step), and is the cornerstone for improving the efficiency of the algorithm. This point will 
be discussed in some detail later.

The given algorithm provides an example of the use of non-symmetric metric instruments. 
Note that this is only an example, as the potential use of the conceptual platform explained is 
broad and not limited to this topic. We have considered this algorithm to show that these tools 
allow to give a reinforcement-learning-type method to find a safe path through the network. 
Recall that in reinforcement learning, the learning agent interacts with an initially unknown 
environment and modifies its action policies to maximize its cumulative payoffs. Thus, RL 
provides an efficient framework to solve learning control problems which are difficult or even 
impossible for supervised learning and traditional dynamic programming methods In a sense, 
in our case the sequential aspect is not explicitly given by a value function defined as the sum 
of sequential contributions, but by a kind of “sum of sets”, in the sense that learning occurs 
by including new elements in the set of known situations. We can design an artifact so that 
when an action is successfully performed, the sequence of steps leading to it is included in 

q(s, t) = length(t) − length(t ∧ s), s ∈ D0(1), and q−1(s, t) = q(t, s).

A0 ∶= {t ∈ A ∶ q−1(s, t) ≠ 0, t ∈ D0(0)} = {t ∈ A ∶ q(t, s) ≠ 0, s ∈ D0(0)}.

EM(t) ∶= max
s∈A0

{E(s) − K ⋅ q(s, t)} = 1 −min
s∈A0

q(s, t).
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the set of successful experiences, and then the quasi-pseudo-metric compares the proposed 
new options (which has been provided by a random procedure) with the experience, which is 
growing step by step. Each new action of the agent is a benefit for the knowledge that has been 
attained about a given environment in order to maximize this “accumulated reward”. This is 
how increasing knowledge is acquired. If the basic comparison set is left unchanged (as in the 
first examples written in previous sections), learning is reduced. However, if we increase this 
set step by step we get the cumulative effect that characterize reinforcement learning; actually, 
a value function (playing the role of cumulative reward) could be obtained by adding particu-
lar evaluations of the quasi-metric at each step.

Below are the results of a small example, in which N = 12, n = 4, and therefore R = 3. The 
grid has been randomly generated with a filling factor of 30% of holes. So, the distribution of 
the holes follows the following rule: at each step of one unit, the probability P(1) of a success-
ful result is P(1) = 1 − 0.3 = 0.7. Thus, the probability P(n) of a random path of size n , not 
falling into a hole, is P(n) = (0.7)n.

The application of the algorithm is explained below. In Fig. 6, a representation of the solu-
tion obtained to the problem is given. Figures 7 and 8 show different steps in the evolution of 
the algorithm, in which the path obtained in the corresponding step is shown in red, and in 
green some paths obtained randomly to be tested to obtain the new successful path.

In Fig. 7, 8-steps optional paths randomly obtained at the first step are shown. The algo-
rithm chooses the ones that are closer in the quasi-norm to the first 4-steps path that is shown 
to be successful. At this point, only the first four steps of the successful (red) path are known.

Figure  9 shows a set of paths p which satisfy that the asymmetric distance 
q−1(p0, p) = q(p, p0) to a wrong path p0 is equal to 0 (that is, a path whose qualification is 
equal to 0. i.e., the device has detected a hole). Following the proposed algorithm, this means 
that these paths have to be excluded from the set of potential suitable solutions chosen at 
random.

Let us now analyze some elements concerning the suitability of the proposed method. Note 
that performing a solution to such a problem using other RL algorithms is beyond the scope of 
the present work, due to the different nature of the standard candidates that could be used. The 
natural ones would be those related to Markov Decision Processes. To fully test the efficiency 
and compare our method with a standard algorithm it would be necessary to first design a 
competing algorithm for our method. The aim of this paper is not to show this, but to provide 
a different topological setting for understanding RL on discrete dynamical systems.

However, we can show some hints in the direction of improving the efficiency of the algo-
rithm. Let us now consider the procedure for choosing the distribution of paths to be checked 
as a function of the corresponding values of the McShane extension. Fix a path p0 of size N. 
The probability—given a path p of size N—,to get that the quasi distance q(p, p0) = k for 
0 ≤ k ≤ N, is Prob = (1∕3)k(2∕3). On the other hand, the q-McShane extension of the index 
for any path p of length N using the set {p0} for a successful path p0 , is

Therefore, given a set of M randomly chosen paths of size N,  we have that the following 
distribution of paths having an index q −McS(p) = s, 1 − N ≤ s ≤ 1, is

that is, M (1∕3)(N+s−1) (2∕3). In Fig. 10 a representation of the random distribution of suc-
cessful paths is given for M = 10000.

McS(p) ∶= EM(p) = sup
g∈{p0}

(
E(g) − d(p, g)

)
= 1 − d(p, p0).

M (1∕3)k (2∕3), for 1 − (N − k) = s,
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However, to improve the efficiency of the algorithm, this distribution can be changed 
to use one that can help find alternative ways to get a path. The motivation is that, 
depending on the (local) accumulation of holes (filling factor), it might be better to use 
a distribution that more closely matches the successful paths. If there are no holes, the 
most efficient strategy is to take for step n only paths that match one that is known to 
be successful in step n − 1. By following this rule, the algorithm could skip the “walls 
of holes” that could occasionally appear after a previous successful path. Note that, 
for this, the complete history of the process is needed, and all previous steps must be 
recorded. This is a considerable difference with the setup of Markov-type algorithms.

To do this, we can estimate the filling ratio of the board only using the distribution 
calculated above. As we have explained, the probability that a path of length n is suc-
cessful, is P = rn. Thus, after checking a first set of random walks, we can get an esti-
mate of P as

Fig. 6  Representation of the final path provided by the algorithm. The intensity of the blue color of the 
points indicates its probability of being crossed by a random path (the ligther the color, the greater the prob-
ability)

Fig. 7  Representation of the 8-steps optional paths randomly obtained at the first step
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and so r ≈ (EstP)1∕n. The estimate of r can be improved at each step by adding to the total 
number of paths considered the new ones. Using this value, we could find a more adequate 
distribution of the frequency with which we accept as candidates possible paths with dif-
ferent McShane extensions, than the natural distribution obtained by random choice. Recall 
that R represent the increment of single steps in the board that is taken at each step of the 
algorithm, and we are placed after the first successful step has been done. For example, if 
r ≈ 1 the acceptance of new paths to try could be 90% with McS(p) = 1 − R and 10% with 
McS(p) = 1 − R − 1. However, if r ≈ 0.5, a distribution as 30% of paths with McS equal to 
−R, −R − 1, and −R − 2, and 10% with McS(p) = 1 − R, could be chosen.

Thus, this distribution can be selected by the analyst according to his/her experience; 
automatic ways of doing so could also be easily designed, using elementary probabilis-
tic arguments. In addition, a more precise analysis could be done to improve efficiency, 

EstP =
number of successful paths

total number of paths checked
≈ rn,

Fig. 8  Representation of the 12-steps optional paths randomly obtained at the second step. Only the first 
eigth steps of the successful (red) path are known

Fig. 9  Representation of five invalid random paths associated to a non succesfull stored path (increased dot 
size for better visualization of the holes)
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considering that the distribution of holes does not have to be homogeneous throughout the 
board. In addition to the lengths of the previously used paths, the directionality of these 
paths could also be considered, which would allow choosing the direction on the board, 
rewarding the most successful ones.

To follow with the example, we have considered seven cases of boards with filling fac-
tors 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 1, and in each one a successful path p of length 4 has 
been set. Figure 11 provides a representation for each filling factor of the frequencies of 
success of length-8-paths that have been randomly chosen depending on the value of the 
McShane extension with respect to p. Specifically, at each value of s,  the dependent vari-
able Freq shows the probability of success of a random path that has a McShane extension 
greater than or equal to s. Using the experimental estimate of this curve, the algorithm 
chooses as explained the best value of the McShane extension to optimize the solution, 
improving efficiency in this way. For example, the best option for the filling factor 0.9 is to 
choose random paths p with EM(p) = McS(p) ≥ −5.

Finally, although no specific calculations have been made, it should be noted that the 
scalability of the algorithm is expected to be good in terms of board size. The complex-
ity of the system increases as the length of the required solution increases, but it can be 
observed that, by definition, the same computational scheme is repeated at each step, so 
only a linear increase in scalability could be expected. However, a full analysis of this issue 
will have to be carried out in future research steps on this topic. It is fundamental to the 
development of concrete algorithms that exploit graphs endowed with non-symmetric dis-
tances and extensions of semi-Lipschitz functions for the creation of new ML techniques.

7  Conclusions

A new conceptual framework—not based on vector representation—is introduced for the 
design of predictive tools for dynamic systems. The non-symmetry of the metric notions, 
which allows to emulate the non-reversibility of evolution over time, plays a crucial role. 
Combining (directed) trees of states with quasi-pseudometrics in the spaces of the strate-
gies on those trees—finite sequences of actions,—we obtain graph/metric structures that 
allow us to define models for these systems.

Fig. 10  Random distribution of paths having different values of the McShane non-symmetric extension 
with respect to a fixed 8-steps-path
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The reward function is defined by a quasi-pseudo-metric over a training subset of 
strategies, that provides the instrument to determine which are the best. The main prop-
erty of the proposed tools is that they combine graph structures together with asymmet-
ric distances—quasi-metric,—in order to create a suitable framework for the design of 
AI algorithms for prediction in dynamic systems. In a second step, and using the well-
known mathematical results about the extension of semi-Lipschitz functions in metric 
spaces, we extend the reward function that controls the Lipschitz constant, which guar-
antees the fundamental principle that states that similar strategies would have similar 
rewards.

We have checked some algorithms based on these ideas, considering some examples 
around the ‘Drunk Man Crossing the Bridge" problem (that we called the DBProblem), 
and we have presented the corresponding computational results, together with some 
related explanations. In Sect. 6, we present an algorithm to solve a generalization of this 
problem, explaining a complete ML procedure designed for this purpose, along with 
some ideas for the analysis of some of its main properties (efficiency, scalability,...). The 
proposed method could be applied, for example, in the development and improvement 
of ML techniques designed for the financial markets, for which similar procedures based 
on the Lipschitz extensions have already been proposed (see Calabuig et al., 2020) and 
references therein).
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