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A B S T R A C T

Increasing demands on railway structures have led to a need for new cost-effective maintenance strategies in
recent years. Current dynamic railway track monitoring systems are usually based on the analysis of axle-box
accelerations to automatically detect track singularities and defects. These methods rely on hand-crafted feature
extraction and classifiers for different tasks. However, the low performance shown in previous literature makes
it necessary to complement these analyses with in-situ inspections. Very recent works have proposed the use
of deep learning systems that allow extracting more generalizable features from time–frequency spectrograms.
However, the lack of specific public domain datasets and the finite number of track singularities in a railway
structure have limited the development of deep learning based systems. In this paper, we propose a method
capable of outstanding in low-data scenarios. In particular, we explore the use of supervised contrastive
learning to cluster class embeddings nearly in the encoder latent space, which is used during inference
for prototypical distance-based class assignment. We provide comprehensive experiments demonstrating the
performance of our method in comparison to previous literature for detecting worn-out crossings.
1. Introduction

Railway structures are one of the main components of any country’s
transportation system. Railway maintenance plays a key role in achiev-
ing a high-performance, safe and cost-effective system (Tzanakakis,
2013). The increase in demand for passenger and cargo rail trans-
port services has led to an increase in the maintenance needs of the
rail network in recent years. Specifically, European countries invest
between 15 and 25 billion euros annually in the maintenance and
renewal of these structures (Lidén, 2015). With the advent of the
Industry 4.0 paradigm and the development of enabling technologies
such as sensing devices and artificial intelligence systems, predictive
maintenance has been projected as a promising tool for cost-effective
maintenance strategies.

In this work, among the different challenges on railway main-
tenance, we focus on track surveying. Different technologies have
been proposed to support the maintenance process: vision camera-
based methods, acoustic recording, laser sensors, etc. (Kouroussis et al.,
2015). Among these procedures, the use of axle-box accelerometers
have proved to be versatile enough to sense different track irregularities
of different wavelengths and occurrence (Chia et al., 2019; Jing et al.,
2021; Salvador et al., 2016). Some of its advantages are that this
technology is not limited to any field of view, and it is able to perform
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a dynamic surveying of the direct interaction between the track and the
railway. The presence of characteristic track element patterns and their
deterioration in axle-box acceleration on time–frequency domain has
been extensively studied in previous literature (Salvador et al., 2016).
In addition, some models based on hand-crafted feature extraction
based on traditional image processing methods and machine learning
models have been proposed and used on maintenance practice (Nadara-
jah et al., 2018). However, the low performance of these methods
makes it necessary to supplement these predictions with on-site visual
inspections by operators.

The emergence of deep learning has led to an increase of per-
formance of different computer-vision based industrial applications.
In particular, very recent works have shown the benefits of using
convolutional neural networks (CNNs) for axle-box track surveying
characterization (Chellaswamy et al., 2019; Niebling et al., 2020; Yang
et al., 2021). Under the supervised learning paradigm, deep learning
models have achieved remarkable performance in a wide range of ap-
plications. Nevertheless, a main limitation of these models is the large
amount of labelled data required for training. These limitations are
accentuated in track surveying applications. The absence of domain-
specific datasets makes it difficult use pre-trained fine-tuned models
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Fig. 1. System overview. In this work, we propose a deep-learning based system able to locate worn crossing on railway surveying maintenance. The sensing technology is based
on axle-box vertical accelerations (Section 3.1). First, signals are transformed to time–frequency distributions (Section 3.2). Then, normalized features are used as input to an
artificial intelligence model (Section 3.3) to detect worn crossings. The proposed model can be trained on scenarios with scarce training examples. This pipeline can be scaled to
other analysis on dynamic railway surveying.
and the annotation process is costly, while the number of track ele-
ments is limited (Chenariyan Nakhaee et al., 2019). This encourages
the development of novel strategies, capable of withstanding low data
scenarios, to achieve robust and reliable automatic systems that may
be used in decision making systems for dynamic track surveying.

Based on these observations, in this paper we propose a novel end-
to-end system able to detect worn crossings using axle-box accelerations
and deep-learning based features via convolutional neural networks
(see Fig. 1). The key contributions of our work can be summarized as
follows:

• We propose to deal with the scarcity of labelled training data in-
herent to track surveying applications by means of
non-parametric prototypical inference over the feature encoding.

• Specifically, unlike previous work, class embeddings are dis-
tributed in the latent space indirectly, using a subspace guided
by supervised contrastive losses.

• We compare the proposed system with previous methods in the
literature. In-depth experiments demonstrate the superior perfor-
mance of our approach, with accuracy gains of ∼ 8%.

• In addition, we report extensive ablation experiments to pro-
vide further insights into feature preprocessing, CNN architec-
tures, and learning strategies in a deep learning-based analysis
of axle-box accelerations.

2. Related work

2.1. Railway track surveying

Automatic track surveying is based on pattern analysis over sensed
signals and images. Among sensing devices, different technologies such
as thermal resistors (Bosso et al., 2018a), acoustic sensors (Chen et al.,
2021; Zhang et al., 2017), video recording (Faghih-Roohi et al., 2016;
Giben et al., 2015; Gibert et al., 2017; Hovad et al., 2021; James
et al., 2019; Mittal & Rao, 2017; Wang et al., 2019; Zhang et al.,
2018) or accelerators (Baasch et al., 2019; Bocz et al., 2018; Boogaard
et al., 2018; Bosso et al., 2018b; Carrigan et al., 2019; Carrigan &
2

Talbot, 2021; Chang et al., 2021; Chellaswamy et al., 2020, 2019;
Ghosh et al., 2021; He et al., 2020; Hory et al., 2012; Li & Shi, 2019;
Malekjafarian et al., 2019, 2021; Molodova et al., 2011; Ng et al., 2019;
Niebling et al., 2020; Salvador et al., 2016; Song et al., 2020; Sysyn,
Gerber, Nabochenko, Li, & Kovalchuk, 2019a; Sysyn, Gruen, Gerber,
Nabochenko, & Kovalchuk, 2019b; Wei et al., 2017; Yang et al., 2021)
have been proposed. In particular, the use of acceleration sensors on
axle-box has become more popular for detecting track irregularities
of different wavelengths and occurrence. Concretely, different applica-
tions include wheel flat (Bosso et al., 2018b; Sresakoolchai & Kaewun-
ruen, 2021b), crossings monitoring (Sysyn, Gerber, Nabochenko, Li, &
Kovalchuk, 2019a; Sysyn, Gruen, Gerber, Nabochenko, & Kovalchuk,
2019b), rail corrugation (Ghosh et al., 2021; Heusel et al., 2021; Li
& Shi, 2019), roughness derivation (Carrigan et al., 2019; Carrigan &
Talbot, 2021), rail joints (Yang et al., 2021), settlement and dipped
joint (Sresakoolchai & Kaewunruen, 2021a) and other railway elements
(Salvador et al., 2016, 2018). In the aim of predictive maintenance,
first works focused on visual description of the patterns that ele-
ments and defects produce on time–frequency domain (Baasch et al.,
2019; Carrigan et al., 2019; Carrigan & Talbot, 2021; He et al., 2020;
Hory et al., 2012; Molodova et al., 2011; Ng et al., 2019; Salvador
et al., 2016, 2018; Song et al., 2020). Among time–frequency distri-
butions, both standard short-time Fourier transform and Wavelets have
been used alike. Further on, some works described a set of features
based on classic image processing such as peak intensity, frequency-
band relative intensity, or other statistics. Then, first classifiers were
used on these features, such as SVMs (Li & Shi, 2019) to predict
rail corrugation, random forest for railway lifetime prediction (Sysyn,
Gerber, Nabochenko, Li, & Kovalchuk, 2019a; Sysyn, Gruen, Gerber,
Nabochenko, & Kovalchuk, 2019b), simple costume decision trees for
fault detection (Ghosh et al., 2021), or recent neural networks classi-
fiers (Sresakoolchai & Kaewunruen, 2021a, 2021b). Very recent works
(Chellaswamy et al., 2020, 2019; Niebling et al., 2020; Yang et al.,
2021) have proposed the use of deep learning models via CNNs to
characterize acceleration spectrograms on predictive tasks. In line to
recent advance on computer vision, these works have perform superior
than previous approaches based on hand-crafted feature extraction
(Chellaswamy et al., 2020, 2019; Sresakoolchai & Kaewunruen, 2021a;
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Yang et al., 2021). Although these works have shown promising results,
models are usually trained on small datasets, with scarce labelled data
(Chenariyan Nakhaee et al., 2019). On vision camera-based methods,
the vast amount of publicly available databases of natural images fa-
cilitates the use of previous knowledge for fine-tuning rich, pre-trained
models (Mittal & Rao, 2017). Thus, camera-based surveying methods
in the literature have been able to successfully train CNNs architecture
such as UNets for track segmentation and fault classification (James
et al., 2019) or YOLO networks for surface defect localization (Hovad
et al., 2021). Nevertheless, time–frequency distribution of acceleration
spectrograms are a too specific domain to apply such knowledge.
To deal with this issue, different strategies have been proposed. For
instance, some works use synthetic data to train CNNs directly on accel-
eration signals (Sresakoolchai & Kaewunruen, 2021a, 2021b). Still, the
reliability of synthetic data is not clear in comparison with in situ data.
Other works have resort to self-training strategies such us autoencoders
(Niebling et al., 2020), which use unlabelled data to learn rich features.
Regarding the CNNs training, the main strategy (Chellaswamy et al.,
2019; Sresakoolchai & Kaewunruen, 2021a; Yang et al., 2021) is still
the use of standard cross-entropy based supervised training of deep
networks, which tend to generalize poorly when trained from scratch
on small datasets.

2.2. Learning from limited data

In the context of deep learning, the branch that covers low-data
training is few-shot learning. In this scenario the goal is to train a
model capable of making predictions that can be generalized to new
classes, of which few examples (K-shots) are given during inference.
This model, instead of simply characterizing given classes on a standard
supervised scenario, should be able to project a feature space from
images, where samples from new, unknown concepts, behave similar.
Although this setup has gained popularity on recent years, it is some-
times difficult to apply it in real applications, which need to prove
its performance when all classes are used during both training and
inference. Nevertheless, methods proposed on the few-shot learning
paradigm tend also to generalize best on standard supervised scenarios
train on very small data, as it is our case. Among different approaches
in few-shot learning classification, metric-based methods aim to learn
a good embedding space, where novel class samples can be nicely
categorized. This categorization has been done learning a deep distance
metric on matching (Vinyals et al., 2016) or relational networks (Sung
et al., 2018), but also using memory-based nearest neighbour classifier
(so-called prototypical networks) based on class-level prototypes via
l2 (Euclidean) (Snell et al., 2017) or cosine distance (Chen et al.,
2019; Zhang et al., 2020). These methods are trained on an episodic
way, where training examples are divided between queries and support
to simulate the few labelled examples encountered during inference.
Nevertheless, recent works have demonstrated that such training strat-
egy is data-inefficient, and produces detriments in model performance
(Laenen & Bertinetto, 2020). Methods that learn to cluster samples in
a non-episodic way resemble contrast-based learning methods, which
have recently demonstrated leading results on classification tasks in
self-training (Chen et al., 2020), and in standard supervised learning
(Khosla et al., 2020). In the last case, clusters of points belonging to
the same class are pulled together in a hyper-sphere subspace, while
simultaneously pushing apart clusters of samples from different classes,
in a mini-batch way. In this work, we investigate the use of contrastive
learning on low-data scenarios for learning embeddings subsequently
used via a prototypical-based inference.

3. Methods

3.1. Data acquisition

In this work, we study the dynamic train-track interaction as a
system of masses, springs and dampers. In this model, any significant
3
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alteration in any of the elements will affect the rest of the system.
Thus, it is possible to survey alterations on railway track status by
recording the interaction on later elements of the system. The dynamic
surveying of the railway status is performed by means of vertical
accelerometers placed on the axle-boxes of the wheelsets for the left
and right rails. From this interaction, we intend to train a classifier
capable of recognizing whether a crossing is worn or not. Hereafter,
we will refer to 𝑥[𝑛] as the signal acquired for any of the channels in a
given window, which contains a crossing.

3.2. Feature extraction

The recorded signals 𝑥[𝑛] on time domain are transformed into the
ime–frequency spectrograms using the short-time Fourier transform,
[𝑚,𝜔] such that:

[𝑚,𝜔] =
𝑁−1
∑

𝑛=−∞
𝑥[𝑛]𝑤[𝑛 − 𝑚]𝑒−𝑗𝜔𝑛 (1)

here 𝑤[𝑛] is a hamming window, with length 𝑊 samples. Each
indow, 𝑤[𝑛], get chunks of the original signal, overlapped by 𝑂 to

educe artifacts. Note that, in the following, we refer to 𝑋[𝑚,𝜔] as 𝑋
or simplicity.

Then, spectrograms are scaled to improve model convergence and
asten training. Concretely, we propose to use a dynamic-margin nor-
alization of the input spectrogram to ensure that 𝑋 ∈ [0, 1], and use

ll the intensity range. This operation is parameterized by the desired
ynamic margin in decibels, 𝛾, such that:

′ =
20 log10(

𝑋
𝑊 ∕2 + 𝜖) + 𝛾

𝛾
(2)

where 𝜖 = 10(
−𝛾
20 ). In the following, we refer to 𝑋′ as 𝑋 for notational

simplicity
Feature extraction is applied to axle-box signals from both railways,

and their features are concatenated into a two-channel tensor for both
model training and inference.

3.3. Supervised contrastive feature learning

An overview of our algorithm for crossing wear detection is pre-
sented in Fig. 2. Below, we describe each component proposed for
model training and inference.

Let us denote a set of 𝐼 crossing features {𝑋𝑖}𝐼𝑖=1, and their respec-
tive labels by {𝑦𝑖,𝑘}𝐼𝑖=1. Each individual label, 𝑦𝑖,𝑘, is composed by a
ne-hot-encoding ground-truth that indicates if that crossing is worn,
uch that 𝑦𝑖,𝑘 ∈ {0, 1}, with 𝑘 = {0, 1}. We also define an encoder,
𝑓𝜽(⋅) ∶  → , parameterized by 𝜽, that is trained to characterize
ach crossing into an embedding of lower dimensionality 𝐷𝐸 , such that
∈  ⊂ R𝐷𝐸 . Then, we aim to train 𝑓𝜽(⋅) such that the embedding

epresentation of normal and anomalous crossings are discriminated.
n this line, we propose to use a supervised contrastive strategy. Thus,
e define a projection head, 𝑓𝝓(⋅) ∶  → , parameterized by 𝝓,
hich is composed by a two-layered perceptron with relu activations

hat maps the embedding space to a lower dimensionality, such that
∈  ⊂ R𝐷𝐸∕𝐹𝑐 , with 𝐹𝑐 a system hyper-parameter. Then, 𝜽 and 𝝓 are

trained via gradient descent to minimize the supervised contrastive loss
(Khosla et al., 2020) defined as:

𝑐 =
∑

𝑖∈𝐼

−1
|𝑃 (𝑖)|

∑

𝑝∈𝑃 (𝑖)
log

exp(𝐫𝑖 ⋅ 𝐫𝑝∕𝜏)
∑

𝑎∈𝐴(𝑖) exp(𝐫𝑖 ⋅ 𝐫𝑎∕𝜏)
(3)

here ⋅ denotes the inner product, 𝜏 ∈ R+ is a temperature parameter,
(𝑖) ≡ 𝐼 ⧵ {𝑖} indicates all instances other than 𝑖, and 𝑃 (𝑖) ≡ 𝑝 ∈ 𝐴(𝑖) ∶
𝑝 = 𝑦𝑖 refers to the set of instances positives, with |𝑃 (𝑖)| its cardinality.

It is noteworthy to mention that 𝐫 are l2-normalized features, to ap-
ly the criterion on an unity hyper-sphere. Using supervised contrastive
oss, points belonging to the same class (positives) are pulled together
n the projected space, while simultaneously pushing apart clusters of

amples from different classes (negatives).
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𝑦

Fig. 2. Method overview. An encoder is trained to minimize supervised contrastive loss in Eq. (3) after projecting the produced embedding 𝐳 into a subspace 𝐫 that falls into an
unit hyper-sphere. During inference, new queries are classified on the latent space projected by the encoder. Concretely, a non-parametric prototypical classifier is implemented
using class-wise prototypes �̄�𝑘 from the training set given by Eq. (4). In particular, the class of nearest prototype in terms of l2-distance is assigned to the new query sample.
3.4. Prototypical inference

For inference, contrastive-based methods usually train a linear clas-
sifier on top of the frozen representations 𝐳 using a cross-entropy loss.
In this work, we study the use of non-parametric inference strategy, to
avoid overfitting on scenarios with limited data available. Concretely,
we use prototypical-based inference (Snell et al., 2017), a memory-
based approach that assigns predicted labels according to the distance
in the latent space between new queries and precomputed represen-
tations of each class, called prototypes. This method creates softer
decision boundaries compared to learned-based architectures. As we
support later on our experiments, it generalizes better in the setting
under study. Prototypes are calculated using all samples from training
set such that:

�̄�𝑘 = 1
𝐼
∑

𝑖
𝐳𝑖 (4)

Given a new query sample, 𝑋∗, the wear prediction �̂�𝑘 is given by
its relative distance to each prototype as follows:

̂𝑘 = 𝜎𝑘(𝑑(𝑓𝜽(𝑋∗), �̄�𝑘)) (5)

where 𝜎𝑘 indicates a softmax activation over classes, and 𝑑(⋅) indicates
the Euclidean distance.
4

4. Experiments and results

4.1. Experimental setting

Dataset . The experiments described in this work were carried out
using a private dataset of dynamic railway surveying on line 3 of
Metrovalencia. 25 km of railway surveying were recorded using the
data acquisition setup described in Section 3.1, with accelerometers
of model KS76C100 manufactured by MMF and sampling frequencies
of 3.2 KHz. The train used in the tests was an Electrical Multiple
Unit (EMU 4300 series), which has four cars of two bogies each one,
being motorized the wheelsets of the last car. The run tests had a
maximum speed of 80 km/h, and included ballasted track with single-
block concrete sleepers, and Stedef slab track. From the entire path, 33
crossing points were selected and manually on-site evaluated by expe-
rienced operators in terms of wear. Of this dataset, 17 crossings points
showed damages that required follow-up and maintenance actions.
Observed deterioration included spalls, burrs and squats. Examples of
the deteriorated crossings are presented in Fig. 3. The acceleration
signals recorded were windowed using 4 seconds around each crossing
point.

Implementation details. The 4 seconds crossing signals acquired as
detailed in Section 3.1 are transformed to time–frequency spectrograms
as detailed in Section 3.2. Concretely, based upon the studies by Sal-
vador et al. (2016), hamming windows of 𝑊 = 0.25 seconds with
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Fig. 3. Examples of deteriorated railway crossings included in the used dataset.
Anomalies include squats (a–b–d), spalls (c), and burrs (d).

an overlap of 𝑂 = 95% were used to compute the short-time Fourier
transforms. Then, spectrograms were normalized using the dynamic-
margin standardization with 𝛾 = 20, and resized to 256 × 320 pixels
to reduce computational requirements. Using a 4-fold cross validation
strategy, the encoder for crossing characterization was trained as de-
scribed in Section 3.3. Concretely, ResNet-18 (He et al., 2016) was used
as base architecture for the encoder. The architecture used included an
initial convolutional layer to adapt the number of channels, and was
composed of 2 residual blocks. The spatial features were reduced to
a one-dimensional embedding 𝑧 ∈ R64 via a global-average pooling.
Regarding the projection head, a multi-layered perceptron that reduced
the embedding size in an order of 𝐹𝑐 = 4 with relu activation was
used. The different modules were trained during 200 iterations, using
ADAM optimizer with a learning rate of 1𝑒−4 and mini-batches of 8
samples. Finally, test samples form each fold are inferred as described
in Section 3.4, using all samples from training subset to compute class-
wise prototypes. The code and trained models are publicly available on
(https://github.com/cvblab/contrastive_prototypes_railway).

Baselines. In order to compare our approach to state-of-the-art meth-
ods, we implemented proposals of prior works on accelerometer-based
automatic railway maintenance, and validated them on the dataset
used, under the same conditions. Due to the scarce literature on this
field, we only differentiated three proposed approaches: hand-crafted
feature-based methods, standard supervised learning using CNNs and
cross entropy loss, and self-training ones via autoencoder features.
Hand-crafted features methods, aim to describe a series of features ob-
tained by classic signal processing methods on time and frequency do-
mains using human knowledge about the problem. Concretely, from the
windowed crossing signal, we used as features the intensity peak ampli-
tude, relative intensity at different bandwiths, entropy and other statis-
tics such as skewness, similarly to Li and Shi (2019). Then, a support-
vector machine (SVM) classifier with Gaussian kernel was trained
to predict the wear crossing. Self-training methods, aim to leverage
knowledge on large amounts of unlabelled data from dynamic survey-
ings. Concretely, an autoencoder is trained to compress the spectrogram
information into an embedding space, which is trained to minimize
the reconstruction error using a trained decoder. Then, the resultant
embedding space is used for clustering purposes. In our work, we
implemented an autoencoder trained on the full dataset (including
unlabelled data). Concretely, the same architecture with residual blocks
used for our proposed method was used as encoder, and a symmet-
rical decoder was used to reconstruct the input spectrogram. The
autoencoder architecture was pre-trained during 100 iterations using
5

ADAM optimizer with a learning rate of 1𝑒 − 4 and mini-batches of 32
samples. Then, the non-parametric prototypical inference described in
Section 3.4 was used for classification using the features extracted from
the encoder. CNNs using cross-entropy loss: Also, we include as an
independent baseline the same CNN architecture trained using simply
the binary cross entropy loss instead of the proposed learning method,
as it has been used by Chellaswamy et al. (2019), Sresakoolchai and
Kaewunruen (2021a) and Yang et al. (2021).

Evaluation metrics. We use standard metrics on classification tasks to
evaluate the proposed system performance on crossing wear detection.
In particular, accuracy, precision and recall are calculated using the
expert and system labels. From precision and recall F1-score (FS) is
calculated to summarize both figures of merit. For each experiment,
the metrics shown are the mean of ten consecutive repetitions of the
model training, to account for the variability of the stochastic factors
involved in the process.

4.2. Results

4.2.1. Crossing wear detection
The quantitative results obtained by the proposed model and base-

lines on the cross-validation partitions are presented in Table 1. We
can observe that the proposed methodology outperforms previous ap-
proaches by a large margin, with a substantial increase of ∼ 8% in both
accuracy and F1-score. Although the hand-crafted features baseline
reached promising results (0.6124 accuracy), deep-learning methods
outperformed this approach, which aligns to recent literature on rail-
way surveying by Yang et al. (2021). Finally, the features learned by
the autoencoder approach, even though it is trained on large quantities
of data, obtained results inferior to those of the proposed method. This
may be because the cross wear classification task requires specific fea-
tures. In contrast, the autoencoder learns general features to reconstruct
the original image that do not seem suitable for the supervised task.

4.2.2. Ablation studies
In the following, we provide comprehensive ablation experiments

to validate several elements of our model, and motivate the choice of
the values employed in our formulation, as well as our experimental
setting.

Studies on model complexity . We first studied the configuration of the
encoder used, ResNet-18, for the feature extraction stage. Concretely,
we validated the proposed model using different number of residual
blocks. Results are presented in Fig. 4(a), from which we can observe
how the less residual blocks are used, the best the classification perfor-
mance is. These results could be explained in two different ways: first,
deep networks are over parameterized under scarce data conditions,
and second, visual characterization on acceleration spectrograms are
made up of by simple patterns, which are modelled on early layers of
CNNs, together with intensity information.

Contrastive learning setup. Next, we study the multi-layered percep-
tron block used on the contrastive head. Concretely, ablation experi-
ments are performed on the dimensionality of the unity hyper-sphere
used to contrast samples, as a fraction of the dimension of the features
extracted by the encoder. Concretely, the compression factor 𝐹𝑐 is
evaluated at 𝐹𝑐 = {1, 2, 4, 8, 16}. Results are illustrated in Fig. 4(b).
These show that reducing the dimension on the hyper-sphere used for
contrastive losses produces slight benefits, with improvements around
3% on F1-score.

https://github.com/cvblab/contrastive_prototypes_railway
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Table 1
Quantitative results on railway crossing wear detection for the proposed method and implemented baselines. Best results in bold.
Method Metric (𝜇 ± 𝜎)

Accuracy F1-Score Precision Recall

CNNs + BCE (Sresakoolchai & Kaewunruen, 2021a; Yang et al., 2021) (0.5875 ± 0.0945) 0.6099 ± 0.1227 0.6111 ± 0.0863 0.6529 ± 0.2254
Hand-crafted Features + SVMs (Ghosh et al., 2021; Nadarajah et al., 2018) (0.6124 ± 0.0619) 0.6529 ± 0.0147 0.6045 ± 0.0223 0.6512 ± 0.0543
Autoencoder Features (Niebling et al., 2020) (0.6484 ± 0.0688) 0.6493 ± 0.0677 0.6771 ± 0.0767 0.6294 ± 0.0791
Proposed 𝟎.𝟕𝟏𝟓𝟔 ± 𝟎.𝟕𝟏𝟓𝟔 𝟎.𝟕𝟑𝟓𝟐 ± 𝟎.𝟎𝟓𝟎𝟖 𝟎.𝟕𝟐𝟔𝟒 ± 𝟎.𝟎𝟒𝟗𝟔𝟓𝟑 𝟎.𝟕𝟒𝟕𝟎 ± 𝟎.𝟎𝟔𝟒𝟕
Table 2
Ablation study on feature normalization methods. Best results in bold.
Normalization Metric (𝜇 ± 𝜎)

Accuracy F1- score

z-score 0.6124 (0.0619) 0.6045 (0.0223)
min–max 0.6484 (0.0259) 0.6529 (0.0147)
dynamic-margin 0.7156 (0.0715) 0.7352 (0.0508)

Fig. 4. Ablation studies on network architecture. Accuracy and F1-score are presented
for each possible configuration. Best performance highlighted in bold. (a) Encoder
complexity; (b) Contrastive head compression factor.

Feature normalization. As previously mentioned, one of the main
steps on deep learning systems is feature normalization. Concretely, the
time–frequency spectrogram intensity should be constrained to small
amplitudes, such that 𝑥 ∈ [0, 1]. For this purpose, our method uses
a dynamic-margin normalization described in Section 3.2. We now
validate the proposed normalization, comparing both quantitatively
and qualitatively with other well-known methods. In particular, we
use minimum–maximum normalization, and z-score standardization on
log-magnitude spectrograms. Results are presented in Table 2, while
normalized spectrograms are presented in Fig. 5. Results demonstrate
that benefits of dynamic-margin normalization, which outperforms
other approaches by up to ∼ 8% in terms of F1-score. Qualitative
evaluations show that the most large-intensity excited frequencies are
contrasted from background on the spectrogram, the best the results
are.

Learning strategies. In the following, we benchmark the proposed
contrastive-based feature learning and prototypical inference with
other common methods. Concretely, we train the proposed model using
a linear classification layer and binary cross-entropy (BCE) loss to
6

Fig. 5. Qualitative assessment of different normalization strategies. (a) min–max; (b)
z-score; (c) dynamic margin.

compare both contrastive and BCE-based training. For fair comparisons
and to avoid the over-parametrization of densely classification, we
also implement the prototypical inference on the BCE-trained model
(BCE+Prototypes) as described in García et al. (2021). Finally, we also
include a purely prototypical learning strategy (Prototypical), using
episodic training and minimizing l2-distance between support and
query samples as proposed in the original publication (Snell et al.,
2017). Concretely, the number of query and support samples used
during training was 4. The encoder architecture and hyper-parameters
were the same to the ones optimized for our proposed method (see
Section 4.1). Results for different methods are presented in Fig. 6 in
terms of accuracy and F1-score. The proposed supervised contrastive
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Fig. 6. Ablation studies on learning strategies. The illustrated metrics are accuracy (a)
and F1-score (b).

learning model and prototypical inference outperforms by a large
margin the BCE method, and shows greater stability in the results
among experiment repetitions. Although results consistently improve
using prototypical memory-based inference, our method reaches the
best performance, which shows the benefits of contrastive learning
strategies.

On the role of each element of the system. Different components have
been presented to optimize the proposed method: dynamic margin
normalization, prototypical inference, and contrastive feature learning
have been the best performing settings. Nevertheless, it is still unclear
the individual contribution of each element. For this reason, in the
following, we discuss the incremental improvement of each module of
the system. First, we focus on normalization methods, where dynamic
margin normalization performed the best on the proposed setting (see
Table 2). In addition, as shown in Fig. 7, this type of normalization
is also indispensable to obtain promising results when we simply use
a CNN with linear classifier, trained using cross-entropy (BCE). Thus,
we consider this standardization to be an indispensable step for the
operation of the system. Next, if we introduce an inference based on
prototypes (BCE+Prototypes), improvements of ∼ 8% are obtained (see
Fig. 6). Finally, when we get rid of entropy-based objective functions,
using the proposed contrastive learning setting, improvements of ∼ 5%
are obtained for both accuracy and F1-score figures of merit (see Fig. 6).
Thus, we see that what most damages the model is the use of dense
classifiers during inference, in the scenario studied with sparse data.
Next, direct training of the model to generate prototypes based on
contrastive learning also produces a substantial improvement.

4.2.3. On system explainability
Explainability on AI-based systems have become a relevant topic on

the field that aims to prevent bias on learning systems and demonstrate
the robustness of the model (Barredo Arrieta et al., 2020). In the
following, we explore the explainability of the proposed model in order
to provide confidence in its use during railway maintenance practice.
Thus, we shed light into the features learned by the trained CNN to de-
tect wear crossings using gradient-guided class activation maps (CAMs)
(Selvaraju et al., 2020). For a given input image 𝐱 its corresponding
attention map is computed as: 𝑎 = 𝛴(

∑𝐾 𝛼 𝑓 𝑠(𝐱) ) where 𝐾 is the total
7

𝑘 𝑘 𝜽 𝑘
Fig. 7. Ablation study on feature normalization methods. In particular, performance
using zscore, min–max, and the proposed dynamic margin (dm) normalization is
compared for the proposed method and a CNN using linear classifier (BCE).

Fig. 8. Qualitative evaluation of the proposed model on wear crossing detection.
For explainability, class-activation maps are obtained on true positive (a–b) and true
negative (c) predictions, and overlaid over the input spectrogram.

number of filters of that encoder layer, 𝛴 a sigmoid operation, and 𝛼𝑘
are the generated gradients such that:

𝛼𝑘 = 1
|𝐚|

∑

𝑡∈𝛺𝑇

𝜕�̂�1
𝜕𝐚𝑘,𝑡

(6)

where 𝛺 is the spatial features domain.
𝑇
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Generated CAMs of representative cases are visualized overlaid to
the input spectrogram features on Fig. 8. These heat-maps highlight the
important regions in the image for predicting a crossing as anomalous.
Concretely, we can appreciate that CAMs focus on the band-with be-
tween 650 to 850 relaxation frequencies. These findings are consistent
with previous literature in Salvador et al. (2016), that identified wider
patterns and higher relative amplitude on this band related to crossings
points on spectrograms.

5. Conclusions

A deep learning system capable of detecting worn crossings in
dynamic railway inspections via axle-box accelerations sensing has
been presented. Specifically, the system processes time–frequency spec-
trograms using convolutional neural networks through a novel com-
bination of prototypical inference guided by supervised contrastive
learning. The use of narrow CNNs showed the best results, as they
extract mostly basic patterns, similar to those found in time–frequency
spectrograms. Furthermore, normalization of these distributions using a
dynamic margin scaling approach outperforms standard normalization
in computer vision tasks. This method improves the contrast between
the excited frequencies and the background, leading to better char-
acterization. In addition, the supervised contrastive learning strategy
has shown a promising performance for learning on small datasets.
It outperforms standard cross-entropy based supervised learning by
a wide margin, and improves other metric learning strategies from
the few-shot learning domain, which resort to episodes-based training.
The presented method achieves F1-score values of 0.7352 in a cross-
validation, and outperforms previous literature by ∼ 8% for defect
crossing classification. The presented system and its methods could
be used to detect a wide range of singularities and defects in railway
surveying.
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